forked from anandkamat05/TDEOC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathInstallation.txt
46 lines (25 loc) · 1.16 KB
/
Installation.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
Follow these steps to set up a virtual environment to run our algorithms. We use conda environments here.
1) Install Mujoco (https://github.com/openai/mujoco-py)
2) Create the conda environment from the yml file
conda env create -f environment.yml
3) Activate the conda environment
conda activate DEOC
4) Install baselines through the setup file in the project folder
pip install -e .
5) Install gym-extensions through the setup file in the gym-extensions-master folder
cd gym-extensions-master
pip install -e .
6) Install gym-miniworld through the setup file in the gym-miniworld-master folder
git clone https://github.com/maximecb/gym-miniworld.git
cd gym-miniworld-master
pip install -e .
** Before running experiments, please consult the hyperparameters we provide in the Appendix
7) For four-rooms task:
cd TDEOC_fourrooms
python TDEOC_Tabular.py --tdeoc
8) For Mujoco (and TMaze transfer) tasks:
cd baselines/Termination_DEOC
python run_mujoco.py --env='Walker2d-v2' --tradeoff=0.2 --tdeoc
9) For Miniworld tasks:
cd baselines/Termination_DEOC
python run_atari_miniworld.py --env='MiniWorld-OneRoom-v0' --tradeoff=0.0 --tdeoc