-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathclub.py
238 lines (214 loc) · 9.21 KB
/
club.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import os
os.chdir('C:/Kaige_Research/Graph_based_recommendation_system/Code/')
from initial_data import *
import numpy as np
import json
import random as randomm
from random import choice
from scipy.linalg import sqrtm
import math
import time
import datetime
from scipy.sparse.csgraph import connected_components, laplacian
from scipy.sparse import csr_matrix
from sklearn import cluster
from operator import itemgetter #for easiness in sorting and finding max and stuff
from matplotlib.pylab import *
from scipy.sparse import csgraph
import argparse
import matplotlib.pyplot as plt
from sklearn.decomposition import TruncatedSVD
import networkx as nx
from sklearn.cluster import SpectralClustering, KMeans
import pandas as pd
import csv
from networkx.drawing.nx_pydot import write_dot
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics.cluster import completeness_score
from sklearn.preprocessing import normalize
from sklearn.metrics.pairwise import cosine_similarity, rbf_kernel, euclidean_distances
from sklearn.preprocessing import MinMaxScaler, Normalizer
from sklearn.linear_model import SGDRegressor
from scipy.linalg import sqrtm
import scipy.optimize
from sklearn.linear_model import LogisticRegression
from sklearn.metrics.cluster import adjusted_rand_score
class Club():
def __init__(self, user_num, article_num, pool_size, dimension, real_user, real_article, alpha, alpha_2, rating=None, real_data=False, binary_reward=False,real_reward=False, real_user_features=None, random=None):
self.user_num=user_num
self.article_num=article_num
self.dimension=dimension
self.pool_size=pool_size
self.alpha=1+np.sqrt(np.log(2.0/alpha)/2.0)
self.alpha_2=alpha_2
self.artificial_article_features=real_article
self.user_json=real_user# user json
self.real_user_features=real_user_features
self.random=random
self.user_features=init_user_features(self.user_num, self.dimension, random=self.random)
self.CBPrime=init_CBPrime(self.user_num)
self.cor_matrix=init_cor_matrix(self.user_num, self.dimension)
self.bias=init_bia(self.user_num, self.dimension)
self.user_counters=init_user_counters(self.user_num)
self.cluster_cor_matrix=init_cluster_cor_matrix(self.user_num, self.dimension)
self.cluster_bias=init_cluster_bias(self.user_num, self.dimension)
self.user_cluster_features=init_user_cluster_features(self.user_num, self.dimension)
self.user_graph=init_graph(self.user_num, cluster_init='complete')
self.clusters=None
self.n_cluster=None
self.cluster_size=None
self.binary_reward=binary_reward
self.real_data=real_data
self.rating=rating
self.real_reward=real_reward
self.time=0
self.users_served_items={}
self.served_users=[]
def get_optimal_reward(self, selected_user, article_pool):
if self.real_data==True:
if self.real_reward==False:
liked_articles=self.user_json[selected_user]
max_reward=0.0
common_article=set(article_pool)&set(liked_articles)
if len(common_article)!=0:
max_reward=1.0
else:
max_reward=0.0
else:
rates=self.rating[selected_user][article_pool]
max_reward=np.max(rates)
else:
if self.binary_reward==True:
rewards=np.dot(self.artificial_article_features[article_pool], self.real_user_features[selected_user])
big_index=np.where(rewards>=0.0)[0].tolist()
small_index=np.where(rewards<0.0)[0].tolist()
rewards[big_index]=1.0
rewards[small_index]=0.0
max_reward=np.max(rewards)
else:
rewards=np.dot(self.artificial_article_features[article_pool], self.real_user_features[selected_user])
max_reward=np.max(rewards)
return max_reward
def choose_article(self, selected_user, article_pool, time):
mean=np.dot(self.artificial_article_features[article_pool], self.user_cluster_features[selected_user])
temp1=np.dot(self.artificial_article_features[article_pool], np.linalg.inv(self.cluster_cor_matrix[selected_user]))
temp2=np.sum(temp1*self.artificial_article_features[article_pool], axis=1)*np.log(time+1)
var=np.sqrt(temp2)
pta=mean+self.alpha*var
article_picked=np.argmax(pta)
article_picked=article_pool[article_picked]
return article_picked
def get_reward(self, selected_user, picked_article):
if self.real_data==True:
if self.real_reward==False:
liked_articles=self.user_json[selected_user]
reward=0.0
if picked_article in liked_articles:
reward=1.0
else:
reward=0.0
else:
reward=self.rating[selected_user][picked_article]
else:
if self.binary_reward==True:
reward=np.dot(self.real_user_features[selected_user], self.artificial_article_features[picked_article])
ori_reward=reward
if reward>=0.0:
reward=1.0
else:
reward=0.0
else:
reward=np.dot(self.real_user_features[selected_user], self.artificial_article_features[picked_article])
return reward
def get_regret(self, max_reward, reward):
regret=max_reward-reward
return regret
def find_cluster(self):
if (self.time%100!=0):
pass
else:
self.n_cluster, self.clusters=connected_components(csr_matrix(self.user_graph))
print('club cluster num ~~~~~~~~~~~~~~~~', self.n_cluster)
return self.n_cluster, self.clusters
def update_graph(self, selected_user):
if (self.time%100!=0):
pass
else:
user_f_diff=np.linalg.norm(self.user_features[selected_user]-self.user_features, axis=1)
cb_prime_sum=self.CBPrime[selected_user]+self.CBPrime
ratio=user_f_diff/cb_prime_sum
big_index=np.where(ratio>1.0)[0].tolist()
self.user_graph[big_index, selected_user]=0.0
self.user_graph[selected_user][big_index]=0.0
del user_f_diff
del ratio
del big_index
def update_user_feature(self, selected_user, picked_article, reward):
self.cor_matrix[selected_user]+=np.outer(self.artificial_article_features[picked_article], self.artificial_article_features[picked_article])
self.bias[selected_user]+=self.artificial_article_features[picked_article]*reward
inv_cor_matrix=np.linalg.inv(self.cor_matrix[selected_user])
self.user_features[selected_user]=np.dot(inv_cor_matrix, self.bias[selected_user])
self.CBPrime[selected_user]=self.alpha_2*np.sqrt(float(1+np.log(1+self.user_counters[selected_user])/float(1+self.user_counters[selected_user])))
self.user_counters[selected_user]+=1
def update_cluster_parameter(self, selected_user, reward):
if (self.time%100!=0):
pass
else:
same_cluster=np.where(np.array(self.clusters)==self.clusters[selected_user])[0].tolist()
self.cluster_cor_matrix[selected_user]=np.identity(self.dimension)+np.sum(self.cor_matrix[same_cluster]-np.identity(self.dimension), axis=0)
self.cluster_bias[selected_user]=sum(self.bias[same_cluster], axis=0)
inv_cluster_cor=np.linalg.inv(self.cluster_cor_matrix[selected_user])
new_cluster_feature=np.dot(inv_cluster_cor, self.cluster_bias[selected_user])
for i in same_cluster:
self.user_cluster_features[i]=new_cluster_feature
def run(self, iterations, time, reward_noise_scale, all_random_users,all_artilce_pool, real_clusters):
cum_regret=[0]
cum_reward=[0]
cum_n_cluster=[0]
user_features_diff=[0]
user_cluster_features_diff=[0]
clustering_score=[0]
for time in range(iterations):
print('CLUB time ~~~~~~~~~ ', time)
self.time=time
user=all_random_users[time]
if user in self.served_users:
pass
else:
self.served_users.extend([user])
self.users_served_items[user]=[]
article_pool=all_artilce_pool[time]
optimal_reward=self.get_optimal_reward(user, article_pool)
n_cluster, clusters=self.find_cluster()
if real_clusters is not None:
score=adjusted_rand_score(real_clusters, clusters)
clustering_score.extend([score])
else:
pass
picked_article=self.choose_article(user, article_pool, time)
reward=self.get_reward(user, picked_article)
if reward_noise_scale==0.0:
noise_reward=reward
else:
noise_reward=reward+np.random.normal(loc=0.0, scale=reward_noise_scale)
regret=self.get_regret(optimal_reward, reward)
if picked_article in self.users_served_items[user]:
pass
else:
self.users_served_items[user].extend([picked_article])
self.update_user_feature(user, picked_article, noise_reward)
self.update_graph(user)
self.update_cluster_parameter(user, noise_reward)
if self.real_user_features is not None:
diff_real_and_learned_user_features=np.linalg.norm(np.mean(self.user_features-self.real_user_features, axis=0))
user_features_diff.extend([diff_real_and_learned_user_features])
del diff_real_and_learned_user_features
diff_real_and_learned_user_cluster_features=np.linalg.norm(np.mean(self.user_cluster_features-self.real_user_features, axis=0))
user_cluster_features_diff.extend([diff_real_and_learned_user_cluster_features])
del diff_real_and_learned_user_cluster_features
else:
pass
cum_n_cluster.extend([n_cluster])
cum_regret.extend([cum_regret[-1]+regret])
cum_reward.extend([cum_reward[-1]+reward])
return np.array(cum_regret), cum_n_cluster, clusters, self.user_graph, np.array(cum_reward), user_features_diff, user_cluster_features_diff, clustering_score, self.users_served_items, self.served_users