From a79279ef6d0ec15dc8c074ae728bd07b1fc454c3 Mon Sep 17 00:00:00 2001 From: Eric Bezzam Date: Sat, 25 May 2024 20:15:56 +0200 Subject: [PATCH 01/12] Add full digicam example. (#119) * Add full digicam example. * Update digicam config. * Clean up digicam example. * Setting relative path. * Set image resolution remotely. * Add checks that are in on-device script. * Add options for background image. * Update CHANGELOG. --- CHANGELOG.rst | 3 +- configs/defaults_recon.yaml | 1 + configs/demo.yaml | 1 + configs/{digicam.yaml => digicam_config.yaml} | 0 configs/digicam_example.yaml | 40 ++++++ lensless/hardware/utils.py | 6 +- lensless/utils/io.py | 25 +++- scripts/hardware/config_digicam.py | 2 +- scripts/hardware/digicam_measure_psfs.py | 2 +- scripts/hardware/set_digicam_mask_distance.py | 2 +- scripts/measure/digicam_example.py | 122 ++++++++++++++++++ scripts/measure/remote_capture.py | 33 +---- scripts/recon/admm.py | 3 + 13 files changed, 203 insertions(+), 37 deletions(-) rename configs/{digicam.yaml => digicam_config.yaml} (100%) create mode 100644 configs/digicam_example.yaml create mode 100644 scripts/measure/digicam_example.py diff --git a/CHANGELOG.rst b/CHANGELOG.rst index 7825c43f..7e4f9caf 100644 --- a/CHANGELOG.rst +++ b/CHANGELOG.rst @@ -13,7 +13,8 @@ Unreleased Added ~~~~~ -- Nothing +- Option to pass background image to ``utils.io.load_data``. +- Option to set image resolution with ``hardware.utils.display`` function. Changed ~~~~~~~ diff --git a/configs/defaults_recon.yaml b/configs/defaults_recon.yaml index 08d783ac..97613b50 100644 --- a/configs/defaults_recon.yaml +++ b/configs/defaults_recon.yaml @@ -9,6 +9,7 @@ input: data: data/raw_data/thumbs_up_rgb.png dtype: float32 original: null # ground truth image + background: null # background image torch: False torch_device: 'cpu' diff --git a/configs/demo.yaml b/configs/demo.yaml index c4dfee47..2f6c29ac 100644 --- a/configs/demo.yaml +++ b/configs/demo.yaml @@ -16,6 +16,7 @@ rpi: display: # default to this screen: https://www.dell.com/en-us/work/shop/dell-ultrasharp-usb-c-hub-monitor-u2421e/apd/210-axmg/monitors-monitor-accessories#techspecs_section screen_res: [1920, 1200] # width, height + image_res: null pad: 0 hshift: 0 vshift: -10 diff --git a/configs/digicam.yaml b/configs/digicam_config.yaml similarity index 100% rename from configs/digicam.yaml rename to configs/digicam_config.yaml diff --git a/configs/digicam_example.yaml b/configs/digicam_example.yaml new file mode 100644 index 00000000..70af04d7 --- /dev/null +++ b/configs/digicam_example.yaml @@ -0,0 +1,40 @@ +# python scripts/measure/digicam_example.py +hydra: + job: + chdir: True # change to output folder + +rpi: + username: null + hostname: null + +# mask parameters +mask: + fp: null # provide path, otherwise generate with seed + seed: 1 + shape: [54, 26] + center: [57, 77] + +# measurement parameters +capture: + fp: null + exp: 0.5 + sensor: rpi_hq + script: ~/LenslessPiCam/scripts/measure/on_device_capture.py + iso: 100 + config_pause: 1 + sensor_mode: "0" + nbits_out: 8 + nbits_capture: 12 + legacy: True + gray: False + fn: raw_data + bayer: True + awb_gains: [1.6, 1.2] + rgb: True + down: 8 + flip: True + +# reconstruction parameters +recon: + torch_device: 'cpu' + n_iter: 100 # number of iterations of ADMM \ No newline at end of file diff --git a/lensless/hardware/utils.py b/lensless/hardware/utils.py index f409d7cb..7777f201 100644 --- a/lensless/hardware/utils.py +++ b/lensless/hardware/utils.py @@ -199,8 +199,7 @@ def capture( if verbose: print(f"\nCopying over picture as {localfile}...") os.system( - 'scp "%s@%s:%s" %s >%s' - % (rpi_username, rpi_hostname, remotefile, localfile, NULL_FILE) + 'scp "%s@%s:%s" %s >%s' % (rpi_username, rpi_hostname, remotefile, localfile, NULL_FILE) ) if rgb or gray: @@ -242,6 +241,7 @@ def display( rpi_username, rpi_hostname, screen_res, + image_res=None, brightness=100, rot90=0, pad=0, @@ -279,6 +279,8 @@ def display( prep_command = f"{rpi_python} {script} --fp {remote_tmp_file} \ --pad {pad} --vshift {vshift} --hshift {hshift} --screen_res {screen_res[0]} {screen_res[1]} \ --brightness {brightness} --rot90 {rot90} --output_path {display_path} " + if image_res is not None: + prep_command += f" --image_res {image_res[0]} {image_res[1]}" if verbose: print(f"COMMAND : {prep_command}") subprocess.Popen( diff --git a/lensless/utils/io.py b/lensless/utils/io.py index 6d07bc27..7e44975b 100644 --- a/lensless/utils/io.py +++ b/lensless/utils/io.py @@ -378,6 +378,7 @@ def load_psf( def load_data( psf_fp, data_fp, + background_fp=None, return_float=True, downsample=None, bg_pix=(5, 25), @@ -495,10 +496,32 @@ def load_data( as_4d=True, return_float=return_float, shape=shape, - normalize=normalize, + normalize=normalize if background_fp is None else False, bgr_input=bgr_input, ) + if background_fp is not None: + bg = load_image( + background_fp, + flip=flip, + bayer=bayer, + blue_gain=blue_gain, + red_gain=red_gain, + as_4d=True, + return_float=return_float, + shape=shape, + normalize=False, + bgr_input=bgr_input, + ) + assert bg.shape == data.shape + + data -= bg + # clip to 0 + data = np.clip(data, a_min=0, a_max=data.max()) + + if normalize: + data /= data.max() + if data.shape != psf.shape: # in DiffuserCam dataset, images are already reshaped data = resize(data, shape=psf.shape) diff --git a/scripts/hardware/config_digicam.py b/scripts/hardware/config_digicam.py index 0807519b..4c64bdf3 100644 --- a/scripts/hardware/config_digicam.py +++ b/scripts/hardware/config_digicam.py @@ -11,7 +11,7 @@ from lensless.hardware.utils import set_mask_sensor_distance -@hydra.main(version_base=None, config_path="../../configs", config_name="digicam") +@hydra.main(version_base=None, config_path="../../configs", config_name="digicam_config") def config_digicam(config): rpi_username = config.rpi.username diff --git a/scripts/hardware/digicam_measure_psfs.py b/scripts/hardware/digicam_measure_psfs.py index 901d24cb..5085c91d 100644 --- a/scripts/hardware/digicam_measure_psfs.py +++ b/scripts/hardware/digicam_measure_psfs.py @@ -8,7 +8,7 @@ SATURATION_THRESHOLD = 0.01 -@hydra.main(version_base=None, config_path="../../configs", config_name="digicam") +@hydra.main(version_base=None, config_path="../../configs", config_name="digicam_config") def config_digicam(config): rpi_username = config.rpi.username diff --git a/scripts/hardware/set_digicam_mask_distance.py b/scripts/hardware/set_digicam_mask_distance.py index dcd0dd79..e9360353 100644 --- a/scripts/hardware/set_digicam_mask_distance.py +++ b/scripts/hardware/set_digicam_mask_distance.py @@ -2,7 +2,7 @@ from lensless.hardware.utils import set_mask_sensor_distance -@hydra.main(version_base=None, config_path="../../configs", config_name="digicam") +@hydra.main(version_base=None, config_path="../../configs", config_name="digicam_config") def config_digicam(config): rpi_username = config.rpi.username diff --git a/scripts/measure/digicam_example.py b/scripts/measure/digicam_example.py new file mode 100644 index 00000000..f6e51cb6 --- /dev/null +++ b/scripts/measure/digicam_example.py @@ -0,0 +1,122 @@ +""" +DigiCam example to remotely: +1. Set mask pattern. +2. Capture image. +3. Reconstruct image with simulated PSF. + +TODO: display image. At the moment should be done with `scripts/measure/remote_display.py` + +""" + + +import hydra +from hydra.utils import to_absolute_path +import numpy as np +from lensless.hardware.slm import set_programmable_mask, adafruit_sub2full +from lensless.hardware.utils import capture +import torch +from lensless import ADMM +from lensless.utils.io import save_image +from lensless.hardware.trainable_mask import AdafruitLCD +from lensless.utils.io import load_image + + +@hydra.main(version_base=None, config_path="../../configs", config_name="digicam_example") +def digicam(config): + measurement_fp = config.capture.fp + mask_fp = config.mask.fp + seed = config.mask.seed + rpi_username = config.rpi.username + rpi_hostname = config.rpi.hostname + mask_shape = config.mask.shape + mask_center = config.mask.center + torch_device = config.recon.torch_device + capture_config = config.capture + + # load mask + if mask_fp is not None: + mask_vals = np.load(to_absolute_path(mask_fp)) + else: + # create random mask within [0, 1] + np.random.seed(seed) + mask_vals = np.random.uniform(0, 1, mask_shape) + + # simulate PSF + mask = AdafruitLCD( + initial_vals=torch.from_numpy(mask_vals.astype(np.float32)), + sensor=capture_config["sensor"], + slm="adafruit", + downsample=capture_config["down"], + flipud=capture_config["flip"], + # color_filter=color_filter, + ) + psf = mask.get_psf().to(torch_device).detach() + psf_fp = "digicam_psf.png" + save_image(psf[0].cpu().numpy(), psf_fp) + print(f"PSF shape: {psf.shape}") + print(f"PSF saved to {psf_fp}") + + if measurement_fp is not None: + # load image + img = load_image( + to_absolute_path(measurement_fp), + verbose=True, + ) + + else: + ## measure data + # -- prepare full mask + pattern = adafruit_sub2full( + mask_vals, + center=mask_center, + ) + + # -- set mask + print("Setting mask") + set_programmable_mask( + pattern, + "adafruit", + rpi_username=rpi_username, + rpi_hostname=rpi_hostname, + ) + + # -- capture + print("Capturing") + localfile, img = capture( + rpi_username=rpi_username, + rpi_hostname=rpi_hostname, + verbose=False, + **capture_config, + ) + print(f"Captured to {localfile}") + + """ analyze image """ + print("image range: ", img.min(), img.max()) + + """ reconstruction """ + # -- normalize + img = img.astype(np.float32) / img.max() + # prep + img = torch.from_numpy(img) + # -- if [H, W, C] -> [D, H, W, C] + if len(img.shape) == 3: + img = img.unsqueeze(0) + if capture_config["flip"]: + img = torch.rot90(img, dims=(-3, -2), k=2) + + # reconstruct + print("Reconstructing") + recon = ADMM(psf) + recon.set_data(img.to(psf.device)) + res = recon.apply(disp_iter=None, plot=False, n_iter=config.recon.n_iter) + res_np = res[0].cpu().numpy() + res_np = res_np / res_np.max() + lensless_np = img[0].cpu().numpy() + save_image(lensless_np, "digicam_raw.png") + save_image(res_np, "digicam_recon.png") + + print("Done") + + +if __name__ == "__main__": + digicam() diff --git a/scripts/measure/remote_capture.py b/scripts/measure/remote_capture.py index b7b5c6c0..a38f722a 100644 --- a/scripts/measure/remote_capture.py +++ b/scripts/measure/remote_capture.py @@ -32,7 +32,6 @@ import cv2 from pprint import pprint import matplotlib.pyplot as plt -import rawpy from lensless.hardware.utils import check_username_hostname from lensless.hardware.sensor import SensorOptions, sensor_dict, SensorParam from lensless.utils.image import rgb2gray, print_image_info @@ -127,9 +126,12 @@ def liveview(config): and "bullseye" in result_dict["RPi distribution"] and not legacy ): + assert not rgb or not gray, "RGB and gray not supported for RPi HQ sensor" if bayer: + assert config.capture.down is None + # copy over DNG file remotefile = f"~/{remote_fn}.dng" localfile = os.path.join(save, f"{fn}.dng") @@ -138,35 +140,6 @@ def liveview(config): img = load_image(localfile, verbose=True, bayer=bayer, nbits_out=nbits_out) - # raw = rawpy.imread(localfile) - - # # https://letmaik.github.io/rawpy/api/rawpy.Params.html#rawpy.Params - # # https://www.libraw.org/docs/API-datastruct-eng.html - # if nbits_out > 8: - # # only 8 or 16 bit supported by postprocess - # if nbits_out != 16: - # print("casting to 16 bit...") - # output_bps = 16 - # else: - # if nbits_out != 8: - # print("casting to 8 bit...") - # output_bps = 8 - # img = raw.postprocess( - # adjust_maximum_thr=0, # default 0.75 - # no_auto_scale=False, - # # no_auto_scale=True, - # gamma=(1, 1), - # output_bps=output_bps, - # bright=1, # default 1 - # exp_shift=1, - # no_auto_bright=True, - # # use_camera_wb=True, - # # use_auto_wb=False, - # # -- gives better balance for PSF measurement - # use_camera_wb=False, - # use_auto_wb=True, # default is False? f both use_camera_wb and use_auto_wb are True, then use_auto_wb has priority. - # ) - # print image properties print_image_info(img) diff --git a/scripts/recon/admm.py b/scripts/recon/admm.py index 12584e59..1d1c261c 100644 --- a/scripts/recon/admm.py +++ b/scripts/recon/admm.py @@ -29,6 +29,9 @@ def admm(config): psf, data = load_data( psf_fp=to_absolute_path(config.input.psf), data_fp=to_absolute_path(config.input.data), + background_fp=to_absolute_path(config.input.background) + if config.input.background is not None + else None, dtype=config.input.dtype, downsample=config["preprocess"]["downsample"], bayer=config["preprocess"]["bayer"], From 17462ff4cdf476b35f28440acb79c92dc9fdf9c6 Mon Sep 17 00:00:00 2001 From: Eric Bezzam Date: Mon, 27 May 2024 16:43:22 +0200 Subject: [PATCH 02/12] Measuring datasets with 3D printed masks (#124) * Update setup. * Add option to reconstruct during measurement. * Add FZA measurement config. --- README.rst | 3 +- configs/collect_dataset.yaml | 1 + configs/collect_mirflickr_fza.yaml | 32 +++++++++++++++++++ lensless/recon/recon.py | 4 +-- rpi_requirements.txt | 3 +- scripts/measure/collect_dataset_on_device.py | 33 ++++++++++++++++++++ 6 files changed, 71 insertions(+), 5 deletions(-) create mode 100644 configs/collect_mirflickr_fza.yaml diff --git a/README.rst b/README.rst index 532e0940..428fd07e 100644 --- a/README.rst +++ b/README.rst @@ -168,8 +168,7 @@ directory): pip install -r rpi_requirements.txt # test on-device camera capture (after setting up the camera) - source lensless_env/bin/activate - python scripts/measure/on_device_capture.py + (lensless_env) python scripts/measure/on_device_capture.py You may still need to manually install ``numpy`` and/or ``scipy`` with ``pip`` in case libraries (e.g. ``libopenblas.so.0``) cannot be detected. diff --git a/configs/collect_dataset.yaml b/configs/collect_dataset.yaml index c898ab2b..c5f56d45 100644 --- a/configs/collect_dataset.yaml +++ b/configs/collect_dataset.yaml @@ -24,6 +24,7 @@ min_level: 200 max_tries: 6 masks: null # for multi-mask measurements +recon: null # parameters for reconstruction (for debugging purposes, not recommended to do during actual measurement as it will significantly increase the time) # -- display parameters display: diff --git a/configs/collect_mirflickr_fza.yaml b/configs/collect_mirflickr_fza.yaml new file mode 100644 index 00000000..bd6de24f --- /dev/null +++ b/configs/collect_mirflickr_fza.yaml @@ -0,0 +1,32 @@ +# python scripts/measure/collect_dataset_on_device.py -cn collect_mirflickr_fza +defaults: + - collect_dataset + - _self_ + +input_dir: /mnt/mirflickr/all +min_level: 170 + +# FOR TESTING PURPOSE +output_dir: data/fza_test # RPi won't have enough memory for full measured dataset +max_tries: 0 +recon: + psf: data/psf/tape_rgb.png # TODO: set correct PSF + n_iter: 10 +# # FOR FINAL MEASUREMENT +# max_tries: 2 +# output_dir: /mnt/mirflickr/fza_10K + +# files to measure +n_files: 25000 + +# -- display parameters +display: + image_res: [900, 1200] + vshift: -26 + brightness: 90 + delay: 1 + +capture: + down: 8 + exposure: 0.7 + awb_gains: [1.6, 1.2] # red, blue, TODO for your mask \ No newline at end of file diff --git a/lensless/recon/recon.py b/lensless/recon/recon.py index 39f78a0c..77813b0e 100644 --- a/lensless/recon/recon.py +++ b/lensless/recon/recon.py @@ -493,9 +493,9 @@ def _get_numpy_data(self, data): def apply( self, n_iter=None, - disp_iter=10, + disp_iter=-1, plot_pause=0.2, - plot=True, + plot=False, save=False, gamma=None, ax=None, diff --git a/rpi_requirements.txt b/rpi_requirements.txt index 6c7bf14b..01ccda68 100644 --- a/rpi_requirements.txt +++ b/rpi_requirements.txt @@ -5,4 +5,5 @@ matplotlib>=3.4.2 hydra-code paramiko numpy>=1.24.2 -scipy>=1.6.0 \ No newline at end of file +scipy>=1.6.0 +git+https://github.com/ebezzam/slm-controller.git \ No newline at end of file diff --git a/scripts/measure/collect_dataset_on_device.py b/scripts/measure/collect_dataset_on_device.py index 76393b9c..69bd65d9 100644 --- a/scripts/measure/collect_dataset_on_device.py +++ b/scripts/measure/collect_dataset_on_device.py @@ -89,6 +89,22 @@ def collect_dataset(config): mask_vals = np.random.uniform(0, 1, config.masks.shape) np.save(mask_fp, mask_vals) + recon = None + if config.recon is not None: + # initialize ADMM reconstruction + from lensless import ADMM + from lensless.utils.io import load_psf + + psf, bg = load_psf( + fp=config.recon.psf, + downsample=config.capture.down, # assume full resolution PSF + return_bg=True + ) + recon = ADMM(psf, n_iter=config.recon.n_iter) + + recon_dir = plib.Path(output_dir) / "recon" + recon_dir.mkdir(exist_ok=True) + # assert input directory exists assert os.path.exists(input_dir) @@ -315,6 +331,23 @@ def collect_dataset(config): brightness_vals.append(current_screen_brightness) n_tries_vals.append(n_tries) + if recon is not None: + + # normalize and remove background + output = output.astype(np.float32) + output /= output.max() + output -= bg + output = np.clip(output, a_min=0, a_max=output.max()) + + # set data + output = output[np.newaxis, :, :, :] + recon.set_data(output) + + # reconstruct and save + res = recon.apply() + recon_fp = recon_dir / output_fp.name + save_image(res, recon_fp) + # check if runtime is exceeded if config.runtime: proc_time = time.time() - start_time From 01d6d5d3382d7e107d0b50f998b4779766f3e1e1 Mon Sep 17 00:00:00 2001 From: Eric Bezzam Date: Tue, 9 Jul 2024 01:17:44 -0700 Subject: [PATCH 03/12] Fix normalization, and downsample before color correction. (#134) * Fix normalization, and downsample before color correction. * Fix starting from already started measurement. * Change dataset check on saturation ratio. --- configs/analyze_dataset.yaml | 4 +- configs/collect_dataset.yaml | 6 +- lensless/utils/image.py | 6 ++ lensless/utils/io.py | 40 ++++++---- scripts/measure/analyze_measured_dataset.py | 59 ++++++++++++--- scripts/measure/collect_dataset_on_device.py | 77 ++++++++++++-------- 6 files changed, 129 insertions(+), 63 deletions(-) diff --git a/configs/analyze_dataset.yaml b/configs/analyze_dataset.yaml index 53d6a130..475f452c 100644 --- a/configs/analyze_dataset.yaml +++ b/configs/analyze_dataset.yaml @@ -1,9 +1,11 @@ +# python scripts/measure/analyze_measured_dataset.py hydra: job: chdir: True # change to output folder dataset_path: null -desired_range: [150, 254] +desired_range: [150, 255] +saturation_percent: 0.05 delete_bad: False n_files: null start_idx: null diff --git a/configs/collect_dataset.yaml b/configs/collect_dataset.yaml index c5f56d45..0fa87fa2 100644 --- a/configs/collect_dataset.yaml +++ b/configs/collect_dataset.yaml @@ -42,10 +42,12 @@ display: capture: skip: False # to test looping over displaying images - config_pause: 2 + config_pause: 3 iso: 100 res: null down: 4 exposure: 0.02 # min exposure awb_gains: [1.9, 1.2] # red, blue - # awb_gains: null \ No newline at end of file + # awb_gains: null + fact_increase: 2 # multiplicative factor to increase exposure + fact_decrease: 1.5 \ No newline at end of file diff --git a/lensless/utils/image.py b/lensless/utils/image.py index edb213fc..cc2f4936 100644 --- a/lensless/utils/image.py +++ b/lensless/utils/image.py @@ -221,6 +221,7 @@ def get_max_val(img, nbits=None): def bayer2rgb_cc( img, nbits, + down=None, blue_gain=None, red_gain=None, black_level=RPI_HQ_CAMERA_BLACK_LEVEL, @@ -269,6 +270,10 @@ def bayer2rgb_cc( # demosaic Bayer data img = cv2.cvtColor(img, cv2.COLOR_BayerRG2RGB) + # downsample + if down is not None: + img = resize(img[None, ...], factor=1 / down, interpolation=cv2.INTER_CUBIC)[0] + # correction img = img - black_level if red_gain: @@ -277,6 +282,7 @@ def bayer2rgb_cc( img[:, :, 2] *= blue_gain img = img / (2**nbits - 1 - black_level) img[img > 1] = 1 + img = (img.reshape(-1, 3, order="F") @ ccm.T).reshape(img.shape, order="F") img[img < 0] = 0 img[img > 1] = 1 diff --git a/lensless/utils/io.py b/lensless/utils/io.py index 7e44975b..4d1eec70 100644 --- a/lensless/utils/io.py +++ b/lensless/utils/io.py @@ -576,31 +576,39 @@ def save_image(img, fp, max_val=255, normalize=True): img_tmp = img.copy() - if img_tmp.dtype == np.uint16 or img_tmp.dtype == np.uint8: - img_tmp = img_tmp.astype(np.float32) - if normalize: + + if img_tmp.dtype == np.uint16 or img_tmp.dtype == np.uint8: + img_tmp = img_tmp.astype(np.float32) + img_tmp -= img_tmp.min() img_tmp /= img_tmp.max() - else: - normalized = False - if img_tmp.min() < 0: - img_tmp -= img_tmp.min() - normalize = True - if img_tmp.max() > 1: - img_tmp /= img_tmp.max() - normalize = True - if normalized: - print(f"Warning (out of range): {fp} normalizing data to [0, 1]") - - if img_tmp.dtype == np.float64 or img_tmp.dtype == np.float32: img_tmp *= max_val img_tmp = img_tmp.astype(np.uint8) - # RGB + else: + + if img_tmp.dtype == np.float64 or img_tmp.dtype == np.float32: + # check within [0, 1] and convert to uint8 + + normalized = False + if img_tmp.min() < 0: + img_tmp -= img_tmp.min() + normalized = True + if img_tmp.max() > 1: + img_tmp /= img_tmp.max() + normalized = True + if normalized: + print(f"Warning (out of range): {fp} normalizing data to [0, 1]") + img_tmp *= max_val + img_tmp = img_tmp.astype(np.uint8) + + # save if len(img_tmp.shape) == 3 and img_tmp.shape[2] == 3: + # RGB img_tmp = Image.fromarray(img_tmp) else: + # grayscale img_tmp = Image.fromarray(img_tmp.squeeze()) img_tmp.save(fp) diff --git a/scripts/measure/analyze_measured_dataset.py b/scripts/measure/analyze_measured_dataset.py index 6137e176..2d5c7050 100644 --- a/scripts/measure/analyze_measured_dataset.py +++ b/scripts/measure/analyze_measured_dataset.py @@ -15,6 +15,19 @@ import matplotlib.pyplot as plt import time import tqdm +import re + + +def convert(text): + return int(text) if text.isdigit() else text.lower() + + +def alphanum_key(key): + return [convert(c) for c in re.split("([0-9]+)", key)] + + +def natural_sort(arr): + return sorted(arr, key=alphanum_key) @hydra.main(version_base=None, config_path="../../configs", config_name="analyze_dataset") @@ -24,13 +37,14 @@ def analyze_dataset(config): desired_range = config.desired_range delete_bad = config.delete_bad start_idx = config.start_idx + saturation_percent = config.saturation_percent assert ( folder is not None ), "Must specify folder to analyze in config or through command line (folder=PATH)." # get all PNG files in folder - files = sorted(glob.glob(os.path.join(folder, "*.png"))) + files = natural_sort(glob.glob(os.path.join(folder, "*.png"))) print("Found {} files".format(len(files))) if start_idx is not None: files = files[start_idx:] @@ -48,10 +62,9 @@ def analyze_dataset(config): im = np.array(Image.open(fn)) max_val = im.max() max_vals.append(max_val) + saturation_ratio = np.sum(im >= desired_range[1]) / im.size - # if out of desired range, print filename - if max_val < desired_range[0] or max_val > desired_range[1]: - # print("File {} has max value {}".format(fn, max_val)) + if max_val < desired_range[0]: n_bad_files += 1 bad_files.append(fn) @@ -61,6 +74,28 @@ def analyze_dataset(config): else: print("File {} has max value {}".format(fn, max_val)) + elif saturation_ratio > saturation_percent: + n_bad_files += 1 + bad_files.append(fn) + + if delete_bad: + os.remove(fn) + print("REMOVED file {}".format(fn)) + else: + print("File {} has saturation ratio {}".format(fn, saturation_ratio)) + + # # if out of desired range, print filename + # if max_val < desired_range[0] or saturation_ratio > saturation_percent: + # # print("File {} has max value {}".format(fn, max_val)) + # n_bad_files += 1 + # bad_files.append(fn) + + # if delete_bad: + # os.remove(fn) + # print("REMOVED file {}".format(fn)) + # else: + # print("File {} has max value {}".format(fn, max_val)) + proc_time = time.time() - start_time print("Went through {} files in {:.2f} seconds".format(len(files), proc_time)) print( @@ -69,6 +104,14 @@ def analyze_dataset(config): ) ) + # plot histogram + output_folder = os.getcwd() + output_fp = os.path.join(output_folder, "max_vals.png") + plt.hist(max_vals, bins=100) + plt.savefig(output_fp) + + print("Saved histogram to {}".format(output_fp)) + # command line input on whether to delete bad files if not delete_bad: response = None @@ -80,14 +123,6 @@ def analyze_dataset(config): else: print("Not deleting bad files") - # plot histogram - output_folder = os.getcwd() - output_fp = os.path.join(output_folder, "max_vals.png") - plt.hist(max_vals, bins=100) - plt.savefig(output_fp) - - print("Saved histogram to {}".format(output_fp)) - if __name__ == "__main__": analyze_dataset() diff --git a/scripts/measure/collect_dataset_on_device.py b/scripts/measure/collect_dataset_on_device.py index 69bd65d9..96c7c727 100644 --- a/scripts/measure/collect_dataset_on_device.py +++ b/scripts/measure/collect_dataset_on_device.py @@ -14,6 +14,7 @@ import numpy as np import hydra +from hydra.utils import to_absolute_path import time import os import pathlib as plib @@ -67,8 +68,8 @@ def collect_dataset(config): start_idx = config.start_idx if os.path.exists(output_dir): files = list(plib.Path(output_dir).glob(f"*.{config.output_file_ext}")) - start_idx = len(files) - print("\nNumber of completed measurements :", start_idx) + n_completed_files = len(files) + print("\nNumber of completed measurements :", n_completed_files) output_dir = plib.Path(output_dir) if config.masks is not None: mask_dir = plib.Path(output_dir) / "masks" @@ -91,19 +92,23 @@ def collect_dataset(config): recon = None if config.recon is not None: + print("Initializing ADMM recon...") # initialize ADMM reconstruction from lensless import ADMM from lensless.utils.io import load_psf psf, bg = load_psf( - fp=config.recon.psf, - downsample=config.capture.down, # assume full resolution PSF - return_bg=True + fp=to_absolute_path(config.recon.psf), + downsample=config.capture.down, # assume full resolution PSF + return_bg=True, ) + + print("PSF shape: ", psf.shape) recon = ADMM(psf, n_iter=config.recon.n_iter) recon_dir = plib.Path(output_dir) / "recon" recon_dir.mkdir(exist_ok=True) + print("Finished initializing ADMM recon.") # assert input directory exists assert os.path.exists(input_dir) @@ -250,8 +255,8 @@ def collect_dataset(config): # -- take picture max_pixel_val = 0 - fact_increase = 2 - fact_decrease = 1.5 + fact_increase = config.capture.fact_increase + fact_decrease = config.capture.fact_decrease n_tries = 0 camera.shutter_speed = init_shutter_speed @@ -272,6 +277,7 @@ def collect_dataset(config): # convert to RGB output = bayer2rgb_cc( output_bayer, + down=down, nbits=12, blue_gain=float(g[1]), red_gain=float(g[0]), @@ -280,10 +286,10 @@ def collect_dataset(config): nbits_out=8, ) - if down: - output = resize( - output[None, ...], factor=1 / down, interpolation=cv2.INTER_CUBIC - )[0] + # if down: + # output = resize( + # output[None, ...], factor=1 / down, interpolation=cv2.INTER_CUBIC + # )[0] # save image save_image(output, output_fp, normalize=False) @@ -305,27 +311,34 @@ def collect_dataset(config): elif max_pixel_val > MAX_LEVEL: - # decrease exposure - current_shutter_speed = int(current_shutter_speed / fact_decrease) - camera.shutter_speed = current_shutter_speed - time.sleep(config.capture.config_pause) - print(f"decreasing shutter speed to {current_shutter_speed}") - - # # decrease screen brightness - # current_screen_brightness = current_screen_brightness - 10 - # screen_res = np.array(config.display.screen_res) - # hshift = config.display.hshift - # vshift = config.display.vshift - # pad = config.display.pad - # brightness = current_screen_brightness - # display_image_path = config.display.output_fp - # rot90 = config.display.rot90 - # os.system( - # f"python scripts/measure/prep_display_image.py --fp {_file} --output_path {display_image_path} --screen_res {screen_res[0]} {screen_res[1]} --hshift {hshift} --vshift {vshift} --pad {pad} --brightness {brightness} --rot90 {rot90}" - # ) - # print(f"decreasing screen brightness to {current_screen_brightness}") - - # time.sleep(config.display.delay) + if current_shutter_speed > 13098: # TODO: minimum for RPi HQ + # decrease exposure + current_shutter_speed = int(current_shutter_speed / fact_decrease) + camera.shutter_speed = current_shutter_speed + time.sleep(config.capture.config_pause) + print(f"decreasing shutter speed to {current_shutter_speed}") + + else: + + # decrease screen brightness + current_screen_brightness = current_screen_brightness - 10 + screen_res = np.array(config.display.screen_res) + hshift = config.display.hshift + vshift = config.display.vshift + pad = config.display.pad + brightness = current_screen_brightness + display_image_path = config.display.output_fp + rot90 = config.display.rot90 + + display_command = f"python scripts/measure/prep_display_image.py --fp {_file} --output_path {display_image_path} --screen_res {screen_res[0]} {screen_res[1]} --hshift {hshift} --vshift {vshift} --pad {pad} --brightness {brightness} --rot90 {rot90}" + if config.display.landscape: + display_command += " --landscape" + if config.display.image_res is not None: + display_command += f" --image_res {config.display.image_res[0]} {config.display.image_res[1]}" + # print(display_command) + os.system(display_command) + + time.sleep(config.display.delay) exposure_vals.append(current_shutter_speed / 1e6) brightness_vals.append(current_screen_brightness) From 8ed51362f425f90cdb97b5efc5fa2eaee99cc899 Mon Sep 17 00:00:00 2001 From: Eric Bezzam Date: Tue, 9 Jul 2024 08:24:09 -0700 Subject: [PATCH 04/12] Update test versions. (#135) * Update test versions. * Update minimum python. * Fix versions. * Update versions. * Fix unit tests. --- .github/workflows/python_no_pycsou.yml | 6 ++---- .github/workflows/python_pycsou.yml | 4 +--- setup.py | 1 + 3 files changed, 4 insertions(+), 7 deletions(-) diff --git a/.github/workflows/python_no_pycsou.yml b/.github/workflows/python_no_pycsou.yml index fba48a11..3ec9d0b8 100644 --- a/.github/workflows/python_no_pycsou.yml +++ b/.github/workflows/python_no_pycsou.yml @@ -20,10 +20,8 @@ jobs: fail-fast: false max-parallel: 12 matrix: - # TODO: use below with this issue is resolved: https://github.com/actions/setup-python/issues/808 - # os: [ubuntu-latest, macos-latest, windows-latest] - os: [ubuntu-latest, macos-12, windows-latest] - python-version: [3.8, "3.11"] + os: [ubuntu-latest, macos-latest, windows-latest] + python-version: ["3.11"] steps: - uses: actions/checkout@v3 - name: Checkout submodules diff --git a/.github/workflows/python_pycsou.yml b/.github/workflows/python_pycsou.yml index 7640c660..61f89fa5 100644 --- a/.github/workflows/python_pycsou.yml +++ b/.github/workflows/python_pycsou.yml @@ -20,9 +20,7 @@ jobs: fail-fast: false max-parallel: 12 matrix: - # TODO: use below with this issue is resolved: https://github.com/actions/setup-python/issues/808 - # os: [ubuntu-latest, macos-latest, windows-latest] - os: [ubuntu-latest, macos-12, windows-latest] + os: [ubuntu-latest, macos-latest, windows-latest] python-version: [3.9, "3.10"] steps: - uses: actions/checkout@v3 diff --git a/setup.py b/setup.py index d1ab6d68..23bb2269 100644 --- a/setup.py +++ b/setup.py @@ -27,6 +27,7 @@ python_requires=">=3.8.1, <=3.11.9", install_requires=[ "opencv-python>=4.5.1.48", + "numpy==1.26.4; python_version=='3.11'", "numpy>=1.22", "scipy>=1.7.0", "image>=1.5.33", From 0424e15966eaaf7d7a5c04d5e69d14297f92b32f Mon Sep 17 00:00:00 2001 From: Eric Bezzam Date: Wed, 31 Jul 2024 06:22:02 -0700 Subject: [PATCH 05/12] Remove fixed frame rate. (#136) --- configs/collect_dataset.yaml | 4 ++-- scripts/measure/collect_dataset_on_device.py | 11 ++++++----- 2 files changed, 8 insertions(+), 7 deletions(-) diff --git a/configs/collect_dataset.yaml b/configs/collect_dataset.yaml index 0fa87fa2..c54ef8e7 100644 --- a/configs/collect_dataset.yaml +++ b/configs/collect_dataset.yaml @@ -1,6 +1,6 @@ # python scripts/collect_dataset_on_device.py -cn collect_dataset -input_dir: data/celeba_mini +input_dir: /mnt/mirflickr/10 input_file_ext: jpg # can pass existing folder to continue measurement @@ -45,7 +45,7 @@ capture: config_pause: 3 iso: 100 res: null - down: 4 + down: 8 exposure: 0.02 # min exposure awb_gains: [1.9, 1.2] # red, blue # awb_gains: null diff --git a/scripts/measure/collect_dataset_on_device.py b/scripts/measure/collect_dataset_on_device.py index 96c7c727..8bb34077 100644 --- a/scripts/measure/collect_dataset_on_device.py +++ b/scripts/measure/collect_dataset_on_device.py @@ -162,9 +162,7 @@ def collect_dataset(config): camera.close() # -- now set up camera with desired settings - camera = PiCamera( - framerate=1 / config.capture.exposure, sensor_mode=0, resolution=tuple(res) - ) + camera = PiCamera(sensor_mode=0, resolution=tuple(res)) # Set ISO to the desired value camera.resolution = tuple(res) @@ -304,10 +302,13 @@ def collect_dataset(config): max_pixel_val = output.max() if max_pixel_val < MIN_LEVEL: + # increase exposure current_shutter_speed = int(current_shutter_speed * fact_increase) + camera.shutter_speed = current_shutter_speed time.sleep(config.capture.config_pause) - print(f"increasing shutter speed to {current_shutter_speed}") + + print(f"increasing shutter speed to [desired] {current_shutter_speed} [actual] {camera.shutter_speed}") elif max_pixel_val > MAX_LEVEL: @@ -316,7 +317,7 @@ def collect_dataset(config): current_shutter_speed = int(current_shutter_speed / fact_decrease) camera.shutter_speed = current_shutter_speed time.sleep(config.capture.config_pause) - print(f"decreasing shutter speed to {current_shutter_speed}") + print(f"decreasing shutter speed to [desired] {current_shutter_speed} [actual] {camera.shutter_speed}") else: From 11e798eae3516dc31b022a5e08a1cf7f6346da3e Mon Sep 17 00:00:00 2001 From: Eric Bezzam Date: Wed, 7 Aug 2024 10:02:32 -0700 Subject: [PATCH 06/12] Adding new reconstruction methods and exposing different parameters for PSF simulation. (#133) * Add full digicam example. * Update digicam config. * Clean up digicam example. * Setting relative path. * Set image resolution remotely. * Add checks that are in on-device script. * Add options for background image. * Update CHANGELOG. * Expose PSF simulation parameters, ensure RGB for training. * Improve analyze image script. * Use waveprop param. * Expose more simulation parameters, add options to simulate lensless. * Remove metric reduction in batches. * Remove reduction on batch dim. * Add option to benchmark HF models. * Add example config for benchmarking HF model. * FIx multilens array centering and expose focal length. * Add compensation branch option. * Upload viewable version of 16 bits files. * Add option to skip pre and post proc, and multi Wiener filter. * Add support for preproc aux and initializing from HF model. * Add preproc support for multi-wiener, add single psf option for benchmarking. * Add support for single channel and flipping. * Add residual block to compensation. * Add option for passing PSF. * Add residual to compensation branch, flipping option for augmentation, and new models. * Add gamma correction option. * Add perlin numpy. * Add models, optional background subtraction. * Remove mask config. * Fix test. * Fix test. * Remove FISTA to see test. * Update numpy. * Fix multimask for random flips. * Support for AdamW and linearly decay learning rate. * Add exp decay of learning rate. * Add cosine decay learning rate schedule. * Add option for random rotations. * Add option of when to update LR. * Add diffusercam benchmark config. * Add option to initialize with full model. * Add function for setting PSF, add extra dimension when single image. * Add option to train on simulated, and test on measured. * Add option to fine-tune just last layer. * Add option to reconstruct single image. * Add support for simulated multimask. * Remove need for alignment in extract function. * Add noise, fix return for extract roi. * Update demo. * Specify setup file. * Add shifting and fixes for MMCN and MWDN inference. * Add new configs. * Clean up files and update CHANGELOG. * Formatting. --- .github/workflows/python_pycsou.yml | 2 +- CHANGELOG.rst | 15 +- README.rst | 2 +- configs/benchmark.yaml | 13 +- configs/benchmark_diffusercam_mirflickr.yaml | 63 +++ configs/benchmark_digicam_celeba.yaml | 62 +++ .../benchmark_digicam_mirflickr_multi.yaml | 60 ++ .../benchmark_digicam_mirflickr_single.yaml | 58 ++ configs/benchmark_tapecam_mirflickr.yaml | 64 +++ configs/demo_iccp2024.yaml | 37 ++ configs/demo_measure_psf.yaml | 12 +- configs/digicam_example.yaml | 14 +- configs/finetune_tape_for_diffuser.yaml | 31 ++ configs/recon_digicam_mirflickr.yaml | 42 +- configs/sim_digicam_psf.yaml | 10 +- configs/telegram_demo.yaml | 25 + configs/telegram_demo_iccp2024.yaml | 53 ++ configs/train_digicam_celeba.yaml | 4 +- configs/train_digicam_multimask.yaml | 26 +- configs/train_digicam_singlemask.yaml | 27 +- configs/train_mirflickr_diffuser.yaml | 37 ++ configs/train_mirflickr_tape.yaml | 49 ++ configs/train_unrolledADMM.yaml | 42 +- configs/upload_tapecam_mirflickr.yaml | 21 + docs/source/demo.rst | 2 +- docs/source/reconstruction.rst | 16 + lensless/__init__.py | 1 + lensless/eval/benchmark.py | 118 ++-- lensless/hardware/mask.py | 24 +- lensless/hardware/slm.py | 96 +++- lensless/hardware/trainable_mask.py | 3 + lensless/recon/drunet/basicblock.py | 3 - lensless/recon/drunet/network_unet.py | 37 +- lensless/recon/model_dict.py | 254 +++++++-- lensless/recon/multi_wiener.py | 296 ++++++++++ lensless/recon/recon.py | 25 +- lensless/recon/rfft_convolve.py | 72 +-- lensless/recon/trainable_inversion.py | 4 +- lensless/recon/trainable_recon.py | 107 ++-- lensless/recon/unrolled_admm.py | 3 +- lensless/recon/utils.py | 385 +++++++++++-- lensless/utils/dataset.py | 514 +++++++++++++++++- lensless/utils/image.py | 64 ++- lensless/utils/io.py | 16 +- recon_requirements.txt | 4 +- scripts/data/plot_psf.py | 64 +++ scripts/data/rename_mirflickr25k.py | 2 +- scripts/data/upload_dataset_huggingface.py | 14 + scripts/demo.py | 133 +++-- scripts/demo/telegram_bot.py | 185 +++---- scripts/eval/benchmark_recon.py | 230 +++++--- scripts/measure/analyze_image.py | 44 +- scripts/measure/digicam_example.py | 36 +- scripts/recon/digicam_mirflickr.py | 67 ++- scripts/recon/train_learning_based.py | 288 +++++++--- scripts/sim/digicam_psf.py | 56 +- test/test_algos.py | 8 +- 57 files changed, 3291 insertions(+), 649 deletions(-) create mode 100644 configs/benchmark_diffusercam_mirflickr.yaml create mode 100644 configs/benchmark_digicam_celeba.yaml create mode 100644 configs/benchmark_digicam_mirflickr_multi.yaml create mode 100644 configs/benchmark_digicam_mirflickr_single.yaml create mode 100644 configs/benchmark_tapecam_mirflickr.yaml create mode 100644 configs/demo_iccp2024.yaml create mode 100644 configs/finetune_tape_for_diffuser.yaml create mode 100644 configs/telegram_demo_iccp2024.yaml create mode 100644 configs/train_mirflickr_diffuser.yaml create mode 100644 configs/train_mirflickr_tape.yaml create mode 100644 configs/upload_tapecam_mirflickr.yaml create mode 100644 lensless/recon/multi_wiener.py create mode 100644 scripts/data/plot_psf.py diff --git a/.github/workflows/python_pycsou.yml b/.github/workflows/python_pycsou.yml index 61f89fa5..dfdafb9b 100644 --- a/.github/workflows/python_pycsou.yml +++ b/.github/workflows/python_pycsou.yml @@ -20,7 +20,7 @@ jobs: fail-fast: false max-parallel: 12 matrix: - os: [ubuntu-latest, macos-latest, windows-latest] + os: [ubuntu-latest, macos-12, windows-latest] python-version: [3.9, "3.10"] steps: - uses: actions/checkout@v3 diff --git a/CHANGELOG.rst b/CHANGELOG.rst index 7e4f9caf..625b51cf 100644 --- a/CHANGELOG.rst +++ b/CHANGELOG.rst @@ -15,6 +15,17 @@ Added - Option to pass background image to ``utils.io.load_data``. - Option to set image resolution with ``hardware.utils.display`` function. +- Auxiliary of reconstructing output from pre-processor (not working). +- Option to set focal range for MultiLensArray. +- Optional to remove deadspace modelling for programmable mask. +- Compensation branch for unrolled ADMM: https://ieeexplore.ieee.org/abstract/document/9546648 +- Multi-Wiener deconvolution network: https://opg.optica.org/oe/fulltext.cfm?uri=oe-31-23-39088&id=541387 +- Option to skip pre-processor and post-processor at inference time. +- Option to set difference learning rate schedules, e.g. ADAMW, exponential decay, Cosine decay with warmup. +- Various augmentations for training: random flipping, random rotate, and random shifts. Latter two don't work well since new regions appear that throw off PSF/LSI modeling. +- HFSimulated object for simulating lensless data from ground-truth and PSF. +- Option to set cache directory for Hugging Face datasets. +- Option to initialize training with another model. Changed ~~~~~~~ @@ -24,7 +35,9 @@ Changed Bugfix ~~~~~~ -- Nothing +- Computation of average metric in batches. +- Support for grayscale PSF for RealFFTConvolve2D. +- Calling model.eval() before inference, and model.train() before training. 1.0.7 - (2024-05-14) diff --git a/README.rst b/README.rst index 428fd07e..cb3181ec 100644 --- a/README.rst +++ b/README.rst @@ -44,7 +44,7 @@ The toolkit includes: * Camera assembly tutorials (`link `__). * Measurement scripts (`link `__). * Dataset preparation and loading tools, with `Hugging Face `__ integration (`slides `__ on uploading a dataset to Hugging Face with `this script `__). -* `Reconstruction algorithms `__ (e.g. FISTA, ADMM, unrolled algorithms, trainable inversion, pre- and post-processors). +* `Reconstruction algorithms `__ (e.g. FISTA, ADMM, unrolled algorithms, trainable inversion, , multi-Wiener deconvolution network, pre- and post-processors). * `Training script `__ for learning-based reconstruction. * `Pre-trained models `__ that can be loaded from `Hugging Face `__, for example in `this script `__. * Mask `design `__ and `fabrication `__ tools. diff --git a/configs/benchmark.yaml b/configs/benchmark.yaml index 24e0366e..11f3c9ca 100644 --- a/configs/benchmark.yaml +++ b/configs/benchmark.yaml @@ -9,15 +9,23 @@ hydra: dataset: DiffuserCam # DiffuserCam, DigiCamCelebA, HFDataset seed: 0 +batchsize: 1 # must be 1 for iterative approaches huggingface: repo: "bezzam/DigiCam-Mirflickr-MultiMask-25K" + cache_dir: null # where to read/write dataset. Defaults to `"~/.cache/huggingface/datasets"`. + psf: null # null for simulating PSF image_res: [900, 1200] # used during measurement rotate: True # if measurement is upside-down + flipud: False + flip_lensed: False # if rotate or flipud is True, apply to lensed alignment: top_left: [80, 100] # height, width height: 200 downsample: 1 + downsample_lensed: 1 + split_seed: null + single_channel_psf: False device: "cuda" # numbers of iterations to benchmark @@ -33,6 +41,8 @@ algorithms: ["ADMM", "ADMM_Monakhova2019", "FISTA"] #["ADMM", "ADMM_Monakhova201 baseline: "MONAKHOVA 100iter" save_idx: [0, 1, 2, 3, 4] # provide index of files to save e.g. [1, 5, 10] +gamma_psf: 1.5 # gamma factor for PSF + # Hyperparameters nesterov: @@ -86,7 +96,8 @@ simulation: # mask2sensor: 9e-3 # mask2sensor: 4e-3 # -- for CelebA scene2mask: 0.25 # [m] - mask2sensor: 0.002 # [m] + mask2sensor: 0.002 # [m] + deadspace: True # whether to account for deadspace for programmable mask # see waveprop.devices use_waveprop: False # for PSF simulation sensor: "rpi_hq" diff --git a/configs/benchmark_diffusercam_mirflickr.yaml b/configs/benchmark_diffusercam_mirflickr.yaml new file mode 100644 index 00000000..4968422d --- /dev/null +++ b/configs/benchmark_diffusercam_mirflickr.yaml @@ -0,0 +1,63 @@ +# python scripts/eval/benchmark_recon.py -cn benchmark_diffusercam_mirflickr +defaults: + - benchmark + - _self_ + +dataset: HFDataset +batchsize: 4 +device: "cuda:0" + +huggingface: + repo: "bezzam/DiffuserCam-Lensless-Mirflickr-Dataset-NORM" + psf: psf.tiff + image_res: null + rotate: False # if measurement is upside-down + alignment: null + downsample: 2 + downsample_lensed: 2 + flipud: True + flip_lensed: True + single_channel_psf: True + +algorithms: [ + "ADMM", + + ## -- reconstructions trained on DiffuserCam measured + "hf:diffusercam:mirflickr:U5+Unet8M", + "hf:diffusercam:mirflickr:TrainInv+Unet8M", + "hf:diffusercam:mirflickr:MMCN4M+Unet4M", + "hf:diffusercam:mirflickr:MWDN8M", + "hf:diffusercam:mirflickr:Unet4M+U5+Unet4M", + "hf:diffusercam:mirflickr:Unet4M+TrainInv+Unet4M", + "hf:diffusercam:mirflickr:Unet2M+MMCN+Unet2M", + "hf:diffusercam:mirflickr:Unet2M+MWDN6M", + "hf:diffusercam:mirflickr:Unet4M+U10+Unet4M", + # "hf:diffusercam:mirflickr:Unet4M+U5+Unet4M_ft_tapecam", + # "hf:diffusercam:mirflickr:Unet4M+U5+Unet4M_ft_tapecam_post", + # "hf:diffusercam:mirflickr:Unet4M+U5+Unet4M_ft_tapecam_pre", + + # ## -- reconstruction trained on DiffuserCam simulated + # "hf:diffusercam:mirflickr_sim:Unet4M+U5+Unet4M", + # "hf:diffusercam:mirflickr_sim:Unet4M+U5+Unet4M_ft_tapecam", + # "hf:diffusercam:mirflickr_sim:Unet4M+U5+Unet4M_ft_tapecam_post", + # "hf:diffusercam:mirflickr_sim:Unet4M+U5+Unet4M_ft_tapecam_pre", + # "hf:diffusercam:mirflickr_sim:Unet4M+U5+Unet4M_ft_digicam_multi_post", + # "hf:diffusercam:mirflickr_sim:Unet4M+U5+Unet4M_ft_digicam_multi_pre", + # "hf:diffusercam:mirflickr_sim:Unet4M+U5+Unet4M_ft_digicam_multi", + + # ## -- reconstructions trained on other datasets/systems + # "hf:tapecam:mirflickr:Unet4M+U10+Unet4M", + # "hf:digicam:mirflickr_single_25k:Unet4M+U5+Unet4M_wave", + # "hf:digicam:celeba_26k:Unet4M+U5+Unet4M_wave", + # "hf:tapecam:mirflickr:Unet4M+U5+Unet4M", + # "hf:digicam:mirflickr_single_25k:Unet4M+U10+Unet4M_wave", + # "hf:tapecam:mirflickr:Unet4M+U5+Unet4M_flips", + # "hf:tapecam:mirflickr:Unet4M+U5+Unet4M_flips_rotate10", + # "hf:tapecam:mirflickr:Unet4M+U5+Unet4M_aux1", + # "hf:digicam:mirflickr_multi_25k:Unet4M+U10+Unet4M_wave", + # "hf:digicam:mirflickr_multi_25k:Unet4M+U5+Unet4M_wave", +] + +save_idx: [0, 1, 3, 4, 8, 45, 58, 63] +n_iter_range: [100] # for ADMM + diff --git a/configs/benchmark_digicam_celeba.yaml b/configs/benchmark_digicam_celeba.yaml new file mode 100644 index 00000000..aa3e4a82 --- /dev/null +++ b/configs/benchmark_digicam_celeba.yaml @@ -0,0 +1,62 @@ +# python scripts/eval/benchmark_recon.py -cn benchmark_digicam_celeba +defaults: + - benchmark + - _self_ + + +dataset: HFDataset +batchsize: 10 +device: "cuda:0" + +algorithms: [ + "ADMM", + + ## -- reconstructions trained on measured data + "hf:digicam:celeba_26k:U5+Unet8M_wave", + "hf:digicam:celeba_26k:TrainInv+Unet8M_wave", + "hf:digicam:celeba_26k:MWDN8M_wave", + "hf:digicam:celeba_26k:MMCN4M+Unet4M_wave", + "hf:digicam:celeba_26k:Unet2M+MWDN6M_wave", + "hf:digicam:celeba_26k:Unet4M+TrainInv+Unet4M_wave", + "hf:digicam:celeba_26k:Unet2M+MMCN+Unet2M_wave", + "hf:digicam:celeba_26k:Unet4M+U5+Unet4M_wave", + "hf:digicam:celeba_26k:Unet4M+U10+Unet4M_wave", + + # # -- reconstructions trained on other datasets/systems + # "hf:diffusercam:mirflickr:Unet4M+U10+Unet4M", + # "hf:tapecam:mirflickr:Unet4M+U5+Unet4M", + # "hf:diffusercam:mirflickr:Unet4M+U5+Unet4M", + # "hf:tapecam:mirflickr:Unet4M+U10+Unet4M", + # "hf:digicam:mirflickr_single_25k:Unet4M+U5+Unet4M_wave", + # "hf:digicam:mirflickr_single_25k:Unet4M+U10+Unet4M_wave", +] + +save_idx: [0, 2, 3, 4, 9] +n_iter_range: [100] # for ADMM + +huggingface: + repo: bezzam/DigiCam-CelebA-26K + psf: psf_simulated_waveprop.png # psf_simulated_waveprop.png, psf_simulated.png, psf_measured.png + split_seed: 0 + test_size: 0.15 + downsample: 2 + image_res: null + + alignment: + top_left: null + height: null + + # cropping when there is no downsampling + crop: + vertical: [0, 525] + horizontal: [265, 695] + + # for prepping ground truth data + simulation: + scene2mask: 0.25 # [m] + mask2sensor: 0.002 # [m] + object_height: 0.33 # [m] + sensor: "rpi_hq" + # shifting when there is no files to downsample + vertical_shift: -117 + horizontal_shift: -25 diff --git a/configs/benchmark_digicam_mirflickr_multi.yaml b/configs/benchmark_digicam_mirflickr_multi.yaml new file mode 100644 index 00000000..17ff3508 --- /dev/null +++ b/configs/benchmark_digicam_mirflickr_multi.yaml @@ -0,0 +1,60 @@ +# python scripts/eval/benchmark_recon.py -cn benchmark_digicam_mirflickr_multi +defaults: + - benchmark + - _self_ + + +dataset: HFDataset +batchsize: 4 +device: "cuda:0" + +huggingface: + repo: "bezzam/DigiCam-Mirflickr-MultiMask-25K" + psf: null # null for simulating PSF + image_res: [900, 1200] # used during measurement + rotate: True # if measurement is upside-down + flipud: False + flip_lensed: False # if rotate or flipud is True, apply to lensed + alignment: + top_left: [80, 100] # height, width + height: 200 + downsample: 1 + +algorithms: [ + "ADMM", + + ## -- reconstructions trained on measured data + "hf:digicam:mirflickr_multi_25k:Unet4M+U5+Unet4M_wave", + "hf:digicam:mirflickr_multi_25k:Unet4M+U10+Unet4M_wave", + "hf:digicam:mirflickr_multi_25k:Unet4M+U5+Unet4M_wave_aux1", + "hf:digicam:mirflickr_multi_25k:Unet4M+U5+Unet4M_wave_flips", + + # ## -- reconstructions trained on other datasets/systems + # "hf:diffusercam:mirflickr:Unet4M+U10+Unet4M", + # "hf:tapecam:mirflickr:Unet4M+U10+Unet4M", + # "hf:digicam:mirflickr_single_25k:Unet4M+U10+Unet4M_wave", + # "hf:digicam:celeba_26k:Unet4M+U5+Unet4M_wave", + # "hf:digicam:mirflickr_single_25k:Unet4M+U5+Unet4M_wave", + # "hf:digicam:mirflickr_single_25k:Unet4M+U5+Unet4M_wave_aux1", + # "hf:digicam:mirflickr_single_25k:Unet4M+U5+Unet4M_wave_flips", + # "hf:digicam:mirflickr_single_25k:Unet4M+U5+Unet4M_wave_flips_rotate10", + # "hf:tapecam:mirflickr:Unet4M+U5+Unet4M", + # "hf:diffusercam:mirflickr:Unet4M+U5+Unet4M", + # "hf:digicam:mirflickr_single_25k:Unet4M+U5+Unet4M_ft_flips", + # "hf:digicam:mirflickr_single_25k:Unet4M+U5+Unet4M_ft_flips_rotate10", +] + +# # -- to only use output from unrolled +# hf:digicam:mirflickr_single_25k:Unet4M+U5+Unet4M_wave_aux1: +# skip_post: True +# skip_pre: True + +save_idx: [1, 2, 4, 5, 9, 24, 33, 61] +n_iter_range: [100] # for ADMM + +# simulating PSF +simulation: + use_waveprop: True + deadspace: True + scene2mask: 0.3 + mask2sensor: 0.002 diff --git a/configs/benchmark_digicam_mirflickr_single.yaml b/configs/benchmark_digicam_mirflickr_single.yaml new file mode 100644 index 00000000..7e921d4b --- /dev/null +++ b/configs/benchmark_digicam_mirflickr_single.yaml @@ -0,0 +1,58 @@ +# python scripts/eval/benchmark_recon.py -cn benchmark_digicam_mirflickr_single +defaults: + - benchmark + - _self_ + +dataset: HFDataset +batchsize: 4 +device: "cuda:0" + +huggingface: + repo: "bezzam/DigiCam-Mirflickr-SingleMask-25K" + cache_dir: /dev/shm + psf: null # null for simulating PSF + image_res: [900, 1200] # used during measurement + rotate: True # if measurement is upside-down + flipud: False + flip_lensed: False # if rotate or flipud is True, apply to lensed + alignment: + top_left: [80, 100] # height, width + height: 200 + downsample: 1 + + +algorithms: [ + "ADMM", + + # -- reconstructions trained on measured data + "hf:digicam:mirflickr_single_25k:U5+Unet8M_wave", + "hf:digicam:mirflickr_single_25k:TrainInv+Unet8M_wave", + "hf:digicam:mirflickr_single_25k:MMCN4M+Unet4M_wave", + "hf:digicam:mirflickr_single_25k:MWDN8M_wave", + "hf:digicam:mirflickr_single_25k:Unet4M+TrainInv+Unet4M_wave", + "hf:digicam:mirflickr_single_25k:Unet4M+U5+Unet4M_wave", + "hf:digicam:mirflickr_single_25k:Unet2M+MMCN+Unet2M_wave", + "hf:digicam:mirflickr_single_25k:Unet2M+MWDN6M_wave", + "hf:digicam:mirflickr_single_25k:Unet4M+U10+Unet4M_wave", + "hf:digicam:mirflickr_single_25k:Unet4M+U5+Unet4M_wave_flips", + "hf:digicam:mirflickr_single_25k:Unet4M+U5+Unet4M_wave_flips_rotate10", + + # ## -- reconstructions trained on other datasets/systems + # "hf:diffusercam:mirflickr:Unet4M+U10+Unet4M", + # "hf:tapecam:mirflickr:Unet4M+U10+Unet4M", + # "hf:digicam:mirflickr_single_25k:Unet4M+U5+Unet4M_wave", + # "hf:digicam:celeba_26k:Unet4M+U5+Unet4M_wave", + # "hf:tapecam:mirflickr:Unet4M+U5+Unet4M", + # "hf:diffusercam:mirflickr:Unet4M+U5+Unet4M", + # "hf:digicam:mirflickr_multi_25k:Unet4M+U5+Unet4M_wave", +] + +save_idx: [1, 2, 4, 5, 9] +n_iter_range: [100] # for ADMM + +# simulating PSF +simulation: + use_waveprop: True + deadspace: True + scene2mask: 0.3 + mask2sensor: 0.002 diff --git a/configs/benchmark_tapecam_mirflickr.yaml b/configs/benchmark_tapecam_mirflickr.yaml new file mode 100644 index 00000000..674e5069 --- /dev/null +++ b/configs/benchmark_tapecam_mirflickr.yaml @@ -0,0 +1,64 @@ +# python scripts/eval/benchmark_recon.py -cn benchmark_tapecam_mirflickr +defaults: + - benchmark + - _self_ + +dataset: HFDataset +batchsize: 4 +device: "cuda:0" + +huggingface: + repo: "bezzam/TapeCam-Mirflickr-25K" + cache_dir: /dev/shm + psf: psf.png + image_res: [900, 1200] # used during measurement + rotate: False # if measurement is upside-down + flipud: False + flip_lensed: False # if rotate or flipud is True, apply to lensed + alignment: + top_left: [45, 95] # height, width + height: 250 + downsample: 1 + single_channel_psf: False + +## -- reconstructions trained with same dataset/system +algorithms: [ + "ADMM", + + # -- reconstructions trained on measured data + "hf:tapecam:mirflickr:U5+Unet8M", + "hf:tapecam:mirflickr:TrainInv+Unet8M", + "hf:tapecam:mirflickr:MMCN4M+Unet4M", + "hf:tapecam:mirflickr:Unet4M+U5+Unet4M", + "hf:tapecam:mirflickr:Unet4M+TrainInv+Unet4M", + "hf:tapecam:mirflickr:Unet2M+MMCN+Unet2M", + "hf:tapecam:mirflickr:Unet4M+U10+Unet4M", + # "hf:tapecam:mirflickr:Unet4M+U5+Unet4M_flips_rotate10", + # "hf:tapecam:mirflickr:Unet4M+U5+Unet4M_aux1", + # "hf:tapecam:mirflickr:Unet4M+U5+Unet4M_flips", + # "hf:tapecam:mirflickr:Unet4M+U5+Unet4M_flips_rotate10", + + # # below models need `single_channel_psf = True` + # "hf:tapecam:mirflickr:MWDN8M", + # "hf:tapecam:mirflickr:Unet2M+MWDN6M", + + # ## -- reconstructions trained on other datasets/systems + # "hf:diffusercam:mirflickr:Unet4M+U10+Unet4M", + # "hf:diffusercam:mirflickr:Unet4M+U5+Unet4M", + # "hf:digicam:mirflickr_single_25k:Unet4M+U5+Unet4M_wave", + # "hf:digicam:celeba_26k:Unet4M+U5+Unet4M_wave", + # "hf:digicam:mirflickr_single_25k:Unet4M+U10+Unet4M_wave", + # "hf:diffusercam:mirflickr_sim:Unet4M+U5+Unet4M", + # "hf:diffusercam:mirflickr_sim:Unet4M+U5+Unet4M_ft_tapecam", + # "hf:diffusercam:mirflickr_sim:Unet4M+U5+Unet4M_ft_tapecam_post", + # "hf:diffusercam:mirflickr_sim:Unet4M+U5+Unet4M_ft_tapecam_pre", + # "hf:diffusercam:mirflickr_sim:Unet4M+U5+Unet4M_ft_digicam_multi_post", + # "hf:diffusercam:mirflickr:Unet4M+U5+Unet4M_ft_tapecam", + # "hf:diffusercam:mirflickr:Unet4M+U5+Unet4M_ft_tapecam_post", + # "hf:diffusercam:mirflickr:Unet4M+U5+Unet4M_ft_tapecam_pre", + # "hf:diffusercam:mirflickr_sim:Unet4M+U5+Unet4M_ft_digicam_multi_pre", + # "hf:diffusercam:mirflickr_sim:Unet4M+U5+Unet4M_ft_digicam_multi", +] + +save_idx: [1, 2, 4, 5, 9] +n_iter_range: [100] # for ADM diff --git a/configs/demo_iccp2024.yaml b/configs/demo_iccp2024.yaml new file mode 100644 index 00000000..04efe2f6 --- /dev/null +++ b/configs/demo_iccp2024.yaml @@ -0,0 +1,37 @@ +defaults: + - demo + - _self_ + + +gamma: 1 # for plotting PSF + +display: + image_res: [700, 700] + vshift: -20 + +capture: + legacy: False + bayer: False + rgb: False + down: 4 + awb_gains: [2.0, 1.1] + +recon: + gamma: null + downsample: 4 + dtype: float32 + use_torch: True + torch_device: cuda:3 + algo: admm + + fista: + n_iter: 300 + + admm: + n_iter: 10 + +postproc: + # crop in percent to extract region of interest + # set to null to skip + crop_hor: [0.3, 0.7] + crop_vert: [0.22, 0.67] \ No newline at end of file diff --git a/configs/demo_measure_psf.yaml b/configs/demo_measure_psf.yaml index f22e3786..6b447a8b 100644 --- a/configs/demo_measure_psf.yaml +++ b/configs/demo_measure_psf.yaml @@ -8,9 +8,13 @@ display: psf: 10 capture: - exp: 1.8 - down: 4 - gray: True - awb_gains: [1.15,1.05] + exp: 1 + gray: False + awb_gains: [2.0, 1.1] nbits_out: 8 nbits: 8 + legacy: False + rgb: False + + bayer: False + down: 4 diff --git a/configs/digicam_example.yaml b/configs/digicam_example.yaml index 70af04d7..6267e4ae 100644 --- a/configs/digicam_example.yaml +++ b/configs/digicam_example.yaml @@ -8,9 +8,12 @@ rpi: hostname: null # mask parameters +psf: null # if not provided, simulate with parameters below mask: fp: null # provide path, otherwise generate with seed - seed: 1 + seed: 0 + # defaults to configuration used for this dataset: https://huggingface.co/datasets/bezzam/DigiCam-Mirflickr-SingleMask-25K + # ie this config: configs/collect_mirflickr_singlemask.yaml shape: [54, 26] center: [57, 77] @@ -37,4 +40,11 @@ capture: # reconstruction parameters recon: torch_device: 'cpu' - n_iter: 100 # number of iterations of ADMM \ No newline at end of file + n_iter: 100 # number of iterations of ADMM + +simulation: + use_waveprop: True + deadspace: True + scene2mask: 0.3 + mask2sensor: 0.002 + gamma: null # just for saving \ No newline at end of file diff --git a/configs/finetune_tape_for_diffuser.yaml b/configs/finetune_tape_for_diffuser.yaml new file mode 100644 index 00000000..eec397db --- /dev/null +++ b/configs/finetune_tape_for_diffuser.yaml @@ -0,0 +1,31 @@ +# python scripts/recon/train_learning_based.py -cn finetune_tape_for_diffuser +defaults: + - train_unrolledADMM + - _self_ + +torch_device: 'cuda:0' +device_ids: [0, 1, 2, 3] +eval_disp_idx: [0, 1, 3, 4, 8] + +# Dataset +files: + dataset: bezzam/DiffuserCam-Lensless-Mirflickr-Dataset-NORM + huggingface_dataset: True + huggingface_psf: psf.tiff + single_channel_psf: True + downsample: 2 # factor by which to downsample the PSF, note that for DiffuserCam the PSF has 4x the resolution + flipud: True + flip_lensed: True # for measured data + + hf_simulated: True + +training: + batch_size: 4 + epoch: 25 + eval_batch_size: 4 + +reconstruction: + init: hf:tapecam:mirflickr:Unet4M+U5+Unet4M + +optimizer: + lr: 1e-5 diff --git a/configs/recon_digicam_mirflickr.yaml b/configs/recon_digicam_mirflickr.yaml index 4f11d8cd..38143f0c 100644 --- a/configs/recon_digicam_mirflickr.yaml +++ b/configs/recon_digicam_mirflickr.yaml @@ -3,19 +3,41 @@ defaults: - defaults_recon - _self_ +cache_dir: /dev/shm + +# fn: null # if not null, download this file from https://huggingface.co/datasets/bezzam/DigiCam-Mirflickr-SingleMask-25K/tree/main +# fn: raw_box.png +# rotate: False +# alignment: +# dim: [190, 260] +# top_left: [145, 130] + +fn: raw_stuffed_animals.png +rotate: False +alignment: + dim: [200, 280] + top_left: [115, 120] + + # - Learned reconstructions: see "lensless/recon/model_dict.py" -# model: U10 -# model: Unet8M -# model: TrainInv+Unet8M -# model: U10+Unet8M -# model: Unet4M+TrainInv+Unet4M -# model: Unet4M+U10+Unet4M +# --- dataset: mirflickr_single_25k +# model: TrainInv+Unet8M_wave +# model: MMCN4M+Unet4M_wave +# model: MWDN8M_wave +# model: U5+Unet8M_wave +# model: Unet4M+TrainInv+Unet4M_wave +# model: Unet2M+MMCN+Unet2M_wave +# model: Unet4M+U5+Unet4M_wave +# model: Unet4M+U10+Unet4M_wave + +# --- dataset: mirflickr_multi_25k +model: Unet4M+U5+Unet4M_wave -# -- for ADMM with fixed parameters -model: admm -n_iter: 10 +# # -- for ADMM with fixed parameters +# model: admm +# n_iter: 100 device: cuda:0 -n_trials: 100 # more if you want to get average inference time +n_trials: 1 # to get average inference time idx: 1 # index from test set to reconstruct save: True \ No newline at end of file diff --git a/configs/sim_digicam_psf.yaml b/configs/sim_digicam_psf.yaml index 70bc416c..3547d180 100644 --- a/configs/sim_digicam_psf.yaml +++ b/configs/sim_digicam_psf.yaml @@ -8,11 +8,16 @@ dtype: float32 torch_device: cuda requires_grad: False +# if repo not provided, check for local file at `digicam.pattern` +huggingface_repo: bezzam/DigiCam-CelebA-26K +huggingface_mask_pattern: mask_pattern.npy +huggingface_psf: psf_measured.png + digicam: slm: adafruit sensor: rpi_hq - downsample: null # null for no downsampling + downsample: 1 # https://drive.switch.ch/index.php/s/NdgHlcDeHVDH5ww?path=%2Fpsf pattern: data/psf/adafruit_random_pattern_20230719.npy @@ -33,7 +38,8 @@ sim: flipud: True # in practice found waveprop=True or False doesn't make difference - waveprop: False + waveprop: True + deadspace: True # below are ignored if waveprop=False scene2mask: 0.3 # [m] diff --git a/configs/telegram_demo.yaml b/configs/telegram_demo.yaml index 8255be52..772434b7 100644 --- a/configs/telegram_demo.yaml +++ b/configs/telegram_demo.yaml @@ -2,6 +2,8 @@ token: null whitelist: [] idle: False # run without processing commands +time_offset: 7200 # offset in seconds to correct for time difference +setup_fp: null # usernames and IP address rpi_username: null @@ -25,6 +27,7 @@ psf: # fp: data/psf/tape_rgb_31032023.png # # fp: data/psf/tape_rgb.png # wrong # downsample: 4 +gamma: 1.5 # for plotting PSF # which hydra config to use and available algos config_name: demo @@ -32,6 +35,9 @@ default_algo: admm # note that unrolled requires GPU # supported_algos: ["fista", "admm", "unrolled"] supported_algos: ["fista", "admm"] +# images: https://drive.switch.ch/index.php/s/NdgHlcDeHVDH5ww?path=%2Foriginal +supported_inputs: ["mnist", "thumb", "face", "tree"] + # overlaying logos on the reconstruction # images: https://drive.switch.ch/index.php/s/NdgHlcDeHVDH5ww?path=%2Foriginal @@ -49,3 +55,22 @@ overlay: fp: data/original/epfl_white.png scaling: 0.23 position: [374,75] + + +files: + mnist: + fp: data/original/mnist_3.png + exposure: 0.05 + brightness: 100 + thumb: + fp: data/original/thumbs_up.png + exposure: 0.04 + brightness: 80 + face: + fp: data/original/face.jpg + exposure: 0.02 + brightness: 80 + tree: + fp: data/original/tree.png + exposure: 0.08 + brightness: 100 diff --git a/configs/telegram_demo_iccp2024.yaml b/configs/telegram_demo_iccp2024.yaml new file mode 100644 index 00000000..5abba477 --- /dev/null +++ b/configs/telegram_demo_iccp2024.yaml @@ -0,0 +1,53 @@ +defaults: + - telegram_demo + - _self_ + +# for Telegram +token: null +setup_fp: voronoi_setup.jpeg + +# usernames and IP address +rpi_username: null +rpi_hostname: null + +config_name: demo_iccp2024 +psf: + fp: data/psf/voronoi_rgb.png + downsample: 4 + +files: + mnist: + fp: data/original/mnist_3.png + exposure: 0.05 + brightness: 100 + thumb: + fp: data/original/thumbs_up.png + exposure: 0.02 + brightness: 80 + face: + fp: data/original/face.jpg + exposure: 0.03 + brightness: 80 + tree: + fp: data/original/tree.png + exposure: 0.08 + brightness: 100 + +overlay: + alpha: 60 + + img1: + fp: data/original/epfl_white.png + scaling: 0.3 + position: [10,10] + + img2: + fp: data/original/iccp.png + scaling: 0.4 + position: [220,15] + + img3: + fp: data/original/lpc.png + scaling: 0.4 + position: [110,300] + \ No newline at end of file diff --git a/configs/train_digicam_celeba.yaml b/configs/train_digicam_celeba.yaml index b2724dc9..c86dd45a 100644 --- a/configs/train_digicam_celeba.yaml +++ b/configs/train_digicam_celeba.yaml @@ -42,14 +42,14 @@ alignment: training: batch_size: 4 epoch: 25 - eval_batch_size: 16 + eval_batch_size: 4 crop_preloss: True reconstruction: method: unrolled_admm unrolled_admm: # Number of iterations - n_iter: 10 + n_iter: 5 # Hyperparameters mu1: 1e-4 mu2: 1e-4 diff --git a/configs/train_digicam_multimask.yaml b/configs/train_digicam_multimask.yaml index 654c2468..fca9d7d3 100644 --- a/configs/train_digicam_multimask.yaml +++ b/configs/train_digicam_multimask.yaml @@ -7,7 +7,6 @@ torch_device: 'cuda:0' device_ids: [0, 1, 2, 3] eval_disp_idx: [1, 2, 4, 5, 9] - # Dataset files: dataset: bezzam/DigiCam-Mirflickr-MultiMask-25K @@ -17,16 +16,16 @@ files: # TODO: these parameters should be in the dataset? image_res: [900, 1200] # used during measurement rotate: True # if measurement is upside-down - save_psf: False + save_psf: True - extra_eval: - singlemask: - huggingface_repo: bezzam/DigiCam-Mirflickr-SingleMask-25K - display_res: [900, 1200] # used during measurement - rotate: True # if measurement is upside-down - alignment: - top_left: [80, 100] # height, width - height: 200 + extra_eval: null + # singlemask: + # huggingface_repo: bezzam/DigiCam-Mirflickr-SingleMask-25K + # display_res: [900, 1200] # used during measurement + # rotate: True # if measurement is upside-down + # alignment: + # top_left: [80, 100] # height, width + # height: 200 # TODO: these parameters should be in the dataset? alignment: @@ -43,7 +42,7 @@ reconstruction: method: unrolled_admm unrolled_admm: # Number of iterations - n_iter: 10 + n_iter: 5 # Hyperparameters mu1: 1e-4 mu2: 1e-4 @@ -58,3 +57,8 @@ reconstruction: depth : 4 # depth of each up/downsampling layer. Ignore if network is DruNet nc: [32,64,116,128] +simulation: + use_waveprop: True + deadspace: True + scene2mask: 0.3 + mask2sensor: 0.002 diff --git a/configs/train_digicam_singlemask.yaml b/configs/train_digicam_singlemask.yaml index c919c195..0bbca827 100644 --- a/configs/train_digicam_singlemask.yaml +++ b/configs/train_digicam_singlemask.yaml @@ -16,16 +16,17 @@ files: # TODO: these parameters should be in the dataset? image_res: [900, 1200] # used during measurement rotate: True # if measurement is upside-down - save_psf: False + save_psf: True - extra_eval: - multimask: - huggingface_repo: bezzam/DigiCam-Mirflickr-MultiMask-25K - display_res: [900, 1200] # used during measurement - rotate: True # if measurement is upside-down - alignment: - top_left: [80, 100] # height, width - height: 200 + extra_eval: null + # extra_eval: + # multimask: + # huggingface_repo: bezzam/DigiCam-Mirflickr-MultiMask-25K + # display_res: [900, 1200] # used during measurement + # rotate: True # if measurement is upside-down + # alignment: + # top_left: [80, 100] # height, width + # height: 200 # TODO: these parameters should be in the dataset? alignment: @@ -42,7 +43,7 @@ reconstruction: method: unrolled_admm unrolled_admm: # Number of iterations - n_iter: 10 + n_iter: 5 # Hyperparameters mu1: 1e-4 mu2: 1e-4 @@ -56,3 +57,9 @@ reconstruction: network : UnetRes # UnetRes or DruNet or null depth : 4 # depth of each up/downsampling layer. Ignore if network is DruNet nc: [32,64,116,128] + +simulation: + use_waveprop: True + deadspace: True + scene2mask: 0.3 + mask2sensor: 0.002 diff --git a/configs/train_mirflickr_diffuser.yaml b/configs/train_mirflickr_diffuser.yaml new file mode 100644 index 00000000..8fe97aea --- /dev/null +++ b/configs/train_mirflickr_diffuser.yaml @@ -0,0 +1,37 @@ +# python scripts/recon/train_learning_based.py -cn train_mirflickr_diffuser +defaults: + - train_unrolledADMM + - _self_ + +torch_device: 'cuda:0' +device_ids: [0, 1, 2, 3] +eval_disp_idx: [0, 1, 3, 4, 8] + +# Dataset +files: + dataset: bezzam/DiffuserCam-Lensless-Mirflickr-Dataset-NORM + huggingface_dataset: True + huggingface_psf: psf.tiff + single_channel_psf: True + downsample: 2 # factor by which to downsample the PSF, note that for DiffuserCam the PSF has 4x the resolution + downsample_lensed: 2 # only used if lensed if measured + flipud: True + flip_lensed: True + +training: + batch_size: 4 + epoch: 25 + eval_batch_size: 4 + +reconstruction: + method: unrolled_admm + unrolled_admm: + n_iter: 5 + pre_process: + network : UnetRes # UnetRes or DruNet or null + depth : 4 # depth of each up/downsampling layer. Ignore if network is DruNet + nc: [32,64,116,128] + post_process: + network : UnetRes # UnetRes or DruNet or null + depth : 4 # depth of each up/downsampling layer. Ignore if network is DruNet + nc: [32,64,116,128] diff --git a/configs/train_mirflickr_tape.yaml b/configs/train_mirflickr_tape.yaml new file mode 100644 index 00000000..15ebb178 --- /dev/null +++ b/configs/train_mirflickr_tape.yaml @@ -0,0 +1,49 @@ +# python scripts/recon/train_learning_based.py -cn train_mirflickr_tape +defaults: + - train_unrolledADMM + - _self_ + +torch_device: 'cuda:0' +device_ids: [0, 1, 2, 3] +eval_disp_idx: [1, 2, 4, 5, 9] + +# Dataset +files: + dataset: bezzam/TapeCam-Mirflickr-25K + huggingface_dataset: True + huggingface_psf: psf.png + downsample: 1 + # TODO: these parameters should be in the dataset? + image_res: [900, 1200] # used during measurement + rotate: False # if measurement is upside-down + save_psf: True + +# TODO: these parameters should be in the dataset? +alignment: + # when there is no downsampling + top_left: [45, 95] # height, width + height: 250 + +training: + batch_size: 4 + epoch: 25 + eval_batch_size: 4 + +reconstruction: + method: unrolled_admm + unrolled_admm: + # Number of iterations + n_iter: 5 + # Hyperparameters + mu1: 1e-4 + mu2: 1e-4 + mu3: 1e-4 + tau: 2e-4 + pre_process: + network : UnetRes # UnetRes or DruNet or null + depth : 4 # depth of each up/downsampling layer. Ignore if network is DruNet + nc: [32,64,116,128] + post_process: + network : UnetRes # UnetRes or DruNet or null + depth : 4 # depth of each up/downsampling layer. Ignore if network is DruNet + nc: [32,64,116,128] diff --git a/configs/train_unrolledADMM.yaml b/configs/train_unrolledADMM.yaml index 72d9e621..6e5dad43 100644 --- a/configs/train_unrolledADMM.yaml +++ b/configs/train_unrolledADMM.yaml @@ -16,10 +16,14 @@ files: # psf: data/psf/diffusercam_psf.tiff # diffusercam_psf: True + cache_dir: null # where to read/write dataset. Defaults to `"~/.cache/huggingface/datasets"`. + # -- using huggingface dataset dataset: bezzam/DiffuserCam-Lensless-Mirflickr-Dataset-NORM huggingface_dataset: True huggingface_psf: psf.tiff + single_channel_psf: False # whether to sum all PSF channels into one + hf_simulated: False # -- train/test split split_seed: null # if null use train/test split from dataset @@ -33,12 +37,19 @@ files: vertical_shift: null horizontal_shift: null rotate: False + flipud: False + flip_lensed: False save_psf: False crop: null # vertical: null # horizontal: null image_res: null # for measured data, what resolution used at screen extra_eval: null # dict of extra datasets to evaluate on + force_rgb: False + simulate_lensless: False # False to use measured data + random_flip: False + random_rotate: False + random_shifts: False alignment: null # top_left: null # height, width @@ -62,10 +73,18 @@ display: save: True reconstruction: - # Method: unrolled_admm, unrolled_fista + + # initialize with Hugging Face model from model_dict, use "hf:camera:dataset:model_name" + init: null + + # Method: unrolled_admm, unrolled_fista, trainable_inv method: unrolled_admm skip_unrolled: False - init_processors: null # model name + + # initialize with "init_processors" + # -- for HuggingFace model use "hf:camera:dataset:model_name" + # -- for local model use "local:model_path" + init_processors: null init_pre: True # if `init_processors`, set pre-procesor is available init_post: True # if `init_processors`, set post-procesor is available @@ -85,6 +104,8 @@ reconstruction: tau: 2e-4 trainable_inv: K: 1e-4 + multi_wiener: + nc: [64, 128, 256, 512, 512] pre_process: network : null # UnetRes or DruNet or null depth : 2 # depth of each up/downsampling layer. Ignore if network is DruNet @@ -100,6 +121,10 @@ reconstruction: freeze: null unfreeze: null train_last_layer: False + # number of channels for each compensation layer, list should equal to the number of layers (n_iter) + # and the last element should be equal to last layer of post_process.nc + compensation: null + compensation_residual: True # whether to use residual connection for compensation branch #Trainable Mask trainable_mask: @@ -127,7 +152,8 @@ simulation: # these distance parameters are typically fixed for a given PSF # for DiffuserCam psf # for tape_rgb psf scene2mask: 10e-2 # scene2mask: 40e-2 - mask2sensor: 9e-3 # mask2sensor: 4e-3 + mask2sensor: 9e-3 # mask2sensor: 4e-3 + deadspace: True # whether to account for deadspace for programmable mask # see waveprop.devices use_waveprop: False # for PSF simulation sensor: "rpi_hq" @@ -141,7 +167,6 @@ simulation: max_val: 255 #Training - training: batch_size: 8 epoch: 25 @@ -156,7 +181,11 @@ training: optimizer: type: Adam # Adam, SGD... (Pytorch class) lr: 1e-4 + lr_step_epoch: True # True -> update LR at end of each epoch, False at the end of each mini-batch + final_lr: False # if set, exponentially decay *to* this value + exp_decay: False # if set, exponentially decay *with* this value slow_start: False #float how much to reduce lr for first epoch + cosine_decay_warmup: False # if set, cosine decay with warmup of 5% # Decay LR in step fashion: https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.StepLR.html step: False # int, period of learning rate decay. False to not apply gamma: 0.1 # float, factor for learning rate decay @@ -165,4 +194,7 @@ optimizer: loss: 'l2' # set lpips to false to deactivate. Otherwise, give the weigth for the loss (the main loss l2/l1 always having a weigth of 1) lpips: 1.0 -unrolled_output_factor: False # whether to account for unrolled output in loss (there must post-processor) \ No newline at end of file +unrolled_output_factor: False # whether to account for unrolled output in loss (there must post-processor) +# factor for auxiliary pre-processor loss to promote measurement consistency -> ||pre_proc(y) - A * camera_inversion(y)|| +# -- use camera inversion output so that doesn't include enhancements / coloring by post-processor +pre_proc_aux: False \ No newline at end of file diff --git a/configs/upload_tapecam_mirflickr.yaml b/configs/upload_tapecam_mirflickr.yaml new file mode 100644 index 00000000..bb3d806c --- /dev/null +++ b/configs/upload_tapecam_mirflickr.yaml @@ -0,0 +1,21 @@ +# python scripts/data/upload_dataset_huggingface.py -cn upload_tapecam_mirflickr +defaults: + - upload_dataset_huggingface + - _self_ + +repo_id: "bezzam/TapeCam-Mirflickr-25K" +n_files: 25000 +test_size: 0.15 +multimask: False +split: 100 # "first: first `nfiles*test_size` for test, `int`: test_size*split for test (interleaved) as if multimask with this many masks + +lensless: + dir: "/dev/shm/TEST/all_measured_20240527-185211" + ext: ".png" + +lensed: + dir: "/dev/shm/mirflickr" + ext: ".jpg" + +files: + psf: /root/LenslessPiCam/tape_rgb_may27.png diff --git a/docs/source/demo.rst b/docs/source/demo.rst index 4bef6fb6..72e27387 100644 --- a/docs/source/demo.rst +++ b/docs/source/demo.rst @@ -98,7 +98,7 @@ you need to: admm - Apply ADMM on current measurement. unrolled - Apply unrolled ADMM on current measurement. -#. Install Telegram Python API (and other dependencies): ``pip install python-telegram-bot emoji pilmoji``. +#. Install Telegram Python API (and other dependencies): ``pip install python-telegram-bot emoji==1.7 pilmoji``. #. Make sure ``LenslessPiCam`` is installed on your server and on the Raspberry Pi, and that the display is configured to display images in full screen, as described in :ref:`measurement`. diff --git a/docs/source/reconstruction.rst b/docs/source/reconstruction.rst index 4674f327..c46fe538 100644 --- a/docs/source/reconstruction.rst +++ b/docs/source/reconstruction.rst @@ -90,6 +90,22 @@ :special-members: __init__ :show-inheritance: + Trainable Inversion + ~~~~~~~~~~~~~~~~~~~ + + .. autoclass:: lensless.TrainableInversion + :members: forward + :special-members: __init__ + :show-inheritance: + + Multi-Wiener Deconvolution Network + ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + + .. autoclass:: lensless.MultiWiener + :members: forward + :special-members: __init__ + :show-inheritance: + Reconstruction Utilities ------------------------ diff --git a/lensless/__init__.py b/lensless/__init__.py index 748e503d..70990774 100644 --- a/lensless/__init__.py +++ b/lensless/__init__.py @@ -29,6 +29,7 @@ from .recon.unrolled_admm import UnrolledADMM from .recon.unrolled_fista import UnrolledFISTA from .recon.trainable_inversion import TrainableInversion + from .recon.multi_wiener import MultiWiener except Exception: pass diff --git a/lensless/eval/benchmark.py b/lensless/eval/benchmark.py index 75f54c3b..055f9803 100644 --- a/lensless/eval/benchmark.py +++ b/lensless/eval/benchmark.py @@ -36,6 +36,7 @@ def benchmark( save_idx=None, output_dir=None, unrolled_output_factor=False, + pre_process_aux=False, return_average=True, snr=None, use_wandb=False, @@ -86,16 +87,17 @@ def benchmark( if metrics is None: metrics = { - "MSE": MSELoss().to(device), - # "MAE": L1Loss().to(device), + "MSE": MSELoss(reduction="mean").to(device), "LPIPS_Vgg": lpip.LearnedPerceptualImagePatchSimilarity( - net_type="vgg", normalize=True + net_type="vgg", normalize=True, reduction="sum" ).to(device), # "LPIPS_Alex": lpip.LearnedPerceptualImagePatchSimilarity( # net_type="alex", normalize=True # ).to(device), - "PSNR": psnr.PeakSignalNoiseRatio().to(device), - "SSIM": StructuralSimilarityIndexMeasure().to(device), + "PSNR": psnr.PeakSignalNoiseRatio(reduction=None, dim=(1, 2, 3), data_range=(0, 1)).to( + device + ), + "SSIM": StructuralSimilarityIndexMeasure(reduction=None, data_range=(0, 1)).to(device), "ReconstructionError": None, } @@ -105,24 +107,41 @@ def benchmark( for key in output_metrics: if key != "ReconstructionError": metrics_values[key + "_unrolled"] = [] + if pre_process_aux: + metrics_values["ReconstructionError_PreProc"] = [] # loop over batches dataloader = DataLoader(dataset, batch_size=batchsize, pin_memory=(device != "cpu")) model.reset() idx = 0 + weights = [] # for averaging batches with torch.no_grad(): for batch in tqdm(dataloader): - if hasattr(dataset, "multimask"): - if dataset.multimask: - lensless, lensed, psfs = batch - psfs = psfs.to(device) - else: - lensless, lensed = batch - psfs = None + weights.append(len(batch[0])) + + flip_lr = None + flip_ud = None + if dataset.random_flip: + lensless, lensed, psfs, flip_lr, flip_ud = batch + psfs = psfs.to(device) + elif dataset.multimask: + lensless, lensed, psfs = batch + psfs = psfs.to(device) else: lensless, lensed = batch psfs = None + # if hasattr(dataset, "multimask"): + # if dataset.multimask: + # lensless, lensed, psfs = batch + # psfs = psfs.to(device) + # else: + # lensless, lensed = batch + # psfs = None + # else: + # lensless, lensed = batch + # psfs = None + lensless = lensless.to(device) lensed = lensed.to(device) @@ -137,14 +156,18 @@ def benchmark( model._set_psf(psfs[0]) model.set_data(lensless) prediction = model.apply( - plot=False, save=False, output_intermediate=unrolled_output_factor, **kwargs + plot=False, + save=False, + output_intermediate=unrolled_output_factor or pre_process_aux, + **kwargs, ) else: prediction = model.forward(lensless, psfs, **kwargs) - if unrolled_output_factor: - unrolled_out = prediction[-1] + if unrolled_output_factor or pre_process_aux: + pre_process_out = prediction[2] + unrolled_out = prediction[1] prediction = prediction[0] prediction_original = prediction.clone() @@ -154,13 +177,16 @@ def benchmark( if hasattr(dataset, "alignment"): if dataset.alignment is not None: - prediction = dataset.extract_roi(prediction, axis=(-2, -1)) + prediction = dataset.extract_roi( + prediction, axis=(-2, -1), flip_lr=flip_lr, flip_ud=flip_ud + ) else: prediction, lensed = dataset.extract_roi( - prediction, axis=(-2, -1), lensed=lensed + prediction, axis=(-2, -1), lensed=lensed, flip_lr=flip_lr, flip_ud=flip_ud ) assert np.all(lensed.shape == prediction.shape) elif crop is not None: + assert flip_lr is None and flip_ud is None prediction = prediction[ ..., crop["vertical"][0] : crop["vertical"][1], @@ -202,13 +228,9 @@ def benchmark( # compute metrics for metric in metrics: if metric == "ReconstructionError": - metrics_values[metric].append( - model.reconstruction_error( - prediction=prediction_original, lensless=lensless - ) - .cpu() - .item() - ) + metrics_values[metric] += model.reconstruction_error( + prediction=prediction_original, lensless=lensless + ).tolist() else: try: if "LPIPS" in metric: @@ -225,10 +247,16 @@ def benchmark( metrics_values[metric].append( metrics[metric](prediction, lensed).cpu().item() ) - else: + elif metric == "MSE": metrics_values[metric].append( - metrics[metric](prediction, lensed).cpu().item() + metrics[metric](prediction, lensed).cpu().item() * len(batch[0]) ) + else: + vals = metrics[metric](prediction, lensed).cpu() + if hasattr(vals.tolist(), "__len__"): + metrics_values[metric] += vals.tolist() + else: + metrics_values[metric].append(vals.item()) except Exception as e: print(f"Error in metric {metric}: {e}") @@ -239,7 +267,17 @@ def benchmark( unrolled_out = unrolled_out.reshape(-1, *unrolled_out.shape[-3:]).movedim(-1, -3) # -- extraction region of interest - if crop is not None: + if hasattr(dataset, "alignment"): + if dataset.alignment is not None: + unrolled_out = dataset.extract_roi(unrolled_out, axis=(-2, -1)) + else: + unrolled_out = dataset.extract_roi( + unrolled_out, + axis=(-2, -1), + # lensed=lensed # lensed already extracted before + ) + assert np.all(lensed.shape == unrolled_out.shape) + elif crop is not None: unrolled_out = unrolled_out[ ..., crop["vertical"][0] : crop["vertical"][1], @@ -260,7 +298,7 @@ def benchmark( if "LPIPS" in metric: if unrolled_out.shape[1] == 1: # LPIPS needs 3 channels - metrics_values[metric].append( + metrics_values[metric + "_unrolled"].append( metrics[metric]( unrolled_out.repeat(1, 3, 1, 1), lensed.repeat(1, 3, 1, 1) ) @@ -271,18 +309,34 @@ def benchmark( metrics_values[metric + "_unrolled"].append( metrics[metric](unrolled_out, lensed).cpu().item() ) - else: + elif metric == "MSE": metrics_values[metric + "_unrolled"].append( - metrics[metric](unrolled_out, lensed).cpu().item() + metrics[metric](unrolled_out, lensed).cpu().item() * len(batch[0]) ) + else: + vals = metrics[metric](unrolled_out, lensed).cpu() + if hasattr(vals.tolist(), "__len__"): + metrics_values[metric + "_unrolled"] += vals.tolist() + else: + metrics_values[metric + "_unrolled"].append(vals.item()) + + # compute metrics for pre-processed output + if pre_process_aux: + metrics_values["ReconstructionError_PreProc"] += model.reconstruction_error( + prediction=prediction_original, lensless=pre_process_out + ).tolist() model.reset() idx += batchsize # average metrics if return_average: - for metric in metrics: - metrics_values[metric] = np.mean(metrics_values[metric]) + for metric in metrics_values.keys(): + if "MSE" in metric or "LPIPS" in metric: + # differently because metrics are grouped into bathces + metrics_values[metric] = np.sum(metrics_values[metric]) / len(dataset) + else: + metrics_values[metric] = np.mean(metrics_values[metric]) return metrics_values diff --git a/lensless/hardware/mask.py b/lensless/hardware/mask.py index 0e8c9456..8830e052 100644 --- a/lensless/hardware/mask.py +++ b/lensless/hardware/mask.py @@ -488,6 +488,7 @@ def __init__( min_height=1e-5, radius_range=(1e-4, 4e-4), min_separation=1e-4, + focal_range=None, verbose=False, **kwargs, ): @@ -510,6 +511,8 @@ def __init__( Minimum height of the lenses (m). Default is 1e-3. radius_range: array_like Range of the radius of the lenses (m). Default is (1e-4, 4e-4) m. + focal_range: array_like + Range of the focal length of the lenses (m). Default is None. Overrides the radius_range. min_separation: float Minimum separation between lenses (m). Default is 1e-4. verbose: bool @@ -521,10 +524,16 @@ def __init__( self.refractive_index = refractive_index self.seed = seed self.min_height = min_height - self.radius_range = radius_range self.min_separation = min_separation self.verbose = verbose + self.radius_range = radius_range + if focal_range is not None: + self.radius_range = [ + focal_range[0] / (self.refractive_index - 1), + focal_range[1] / (self.refractive_index - 1), + ] + super().__init__(**kwargs) def check_asserts(self): @@ -663,8 +672,8 @@ def create_height_map(self, radius, locs): else torch.arange(self.resolution[1]).to(self.torch_device) ) if self.centered: - x = x - self.resolution[0] / 2 - y = y - self.resolution[1] / 2 + x = x - self.resolution[1] / 2 + y = y - self.resolution[0] / 2 X, Y = ( np.meshgrid(x, y, indexing="ij") if not self.use_torch @@ -684,6 +693,15 @@ def lens_contribution(self, x, y, radius, loc): else torch.sqrt(radius**2 - (x - loc[1]) ** 2 - (y - loc[0]) ** 2) ) + @property + def focal_length(self): + """ + Focal length of the lenses. + + As we have a plano-convex lens: 1/f = (n-1) / R -> f = R / (n-1) + """ + return self.radius / (self.refractive_index - 1) + class PhaseContour(Mask): """ diff --git a/lensless/hardware/slm.py b/lensless/hardware/slm.py index 29ea9d3a..262f00ac 100644 --- a/lensless/hardware/slm.py +++ b/lensless/hardware/slm.py @@ -17,6 +17,7 @@ try: import torch from torchvision import transforms + from torchvision.transforms.functional import InterpolationMode torch_available = True except ImportError: @@ -123,13 +124,7 @@ def set_programmable_mask(pattern, device, rpi_username=None, rpi_hostname=None, def get_programmable_mask( - vals, - sensor, - slm_param, - rotate=None, - flipud=False, - nbits=8, - color_filter=None, + vals, sensor, slm_param, rotate=None, flipud=False, nbits=8, color_filter=None, deadspace=True ): """ Get mask as a numpy or torch array. Return same type. @@ -148,6 +143,8 @@ def get_programmable_mask( Flip mask vertically. nbits : int, optional Number of bits/levels to quantize mask to. + deadspace: bool, optional + Whether to include deadspace around mask. Default is True. """ @@ -161,9 +158,8 @@ def get_programmable_mask( # -- prepare SLM mask n_active_slm_pixels = vals.shape n_color_filter = np.prod(slm_param["color_filter"].shape[:2]) - pixel_pitch = slm_param[SLMParam_wp.PITCH] - centers = get_centers(n_active_slm_pixels, pixel_pitch=pixel_pitch) + # -- prepare color filter if color_filter is None and SLMParam_wp.COLOR_FILTER in slm_param.keys(): color_filter = slm_param[SLMParam_wp.COLOR_FILTER] if isinstance(vals, torch.Tensor): @@ -180,36 +176,84 @@ def get_programmable_mask( else: raise ValueError("color_filter must be numpy array or torch tensor") - d1 = sensor.pitch - _height_pixel, _width_pixel = (slm_param[SLMParam_wp.CELL_SIZE] / d1).astype(int) - + # -- prepare mask if use_torch: mask = torch.zeros((n_color_filter,) + tuple(sensor.resolution)).to(vals) slm_vals_flat = vals.flatten() else: mask = np.zeros((n_color_filter,) + tuple(sensor.resolution), dtype=dtype) slm_vals_flat = vals.reshape(-1) + pixel_pitch = slm_param[SLMParam_wp.PITCH] + d1 = sensor.pitch + if deadspace: + + centers = get_centers(n_active_slm_pixels, pixel_pitch=pixel_pitch) + + _height_pixel, _width_pixel = (slm_param[SLMParam_wp.CELL_SIZE] / d1).astype(int) + + for i, _center in enumerate(centers): - for i, _center in enumerate(centers): + _center_pixel = (_center / d1 + sensor.resolution / 2).astype(int) + _center_top_left_pixel = ( + _center_pixel[0] - np.floor(_height_pixel / 2).astype(int), + _center_pixel[1] + 1 - np.floor(_width_pixel / 2).astype(int), + ) + color_filter_idx = i // n_active_slm_pixels[1] % n_color_filter + + mask_val = slm_vals_flat[i] * color_filter[color_filter_idx][0] + if isinstance(mask_val, np.ndarray): + mask_val = mask_val[:, np.newaxis, np.newaxis] + elif isinstance(mask_val, torch.Tensor): + mask_val = mask_val.unsqueeze(-1).unsqueeze(-1) + mask[ + :, + _center_top_left_pixel[0] : _center_top_left_pixel[0] + _height_pixel, + _center_top_left_pixel[1] : _center_top_left_pixel[1] + _width_pixel, + ] = mask_val + + else: - _center_pixel = (_center / d1 + sensor.resolution / 2).astype(int) - _center_top_left_pixel = ( - _center_pixel[0] - np.floor(_height_pixel / 2).astype(int), - _center_pixel[1] + 1 - np.floor(_width_pixel / 2).astype(int), + # use color filter to turn mask into RGB + if use_torch: + active_mask_rgb = torch.zeros((n_color_filter,) + n_active_slm_pixels).to(vals) + else: + active_mask_rgb = np.zeros((n_color_filter,) + n_active_slm_pixels, dtype=dtype) + + # TODO avoid for loop + for i in range(n_active_slm_pixels[0]): + row_idx = i % color_filter.shape[0] + for j in range(n_active_slm_pixels[1]): + + col_idx = j % color_filter.shape[1] + color_filter_idx = color_filter[row_idx, col_idx] + active_mask_rgb[ + :, n_active_slm_pixels[0] - i - 1, n_active_slm_pixels[1] - j - 1 + ] = (vals[i, j] * color_filter_idx) + + # size of active pixels in pixels + n_active_dim = np.around(slm_param[SLMParam_wp.PITCH] * n_active_slm_pixels / d1).astype( + int ) + # n_active_dim = np.around(slm_param[SLMParam_wp.CELL_SIZE] * n_active_slm_pixels / d1).astype(int) - color_filter_idx = i // n_active_slm_pixels[1] % n_color_filter + # resize to n_active_dim + if use_torch: + mask_active = transforms.functional.resize( + active_mask_rgb, n_active_dim, interpolation=InterpolationMode.NEAREST + ) + else: + # TODO check + mask_active = np.zeros((n_color_filter,) + tuple(n_active_dim), dtype=dtype) + for i in range(n_color_filter): + mask_active[i] = np.resize(active_mask_rgb[i], n_active_dim) - mask_val = slm_vals_flat[i] * color_filter[color_filter_idx][0] - if isinstance(mask_val, np.ndarray): - mask_val = mask_val[:, np.newaxis, np.newaxis] - elif isinstance(mask_val, torch.Tensor): - mask_val = mask_val.unsqueeze(-1).unsqueeze(-1) + # pad to full mask + top_left = (sensor.resolution - n_active_dim) // 2 mask[ :, - _center_top_left_pixel[0] : _center_top_left_pixel[0] + _height_pixel, - _center_top_left_pixel[1] : _center_top_left_pixel[1] + _width_pixel, - ] = mask_val + top_left[0] : top_left[0] + n_active_dim[0], + top_left[1] : top_left[1] + n_active_dim[1], + ] = mask_active # # quantize mask # if use_torch: diff --git a/lensless/hardware/trainable_mask.py b/lensless/hardware/trainable_mask.py index 9d937b8d..36f604e3 100644 --- a/lensless/hardware/trainable_mask.py +++ b/lensless/hardware/trainable_mask.py @@ -130,6 +130,7 @@ def __init__( horizontal_shift=None, scene2mask=None, mask2sensor=None, + deadspace=True, downsample=None, min_val=0, **kwargs, @@ -197,6 +198,7 @@ def __init__( self.use_waveprop = use_waveprop self.scene2mask = scene2mask self.mask2sensor = mask2sensor + self.deadspace = deadspace self.vertical_shift = vertical_shift self.horizontal_shift = horizontal_shift self.min_val = min_val @@ -217,6 +219,7 @@ def get_psf(self): rotate=self.rotate, flipud=self.flipud, color_filter=self._color_filter, + deadspace=self.deadspace, ) if self.vertical_shift is not None: diff --git a/lensless/recon/drunet/basicblock.py b/lensless/recon/drunet/basicblock.py index ed17a10b..865d43bb 100644 --- a/lensless/recon/drunet/basicblock.py +++ b/lensless/recon/drunet/basicblock.py @@ -6,9 +6,7 @@ # ############################################################################# from collections import OrderedDict -import torch import torch.nn as nn -import torch.nn.functional as F """ @@ -158,7 +156,6 @@ def __init__( ) def forward(self, x): - # res = self.res(x) return x + self.res(x) diff --git a/lensless/recon/drunet/network_unet.py b/lensless/recon/drunet/network_unet.py index 8d51d00b..b5d0f4da 100644 --- a/lensless/recon/drunet/network_unet.py +++ b/lensless/recon/drunet/network_unet.py @@ -5,10 +5,11 @@ # https://github.com/cszn/DPIR/blob/15bca3fcc1f3cc51a1f99ccf027691e278c19354/models/network_unet.py # ############################################################################# + import torch import torch.nn as nn import lensless.recon.drunet.basicblock as B -import numpy as np +from torchvision.transforms.functional import resize """ # ==================== @@ -109,11 +110,13 @@ def __init__( act_mode="R", downsample_mode="strideconv", upsample_mode="convtranspose", + concatenate_compensation=False, ): super(UNetRes, self).__init__() assert len(nc) == 4, "nc's length should be 4." + self.nc = nc self.m_head = B.conv(in_nc, nc[0], bias=False, mode="C") # downsample @@ -139,9 +142,22 @@ def __init__( downsample_block(nc[2], nc[3], bias=False, mode="2") ) - self.m_body = B.sequential( - *[B.ResBlock(nc[3], nc[3], bias=False, mode="C" + act_mode + "C") for _ in range(nb)] - ) + self.concatenate_compensation = concatenate_compensation + if concatenate_compensation: + self.m_body = B.sequential( + B.conv(nc[3] + concatenate_compensation, nc[3], bias=False, mode="C" + act_mode), + *[ + B.ResBlock(nc[3], nc[3], bias=False, mode="C" + act_mode + "C") + for _ in range(nb) + ] + ) + else: + self.m_body = B.sequential( + *[ + B.ResBlock(nc[3], nc[3], bias=False, mode="C" + act_mode + "C") + for _ in range(nb) + ] + ) # upsample if upsample_mode == "upconv": @@ -168,12 +184,21 @@ def __init__( self.m_tail = B.conv(nc[0], out_nc, bias=False, mode="C") - def forward(self, x0): + def forward(self, x0, compensation_output=None): + if self.concatenate_compensation: + assert compensation_output is not None, "compensation_output should not be None." x1 = self.m_head(x0) x2 = self.m_down1(x1) x3 = self.m_down2(x2) x4 = self.m_down3(x3) - x = self.m_body(x4) + + if compensation_output is not None: + compensation_output_re = resize(compensation_output, tuple(x4.shape[-2:])) + latent = torch.cat([x4, compensation_output_re], dim=1) + else: + latent = x4 + + x = self.m_body(latent) x = self.m_up3(x + x4) x = self.m_up2(x + x3) x = self.m_up1(x + x2) diff --git a/lensless/recon/model_dict.py b/lensless/recon/model_dict.py index e5957694..fe07d15a 100644 --- a/lensless/recon/model_dict.py +++ b/lensless/recon/model_dict.py @@ -15,8 +15,10 @@ from lensless.recon.trainable_inversion import TrainableInversion from lensless.hardware.trainable_mask import prep_trainable_mask import yaml +from lensless.recon.multi_wiener import MultiWiener from huggingface_hub import snapshot_download from collections import OrderedDict +from lensless.utils.dataset import MyDataParallel model_dir_path = os.path.join(os.path.dirname(__file__), "..", "..", "models") @@ -52,6 +54,30 @@ # baseline benchmarks which don't have model file but use ADMM "admm_fista": "bezzam/diffusercam-mirflickr-admm-fista", "admm_pnp": "bezzam/diffusercam-mirflickr-admm-pnp", + # -- TCI submission + "TrainInv+Unet8M": "bezzam/diffusercam-mirflickr-trainable-inv-unet8M", + "Unet4M+U5+Unet4M": "bezzam/diffusercam-mirflickr-unet4M-unrolled-admm5-unet4M", + "MWDN8M": "bezzam/diffusercam-mirflickr-mwdn-8M", + "Unet2M+MWDN6M": "bezzam/diffusercam-mirflickr-unet2M-mwdn-6M", + "Unet4M+TrainInv+Unet4M": "bezzam/diffusercam-mirflickr-unet4M-trainable-inv-unet4M", + "MMCN4M+Unet4M": "bezzam/diffusercam-mirflickr-mmcn-unet4M", + "U5+Unet8M": "bezzam/diffusercam-mirflickr-unrolled-admm5-unet8M", + "Unet2M+MMCN+Unet2M": "bezzam/diffusercam-mirflickr-unet2M-mmcn-unet2M", + "Unet4M+U20+Unet4M": "bezzam/diffusercam-mirflickr-unet4M-unrolled-admm20-unet4M", + "Unet4M+U10+Unet4M": "bezzam/diffusercam-mirflickr-unet4M-unrolled-admm10-unet4M", + # fine-tuning tapecam + "Unet4M+U5+Unet4M_ft_tapecam": "bezzam/diffusercam-mirflickr-unet4M-unrolled-admm5-unet4M-ft-tapecam", + "Unet4M+U5+Unet4M_ft_tapecam_post": "bezzam/diffusercam-mirflickr-unet4M-unrolled-admm5-unet4M-ft-tapecam-post", + "Unet4M+U5+Unet4M_ft_tapecam_pre": "bezzam/diffusercam-mirflickr-unet4M-unrolled-admm5-unet4M-ft-tapecam-pre", + }, + "mirflickr_sim": { + "Unet4M+U5+Unet4M": "bezzam/diffusercam-mirflickr-sim-unet4M-unrolled-admm5-unet4M", + "Unet4M+U5+Unet4M_ft_tapecam": "bezzam/diffusercam-mirflickr-sim-unet4M-unrolled-admm5-unet4M-ft-tapecam", + "Unet4M+U5+Unet4M_ft_tapecam_post": "bezzam/diffusercam-mirflickr-sim-unet4M-unrolled-admm5-unet4M-ft-tapecam-post", + "Unet4M+U5+Unet4M_ft_tapecam_pre": "bezzam/diffusercam-mirflickr-sim-unet4M-unrolled-admm5-unet4M-ft-tapecam-pre", + "Unet4M+U5+Unet4M_ft_digicam_multi_post": "bezzam/diffusercam-mirflickr-sim-unet4M-unrolled-admm5-unet4M-ft-digicam-multi-post", + "Unet4M+U5+Unet4M_ft_digicam_multi_pre": "bezzam/diffusercam-mirflickr-sim-unet4M-unrolled-admm5-unet4M-ft-digicam-multi-pre", + "Unet4M+U5+Unet4M_ft_digicam_multi": "bezzam/diffusercam-mirflickr-sim-unet4M-unrolled-admm5-unet4M-ft-digicam-multi", }, }, "digicam": { @@ -69,18 +95,76 @@ # baseline benchmarks which don't have model file but use ADMM "admm_measured_psf": "bezzam/digicam-celeba-admm-measured-psf", "admm_simulated_psf": "bezzam/digicam-celeba-admm-simulated-psf", + # TCI submission (using waveprop simulation) + "U5+Unet8M_wave": "bezzam/digicam-celeba-unrolled-admm5-unet8M", + "TrainInv+Unet8M_wave": "bezzam/digicam-celeba-trainable-inv-unet8M_wave", + "MWDN8M_wave": "bezzam/digicam-celeba-mwnn-8M", + "MMCN4M+Unet4M_wave": "bezzam/digicam-celeba-mmcn-unet4M", + "Unet2M+MWDN6M_wave": "bezzam/digicam-celeba-unet2M-mwdn-6M", + "Unet4M+TrainInv+Unet4M_wave": "bezzam/digicam-celeba-unet4M-trainable-inv-unet4M_wave", + "Unet2M+MMCN+Unet2M_wave": "bezzam/digicam-celeba-unet2M-mmcn-unet2M", + "Unet4M+U5+Unet4M_wave": "bezzam/digicam-celeba-unet4M-unrolled-admm5-unet4M", + "Unet4M+U10+Unet4M_wave": "bezzam/digicam-celeba-unet4M-unrolled-admm10-unet4M", }, "mirflickr_single_25k": { + # simulated PSF (without waveprop, with deadspace) "U10": "bezzam/digicam-mirflickr-single-25k-unrolled-admm10", "Unet8M": "bezzam/digicam-mirflickr-single-25k-unet8M", "TrainInv+Unet8M": "bezzam/digicam-mirflickr-single-25k-trainable-inv-unet8M", "U10+Unet8M": "bezzam/digicam-mirflickr-single-25k-unrolled-admm10-unet8M", "Unet4M+TrainInv+Unet4M": "bezzam/digicam-mirflickr-single-25k-unet4M-trainable-inv-unet4M", "Unet4M+U10+Unet4M": "bezzam/digicam-mirflickr-single-25k-unet4M-unrolled-admm10-unet4M", + # simulated PSF (with waveprop, with deadspace) + "U10_wave": "bezzam/digicam-mirflickr-single-25k-unrolled-admm10-wave", + "U10+Unet8M_wave": "bezzam/digicam-mirflickr-single-25k-unrolled-admm10-unet8M-wave", + "Unet8M_wave": "bezzam/digicam-mirflickr-single-25k-unet8M-wave", + "Unet4M+U10+Unet4M_wave": "bezzam/digicam-mirflickr-single-25k-unet4M-unrolled-admm10-unet4M-wave", + "TrainInv+Unet8M_wave": "bezzam/digicam-mirflickr-single-25k-trainable-inv-unet8M-wave", + "U5+Unet8M_wave": "bezzam/digicam-mirflickr-single-25k-unrolled-admm5-unet8M-wave", + "Unet4M+U5+Unet4M_wave": "bezzam/digicam-mirflickr-single-25k-unet4M-unrolled-admm5-unet4M-wave", + "MWDN8M_wave": "bezzam/digicam-mirflickr-single-25k-mwdn-8M", + "MMCN4M+Unet4M_wave": "bezzam/digicam-mirflickr-single-25k-mmcn-unet4M", + "Unet2M+MMCN+Unet2M_wave": "bezzam/digicam-mirflickr-single-25k-unet2M-mmcn-unet2M-wave", + "Unet4M+TrainInv+Unet4M_wave": "bezzam/digicam-mirflickr-single-25k-unet4M-trainable-inv-unet4M-wave", + "Unet2M+MWDN6M_wave": "bezzam/digicam-mirflickr-single-25k-unet2M-mwdn-6M", + "Unet4M+U5+Unet4M_wave_aux1": "bezzam/digicam-mirflickr-single-25k-unet4M-unrolled-admm5-unet4M-wave-aux1", + "Unet4M+U5+Unet4M_wave_flips": "bezzam/digicam-mirflickr-single-25k-unet4M-unrolled-admm5-unet4M-wave-flips", + "Unet4M+U5+Unet4M_wave_flips_rotate10": "bezzam/digicam-mirflickr-single-25k-unet4M-unrolled-admm5-unet4M-wave-flips-rotate10", + # measured PSF + "Unet4M+U10+Unet4M_measured": "bezzam/digicam-mirflickr-single-25k-unet4M-unrolled-admm10-unet4M-measured", + # simulated PSF (with waveprop, no deadspace) + "Unet4M+U10+Unet4M_wave_nodead": "bezzam/digicam-mirflickr-single-25k-unet4M-unrolled-admm10-unet4M-wave-nodead", + # simulated PSF (without waveprop, no deadspace) + "Unet4M+U10+Unet4M_nodead": "bezzam/digicam-mirflickr-single-25k-unet4M-unrolled-admm10-unet4M-nodead", + # finetune + "Unet4M+U5+Unet4M_ft_flips": "bezzam/digicam-mirflickr-single-25k-unet4M-unrolled-admm5-unet4M-ft-flips", + "Unet4M+U5+Unet4M_ft_flips_rotate10": "bezzam/digicam-mirflickr-single-25k-unet4M-unrolled-admm5-unet4M-ft-flips-rotate10", }, "mirflickr_multi_25k": { + # simulated PSFs (without waveprop, with deadspace) "Unet8M": "bezzam/digicam-mirflickr-multi-25k-unet8M", "Unet4M+U10+Unet4M": "bezzam/digicam-mirflickr-multi-25k-unet4M-unrolled-admm10-unet4M", + # simulated PSF (with waveprop, with deadspace) + "Unet4M+U10+Unet4M_wave": "bezzam/digicam-mirflickr-multi-25k-unet4M-unrolled-admm10-unet4M-wave", + "Unet4M+U5+Unet4M_wave": "bezzam/digicam-mirflickr-multi-25k-unet4M-unrolled-admm5-unet4M-wave", + "Unet4M+U5+Unet4M_wave_aux1": "bezzam/digicam-mirflickr-multi-25k-unet4M-unrolled-admm5-unet4M-wave-aux1", + "Unet4M+U5+Unet4M_wave_flips": "bezzam/digicam-mirflickr-multi-25k-unet4M-unrolled-admm5-unet4M-wave-flips", + }, + }, + "tapecam": { + "mirflickr": { + "U5+Unet8M": "bezzam/tapecam-mirflickr-unrolled-admm5-unet8M", + "TrainInv+Unet8M": "bezzam/tapecam-mirflickr-trainable-inv-unet8M", + "MMCN4M+Unet4M": "bezzam/tapecam-mirflickr-mmcn-unet4M", + "MWDN8M": "bezzam/tapecam-mirflickr-mwdn-8M", + "Unet4M+TrainInv+Unet4M": "bezzam/tapecam-mirflickr-unet4M-trainable-inv-unet4M", + "Unet4M+U5+Unet4M": "bezzam/tapecam-mirflickr-unet4M-unrolled-admm5-unet4M", + "Unet2M+MMCN+Unet2M": "bezzam/tapecam-mirflickr-unet2M-mmcn-unet2M", + "Unet2M+MWDN6M": "bezzam/tapecam-mirflickr-unet2M-mwdn-6M", + "Unet4M+U10+Unet4M": "bezzam/tapecam-mirflickr-unet4M-unrolled-admm10-unet4M", + "Unet4M+U5+Unet4M_flips": "bezzam/tapecam-mirflickr-unet4M-unrolled-admm5-unet4M-flips", + "Unet4M+U5+Unet4M_flips_rotate10": "bezzam/tapecam-mirflickr-unet4M-unrolled-admm5-unet4M-flips-rotate10", + "Unet4M+U5+Unet4M_aux1": "bezzam/tapecam-mirflickr-unet4M-unrolled-admm5-unet4M-aux1", }, }, } @@ -133,7 +217,17 @@ def download_model(camera, dataset, model, local_model_dir=None): return model_dir -def load_model(model_path, psf, device="cpu", legacy_denoiser=False, verbose=True): +def load_model( + model_path, + psf, + device="cpu", + device_ids=None, + legacy_denoiser=False, + verbose=True, + skip_pre=False, + skip_post=False, + train_last_layer=False, +): """ Load best model from model path. @@ -180,58 +274,136 @@ def load_model(model_path, psf, device="cpu", legacy_denoiser=False, verbose=Tru pre_process = None post_process = None - if config["reconstruction"]["pre_process"]["network"] is not None: - - pre_process, _ = create_process_network( - network=config["reconstruction"]["pre_process"]["network"], - depth=config["reconstruction"]["pre_process"]["depth"], - nc=config["reconstruction"]["pre_process"]["nc"] - if "nc" in config["reconstruction"]["pre_process"].keys() - else None, - device=device, - ) + if config["reconstruction"].get("init", None): - if config["reconstruction"]["post_process"]["network"] is not None: + init_model = config["reconstruction"]["init"] + assert config["reconstruction"].get("init_processors", None) is None - post_process, _ = create_process_network( - network=config["reconstruction"]["post_process"]["network"], - depth=config["reconstruction"]["post_process"]["depth"], - nc=config["reconstruction"]["post_process"]["nc"] - if "nc" in config["reconstruction"]["post_process"].keys() - else None, - device=device, - ) - - if config["reconstruction"]["method"] == "unrolled_admm": - recon = UnrolledADMM( - psf if mask is None else psf_learned, - pre_process=pre_process, - post_process=post_process, - n_iter=config["reconstruction"]["unrolled_admm"]["n_iter"], - skip_unrolled=config["reconstruction"]["skip_unrolled"], - legacy_denoiser=legacy_denoiser, - ) - elif config["reconstruction"]["method"] == "trainable_inv": - recon = TrainableInversion( + param = init_model.split(":") + assert len(param) == 4, "hf model requires following format: hf:camera:dataset:model_name" + camera = param[1] + dataset = param[2] + model_name = param[3] + model_path = download_model(camera=camera, dataset=dataset, model=model_name) + recon = load_model( + model_path, psf, - pre_process=pre_process, - post_process=post_process, - K=config["reconstruction"]["trainable_inv"]["K"], - legacy_denoiser=legacy_denoiser, + device, + device_ids=device_ids, + train_last_layer=config["reconstruction"]["post_process"]["train_last_layer"], ) + else: + + if config["reconstruction"]["pre_process"]["network"] is not None: + + pre_process, _ = create_process_network( + network=config["reconstruction"]["pre_process"]["network"], + depth=config["reconstruction"]["pre_process"]["depth"], + nc=config["reconstruction"]["pre_process"]["nc"] + if "nc" in config["reconstruction"]["pre_process"].keys() + else None, + device=device, + ) + + if config["reconstruction"]["post_process"]["network"] is not None: + + post_process, _ = create_process_network( + network=config["reconstruction"]["post_process"]["network"], + depth=config["reconstruction"]["post_process"]["depth"], + nc=config["reconstruction"]["post_process"]["nc"] + if "nc" in config["reconstruction"]["post_process"].keys() + else None, + device=device, + # get from dict + concatenate_compensation=config["reconstruction"]["compensation"][-1] + if config["reconstruction"].get("compensation", None) is not None + else False, + ) + + if train_last_layer: + for param in post_process.parameters(): + for name, param in post_process.named_parameters(): + if "m_tail" in name: + param.requires_grad = True + else: + param.requires_grad = False + + if config["reconstruction"]["method"] == "unrolled_admm": + + recon = UnrolledADMM( + psf if mask is None else psf_learned, + pre_process=pre_process, + post_process=post_process, + n_iter=config["reconstruction"]["unrolled_admm"]["n_iter"], + skip_unrolled=config["reconstruction"]["skip_unrolled"], + legacy_denoiser=legacy_denoiser, + skip_pre=skip_pre, + skip_post=skip_post, + compensation=config["reconstruction"].get("compensation", None), + compensation_residual=config["reconstruction"].get("compensation_residual", False), + ) + elif config["reconstruction"]["method"] == "trainable_inv": + recon = TrainableInversion( + psf, + pre_process=pre_process, + post_process=post_process, + K=config["reconstruction"]["trainable_inv"]["K"], + legacy_denoiser=legacy_denoiser, + skip_pre=skip_pre, + skip_post=skip_post, + ) + elif config["reconstruction"]["method"] == "multi_wiener": + + if config["files"].get("single_channel_psf", False): + + if torch.sum(psf[..., 0] - psf[..., 1]) != 0: + # need to sum difference channels + raise ValueError("PSF channels are not the same") + # psf = np.sum(psf, axis=3) + + else: + psf = psf[..., 0].unsqueeze(-1) + psf_channels = 1 + else: + psf_channels = 3 + + recon = MultiWiener( + in_channels=3, + out_channels=3, + psf=psf, + psf_channels=psf_channels, + nc=config["reconstruction"]["multi_wiener"]["nc"], + pre_process=pre_process, + ) + recon.to(device) + if mask is not None: psf_learned = torch.nn.Parameter(psf_learned) recon._set_psf(psf_learned) - if "device_ids" in config.keys() and config["device_ids"] is not None: + if config["device_ids"] is not None: model_state_dict = remove_data_parallel(model_state_dict) - # # return model_state_dict - # if "_psf" in model_state_dict: - # # TODO: should not have to do this... - # del model_state_dict["_psf"] + # hotfixes for loading models + if config["reconstruction"]["method"] == "multi_wiener": + # replace "avgpool_conv" with "pool_conv" + model_state_dict = { + k.replace("avgpool_conv", "pool_conv"): v for k, v in model_state_dict.items() + } recon.load_state_dict(model_state_dict) + if device_ids is not None: + if recon.pre_process is not None: + pre_proc = torch.nn.DataParallel(recon.pre_process_model, device_ids=device_ids) + pre_proc = pre_proc.to(device) + recon.set_pre_process(pre_proc) + if recon.post_process is not None: + post_proc = torch.nn.DataParallel(recon.post_process_model, device_ids=device_ids) + post_proc = post_proc.to(device) + recon.set_post_process(post_proc) + recon = MyDataParallel(recon, device_ids=device_ids) + recon.to(device) + return recon diff --git a/lensless/recon/multi_wiener.py b/lensless/recon/multi_wiener.py new file mode 100644 index 00000000..cadad0c4 --- /dev/null +++ b/lensless/recon/multi_wiener.py @@ -0,0 +1,296 @@ +# ############################################################################# +# multi_wiener.py +# =============== +# Authors : +# Eric BEZZAM [ebezzam@gmail.com] +# Kyung Chul Lee +# ############################################################################# + + +import torch +import torch.nn as nn +import torch.nn.functional as F +import numpy as np +from lensless.recon.utils import convert_to_NCHW, convert_to_NDCHW +from lensless.recon.rfft_convolve import RealFFTConvolve2D + + +class DoubleConv(nn.Module): + """(convolution => [BN] => ReLU) * 2""" + + def __init__(self, in_channels, out_channels, mid_channels=None): + super().__init__() + if not mid_channels: + mid_channels = out_channels + self.double_conv = nn.Sequential( + nn.Conv2d(in_channels, mid_channels, kernel_size=(3, 3), padding=1, bias=False), + nn.BatchNorm2d(mid_channels), + nn.ReLU(inplace=True), + nn.Conv2d(mid_channels, out_channels, kernel_size=(3, 3), padding=1, bias=False), + nn.BatchNorm2d(out_channels), + nn.ReLU(inplace=True), + ) + + def forward(self, x): + return self.double_conv(x) + + +class Down(nn.Module): + def __init__(self, in_channels, out_channels): + super().__init__() + self.pool_conv = nn.Sequential( + # nn.AvgPool2d(2), + nn.MaxPool2d(2), # original paper says max-pooling + DoubleConv(in_channels, out_channels), + ) + + def forward(self, x): + return self.pool_conv(x) + + +class Up(nn.Module): + def __init__(self, in_channels, out_channels): + super().__init__() + + # or use ConvTranspose2d? https://github.com/milesial/Pytorch-UNet/blob/21d7850f2af30a9695bbeea75f3136aa538cfc4a/unet/unet_parts.py#L53 + self.up = nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True) + self.conv = DoubleConv(in_channels, out_channels, in_channels // 2) + + def forward(self, x1, x2): + x1 = self.up(x1) + # input is CHW + diffY = x2.size()[2] - x1.size()[2] + diffX = x2.size()[3] - x1.size()[3] + + x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2, diffY // 2, diffY - diffY // 2]) + x = torch.cat([x2, x1], dim=1) + return self.conv(x) + + +class OutConv(nn.Module): + def __init__(self, in_channels, out_channels): + super(OutConv, self).__init__() + self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=(1, 1)) + + def forward(self, x): + return self.conv(x) + + +def WieNer(blur, psf, delta): + blur_fft = torch.fft.rfft2(blur) + psf_fft = torch.fft.rfft2(psf) + psf_fft = torch.conj(psf_fft) / (torch.abs(psf_fft) ** 2 + delta) + img = torch.fft.ifftshift(torch.fft.irfft2(psf_fft * blur_fft), (-2, -1)) + return img.real + + +class MultiWiener(nn.Module): + def __init__( + self, + in_channels, + out_channels, + psf, + psf_channels=1, + nc=None, + pre_process=None, + skip_pre=False, + ): + """ + Constructor for Multi-Wiener Deconvolution Network (MWDN) as proposed in: + https://opg.optica.org/oe/fulltext.cfm?uri=oe-31-23-39088&id=541387 + + Parameters + ---------- + in_channels : int + Number of input channels. RGB or grayscale, i.e. 3 and 1 respectively. + out_channels : int + Number of output channels. RGB or grayscale, i.e. 3 and 1 respectively. + psf : :py:class:`~torch.Tensor` + Point spread function (PSF) that models forward propagation. + psf_channels : int + Number of channels in the PSF. Default is 1. + nc : list + Number of channels in the network. Default is [64, 128, 256, 512, 512]. + pre_process : :py:class:`function` or :py:class:`~torch.nn.Module`, optional + Pre-processor applies before MWDN. Default is None. + skip_pre : bool + Skip pre-processing. Default is False. + + """ + assert in_channels == 1 or in_channels == 3, "in_channels must be 1 or 3" + assert out_channels == 1 or out_channels == 3, "out_channels must be 1 or 3" + assert in_channels >= out_channels + if nc is None: + nc = [64, 128, 256, 512, 512] + + super(MultiWiener, self).__init__() + self.in_channels = in_channels + self.out_channels = out_channels + + self.inc = DoubleConv(in_channels, nc[0]) + self.down_layers = nn.ModuleList([Down(nc[i], nc[i + 1]) for i in range(len(nc) - 1)]) + + self.up_layers = [] + n_prev = nc[-1] + for i in range(len(nc) - 1): + n_in = n_prev + nc[-i - 2] + n_out = nc[-i - 2] // 2 if i < len(nc) - 2 else nc[0] + self.up_layers.append(Up(n_in, n_out)) + n_prev = n_out + self.up_layers = nn.ModuleList(self.up_layers) + self.outc = OutConv(nc[0], out_channels) + + self.delta = nn.Parameter(torch.tensor(np.ones(5) * 0.01, dtype=torch.float32)) + self.w = nn.Parameter( + torch.tensor(np.ones((1, psf_channels, 1, 1)) * 0.001, dtype=torch.float32) + ) + + self.inc0 = DoubleConv(psf_channels, nc[0]) + self.psf_down = nn.ModuleList([Down(nc[i], nc[i + 1]) for i in range(len(nc) - 2)]) + + # padding H and W to next multiple of 8 + img_shape = psf.shape[-3:-1] + self.top = (8 - img_shape[0] % 8) // 2 + self.bottom = (8 - img_shape[0] % 8) - self.top + self.left = (8 - img_shape[1] % 8) // 2 + self.right = (8 - img_shape[1] % 8) - self.left + + self._psf_shape = psf.shape + self._psf = convert_to_NCHW(psf) + self._psf = torch.nn.functional.pad( + self._psf, (self.left, self.right, self.top, self.bottom), mode="constant", value=0 + ) + self._n_iter = 1 + self._convolver = RealFFTConvolve2D(psf, pad=True, rgb=True if out_channels == 3 else False) + + self.set_pre_process(pre_process) + self.skip_pre = skip_pre + + def _prepare_process_block(self, process): + """ + Method for preparing the pre or post process block. + + Parameters + ---------- + process : :py:class:`function` or :py:class:`~torch.nn.Module`, optional + Pre or post process block to prepare. + """ + if isinstance(process, torch.nn.Module): + # If the post_process is a torch module, we assume it is a DruNet like network. + from lensless.recon.utils import get_drunet_function_v2 + + process_model = process + process_function = get_drunet_function_v2(process_model, mode="train") + elif process is not None: + # Otherwise, we assume it is a function. + assert callable(process), "pre_process must be a callable function" + process_function = process + process_model = None + else: + process_function = None + process_model = None + + if process_function is not None: + process_param = torch.nn.Parameter(torch.tensor([1.0], device=self._psf.device)) + else: + process_param = None + + return process_function, process_model, process_param + + def set_pre_process(self, pre_process): + ( + self.pre_process, + self.pre_process_model, + self.pre_process_param, + ) = self._prepare_process_block(pre_process) + + def forward(self, batch, psfs=None, **kwargs): + + if psfs is None: + psf = self._psf.to(batch.device) + else: + psf = convert_to_NCHW(psfs).to(batch.device) + psf = torch.nn.functional.pad( + psf, (self.left, self.right, self.top, self.bottom), mode="constant", value=0 + ) + n_depth = batch[0].shape[-4] + if n_depth > 1: + raise NotImplementedError("3D not implemented yet.") + + # pre process data + if self.pre_process is not None and not self.skip_pre: + device_before = batch.device + batch = self.pre_process(batch, self.pre_process_param) + batch = batch.to(device_before) + + # pad to multiple of 8 + batch = convert_to_NCHW(batch) + batch = torch.nn.functional.pad( + batch, (self.left, self.right, self.top, self.bottom), mode="constant", value=0 + ) + + # -- downsample + x_inter = [self.inc(batch)] + for i in range(len(self.down_layers)): + x_inter.append(self.down_layers[i](x_inter[-1])) + + # -- multi-scale Wiener filtering + psf_multi = [self.inc0(self.w * psf)] + for i in range(len(self.psf_down)): + psf_multi.append(self.psf_down[i](psf_multi[-1])) + for i in range(len(psf_multi)): + x_inter[i] = WieNer(x_inter[i], psf_multi[i], self.delta[i]) + + # upsample + batch = self.up_layers[0](x_inter[-1], x_inter[-2]) + for i in range(len(self.up_layers) - 1): + batch = self.up_layers[i + 1](batch, x_inter[-i - 3]) + batch = self.outc(batch) + + # back to original shape + batch = batch[..., self.top : -self.bottom, self.left : -self.right] + batch = convert_to_NDCHW(batch, n_depth) + + # normalize to [0,1], TODO use sigmoid instead? + batch = (batch + 1) / 2 + batch = torch.clip(batch, min=0.0) + return batch + + def reset(self, batch_size=1): + # no state variables + return + + def set_data(self, data): + assert len(data.shape) >= 3, "Data must be at least 3D: [..., width, height, channel]." + + # assert same shapes + assert np.all( + self._psf_shape[-3:-1] == np.array(data.shape)[-3:-1] + ), "PSF and data shape mismatch" + + if len(data.shape) == 3: + self._data = data[None, None, ...] + elif len(data.shape) == 4: + self._data = data[None, ...] + else: + self._data = data + + def apply(self, **kwargs): + # apply to data + return self.forward(self._data, **kwargs) + + def reconstruction_error(self, prediction, lensless): + convolver = self._convolver + if not convolver.pad: + prediction = convolver._pad(prediction) + + Fx = convolver.convolve(prediction) + Fy = lensless + + if not convolver.pad: + Fx = convolver._crop(Fx) + + # don't reduce batch dimension + return torch.sum(torch.sqrt((Fx - Fy) ** 2), dim=(-1, -2, -3, -4)) / np.prod( + prediction.shape[1:] + ) diff --git a/lensless/recon/recon.py b/lensless/recon/recon.py index 77813b0e..ff1fc55c 100644 --- a/lensless/recon/recon.py +++ b/lensless/recon/recon.py @@ -255,6 +255,7 @@ def __init__( assert len(psf.shape) == 4, "PSF must be 4D: (depth, height, width, channels)." assert psf.shape[3] == 3 or psf.shape[3] == 1, "PSF must either be rgb (3) or grayscale (1)" self._psf = psf + self._npix = np.prod(self._psf.shape) self._n_iter = n_iter self._psf_shape = np.array(self._psf.shape) @@ -320,6 +321,10 @@ def __init__( raise NotImplementedError(f"Unsupported denoiser: {denoiser['network']}") self._denoiser_noise_level = denoiser["noise_level"] + # used inside trainable recon + self.compensation_branch = None + self.compensation_branch_inputs = None + if reset: self.reset() @@ -559,8 +564,13 @@ def apply( ax = None disp_iter = n_iter + 1 + if self.compensation_branch is not None: + self.compensation_branch_inputs = [self._data] + for i in range(n_iter): self._update(i) + if self.compensation_branch is not None and i < self._n_iter - 1: + self.compensation_branch_inputs.append(self._form_image()) if (plot or save) and (i + 1) % disp_iter == 0: self._progress() @@ -611,15 +621,18 @@ def reconstruction_error(self, prediction=None, lensless=None): if lensless is None: lensless = self._data - convolver = self._convolver + # convolver = self._convolver + convolver = RealFFTConvolve2D(self._psf.to(prediction.device), **self._convolver_param) if not convolver.pad: prediction = convolver._pad(prediction) - Fx = convolver.convolve(prediction) - Fy = lensless + Hx = convolver.convolve(prediction) + if not convolver.pad: - Fx = convolver._crop(Fx) + Hx = convolver._crop(Hx) + # don't reduce batch dimension if self.is_torch: - return torch.norm(Fx - Fy) + return torch.sum(torch.sqrt((Hx - lensless) ** 2), dim=(-1, -2, -3, -4)) / self._npix + else: - return np.linalg.norm(Fx - Fy) + return np.sum(np.sqrt((Hx - lensless) ** 2), axis=(-1, -2, -3, -4)) / self._npix diff --git a/lensless/recon/rfft_convolve.py b/lensless/recon/rfft_convolve.py index 5518a651..e7b9be74 100644 --- a/lensless/recon/rfft_convolve.py +++ b/lensless/recon/rfft_convolve.py @@ -24,7 +24,7 @@ class RealFFTConvolve2D: - def __init__(self, psf, dtype=None, pad=True, norm="ortho", **kwargs): + def __init__(self, psf, dtype=None, pad=True, norm="ortho", rgb=None, **kwargs): """ Linear operator that performs convolution in Fourier domain, and assumes real-valued signals. @@ -56,7 +56,10 @@ def __init__(self, psf, dtype=None, pad=True, norm="ortho", **kwargs): len(psf.shape) >= 4 ), "Expected 4D PSF of shape ([batch], depth, width, height, channels)" self._use_3d = psf.shape[-4] != 1 - self._is_rgb = psf.shape[-1] == 3 + if rgb is None: + self._is_rgb = psf.shape[-1] == 3 + else: + self._is_rgb = rgb assert self._is_rgb or psf.shape[-1] == 1 # save normalization @@ -68,11 +71,39 @@ def __init__(self, psf, dtype=None, pad=True, norm="ortho", **kwargs): dtype = torch.float32 else: dtype = np.float32 + self.dtype = dtype + + self.pad = pad # Whether necessary to pad provided data + self.set_psf(psf) + + def _crop(self, x): + return x[ + ..., self._start_idx[0] : self._end_idx[0], self._start_idx[1] : self._end_idx[1], : + ] + + def _pad(self, v): + if len(v.shape) == 5: + batch_size = v.shape[0] + shape = [batch_size] + self._padded_shape + elif len(v.shape) == 4: + shape = self._padded_shape + else: + raise ValueError("Expected 4D or 5D tensor") + + if self.is_torch: + vpad = torch.zeros(size=shape, dtype=v.dtype, device=v.device) + else: + vpad = np.zeros(shape).astype(v.dtype) + vpad[ + ..., self._start_idx[0] : self._end_idx[0], self._start_idx[1] : self._end_idx[1], : + ] = v + return vpad + def set_psf(self, psf): if self.is_torch: - self._psf = psf.type(dtype) + self._psf = psf.type(self.dtype) else: - self._psf = psf.astype(dtype) + self._psf = psf.astype(self.dtype) self._psf_shape = np.array(self._psf.shape) @@ -80,49 +111,24 @@ def __init__(self, psf, dtype=None, pad=True, norm="ortho", **kwargs): self._padded_shape = 2 * self._psf_shape[-3:-1] - 1 self._padded_shape = np.array([next_fast_len(i) for i in self._padded_shape]) self._padded_shape = list( - np.r_[self._psf_shape[-4], self._padded_shape, self._psf_shape[-1]] + np.r_[self._psf_shape[-4], self._padded_shape, 3 if self._is_rgb else 1] ) self._start_idx = (self._padded_shape[-3:-1] - self._psf_shape[-3:-1]) // 2 self._end_idx = self._start_idx + self._psf_shape[-3:-1] - self.pad = pad # Whether necessary to pad provided data # precompute filter in frequency domain if self.is_torch: self._H = torch.fft.rfft2( - self._pad(self._psf), norm=norm, dim=(-3, -2), s=self._padded_shape[-3:-1] + self._pad(self._psf), norm=self.norm, dim=(-3, -2), s=self._padded_shape[-3:-1] ) self._Hadj = torch.conj(self._H) self._padded_data = ( None # This must be reinitialized each time to preserve differentiability ) else: - self._H = fft.rfft2(self._pad(self._psf), axes=(-3, -2), norm=norm) + self._H = fft.rfft2(self._pad(self._psf), axes=(-3, -2), norm=self.norm) self._Hadj = np.conj(self._H) - self._padded_data = np.zeros(self._padded_shape).astype(dtype) - - self.dtype = dtype - - def _crop(self, x): - return x[ - ..., self._start_idx[0] : self._end_idx[0], self._start_idx[1] : self._end_idx[1], : - ] - - def _pad(self, v): - if len(v.shape) == 5: - batch_size = v.shape[0] - elif len(v.shape) == 4: - batch_size = 1 - else: - raise ValueError("Expected 4D or 5D tensor") - shape = [batch_size] + self._padded_shape - if self.is_torch: - vpad = torch.zeros(size=shape, dtype=v.dtype, device=v.device) - else: - vpad = np.zeros(shape).astype(v.dtype) - vpad[ - ..., self._start_idx[0] : self._end_idx[0], self._start_idx[1] : self._end_idx[1], : - ] = v - return vpad + self._padded_data = np.zeros(self._padded_shape).astype(self.dtype) def convolve(self, x): """ diff --git a/lensless/recon/trainable_inversion.py b/lensless/recon/trainable_inversion.py index e9cf6df5..6dba7880 100644 --- a/lensless/recon/trainable_inversion.py +++ b/lensless/recon/trainable_inversion.py @@ -1,6 +1,6 @@ # ############################################################################# # trainable_inversion.py -# ================= +# ====================== # Authors : # Eric BEZZAM [ebezzam@gmail.com] # ############################################################################# @@ -9,8 +9,6 @@ class TrainableInversion(TrainableReconstructionAlgorithm): - """ """ - def __init__(self, psf, dtype=None, K=1e-4, **kwargs): """ Constructor for trainable inversion component as proposed in diff --git a/lensless/recon/trainable_recon.py b/lensless/recon/trainable_recon.py index 33a9b9ec..f106633d 100644 --- a/lensless/recon/trainable_recon.py +++ b/lensless/recon/trainable_recon.py @@ -52,8 +52,12 @@ def __init__( pre_process=None, post_process=None, skip_unrolled=False, - return_unrolled_output=False, + skip_pre=False, + skip_post=False, + return_intermediate=False, legacy_denoiser=False, + compensation=None, + compensation_residual=True, **kwargs, ): """ @@ -63,26 +67,32 @@ def __init__( Parameters ---------- - psf : :py:class:`~torch.Tensor` - Point spread function (PSF) that models forward propagation. - Must be of shape (depth, height, width, channels) even if - depth = 1 and channels = 1. You can use :py:func:`~lensless.io.load_psf` - to load a PSF from a file such that it is in the correct format. - dtype : float32 or float64 - Data type to use for optimization. - n_iter : int - Number of iterations for unrolled algorithm. - pre_process : :py:class:`function` or :py:class:`~torch.nn.Module`, optional - If :py:class:`function` : Function to apply to the image estimate before algorithm. Its input most be (image to process, noise_level), where noise_level is a learnable parameter. If it include aditional learnable parameters, they will not be added to the parameter list of the algorithm. To allow for traning, the function must be autograd compatible. - If :py:class:`~torch.nn.Module` : A DruNet compatible network to apply to the image estimate before algorithm. See ``utils.image.apply_denoiser`` for more details. The network will be included as a submodule of the algorithm and its parameters will be added to the parameter list of the algorithm. If this isn't intended behavior, set requires_grad=False. - post_process : :py:class:`function` or :py:class:`~torch.nn.Module`, optional - If :py:class:`function` : Function to apply to the image estimate after the whole algorithm. Its input most be (image to process, noise_level), where noise_level is a learnable parameter. If it include aditional learnable parameters, they will not be added to the parameter list of the algorithm. To allow for traning, the function must be autograd compatible. - If :py:class:`~torch.nn.Module` : A DruNet compatible network to apply to the image estimate after the whole algorithm. See ``utils.image.apply_denoiser`` for more details. The network will be included as a submodule of the algorithm and its parameters will be added to the parameter list of the algorithm. If this isn't intended behavior, set requires_grad=False. - skip_unrolled : bool, optional - Whether to skip the unrolled algorithm and only apply the pre- or post-processor block (e.g. to just use a U-Net for reconstruction). - return_unrolled_output : bool, optional - Whether to return the output of the unrolled algorithm if also using a post-processor block. + psf : :py:class:`~torch.Tensor` + Point spread function (PSF) that models forward propagation. + Must be of shape (depth, height, width, channels) even if + depth = 1 and channels = 1. You can use :py:func:`~lensless.io.load_psf` + to load a PSF from a file such that it is in the correct format. + dtype : float32 or float64 + Data type to use for optimization. + n_iter : int + Number of iterations for unrolled algorithm. + pre_process : :py:class:`function` or :py:class:`~torch.nn.Module`, optional + If :py:class:`function` : Function to apply to the image estimate before algorithm. Its input most be (image to process, noise_level), where noise_level is a learnable parameter. If it include aditional learnable parameters, they will not be added to the parameter list of the algorithm. To allow for traning, the function must be autograd compatible. + If :py:class:`~torch.nn.Module` : A DruNet compatible network to apply to the image estimate before algorithm. See ``utils.image.apply_denoiser`` for more details. The network will be included as a submodule of the algorithm and its parameters will be added to the parameter list of the algorithm. If this isn't intended behavior, set requires_grad=False. + post_process : :py:class:`function` or :py:class:`~torch.nn.Module`, optional + If :py:class:`function` : Function to apply to the image estimate after the whole algorithm. Its input most be (image to process, noise_level), where noise_level is a learnable parameter. If it include aditional learnable parameters, they will not be added to the parameter list of the algorithm. To allow for traning, the function must be autograd compatible. + If :py:class:`~torch.nn.Module` : A DruNet compatible network to apply to the image estimate after the whole algorithm. See ``utils.image.apply_denoiser`` for more details. The network will be included as a submodule of the algorithm and its parameters will be added to the parameter list of the algorithm. If this isn't intended behavior, set requires_grad=False. + skip_unrolled : bool, optional + Whether to skip the unrolled algorithm and only apply the pre- or post-processor block (e.g. to just use a U-Net for reconstruction). + return_unrolled_output : bool, optional + Whether to return the output of the unrolled algorithm if also using a post-processor block. + compensation : list, optional + Number of channels for each intermediate output in compensation layer, as in "Robust Reconstruction With Deep Learning to Handle Model Mismatch in Lensless Imaging" (2021). + Post-processor must be defined if compensation provided. + compensation_residual : bool, optional + Whether to use residual connection in compensation layer. """ + assert isinstance(psf, torch.Tensor), "PSF must be a torch.Tensor" super(TrainableReconstructionAlgorithm, self).__init__( psf, dtype=dtype, n_iter=n_iter, **kwargs @@ -92,11 +102,28 @@ def __init__( self.set_pre_process(pre_process) self.set_post_process(post_process) self.skip_unrolled = skip_unrolled - self.return_unrolled_output = return_unrolled_output - if self.return_unrolled_output: + self.skip_pre = skip_pre + self.skip_post = skip_post + self.return_intermediate = return_intermediate + self.compensation_branch = compensation + if compensation is not None: + from lensless.recon.utils import CompensationBranch + assert ( post_process is not None - ), "If return_unrolled_output is True, post_process must be defined." + ), "If compensation_branch is True, post_process must be defined." + assert ( + len(compensation) == n_iter + ), "compensation_nc must have the same length as n_iter" + self.compensation_branch = CompensationBranch( + compensation, residual=compensation_residual + ) + self.compensation_branch = self.compensation_branch.to(self._psf.device) + + if self.return_intermediate: + assert ( + post_process is not None or pre_process is not None + ), "If return_intermediate is True, post_process or pre_process must be defined." if self.skip_unrolled: assert ( post_process is not None or pre_process is not None @@ -222,29 +249,40 @@ def forward(self, batch, psfs=None): ) # pre process data - if self.pre_process is not None: + if self.pre_process is not None and not self.skip_pre: device_before = self._data.device self._data = self.pre_process(self._data, self.pre_process_param) self._data = self._data.to(device_before) + pre_processed = self._data self.reset(batch_size=batch_size) # unrolled algorithm if not self.skip_unrolled: + if self.compensation_branch is not None: + compensation_branch_inputs = [self._data] + for i in range(self._n_iter): self._update(i) + if self.compensation_branch is not None and i < self._n_iter - 1: + compensation_branch_inputs.append(self._form_image()) + image_est = self._form_image() else: image_est = self._data # post process data - if self.post_process is not None: - final_est = self.post_process(image_est, self.post_process_param) + if self.post_process is not None and not self.skip_post: + compensation_output = None + if self.compensation_branch is not None: + compensation_output = self.compensation_branch(compensation_branch_inputs) + + final_est = self.post_process(image_est, self.post_process_param, compensation_output) else: final_est = image_est - if self.return_unrolled_output: - return final_est, image_est + if self.return_intermediate: + return final_est, image_est, pre_processed else: return final_est @@ -295,7 +333,7 @@ def apply( """ pre_processed_image = None - if self.pre_process is not None: + if self.pre_process is not None and not self.skip_pre: self._data = self.pre_process(self._data, self.pre_process_param) if output_intermediate: pre_processed_image = self._data[0, ...].clone() @@ -320,11 +358,16 @@ def apply( # post process data pre_post_process_image = None - if self.post_process is not None: + if self.post_process is not None and not self.skip_post: + + compensation_output = None + if self.compensation_branch is not None: + compensation_output = self.compensation_branch(self.compensation_branch_inputs) + # apply post process if output_intermediate: pre_post_process_image = im.clone() - im = self.post_process(im, self.post_process_param) + im = self.post_process(im, self.post_process_param, compensation_output) if plot: ax = plot_image(self._get_numpy_data(im[0]), ax=ax, gamma=gamma) @@ -335,7 +378,7 @@ def apply( plt.savefig(plib.Path(save) / "final.png") if output_intermediate: - return im, pre_processed_image, pre_post_process_image + return im, pre_post_process_image, pre_processed_image elif plot: return im, ax else: diff --git a/lensless/recon/unrolled_admm.py b/lensless/recon/unrolled_admm.py index 2447aa4b..174d8ce6 100644 --- a/lensless/recon/unrolled_admm.py +++ b/lensless/recon/unrolled_admm.py @@ -235,5 +235,6 @@ def _update(self, iter): def _form_image(self): image = self._convolver._crop(self._image_est) - image[image < 0] = 0 + # image = torch.clamp(image, min=0) + image = torch.clip(image, min=0.0) return image diff --git a/lensless/recon/utils.py b/lensless/recon/utils.py index 0d4b44f4..ca25a704 100644 --- a/lensless/recon/utils.py +++ b/lensless/recon/utils.py @@ -14,6 +14,7 @@ import time import os import torch +from torch import nn from lensless.eval.benchmark import benchmark from lensless.hardware.trainable_mask import TrainableMask from tqdm import tqdm @@ -21,6 +22,168 @@ from lensless.utils.io import save_image from lensless.utils.plot import plot_image from lensless.utils.dataset import SimulatedDatasetTrainableMask +from lensless.utils.image import rotate_HWC + + +def double_cnn_max_pool(c_in, c_out, cnn_kernel=3, max_pool=2, padding=1, skip_last_relu=False): + return nn.Sequential( + nn.Conv2d( + in_channels=c_in, + out_channels=c_out, + kernel_size=cnn_kernel, + padding=padding, + bias=False, + ), + nn.BatchNorm2d(c_out), + nn.ReLU(), + nn.Conv2d( + in_channels=c_out, + out_channels=c_out, + kernel_size=cnn_kernel, + padding=padding, + bias=False, + ), + nn.BatchNorm2d(c_out), + nn.ReLU() if not skip_last_relu else nn.Identity(), + # don't pass stride=1, otherwise no pooling/downsampling.. + nn.MaxPool2d(kernel_size=max_pool, padding=0) if max_pool else nn.Identity(), + ) + + +class ResBlock(nn.Module): + def __init__(self, c_in, c_out, cnn_kernel=3, max_pool=2, padding=1): + super(ResBlock, self).__init__() + assert c_in == c_out, "Input and output channels must be the same for residual block." + + # conv layers for residual need to be the same size + self.double_conv = double_cnn_max_pool( + c_in, c_in, cnn_kernel=cnn_kernel, max_pool=False, padding=padding, skip_last_relu=True + ) + + # pooling + self.pooling = nn.Sequential( + # nn.Conv2d( + # in_channels=c_in, + # out_channels=c_out, + # kernel_size=cnn_kernel, + # padding=padding, + # bias=False, + # ), + # nn.BatchNorm2d(c_out), + nn.ReLU(), + nn.MaxPool2d(kernel_size=max_pool, padding=0), + ) + # self.pooling = nn.MaxPool2d(kernel_size=max_pool, padding=0) + + def forward(self, x): + return self.pooling(x + self.double_conv(x)) + + +class CompensationBranch(nn.Module): + """ + Compensation branch for unrolled algorithm, as in "Robust Reconstruction With Deep Learning to Handle Model Mismatch in Lensless Imaging" (2021). + """ + + def __init__(self, nc, cnn_kernel=3, max_pool=2, in_channel=3, residual=True, padding=1): + """ + + Parameters + ---------- + nc : list + Number of channels for each layer of the compensation branch. + cnn_kernel : int, optional + Kernel size for convolutional layers, by default 3. + max_pool : int, optional + Kernel size for max pooling layers, by default 2. + in_channel : int, optional + Number of input channels, by default 3 for RGB. + residual : bool, optional + Whether to use residual block or simply double conv for intermediate layers, by default True. + """ + super(CompensationBranch, self).__init__() + + self.n_iter = len(nc) + + # layers along the compensation branch, f^C in paper + branch_layers = [ + double_cnn_max_pool( + in_channel, + nc[0], + cnn_kernel=cnn_kernel, + max_pool=max_pool, + padding=padding, + ) + ] + self.branch_layers = nn.ModuleList( + branch_layers + + [ + double_cnn_max_pool( + # nc[i] * 2, # due to concatenation with intermediate layer + nc[i] + 3, # due to concatenation with intermediate layer + nc[i + 1], + cnn_kernel=cnn_kernel, + max_pool=max_pool, + padding=padding, + ) + for i in range(self.n_iter - 1) + ] + ) + + # residual layers for intermediate output, \tilde{f}^C in paper + # -- not mentinoed in paper, but added more max-pooling for later residual layers, otherwise dimensions don't match + self.residual_layers = nn.ModuleList( + [ + ResBlock( + in_channel, + in_channel, + cnn_kernel=cnn_kernel, + max_pool=max_pool ** (i + 1), + padding=padding, + ) + if residual + else double_cnn_max_pool( + in_channel, + nc[i], + cnn_kernel=cnn_kernel, + max_pool=max_pool ** (i + 1), + padding=padding, + ) + for i in range(self.n_iter - 1) + ] + ) + + def forward(self, x, return_NCHW=True): + """ + Input must be original input and intermediate outputs: (b, s1, s2, ... , s^{K-1}), where K is the number of iterations. + + See p. 1085 of "Robust Reconstruction With Deep Learning to Handle Model Mismatch in Lensless Imaging" (2021) for more details. + """ + assert len(x) == self.n_iter, "Input must have the same length as the number of iterations." + n_depth = x[0].shape[-4] + h_apo_k = self.branch_layers[0](convert_to_NCHW(x[0])) # h^{'}_k + for k in range(self.n_iter - 1): # eq. 18-21 + # \tilde{h}_k + h_k = torch.cat([h_apo_k, self.residual_layers[k](convert_to_NCHW(x[k + 1]))], axis=1) + h_apo_k = self.branch_layers[k + 1](h_k) # h^{'}_k + + if return_NCHW: + return h_apo_k + else: + return convert_to_NDCHW(h_apo_k, n_depth) + + +# convert from NDHWC to NCHW +def convert_to_NCHW(image): + image = image.movedim(-1, -3) + image = image.reshape(-1, *image.shape[-3:]) + return image + + +# convert back to NDHWC +def convert_to_NDCHW(image, depth): + image = image.movedim(-3, -1) + image = image.reshape(-1, depth, *image.shape[-3:]) + return image def load_drunet(model_path=None, n_channels=3, requires_grad=False): @@ -79,7 +242,7 @@ def load_drunet(model_path=None, n_channels=3, requires_grad=False): return model -def apply_denoiser(model, image, noise_level=10, mode="inference"): +def apply_denoiser(model, image, noise_level=10, mode="inference", compensation_output=None): """ Apply a pre-trained denoising model with input in the format Channel, Height, Width. An additionnal channel is added for the noise level as done in Drunet. @@ -132,9 +295,9 @@ def apply_denoiser(model, image, noise_level=10, mode="inference"): # apply model if mode == "inference": with torch.no_grad(): - image = model(image) + image = model(image, compensation_output) elif mode == "train": - image = model(image) + image = model(image, compensation_output) else: raise ValueError("mode must be 'inference' or 'train'") @@ -187,13 +350,14 @@ def get_drunet_function_v2(model, mode="inference"): Mode to use for model. Can be "inference" or "train". """ - def process(image, noise_level): + def process(image, noise_level, compensation_output=None): x_max = torch.amax(image, dim=(-1, -2, -3, -4), keepdim=True) + 1e-6 image = apply_denoiser( model, image / x_max, noise_level=noise_level, mode=mode, + compensation_output=compensation_output, ) image = torch.clip(image, min=0.0) * x_max.to(image.device) return image @@ -223,7 +387,9 @@ def measure_gradient(model): return total_norm -def create_process_network(network, depth=4, device="cpu", nc=None, device_ids=None): +def create_process_network( + network, depth=4, device="cpu", nc=None, device_ids=None, concatenate_compensation=False +): """ Helper function to create a process network. @@ -235,6 +401,8 @@ def create_process_network(network, depth=4, device="cpu", nc=None, device_ids=N Depth of network. device : str Device to use for computation. Can be "cpu" or "cuda". Defaults to "cpu". + concatenate_compensation : int + Number of channels in last layer of compensation branch. Returns ------- @@ -248,6 +416,9 @@ def create_process_network(network, depth=4, device="cpu", nc=None, device_ids=N assert len(nc) == 4 if network == "DruNet": + assert ( + concatenate_compensation is False + ), "DruNet does not support concatenation of compensation branch." from lensless.recon.utils import load_drunet process = load_drunet(requires_grad=True) @@ -264,6 +435,7 @@ def create_process_network(network, depth=4, device="cpu", nc=None, device_ids=N act_mode="R", downsample_mode="strideconv", upsample_mode="convtranspose", + concatenate_compensation=concatenate_compensation, ) process_name = "UnetRes_d" + str(depth) else: @@ -301,6 +473,8 @@ def __init__( crop=None, clip_grad=1.0, unrolled_output_factor=False, + random_rotate=False, + pre_proc_aux=False, extra_eval_sets=None, use_wandb=False, # for adding components during training @@ -312,6 +486,7 @@ def __init__( post_process_delay=None, post_process_freeze=None, post_process_unfreeze=None, + n_epoch=None, ): """ Class to train a reconstruction algorithm. Inspired by Trainer from `HuggingFace `__. @@ -435,6 +610,8 @@ def __init__( self.train_multimask = False if hasattr(train_dataset, "multimask"): self.train_multimask = train_dataset.multimask + self.train_random_flip = train_dataset.random_flip + self.random_rotate = random_rotate # check if Subset and if simulating dataset self.simulated_dataset_trainable_mask = False @@ -496,9 +673,19 @@ def __init__( assert self.post_process_unfreeze is None assert self.post_process_freeze is None + # -- adding pre-processed output to loss + self.pre_proc_aux = pre_proc_aux + if self.pre_proc_aux: + assert self.pre_process is not None + assert self.pre_process_delay is None + assert self.pre_process_unfreeze is None + assert self.pre_process_freeze is None + # optimizer self.clip_grad_norm = clip_grad self.optimizer_config = optimizer + self.n_epoch = n_epoch + self.lr_step_epoch = optimizer.lr_step_epoch self.set_optimizer() # metrics @@ -524,6 +711,10 @@ def __init__( # -- add unrolled metrics for key in ["MSE", "MAE", "LPIPS_Vgg", "LPIPS_Alex", "PSNR", "SSIM"]: self.metrics[key + "_unrolled"] = [] + if self.pre_proc_aux: + self.metrics[ + "ReconstructionError_PreProc" + ] = [] # reconstruction error of ||pre_proc(y) - A * camera_inversion(y)|| if metric_for_best_model is not None: assert metric_for_best_model in self.metrics.keys() if extra_eval_sets is not None: @@ -554,10 +745,25 @@ def detect_nan(grad): def set_optimizer(self, last_epoch=-1): - parameters = [{"params": self.recon.parameters()}] - self.optimizer = getattr(torch.optim, self.optimizer_config.type)( - parameters, lr=self.optimizer_config.lr - ) + if self.optimizer_config.type == "AdamW": + print("USING ADAMW") + self.optimizer = torch.optim.AdamW( + [ + {"params": [p for p in self.recon.parameters() if p.dim() > 1]}, + { + "params": [p for p in self.recon.parameters() if p.dim() <= 1], + "weight_decay": 0, + }, # no weight decay on bias terms + ], + lr=self.optimizer_config.lr, + weight_decay=0.01, + ) + else: + print(f"USING {self.optimizer_config.type}") + parameters = [{"params": self.recon.parameters()}] + self.optimizer = getattr(torch.optim, self.optimizer_config.type)( + parameters, lr=self.optimizer_config.lr + ) # Scheduler if self.optimizer_config.slow_start: @@ -574,6 +780,56 @@ def learning_rate_function(epoch): self.optimizer, lr_lambda=learning_rate_function, last_epoch=last_epoch ) + elif self.optimizer_config.final_lr: + + assert self.optimizer_config.final_lr < self.optimizer_config.lr + assert self.n_epoch is not None + + # # linear decay + # def learning_rate_function(epoch): + # slope = (start / final - 1) / (n_epoch) + # return 1 / (1 + slope * epoch) + + # exponential decay + def learning_rate_function(epoch): + final_decay = self.optimizer_config.final_lr / self.optimizer_config.lr + final_decay = final_decay ** (1 / (self.n_epoch - 1)) + return final_decay**epoch + + self.scheduler = torch.optim.lr_scheduler.LambdaLR( + self.optimizer, lr_lambda=learning_rate_function, last_epoch=last_epoch + ) + + elif self.optimizer_config.exp_decay: + + def learning_rate_function(epoch): + return self.optimizer_config.exp_decay**epoch + + self.scheduler = torch.optim.lr_scheduler.LambdaLR( + self.optimizer, lr_lambda=learning_rate_function, last_epoch=last_epoch + ) + + elif self.optimizer_config.cosine_decay_warmup: + + if self.lr_step_epoch: + total_iterations = self.n_epoch + else: + total_iterations = len(self.train_dataloader) * self.n_epoch + warmup_steps = int(0.05 * total_iterations) + + def cosine_decay_with_warmup(step, warmup_steps, total_steps): + if step < warmup_steps: + return step / warmup_steps + progress = (step - warmup_steps) / (total_steps - warmup_steps) + return 0.5 * (1 + math.cos(math.pi * progress)) + + self.scheduler = torch.optim.lr_scheduler.LambdaLR( + self.optimizer, + lr_lambda=lambda step: cosine_decay_with_warmup( + step, warmup_steps, total_iterations + ), + ) + elif self.optimizer_config.step: self.scheduler = torch.optim.lr_scheduler.StepLR( @@ -610,16 +866,34 @@ def train_epoch(self, data_loader): mean_loss = 0.0 i = 1.0 pbar = tqdm(data_loader) + self.recon.train() for batch in pbar: # get batch - if self.train_multimask: + flip_lr = None + flip_ud = None + if self.train_random_flip: + X, y, psfs, flip_lr, flip_ud = batch + psfs = psfs.to(self.device) + elif self.train_multimask: X, y, psfs = batch psfs = psfs.to(self.device) else: X, y = batch psfs = None + random_rotate = False + if self.random_rotate: + random_rotate = np.random.uniform(-self.random_rotate, self.random_rotate) + X = rotate_HWC(X, random_rotate) + y = rotate_HWC(y, random_rotate) + if psfs is None: + psf_single = self.recon._psf + psf_single = rotate_HWC(psf_single, random_rotate) + self.recon._set_psf(psf_single.to(self.device)) + else: + psfs = rotate_HWC(psfs, random_rotate) + # send to device X = X.to(self.device) y = y.to(self.device) @@ -629,10 +903,10 @@ def train_epoch(self, data_loader): self.recon._set_psf(self.mask.get_psf().to(self.device)) # forward pass + # torch.autograd.set_detect_anomaly(True) # for debugging y_pred = self.recon.forward(batch=X, psfs=psfs) - if self.unrolled_output_factor: - unrolled_out = y_pred[1] - y_pred = y_pred[0] + if self.unrolled_output_factor or self.pre_proc_aux: + y_pred, camera_inv_out, pre_proc_out = y_pred[0], y_pred[1], y_pred[2] # normalizing each output eps = 1e-12 @@ -644,18 +918,32 @@ def train_epoch(self, data_loader): y = y / y_max # convert to CHW for loss and remove depth - y_pred = y_pred.reshape(-1, *y_pred.shape[-3:]).movedim(-1, -3) + y_pred_crop = y_pred.reshape(-1, *y_pred.shape[-3:]).movedim(-1, -3) y = y.reshape(-1, *y.shape[-3:]).movedim(-1, -3) # extraction region of interest for loss if hasattr(self.train_dataset, "alignment"): if self.train_dataset.alignment is not None: - y_pred = self.train_dataset.extract_roi(y_pred, axis=(-2, -1)) + y_pred_crop = self.train_dataset.extract_roi( + y_pred_crop, + axis=(-2, -1), + flip_lr=flip_lr, + flip_ud=flip_ud, + rotate_aug=random_rotate, + ) else: - y_pred, y = self.train_dataset.extract_roi(y_pred, axis=(-2, -1), lensed=y) + y_pred_crop, y = self.train_dataset.extract_roi( + y_pred_crop, + axis=(-2, -1), + lensed=y, + flip_lr=flip_lr, + flip_ud=flip_ud, + rotate_aug=random_rotate, + ) elif self.crop is not None: - y_pred = y_pred[ + assert flip_lr is None and flip_ud is None + y_pred_crop = y_pred_crop[ ..., self.crop["vertical"][0] : self.crop["vertical"][1], self.crop["horizontal"][0] : self.crop["horizontal"][1], @@ -666,19 +954,19 @@ def train_epoch(self, data_loader): self.crop["horizontal"][0] : self.crop["horizontal"][1], ] - loss_v = self.Loss(y_pred, y) + loss_v = self.Loss(y_pred_crop, y) # add LPIPS loss if self.lpips: - if y_pred.shape[1] == 1: + if y_pred_crop.shape[1] == 1: # if only one channel, repeat for LPIPS - y_pred = y_pred.repeat(1, 3, 1, 1) + y_pred_crop = y_pred_crop.repeat(1, 3, 1, 1) y = y.repeat(1, 3, 1, 1) # value for LPIPS needs to be in range [-1, 1] loss_v = loss_v + self.lpips * torch.mean( - self.Loss_lpips(2 * y_pred - 1, 2 * y - 1) + self.Loss_lpips(2 * y_pred_crop - 1, 2 * y - 1) ) if self.use_mask and self.l1_mask: for p in self.mask.parameters(): @@ -687,37 +975,65 @@ def train_epoch(self, data_loader): if self.unrolled_output_factor: # -- normalize - unrolled_out_max = torch.amax(unrolled_out, dim=(-1, -2, -3), keepdim=True) + eps - unrolled_out = unrolled_out / unrolled_out_max + unrolled_out_max = torch.amax(camera_inv_out, dim=(-1, -2, -3), keepdim=True) + eps + camera_inv_out_norm = camera_inv_out / unrolled_out_max # -- convert to CHW for loss and remove depth - unrolled_out = unrolled_out.reshape(-1, *unrolled_out.shape[-3:]).movedim(-1, -3) + camera_inv_out_norm = camera_inv_out_norm.reshape( + -1, *camera_inv_out.shape[-3:] + ).movedim(-1, -3) # -- extraction region of interest for loss - if self.crop is not None: - unrolled_out = unrolled_out[ + if hasattr(self.train_dataset, "alignment"): + if self.train_dataset.alignment is not None: + camera_inv_out_norm = self.train_dataset.extract_roi( + camera_inv_out_norm, axis=(-2, -1) + ) + else: + camera_inv_out_norm = self.train_dataset.extract_roi( + camera_inv_out_norm, + axis=(-2, -1), + # y=y # lensed already extracted before + ) + assert np.all(y.shape == camera_inv_out_norm.shape) + elif self.crop is not None: + camera_inv_out_norm = camera_inv_out_norm[ ..., self.crop["vertical"][0] : self.crop["vertical"][1], self.crop["horizontal"][0] : self.crop["horizontal"][1], ] # -- compute unrolled output loss - loss_unrolled = self.Loss(unrolled_out, y) + loss_unrolled = self.Loss(camera_inv_out_norm, y) # -- add LPIPS loss if self.lpips: - if unrolled_out.shape[1] == 1: + if camera_inv_out_norm.shape[1] == 1: # if only one channel, repeat for LPIPS - unrolled_out = unrolled_out.repeat(1, 3, 1, 1) + camera_inv_out_norm = camera_inv_out_norm.repeat(1, 3, 1, 1) # value for LPIPS needs to be in range [-1, 1] loss_unrolled = loss_unrolled + self.lpips * torch.mean( - self.Loss_lpips(2 * unrolled_out - 1, 2 * y - 1) + self.Loss_lpips(2 * camera_inv_out_norm - 1, 2 * y - 1) ) # -- add unrolled loss to total loss loss_v = loss_v + self.unrolled_output_factor * loss_unrolled + if self.pre_proc_aux: + # -- normalize + unrolled_out_max = torch.amax(camera_inv_out, dim=(-1, -2, -3), keepdim=True) + eps + camera_inv_out_norm = camera_inv_out / unrolled_out_max + + err = torch.mean( + self.recon.reconstruction_error( + prediction=camera_inv_out_norm, + # prediction=y_pred, + lensless=pre_proc_out, + ) + ) + loss_v = loss_v + self.pre_proc_aux * err + # backward pass loss_v.backward() @@ -755,6 +1071,8 @@ def train_epoch(self, data_loader): continue self.optimizer.step() + if not self.lr_step_epoch: + self.scheduler.step() self.optimizer.zero_grad(set_to_none=True) # update mask @@ -797,6 +1115,7 @@ def evaluate(self, mean_loss, epoch, disp=None): output_dir = os.path.join(output_dir, str(epoch)) # benchmarking + self.recon.eval() current_metrics = benchmark( self.recon, self.test_dataset, @@ -805,6 +1124,7 @@ def evaluate(self, mean_loss, epoch, disp=None): output_dir=output_dir, crop=self.crop, unrolled_output_factor=self.unrolled_output_factor, + pre_process_aux=self.pre_proc_aux, use_wandb=self.use_wandb, epoch=epoch, ) @@ -831,6 +1151,8 @@ def evaluate(self, mean_loss, epoch, disp=None): if self.lpips is not None: unrolled_loss += self.lpips * current_metrics["LPIPS_Vgg_unrolled"] eval_loss += self.unrolled_output_factor * unrolled_loss + if self.pre_proc_aux: + eval_loss += self.pre_proc_aux * current_metrics["ReconstructionError_PreProc"] else: eval_loss = current_metrics[self.metrics["metric_for_best_model"]] @@ -994,7 +1316,8 @@ def train(self, n_epoch=1, save_pt=None, disp=None): mean_loss = self.train_epoch(self.train_dataloader) # offset because of evaluate before loop self.on_epoch_end(mean_loss, save_pt, epoch + 1, disp=disp) - self.scheduler.step() + if self.lr_step_epoch: + self.scheduler.step() self.print(f"Train time [hour] : {(time.time() - start_time) / 3600} h") diff --git a/lensless/utils/dataset.py b/lensless/utils/dataset.py index 44ebeaec..723fae5d 100644 --- a/lensless/utils/dataset.py +++ b/lensless/utils/dataset.py @@ -24,10 +24,15 @@ from lensless.hardware.utils import display from lensless.hardware.slm import set_programmable_mask, adafruit_sub2full from datasets import load_dataset +from lensless.recon.rfft_convolve import RealFFTConvolve2D from huggingface_hub import hf_hub_download import cv2 from lensless.hardware.sensor import sensor_dict, SensorParam from scipy.ndimage import rotate +import warnings +from waveprop.noise import add_shot_noise +from lensless.utils.image import shift_with_pad +from PIL import Image def convert(text): @@ -166,8 +171,6 @@ def __getitem__(self, idx): # add noise if self.input_snr is not None: - from waveprop.noise import add_shot_noise - lensless = add_shot_noise(lensless, self.input_snr) # flip image x and y if needed @@ -1018,6 +1021,249 @@ def _get_images_pair(self, idx): return lensless, lensed +class HFSimulated(DualDataset): + def __init__( + self, + huggingface_repo, + split, + n_files=None, + psf=None, + downsample=1, + cache_dir=None, + single_channel_psf=False, + flipud=False, + display_res=None, + alignment=None, + sensor="rpi_hq", + slm="adafruit", + simulation_config=dict(), + snr_db=40, + **kwargs, + ): + """ + Wrapper for Hugging Face datasets, where lensless images are simulated from lensed ones. + + This is used for seeing how simulated lensless images compare with real ones. + """ + + if isinstance(split, str): + if n_files is not None: + split = f"{split}[0:{n_files}]" + self.dataset = load_dataset(huggingface_repo, split=split, cache_dir=cache_dir) + elif isinstance(split, Dataset): + self.dataset = split + else: + raise ValueError("split should be a string or a Dataset object") + + # deduce downsampling factor from the first image + data_0 = self.dataset[0] + self.downsample = downsample + # -- use lensless data just for shape but using lensed data in simulation + lensless = np.array(data_0["lensless"]) + self.lensless_shape = np.array(lensless.shape[:2]) // self.downsample + + # download PSF from huggingface + # TODO : assuming psf is not None + self.multimask = False + self.convolver = None + if psf is not None: + psf_fp = hf_hub_download(repo_id=huggingface_repo, filename=psf, repo_type="dataset") + psf, _ = load_psf( + psf_fp, + shape=self.lensless_shape, + return_float=True, + return_bg=True, + flip_ud=flipud, + bg_pix=(0, 15), + single_psf=single_channel_psf, + ) + self.psf = torch.from_numpy(psf) + if single_channel_psf: + # replicate across three channels + self.psf = self.psf.repeat(1, 1, 1, 3) + + # create convolver object + self.convolver = RealFFTConvolve2D(self.psf) + + elif "mask_label" in data_0: + self.multimask = True + mask_labels = [] + for i in range(len(self.dataset)): + mask_labels.append(self.dataset[i]["mask_label"]) + mask_labels = list(set(mask_labels)) + + # simulate all PSFs + self.psf = dict() + for label in mask_labels: + mask_fp = hf_hub_download( + repo_id=huggingface_repo, + filename=f"masks/mask_{label}.npy", + repo_type="dataset", + ) + mask_vals = np.load(mask_fp) + + if psf is None: + sensor_res = sensor_dict[sensor][SensorParam.RESOLUTION] + downsample_fact = min(sensor_res / lensless.shape[:2]) + else: + downsample_fact = 1 + + mask = AdafruitLCD( + initial_vals=torch.from_numpy(mask_vals.astype(np.float32)), + sensor=sensor, + slm=slm, + downsample=downsample_fact, + flipud=rotate or flipud, # TODO separate commands? + use_waveprop=simulation_config.get("use_waveprop", False), + scene2mask=simulation_config.get("scene2mask", None), + mask2sensor=simulation_config.get("mask2sensor", None), + deadspace=simulation_config.get("deadspace", True), + ) + self.psf[label] = mask.get_psf().detach() + + assert ( + self.psf[label].shape[-3:-1] == lensless.shape[:2] + ), f"PSF shape should match lensless shape: PSF {self.psf[label].shape[-3:-1]} vs lensless {lensless.shape[:2]}" + + # create convolver object + self.convolver = RealFFTConvolve2D(self.psf[label]) + assert self.convolver is not None + + self.crop = None + self.random_flip = None + self.flipud = flipud + self.snr_db = snr_db + + self.display_res = display_res + self.alignment = None + self.cropped_lensed_shape = None + if alignment is not None: + self.alignment = dict(alignment.copy()) + self.alignment["top_left"] = ( + int(self.alignment["top_left"][0] / downsample), + int(self.alignment["top_left"][1] / downsample), + ) + self.alignment["height"] = int(self.alignment["height"] / downsample) + + original_aspect_ratio = display_res[1] / display_res[0] + self.alignment["width"] = int(self.alignment["height"] * original_aspect_ratio) + self.cropped_lensed_shape = (self.alignment["height"], self.alignment["width"], 3) + + super(HFSimulated, self).__init__(**kwargs) + + def __len__(self): + return len(self.dataset) + + def _get_images_pair(self, idx): + + # load image + lensed_np = np.array(self.dataset[idx]["lensed"]) + if self.flipud: + lensed_np = np.flipud(lensed_np) + + # convert to float + if lensed_np.dtype == np.uint8: + lensed_np = lensed_np.astype(np.float32) / 255 + else: + # 16 bit + lensed_np = lensed_np.astype(np.float32) / 65535 + + # resize if necessary + if self.cropped_lensed_shape is not None: + cropped_lensed_np = resize( + lensed_np, shape=self.cropped_lensed_shape, interpolation=cv2.INTER_NEAREST + ) + lensed_np = np.zeros(tuple(self.lensless_shape) + (3,), dtype=np.float32) + lensed_np[ + self.alignment["top_left"][0] : self.alignment["top_left"][0] + + self.alignment["height"], + self.alignment["top_left"][1] : self.alignment["top_left"][1] + + self.alignment["width"], + ] = cropped_lensed_np + + elif (self.lensless_shape != np.array(lensed_np.shape[:2])).any(): + + lensed_np = resize( + lensed_np, shape=self.lensless_shape, interpolation=cv2.INTER_NEAREST + ) + lensed = torch.from_numpy(lensed_np) + + # simulate lensless with convolution + lensed = lensed.unsqueeze(0) # add batch dimension + + if self.multimask: + mask_label = self.dataset[idx]["mask_label"] + self.convolver.set_psf(self.psf[mask_label]) + lensless = self.convolver.convolve(lensed) + + # add noise + if self.snr_db is not None: + lensless = add_shot_noise(lensless, self.snr_db) + + if lensless.max() > 1: + print("CLIPPING!") + lensless /= lensless.max() + + if self.cropped_lensed_shape: + return lensless, torch.from_numpy(cropped_lensed_np) + else: + return lensless, lensed + + def __getitem__(self, idx): + lensless, lensed = super().__getitem__(idx) + if self.multimask: + mask_label = self.dataset[idx]["mask_label"] + return lensless, lensed, self.psf[mask_label] + return lensless, lensed + + def extract_roi(self, reconstruction, lensed=None, axis=(1, 2), **kwargs): + """ + Extract region of interest from lensless and lensed images. + """ + + n_dim = len(reconstruction.shape) + assert max(axis) < n_dim, "Axis should be within the dimensions of the reconstruction." + + # add batch dimension + if n_dim == 3: + if isinstance(reconstruction, torch.Tensor): + reconstruction = reconstruction.unsqueeze(0) + else: + reconstruction = reconstruction[np.newaxis] + # increment axis + axis = (axis[0] + 1, axis[1] + 1) + + # extract + if self.alignment is not None: + top_left = self.alignment["top_left"] + height = self.alignment["height"] + width = self.alignment["width"] + + # extract according to axis + index = [slice(None)] * n_dim + index[axis[0]] = slice(top_left[0], top_left[0] + height) + index[axis[1]] = slice(top_left[1], top_left[1] + width) + reconstruction = reconstruction[tuple(index)] + + # rotate if necessary + angle = self.alignment.get("angle", 0) + if isinstance(reconstruction, torch.Tensor) and angle: + reconstruction = F.rotate(reconstruction, angle, expand=False) + elif angle: + reconstruction = rotate(reconstruction, angle, axes=axis, reshape=False) + + # remove batch dimension + if n_dim == 3: + if isinstance(reconstruction, torch.Tensor): + reconstruction = reconstruction.squeeze(0) + else: + reconstruction = reconstruction[0] + + if lensed is None: + return reconstruction + return reconstruction, lensed + + class HFDataset(DualDataset): def __init__( self, @@ -1026,6 +1272,8 @@ def __init__( n_files=None, psf=None, rotate=False, # just the lensless image + flipud=False, + flip_lensed=False, downsample=1, downsample_lensed=1, display_res=None, @@ -1035,6 +1283,11 @@ def __init__( return_mask_label=False, save_psf=False, simulation_config=dict(), + simulate_lensless=False, + force_rgb=False, + cache_dir=None, + single_channel_psf=False, + random_flip=False, **kwargs, ): """ @@ -1070,6 +1323,8 @@ def __init__( If multimask dataset, return the mask label (True) or the corresponding PSF (False). save_psf : bool, optional If multimask dataset, save the simulated PSFs. + random_flip : bool, optional + If True, randomly flip the lensless images vertically and horizonally with equal probability. By default, no flipping. simulation_config : dict, optional Simulation parameters for PSF if using a mask pattern. @@ -1078,21 +1333,28 @@ def __init__( if isinstance(split, str): if n_files is not None: split = f"{split}[0:{n_files}]" - self.dataset = load_dataset(huggingface_repo, split=split) + self.dataset = load_dataset(huggingface_repo, split=split, cache_dir=cache_dir) elif isinstance(split, Dataset): self.dataset = split else: raise ValueError("split should be a string or a Dataset object") self.rotate = rotate + self.flipud = flipud + self.flip_lensed = flip_lensed self.display_res = display_res self.return_mask_label = return_mask_label + self.force_rgb = force_rgb # if some data is not 3D + + # augmentation + self.random_flip = random_flip # deduce downsampling factor from the first image data_0 = self.dataset[0] self.downsample_lensless = downsample self.downsample_lensed = downsample_lensed lensless = np.array(data_0["lensless"]) + if self.downsample_lensless != 1.0: lensless = resize(lensless, factor=1 / self.downsample_lensless) if psf is None: @@ -1105,8 +1367,7 @@ def __init__( self.alignment = None self.crop = None if alignment is not None: - # preparing ground-truth in expected shape - if "top_left" in alignment: + if alignment.get("top_left", None) is not None: self.alignment = dict(alignment.copy()) self.alignment["top_left"] = ( int(self.alignment["top_left"][0] / downsample), @@ -1117,9 +1378,19 @@ def __init__( original_aspect_ratio = display_res[1] / display_res[0] self.alignment["width"] = int(self.alignment["height"] * original_aspect_ratio) - # preparing ground-truth as simulated measurement of original - elif "crop" in alignment: - assert "simulation" in alignment, "Simulation config should be provided" + if alignment.get("topright", None) is not None: + # typo in original configuration + self.alignment = dict(alignment.copy()) + self.alignment["top_left"] = ( + int(self.alignment["topright"][0] / downsample), + int(self.alignment["topright"][1] / downsample), + ) + self.alignment["height"] = int(self.alignment["height"] / downsample) + + original_aspect_ratio = display_res[1] / display_res[0] + self.alignment["width"] = int(self.alignment["height"] * original_aspect_ratio) + + elif alignment.get("crop", None) is not None: self.crop = dict(alignment["crop"].copy()) self.crop["vertical"][0] = int(self.crop["vertical"][0] / downsample) self.crop["vertical"][1] = int(self.crop["vertical"][1] / downsample) @@ -1137,10 +1408,16 @@ def __init__( shape=lensless.shape, return_float=True, return_bg=True, - flip=rotate, + flip=self.rotate, + flip_ud=flipud, bg_pix=(0, 15), + force_rgb=force_rgb, + single_psf=single_channel_psf, ) self.psf = torch.from_numpy(psf) + if single_channel_psf: + # replicate across three channels + self.psf = self.psf.repeat(1, 1, 1, 3) elif "mask_label" in data_0: self.multimask = True @@ -1163,10 +1440,11 @@ def __init__( sensor=sensor, slm=slm, downsample=downsample_fact, - flipud=rotate, + flipud=self.rotate or flipud, # TODO separate commands? use_waveprop=simulation_config.get("use_waveprop", False), scene2mask=simulation_config.get("scene2mask", None), mask2sensor=simulation_config.get("mask2sensor", None), + deadspace=simulation_config.get("deadspace", True), ) self.psf[label] = mask.get_psf().detach() @@ -1190,10 +1468,11 @@ def __init__( sensor=sensor, slm=slm, downsample=downsample_fact, - flipud=rotate, + flipud=self.rotate or flipud, # TODO separate commands? use_waveprop=simulation_config.get("use_waveprop", False), scene2mask=simulation_config.get("scene2mask", None), mask2sensor=simulation_config.get("mask2sensor", None), + deadspace=simulation_config.get("deadspace", True), ) self.psf = mask.get_psf().detach() assert ( @@ -1205,21 +1484,29 @@ def __init__( save_image(self.psf.squeeze().cpu().numpy(), "psf.png") # create simulator + self.simulate_lensless = simulate_lensless + if simulate_lensless: + assert ( + alignment is not None and alignment.get("simulation") is not None + ), "Need simulation parameters for lensless images" self.simulator = None - self.vertical_shift = None - self.horizontal_shift = None if alignment is not None and "simulation" in alignment: simulation_config = dict(alignment["simulation"].copy()) simulation_config["output_dim"] = tuple(self.psf.shape[-3:-1]) + if simulation_config.get("vertical_shift", None) is not None: + simulation_config["vertical_shift"] = int( + simulation_config["vertical_shift"] / downsample + ) + if simulation_config.get("horizontal_shift", None) is not None: + simulation_config["horizontal_shift"] = int( + simulation_config["horizontal_shift"] / downsample + ) simulator = FarFieldSimulator( + psf=self.psf if self.simulate_lensless else None, is_torch=True, **simulation_config, ) self.simulator = simulator - if "vertical_shift" in simulation_config: - self.vertical_shift = int(simulation_config["vertical_shift"] / downsample) - if "horizontal_shift" in simulation_config: - self.horizontal_shift = int(simulation_config["horizontal_shift"] / downsample) super(HFDataset, self).__init__(**kwargs) @@ -1232,6 +1519,21 @@ def _get_images_pair(self, idx): lensless_np = np.array(self.dataset[idx]["lensless"]) lensed_np = np.array(self.dataset[idx]["lensed"]) + if self.force_rgb: + if len(lensless_np.shape) == 2: + warnings.warn(f"Converting lensless[{idx}] to RGB") + lensless_np = np.stack([lensless_np] * 3, axis=2) + elif len(lensless_np.shape) == 3: + pass + else: + raise ValueError(f"lensless[{idx}] should be 2D or 3D") + + if len(lensed_np.shape) == 2: + warnings.warn(f"Converting lensed[{idx}] to RGB") + lensed_np = np.stack([lensed_np] * 3, axis=2) + elif len(lensed_np.shape) == 3: + pass + # convert to float if lensless_np.dtype == np.uint8: lensless_np = lensless_np.astype(np.float32) / 255 @@ -1257,12 +1559,13 @@ def _get_images_pair(self, idx): # project original image to lensed space with torch.no_grad(): - lensed = self.simulator.propagate_image(lensed, return_object_plane=True) - if self.vertical_shift is not None: - lensed = torch.roll(lensed, self.vertical_shift, dims=-3) - if self.horizontal_shift is not None: - lensed = torch.roll(lensed, self.horizontal_shift, dims=-2) + if self.simulate_lensless: + lensless, lensed = self.simulator.propagate_image( + lensed, return_object_plane=True + ) + else: + lensed = self.simulator.propagate_image(lensed, return_object_plane=True) elif self.alignment is not None: lensed = resize( @@ -1285,24 +1588,129 @@ def _get_images_pair(self, idx): def __getitem__(self, idx): lensless, lensed = super().__getitem__(idx) - if self.rotate: - lensless = torch.rot90(lensless, dims=(-3, -2), k=2) + if not self.simulate_lensless: + if self.rotate: + lensless = torch.rot90(lensless, dims=(-3, -2), k=2) + if self.flipud: + lensless = torch.flip(lensless, dims=(-3,)) + + if self.flip_lensed: + if self.rotate: + lensed = torch.rot90(lensed, dims=(-3, -2), k=2) + if self.flipud: + lensed = torch.flip(lensed, dims=(-3,)) - # return corresponding PSF if self.multimask: mask_label = self.dataset[idx]["mask_label"] + flip_lr = False + flip_ud = False + if self.random_flip: + flip_lr = torch.rand(1) > 0.5 + flip_ud = torch.rand(1) > 0.5 + + if self.multimask: + psf_aug = self.psf[mask_label].clone() + else: + psf_aug = self.psf.clone() + + if flip_lr: + lensless = torch.flip(lensless, dims=(-2,)) + lensed = torch.flip(lensed, dims=(-2,)) + psf_aug = torch.flip(psf_aug, dims=(-2,)) + if flip_ud: + lensless = torch.flip(lensless, dims=(-3,)) + lensed = torch.flip(lensed, dims=(-3,)) + psf_aug = torch.flip(psf_aug, dims=(-3,)) + + # return corresponding PSF + if self.multimask: if self.return_mask_label: return lensless, lensed, mask_label else: - return lensless, lensed, self.psf[mask_label] + if not self.random_flip: + return lensless, lensed, self.psf[mask_label] + else: + return lensless, lensed, psf_aug, flip_lr, flip_ud else: - return lensless, lensed + if not self.random_flip: + return lensless, lensed + else: + return lensless, lensed, psf_aug, flip_lr, flip_ud - def extract_roi(self, reconstruction, lensed=None, axis=(1, 2)): + def extract_roi( + self, + reconstruction, + lensed=None, + axis=(1, 2), + flip_lr=None, + flip_ud=None, + rotate_aug=False, + shift_aug=None, + ): + """ + Parameters + ---------- + flip_lr : torch.Tensor, optional + Tensor of booleans indicating whether to flip the reconstruction left-right, by default None. + flip_ud : bool, optional + Tensor of booleans indicating whether to flip the reconstruction up-down, by default None. + """ n_dim = len(reconstruction.shape) assert max(axis) < n_dim, "Axis should be within the dimensions of the reconstruction." + # add batch dimension + if n_dim == 3: + if isinstance(reconstruction, torch.Tensor): + reconstruction = reconstruction.unsqueeze(0) + if lensed is not None: + lensed = lensed.unsqueeze(0) + else: + reconstruction = reconstruction[np.newaxis] + if lensed is not None: + lensed = lensed[np.newaxis] + # increment axis + axis = (axis[0] + 1, axis[1] + 1) + + # flip/rotate before alignment, as alignment parameters are assuming no flip/rotate + if flip_lr is not None: + flip_lr = flip_lr.squeeze().tolist() + if isinstance(reconstruction, torch.Tensor): + reconstruction[flip_lr] = torch.flip(reconstruction[flip_lr], dims=(axis[1],)) + if lensed is not None: + lensed[flip_lr] = torch.flip(lensed[flip_lr], dims=(axis[1],)) + else: + reconstruction[flip_lr] = np.flip(reconstruction[flip_lr], axis=axis[1]) + if lensed is not None: + lensed[flip_lr] = np.flip(lensed[flip_lr], axis=axis[1]) + if flip_ud is not None: + flip_ud = flip_ud.squeeze().tolist() + if isinstance(reconstruction, torch.Tensor): + reconstruction[flip_ud] = torch.flip(reconstruction[flip_ud], dims=(axis[0],)) + if lensed is not None: + lensed[flip_ud] = torch.flip(lensed[flip_ud], dims=(axis[0],)) + else: + reconstruction[flip_ud] = np.flip(reconstruction[flip_ud], axis=axis[0]) + if lensed is not None: + lensed[flip_ud] = np.flip(lensed[flip_ud], axis=axis[0]) + if rotate_aug: + assert isinstance(rotate_aug, float) + if isinstance(reconstruction, torch.Tensor): + assert axis == (-2, -1), "Only ...HW rotation is supported for torch.Tensor" + reconstruction = F.rotate(reconstruction, -rotate_aug, expand=False) + if lensed is not None: + lensed = F.rotate(lensed, -rotate_aug, expand=False) + else: + reconstruction = rotate(reconstruction, angle=-rotate_aug, axes=axis, reshape=False) + if lensed is not None: + lensed = rotate(lensed, angle=-rotate_aug, axes=axis, reshape=False) + if shift_aug is not None: + assert isinstance(shift_aug, tuple) + neg_shift = (-shift_aug[0], -shift_aug[1]) + reconstruction = shift_with_pad(reconstruction, neg_shift, axis=axis) + if lensed is not None: + lensed = shift_with_pad(lensed, neg_shift, axis=axis) + if self.alignment is not None: top_left = self.alignment["top_left"] height = self.alignment["height"] @@ -1316,9 +1724,9 @@ def extract_roi(self, reconstruction, lensed=None, axis=(1, 2)): # rotate if necessary angle = self.alignment.get("angle", 0) - if isinstance(reconstruction, torch.Tensor): + if isinstance(reconstruction, torch.Tensor) and angle: reconstruction = F.rotate(reconstruction, angle, expand=False) - else: + elif angle: reconstruction = rotate(reconstruction, angle, axes=axis, reshape=False) elif self.crop is not None: @@ -1333,6 +1741,52 @@ def extract_roi(self, reconstruction, lensed=None, axis=(1, 2)): if lensed is not None: lensed = lensed[tuple(index)] + # flip/rotate back + if flip_lr is not None: + if isinstance(reconstruction, torch.Tensor): + reconstruction[flip_lr] = torch.flip(reconstruction[flip_lr], dims=(axis[1],)) + if lensed is not None: + lensed[flip_lr] = torch.flip(lensed[flip_lr], dims=(axis[1],)) + else: + reconstruction[flip_lr] = np.flip(reconstruction[flip_lr], axis=axis[1]) + if lensed is not None: + lensed[flip_lr] = np.flip(lensed[flip_lr], axis=axis[1]) + if flip_ud is not None: + if isinstance(reconstruction, torch.Tensor): + reconstruction[flip_ud] = torch.flip(reconstruction[flip_ud], dims=(axis[0],)) + if lensed is not None: + lensed[flip_ud] = torch.flip(lensed[flip_ud], dims=(axis[0],)) + else: + reconstruction[flip_ud] = np.flip(reconstruction[flip_ud], axis=axis[0]) + if lensed is not None: + lensed[flip_ud] = np.flip(lensed[flip_ud], axis=axis[0]) + if rotate_aug: + if isinstance(reconstruction, torch.Tensor): + assert axis == (-2, -1), "Only ...HW rotation is supported for torch.Tensor" + reconstruction = F.rotate(reconstruction, rotate_aug, expand=False) + if lensed is not None: + lensed = F.rotate(lensed, rotate_aug, expand=False) + else: + reconstruction = rotate(reconstruction, angle=rotate_aug, axes=axis, reshape=False) + if lensed is not None: + lensed = rotate(lensed, angle=rotate_aug, axes=axis, reshape=False) + + if shift_aug is not None: + reconstruction = shift_with_pad(reconstruction, shift_aug, axis=axis) + if lensed is not None: + lensed = shift_with_pad(lensed, shift_aug, axis=axis) + + # remove batch dimension + if n_dim == 3: + if isinstance(reconstruction, torch.Tensor): + reconstruction = reconstruction.squeeze(0) + if lensed is not None: + lensed = lensed.squeeze(0) + else: + reconstruction = reconstruction[0] + if lensed is not None: + lensed = lensed[0] + if self.alignment is None and lensed is not None: return reconstruction, lensed else: diff --git a/lensless/utils/image.py b/lensless/utils/image.py index cc2f4936..eed00121 100644 --- a/lensless/utils/image.py +++ b/lensless/utils/image.py @@ -15,7 +15,7 @@ try: import torch import torchvision.transforms as tf - from torchvision.transforms.functional import rgb_to_grayscale + from torchvision.transforms.functional import rgb_to_grayscale, rotate torch_available = True except ImportError: @@ -32,7 +32,7 @@ def resize(img, factor=None, shape=None, interpolation=cv2.INTER_CUBIC): Parameters ---------- img : :py:class:`~numpy.ndarray` - Downsampled image. + Image to downsample factor : int or float Resizing factor. shape : tuple @@ -78,6 +78,66 @@ def resize(img, factor=None, shape=None, interpolation=cv2.INTER_CUBIC): return np.clip(resized, min_val, max_val) +def rotate_HWC(img, angle): + + # to CHW + img = img.movedim(-1, -3) + + remove_depth_dim = False + if len(img.shape) == 5: + # remove singleton depth dimension before, otherwise doesn't work.. + if img.shape[1] == 1: + img = img.squeeze(1) + remove_depth_dim = True + + # rotate + img_rot = rotate(img, angle, expand=False) + + if remove_depth_dim: + img_rot = img_rot.unsqueeze(1) + + # to HWC + img_rot = img_rot.movedim(-3, -1) + return img_rot + + +def shift_with_pad(img, shift, pad_mode="constant", axis=(0, 1)): + n_dim = len(img.shape) + + # padding for shifting + pad_width = [(0, 0) for _ in range(n_dim)] + for i, s in zip(axis, shift): + if s < 0: + pad_width[i] = (0, -s) + else: + pad_width[i] = (s, 0) + pad_width = tuple(pad_width) + + # slice after padding + slice_obj = [slice(None) for _ in range(n_dim)] + for i, s in zip(axis, shift): + if s < 0: + slice_obj[i] = slice(-s, None) + elif s == 0: + slice_obj[i] = slice(None) + else: + slice_obj[i] = slice(None, -s) + + if torch_available and isinstance(img, torch.Tensor): + + # concatenate all tuples into single one for torch padding + # -- in reverse order as pytorch pads dimensions in reverse order + pad_width_torch = tuple([item for sublist in pad_width[::-1] for item in sublist]) + shifted = torch.nn.functional.pad(img, pad=pad_width_torch, mode=pad_mode) + + else: + shifted = np.pad(img, pad_width=pad_width, mode=pad_mode) + + shifted = shifted[tuple(slice_obj)] + + return shifted + + def is_grayscale(img): """ Check if image is RGB. Assuming image is of shape ([depth,] height, width, color). diff --git a/lensless/utils/io.py b/lensless/utils/io.py index 4d1eec70..3beafbbf 100644 --- a/lensless/utils/io.py +++ b/lensless/utils/io.py @@ -225,6 +225,7 @@ def load_psf( shape=None, use_3d=False, bgr_input=True, + force_rgb=False, ): """ Load and process PSF for analysis or for reconstruction. @@ -305,6 +306,12 @@ def load_psf( max_val = get_max_val(psf) psf = np.array(psf, dtype=dtype) + if force_rgb: + if len(psf.shape) == 2: + psf = np.stack([psf] * 3, axis=2) + elif len(psf.shape) == 3: + pass + if use_3d: if len(psf.shape) == 3: grayscale = True @@ -464,12 +471,13 @@ def load_data( use_3d = psf_fp.endswith(".npy") or psf_fp.endswith(".npz") # load and process PSF data - psf, bg = load_psf( + bg = None + res = load_psf( psf_fp, downsample=downsample, return_float=return_float, bg_pix=bg_pix, - return_bg=True, + return_bg=True if bg_pix is not None else False, flip=flip, flip_ud=flip_ud, flip_lr=flip_lr, @@ -482,6 +490,10 @@ def load_data( use_3d=use_3d, bgr_input=bgr_input, ) + if bg_pix is not None: + psf, bg = res + else: + psf = res # load and process raw measurement data = load_image( diff --git a/recon_requirements.txt b/recon_requirements.txt index beb67296..b831839b 100644 --- a/recon_requirements.txt +++ b/recon_requirements.txt @@ -3,8 +3,10 @@ lpips==0.1.4 pylops==1.18.0 scikit-image>=0.19.0rc0 click>=8.0.1 -waveprop>=0.0.10 # for simulation +# waveprop>=0.0.10 # for simulation +waveprop @ git+https://github.com/ebezzam/waveprop.git slm_controller @ git+https://github.com/ebezzam/slm-controller.git +perlin_numpy @ git+https://github.com/pvigier/perlin-numpy.git@5e26837db14042e51166eb6cad4c0df2c1907016 # Library for learning algorithm torch >= 2.0.0 diff --git a/scripts/data/plot_psf.py b/scripts/data/plot_psf.py new file mode 100644 index 00000000..087b664a --- /dev/null +++ b/scripts/data/plot_psf.py @@ -0,0 +1,64 @@ +from huggingface_hub import hf_hub_download +from lensless.utils.io import load_psf, save_image +from lensless.utils.image import gamma_correction +import os +import numpy as np +import torch +from lensless.hardware.trainable_mask import AdafruitLCD + +gamma = 1.8 + +## TapeCam +repo_id = "bezzam/TapeCam-Mirflickr-25K" +psf = "psf.png" +downsample = 8 +flip_ud = False + +# DigiCam-CelebA +repo_id = "bezzam/DigiCam-CelebA-26K" +psf = "psf_measured.png" +downsample = 8 +gamma = 1.5 +flip_ud = False + +# # DigiCam-MirFlickr-25K +# repo_id = "bezzam/DigiCam-Mirflickr-SingleMask-25K" +# psf = "mask_pattern.npy" +# downsample = 8 +# flip_ud = True + +# # Multi Mask +# repo_id = "bezzam/DigiCam-Mirflickr-MultiMask-25K" +# psf = "masks/mask_4.npy" +# downsample = 8 +# flip_ud = True + + +psf_fp = hf_hub_download(repo_id=repo_id, filename=psf, repo_type="dataset") + +# load PSF +if psf.endswith(".npy"): + mask_vals = np.load(psf_fp) + mask = AdafruitLCD( + initial_vals=torch.from_numpy(mask_vals.astype(np.float32)), + sensor="rpi_hq", + slm="adafruit", + downsample=downsample, + flipud=flip_ud, + use_waveprop=True, + scene2mask=0.3, + mask2sensor=0.002, + deadspace=True, + ) + psf = mask.get_psf().detach().numpy() +else: + psf = load_psf(psf_fp, downsample=downsample, flip_ud=flip_ud) + +psf = psf / psf.max() +if gamma > 1: + psf = gamma_correction(psf, gamma=gamma) + +# save as viewable PNG +fn = os.path.basename(repo_id) + "_psf.png" +save_image(psf, fn) +print(f"Saved PSF as {fn}") diff --git a/scripts/data/rename_mirflickr25k.py b/scripts/data/rename_mirflickr25k.py index 58b9b080..fb4e125e 100644 --- a/scripts/data/rename_mirflickr25k.py +++ b/scripts/data/rename_mirflickr25k.py @@ -9,7 +9,7 @@ from lensless.utils.dataset import natural_sort -dir_path = "/root/mirflickr/mirflickr25k" +dir_path = "/dev/shm/mirflickr" # get all jpg files files = natural_sort(glob.glob(os.path.join(dir_path, "*.jpg"))) diff --git a/scripts/data/upload_dataset_huggingface.py b/scripts/data/upload_dataset_huggingface.py index 2b212d97..8f760961 100644 --- a/scripts/data/upload_dataset_huggingface.py +++ b/scripts/data/upload_dataset_huggingface.py @@ -240,6 +240,20 @@ def create_dataset(lensless_files, lensed_files, df_attr=None): repo_type="dataset", token=hf_token, ) + + # viewable version of file + img = cv2.imread(fp, cv2.IMREAD_UNCHANGED) + local_fp = f"{f}_viewable8bit.png" + remote_fn = f"{f}_viewable8bit.png" + save_image(img, local_fp, normalize=True) + upload_file( + path_or_fileobj=local_fp, + path_in_repo=remote_fn, + repo_id=repo_id, + repo_type="dataset", + token=hf_token, + ) + dataset_dict.push_to_hub(repo_id, token=hf_token) upload_file( diff --git a/scripts/demo.py b/scripts/demo.py index a1405a38..2185afd6 100644 --- a/scripts/demo.py +++ b/scripts/demo.py @@ -7,7 +7,7 @@ from pprint import pprint from lensless.utils.plot import plot_image, pixel_histogram from lensless.utils.io import save_image -from lensless.utils.image import resize +from lensless.utils.image import resize, print_image_info import cv2 import matplotlib.pyplot as plt from lensless import FISTA, ADMM @@ -70,21 +70,16 @@ def demo(config): # 3) Take picture time.sleep(config.capture.delay) # for picture to display - print("\nTaking picture...") remote_fn = "remote_capture" + print("\nTaking picture...") pic_command = ( - f"{config.rpi.python} {config.capture.script} bayer=True fn={remote_fn} exp={config.capture.exp} iso={config.capture.iso} " - f"config_pause={config.capture.config_pause} sensor_mode={config.capture.sensor_mode} nbits_out={config.capture.nbits_out}" + f"{config.rpi.python} {config.capture.script} sensor={config.capture.sensor} bayer={config.capture.bayer} fn={remote_fn} exp={config.capture.exp} iso={config.capture.iso} " + f"config_pause={config.capture.config_pause} sensor_mode={config.capture.sensor_mode} nbits_out={config.capture.nbits_out} " + f"legacy={config.capture.legacy} rgb={config.capture.rgb} gray={config.capture.gray} " ) if config.capture.nbits > 8: pic_command += " sixteen=True" - if config.capture.rgb: - pic_command += " rgb=True" - if config.capture.legacy: - pic_command += " legacy=True" - if config.capture.gray: - pic_command += " gray=True" if config.capture.down: pic_command += f" down={config.capture.down}" if config.capture.awb_gains: @@ -100,11 +95,15 @@ def demo(config): result = ssh.stdout.readlines() error = ssh.stderr.readlines() - if error != []: - raise ValueError("ERROR: %s" % error) + if ( + error != [] and config.capture.legacy + ): # new camera software seems to return error even if it works + print("ERROR: %s" % error) + return if result == []: error = ssh.stderr.readlines() - raise ValueError("ERROR: %s" % error) + print("ERROR: %s" % error) + return else: result = [res.decode("UTF-8") for res in result] result = [res for res in result if len(res) > 3] @@ -117,41 +116,89 @@ def demo(config): print("COMMAND OUTPUT : ") pprint(result_dict) - # copy over file - # more pythonic? https://stackoverflow.com/questions/250283/how-to-scp-in-python - remotefile = f"~/{remote_fn}.png" - localfile = f"{config.capture.raw_data_fn}.png" - print(f"\nCopying over picture as {localfile}...") - os.system('scp "%s@%s:%s" %s' % (RPI_USERNAME, RPI_HOSTNAME, remotefile, localfile)) + if ( + "RPi distribution" in result_dict.keys() + and "bullseye" in result_dict["RPi distribution"] + and not config.capture.legacy + ): + assert ( + not config.capture.rgb or not config.capture.gray + ), "RGB and gray not supported for RPi HQ sensor" + + if config.capture.bayer: + + assert config.capture.down is None + + # copy over DNG file + remotefile = f"~/{remote_fn}.dng" + localfile = os.path.join(save, f"{config.capture.raw_data_fn}.dng") + print(f"\nCopying over picture as {localfile}...") + os.system('scp "%s@%s:%s" %s' % (RPI_USERNAME, RPI_HOSTNAME, remotefile, localfile)) + + img = load_image( + localfile, + verbose=True, + bayer=config.capture.bayer, + nbits_out=config.capture.nbits_out, + ) + + # print image properties + print_image_info(img) - if config.capture.rgb or config.capture.gray: - img = load_image(localfile, verbose=True) + # save as PNG + png_out = f"{config.capture.raw_data_fn}.png" + print(f"Saving RGB file as: {png_out}") + cv2.imwrite(png_out, cv2.cvtColor(img, cv2.COLOR_RGB2BGR)) + else: + + remotefile = f"~/{remote_fn}.png" + localfile = f"{config.capture.raw_data_fn}.png" + if save: + localfile = os.path.join(save, localfile) + print(f"\nCopying over picture as {localfile}...") + os.system('scp "%s@%s:%s" %s' % (RPI_USERNAME, RPI_HOSTNAME, remotefile, localfile)) + + img = load_image(localfile, verbose=True) + + # legacy software running on RPi else: + # copy over file + # more pythonic? https://stackoverflow.com/questions/250283/how-to-scp-in-python + remotefile = f"~/{remote_fn}.png" + localfile = f"{config.capture.raw_data_fn}.png" + if save: + localfile = os.path.join(save, localfile) + print(f"\nCopying over picture as {localfile}...") + os.system('scp "%s@%s:%s" %s' % (RPI_USERNAME, RPI_HOSTNAME, remotefile, localfile)) + + if config.capture.rgb or config.capture.gray: + img = load_image(localfile, verbose=True) - red_gain = config.camera.red_gain - blue_gain = config.camera.blue_gain - - # get white balance gains - if red_gain is None: - red_gain = float(result_dict["Red gain"]) - if blue_gain is None: - blue_gain = float(result_dict["Blue gain"]) - - # load image - print("\nLoading picture...") - img = load_image( - localfile, - verbose=True, - bayer=True, - blue_gain=blue_gain, - red_gain=red_gain, - nbits_out=config.capture.nbits_out, - ) + else: - # write RGB data - if not config.capture.bayer: - cv2.imwrite(localfile, cv2.cvtColor(img, cv2.COLOR_RGB2BGR)) + if not config.capture.bayer: + red_gain = config.camera.red_gain + blue_gain = config.camera.blue_gain + else: + red_gain = None + blue_gain = None + + # load image + print("\nLoading picture...") + + img = load_image( + localfile, + verbose=True, + bayer=config.capture.bayer, + blue_gain=blue_gain, + red_gain=red_gain, + nbits_out=config.capture.nbits_out, + ) + + # write RGB data + if not config.capture.bayer: + cv2.imwrite(localfile, cv2.cvtColor(img, cv2.COLOR_RGB2BGR)) # plot image and histogram (useful to check clipping) ax = plot_image(img, gamma=config.capture.gamma) diff --git a/scripts/demo/telegram_bot.py b/scripts/demo/telegram_bot.py index 250a9252..d7f4de66 100644 --- a/scripts/demo/telegram_bot.py +++ b/scripts/demo/telegram_bot.py @@ -53,6 +53,7 @@ DEFAULT_ALGO = None ALGO_TEXT = None MASK_PARAM = None +TIME_OFFSET = None OVERLAY_ALPHA = None @@ -60,7 +61,7 @@ OVERLAY_2 = None OVERLAY_3 = None -SETUP_FP = "scripts/demo/setup.png" +SETUP_FP = "docs/source/demo_setup.png" INPUT_FP = "user_photo.jpg" RAW_DATA_FP = "raw_data.png" OUTPUT_FOLDER = "demo_lensless" @@ -68,11 +69,11 @@ # supported_algos = ["fista", "admm", "unrolled"] supported_algos = ["fista", "admm"] supported_input = ["mnist", "thumb", "face"] +FILES_CAPTURE_CONFIG = None TIMEOUT = 1 * 60 # 10 minutes -BRIGHTNESS = 100 -# EXPOSURE = 0.02 -EXPOSURE = 0.5 +BRIGHTNESS = 80 +EXPOSURE = 0.02 LOW_LIGHT_THRESHOLD = 100 SATURATION_THRESHOLD = 0.05 @@ -114,6 +115,11 @@ def get_user_folder_from_query(query): return os.path.join(OUTPUT_FOLDER, user_subfolder) +async def remove_busy_flag(update: Update, context: ContextTypes.DEFAULT_TYPE) -> None: + global BUSY + BUSY = False + + async def check_incoming_message(update: Update, context: ContextTypes.DEFAULT_TYPE): global BUSY, queries_count @@ -172,6 +178,8 @@ async def check_incoming_message(update: Update, context: ContextTypes.DEFAULT_T message_time = update.message.date diff = (now - message_time).total_seconds() + diff -= TIME_OFFSET + if diff > TIMEOUT: return f"Timeout ({TIMEOUT} seconds) exceeded. Someone else may be using the system. Please send a new message." @@ -274,11 +282,6 @@ async def photo(update: Update, context: ContextTypes.DEFAULT_TYPE) -> None: global BUSY, EXPOSURE - # EXPOSURE = 0.02 - - vshift = -26 - pad = 10 - res = await check_incoming_message(update, context) if res is not None: await update.message.reply_text(res, reply_to_message_id=update.message.message_id) @@ -299,7 +302,7 @@ async def photo(update: Update, context: ContextTypes.DEFAULT_TYPE) -> None: user_folder = get_user_folder(update) original_file_path = os.path.join(user_folder, INPUT_FP) os.system( - f"python scripts/measure/remote_display.py -cn {CONFIG_FN} fp={original_file_path} rpi.username={RPI_USERNAME} rpi.hostname={RPI_HOSTNAME} display.pad={pad} display.vshift={vshift}" + f"python scripts/measure/remote_display.py -cn {CONFIG_FN} fp={original_file_path} rpi.username={RPI_USERNAME} rpi.hostname={RPI_HOSTNAME}" ) await update.message.reply_text( "Image sent to display.", reply_to_message_id=update.message.message_id @@ -598,14 +601,7 @@ async def take_picture_and_reconstruct( ) -async def mnist_command(update: Update, context: ContextTypes.DEFAULT_TYPE) -> None: - - """ - 1. Use one of the input images - 2. Send to display - 3. Capture measurement - 4. Reconstruct - """ +async def file_input_command(update: Update, context: ContextTypes.DEFAULT_TYPE) -> None: global BUSY, EXPOSURE @@ -615,97 +611,28 @@ async def mnist_command(update: Update, context: ContextTypes.DEFAULT_TYPE) -> N return algo = DEFAULT_ALGO - vshift = -26 - brightness = 100 - EXPOSURE = 1 - - # copy image to INPUT_FP - user_folder = get_user_folder(update) - original_file_path = os.path.join(user_folder, INPUT_FP) - os.system(f"cp data/original/mnist_3.png {original_file_path}") - - # -- send to display - os.system( - f"python scripts/measure/remote_display.py -cn {CONFIG_FN} fp={original_file_path} display.vshift={vshift} display.brightness={brightness} rpi.username={RPI_USERNAME} rpi.hostname={RPI_HOSTNAME}" - ) - await update.message.reply_text( - f"Image sent to display with brightness {brightness}.", - reply_to_message_id=update.message.message_id, - ) - - await take_picture_and_reconstruct(update, context, algo) - BUSY = False - - -async def thumb_command(update: Update, context: ContextTypes.DEFAULT_TYPE) -> None: - - """ - 1. Use one of the input images - 2. Send to display - 3. Capture measurement - 4. Reconstruct - """ - - global BUSY, EXPOSURE - - res = await check_incoming_message(update, context) - if res is not None: - await update.message.reply_text(res, reply_to_message_id=update.message.message_id) - return - algo = DEFAULT_ALGO - vshift = -26 - brightness = 80 - EXPOSURE = 0.5 - pad = 10 - - # copy image to INPUT_FP - user_folder = get_user_folder(update) - original_file_path = os.path.join(user_folder, INPUT_FP) - os.system(f"cp data/original/thumbs_up.png {original_file_path}") - - # -- send to display - os.system( - f"python scripts/measure/remote_display.py -cn {CONFIG_FN} fp={original_file_path} display.pad={pad} display.vshift={vshift} display.brightness={brightness} rpi.username={RPI_USERNAME} rpi.hostname={RPI_HOSTNAME}" - ) - await update.message.reply_text( - f"Image sent to display with brightness {brightness}.", - reply_to_message_id=update.message.message_id, - ) - - await take_picture_and_reconstruct(update, context, algo) - BUSY = False - - -async def face_command(update: Update, context: ContextTypes.DEFAULT_TYPE) -> None: - - """ - 1. Use one of the input images - 2. Send to display - 3. Capture measurement - 4. Reconstruct - """ - - global BUSY, EXPOSURE - - res = await check_incoming_message(update, context) - if res is not None: - await update.message.reply_text(res, reply_to_message_id=update.message.message_id) + # extract config by based on file name + file_name = update.message.text[1:] + if file_name not in FILES_CAPTURE_CONFIG: + await update.message.reply_text( + f"Unsupported file: {file_name}. Please specify from: {FILES_CAPTURE_CONFIG.keys()}", + reply_to_message_id=update.message.message_id, + ) return - algo = DEFAULT_ALGO - vshift = -20 - brightness = 80 - EXPOSURE = 1 + brightness = FILES_CAPTURE_CONFIG[file_name]["brightness"] + EXPOSURE = FILES_CAPTURE_CONFIG[file_name]["exposure"] + fp = FILES_CAPTURE_CONFIG[file_name]["fp"] # copy image to INPUT_FP user_folder = get_user_folder(update) original_file_path = os.path.join(user_folder, INPUT_FP) - os.system(f"cp data/original/face.jpg {original_file_path}") + os.system(f"cp {fp} {original_file_path}") # -- send to display os.system( - f"python scripts/measure/remote_display.py -cn {CONFIG_FN} fp={original_file_path} display.vshift={vshift} display.brightness={brightness} rpi.username={RPI_USERNAME} rpi.hostname={RPI_HOSTNAME}" + f"python scripts/measure/remote_display.py -cn {CONFIG_FN} fp={original_file_path} display.brightness={brightness} rpi.username={RPI_USERNAME} rpi.hostname={RPI_HOSTNAME}" ) await update.message.reply_text( f"Image sent to display with brightness {brightness}.", @@ -884,13 +811,13 @@ async def exposure_command(update: Update, context: ContextTypes.DEFAULT_TYPE) - await update.message.reply_text(res, reply_to_message_id=update.message.message_id) return - # vals = {0.02: "very low", 0.05: "low", 0.1: "medium", 0.2: "high", 0.5: "very high"} - # -- tape based - vals = {0.02: "very low", 0.035: "low", 0.05: "medium", 0.065: "high", 0.08: "very high"} - # -- digicam - vals = {0.25: "very low", 0.5: "low", 0.75: "medium", 1: "high", 1.25: "very high"} + # -- phase mask + vals = {0.02: "very low", 0.04: "low", 0.06: "medium", 0.08: "high", 0.1: "very high"} + # # -- tape based + # vals = {0.02: "very low", 0.035: "low", 0.05: "medium", 0.065: "high", 0.08: "very high"} + # # -- digicam + # vals = {0.25: "very low", 0.5: "low", 0.75: "medium", 1: "high", 1.25: "very high"} - current_exp = vals[EXPOSURE] if EXPOSURE in vals: del vals[EXPOSURE] keys = list(vals.keys()) @@ -911,7 +838,7 @@ async def exposure_command(update: Update, context: ContextTypes.DEFAULT_TYPE) - reply_markup = InlineKeyboardMarkup(keyboard) await update.message.reply_text( - f"Please specify a value for the camera exposure. Current value is '{current_exp}' ({EXPOSURE} seconds).", + f"Please specify a value for the camera exposure. Current value is ({EXPOSURE} seconds).", reply_markup=reply_markup, ) @@ -969,17 +896,23 @@ async def not_running_command(update: Update, context: ContextTypes.DEFAULT_TYPE def main(config) -> None: """Start the bot.""" - global TOKEN, WHITELIST_USERS, RPI_USERNAME, RPI_HOSTNAME, RPI_LENSED_USERNAME, RPI_LENSED_HOSTNAME, CONFIG_FN - global DEFAULT_ALGO, ALGO_TEXT, HELP_TEXT, supported_algos - global OVERLAY_ALPHA, OVERLAY_1, OVERLAY_2, OVERLAY_3 - global PSF_FP, BACKGROUND_FP, MASK_PARAM + global TOKEN, WHITELIST_USERS, RPI_USERNAME, RPI_HOSTNAME, RPI_LENSED_USERNAME, RPI_LENSED_HOSTNAME, CONFIG_FN, TIME_OFFSET + global DEFAULT_ALGO, ALGO_TEXT, HELP_TEXT, supported_algos, supported_input + global OVERLAY_ALPHA, OVERLAY_1, OVERLAY_2, OVERLAY_3, FILES_CAPTURE_CONFIG + global PSF_FP, BACKGROUND_FP, MASK_PARAM, SETUP_FP + global VSHIFT, IMAGE_RES TOKEN = config.token + TIME_OFFSET = config.time_offset WHITELIST_USERS = config.whitelist if WHITELIST_USERS is None: WHITELIST_USERS = [] + if config.setup_fp is not None: + SETUP_FP = config.setup_fp + assert os.path.exists(SETUP_FP) + RPI_USERNAME = config.rpi_username RPI_HOSTNAME = config.rpi_hostname RPI_LENSED_USERNAME = config.rpi_lensed_username @@ -999,6 +932,10 @@ def main(config) -> None: if OVERLAY_3 is not None: assert os.path.exists(OVERLAY_3.fp) + if config.supported_inputs is not None: + supported_input = config.supported_inputs + FILES_CAPTURE_CONFIG = config.files + input_commands = ["/" + input for input in supported_input] HELP_TEXT = ( "Through this bot, you can send a photo to the lensless camera setup in our lab at EPFL (shown above). " @@ -1009,7 +946,7 @@ def main(config) -> None: # f"of your own pictures, you can use the {input_commands} commands to set " # "the image on the display with one of our inputs. Or even send an emoij 😎" f"\n\n⚠️ Try one of the {input_commands} commands to use images we've configured. " - "Or even send an emoij 😎 " + # "Or even send an emoji 😎 " "You can also send your own image (but brightness/exposure may need to be adjusted)." "\n\nAll previous data is overwritten " "when a new image is sent, and everything is deleted when the process running on the " @@ -1024,11 +961,11 @@ def main(config) -> None: f"By default, the reconstruction is done with /{DEFAULT_ALGO}, but you " "can specify the algorithm (on the last measurement) with the corresponding " f"command: {algo_commands}." - "\n\nAll provided algorithms require an estimate of the point spread function (PSF). " - "Each user has their unique mask pattern according to the Telegram ID. " - "\n\n⚠️ After doing a measurement/reconstruction, you can try running /random_mask " - "to see what would be the reconstruction if you use a different (wrong) mask, " - "as if someone (like a hacker!) were trying to decode your data with a different mask." + # "\n\nAll provided algorithms require an estimate of the point spread function (PSF). " + # "Each user has their unique mask pattern according to the Telegram ID. " + # "\n\n⚠️ After doing a measurement/reconstruction, you can try running /random_mask " + # "to see what would be the reconstruction if you use a different (wrong) mask, " + # "as if someone (like a hacker!) were trying to decode your data with a different mask." # "\n\nAll provided algorithms require an estimate of the point spread function (PSF). " # "You can measure a (proxy) PSF with /psf (a point source like " # "image will be displayed on the screen). " @@ -1050,15 +987,16 @@ def main(config) -> None: psf, bg = load_psf( config.psf.fp, downsample=config.psf.downsample, return_float=True, return_bg=True ) - # save to demo folder PSF_FP = os.path.join(OUTPUT_FOLDER, "psf.png") save_image(psf[0], PSF_FP) # save with gamma correction - from lensless.utils.image import gamma_correction + psf_gamma = psf[0] / np.max(psf[0]) + if config.gamma > 1: + from lensless.utils.image import gamma_correction - psf_gamma = gamma_correction(psf[0], gamma=1.5) + psf_gamma = gamma_correction(psf_gamma, gamma=config.gamma) save_image(psf_gamma, PSF_FP_GAMMA) # save background array @@ -1084,10 +1022,11 @@ def main(config) -> None: # on different commands - answer in Telegram application.add_handler(CommandHandler("start", start)) application.add_handler(CommandHandler("help", help_command)) - application.add_handler(CommandHandler("mnist", mnist_command, block=False)) - application.add_handler(CommandHandler("thumb", thumb_command, block=False)) - application.add_handler(CommandHandler("face", face_command, block=False)) - # application.add_handler(CommandHandler("brightness", brightness_command, block=False)) + application.add_handler(CommandHandler("notbusy", remove_busy_flag)) + + for file_input in supported_input: + assert file_input in FILES_CAPTURE_CONFIG.keys() + application.add_handler(CommandHandler(file_input, file_input_command, block=False)) # different algorithms application.add_handler(CommandHandler("fista", fista, block=False)) diff --git a/scripts/eval/benchmark_recon.py b/scripts/eval/benchmark_recon.py index 7be38ddd..76fbc367 100644 --- a/scripts/eval/benchmark_recon.py +++ b/scripts/eval/benchmark_recon.py @@ -28,6 +28,8 @@ from lensless import ADMM, FISTA, GradientDescent, NesterovGradientDescent from lensless.utils.dataset import DiffuserCamTestDataset, DigiCamCelebA, HFDataset from lensless.utils.io import save_image +from lensless.utils.image import gamma_correction +from lensless.recon.model_dict import download_model, load_model import torch from torch.utils.data import Subset @@ -85,14 +87,50 @@ def benchmark_recon(config): dataset, [train_size, test_size], generator=generator ) elif dataset == "HFDataset": + + split_test = "test" + if config.huggingface.split_seed is not None: + from datasets import load_dataset, concatenate_datasets + + seed = config.huggingface.split_seed + generator = torch.Generator().manual_seed(seed) + + # - combine train and test into single dataset + train_split = "train" + test_split = "test" + if config.n_files is not None: + train_split = f"train[:{config.n_files}]" + test_split = f"test[:{config.n_files}]" + train_dataset = load_dataset( + config.huggingface.repo, split=train_split, cache_dir=config.huggingface.cache_dir + ) + test_dataset = load_dataset( + config.huggingface.repo, split=test_split, cache_dir=config.huggingface.cache_dir + ) + dataset = concatenate_datasets([test_dataset, train_dataset]) + + # - split into train and test + train_size = int((1 - config.files.test_size) * len(dataset)) + test_size = len(dataset) - train_size + _, split_test = torch.utils.data.random_split( + dataset, [train_size, test_size], generator=generator + ) + benchmark_dataset = HFDataset( huggingface_repo=config.huggingface.repo, - split="test", + cache_dir=config.huggingface.cache_dir, + psf=config.huggingface.psf, + n_files=n_files, + split=split_test, display_res=config.huggingface.image_res, rotate=config.huggingface.rotate, + flipud=config.huggingface.flipud, + flip_lensed=config.huggingface.flip_lensed, downsample=config.huggingface.downsample, + downsample_lensed=config.huggingface.downsample_lensed, alignment=config.huggingface.alignment, simulation_config=config.simulation, + single_channel_psf=config.huggingface.single_channel_psf, ) if benchmark_dataset.multimask: # get first PSF for initialization @@ -107,65 +145,91 @@ def benchmark_recon(config): print(f"Data shape : {benchmark_dataset[0][0].shape}") model_list = [] # list of algoritms to benchmark - if "ADMM" in config.algorithms: - model_list.append( - ( - "ADMM", - ADMM( - psf, - mu1=config.admm.mu1, - mu2=config.admm.mu2, - mu3=config.admm.mu3, - tau=config.admm.tau, - ), + for algo in config.algorithms: + if algo == "ADMM": + model_list.append( + ( + "ADMM", + ADMM( + psf, + mu1=config.admm.mu1, + mu2=config.admm.mu2, + mu3=config.admm.mu3, + tau=config.admm.tau, + ), + ) ) - ) - if "ADMM_Monakhova2019" in config.algorithms: - model_list.append(("ADMM_Monakhova2019", ADMM(psf, mu1=1e-4, mu2=1e-4, mu3=1e-4, tau=2e-3))) - if "ADMM_PnP" in config.algorithms: - model_list.append( - ( - "ADMM_PnP", - ADMM( - psf, - mu1=config.admm.mu1, - mu2=config.admm.mu2, - mu3=config.admm.mu3, - tau=config.admm.tau, - denoiser={"network": "DruNet", "noise_level": 30, "use_dual": False}, - ), + if algo == "ADMM_Monakhova2019": + model_list.append( + ("ADMM_Monakhova2019", ADMM(psf, mu1=1e-4, mu2=1e-4, mu3=1e-4, tau=2e-3)) ) - ) - if "FISTA_PnP" in config.algorithms: - model_list.append( - ( - "FISTA_PnP", - FISTA( - psf, - tk=config.fista.tk, - denoiser={"network": "DruNet", "noise_level": 30}, - ), + if algo == "ADMM_PnP": + model_list.append( + ( + "ADMM_PnP", + ADMM( + psf, + mu1=config.admm.mu1, + mu2=config.admm.mu2, + mu3=config.admm.mu3, + tau=config.admm.tau, + denoiser={"network": "DruNet", "noise_level": 30, "use_dual": False}, + ), + ) ) - ) - if "FISTA" in config.algorithms: - model_list.append(("FISTA", FISTA(psf, tk=config.fista.tk))) - if "GradientDescent" in config.algorithms: - model_list.append(("GradientDescent", GradientDescent(psf))) - if "NesterovGradientDescent" in config.algorithms: - model_list.append( - ( - "NesterovGradientDescent", - NesterovGradientDescent(psf, p=config.nesterov.p, mu=config.nesterov.mu), + if algo == "FISTA_PnP": + model_list.append( + ( + "FISTA_PnP", + FISTA( + psf, + tk=config.fista.tk, + denoiser={"network": "DruNet", "noise_level": 30}, + ), + ) ) - ) - # APGD is not supported yet - # if "APGD" in config.algorithms: - # from lensless import APGD + if algo == "FISTA": + model_list.append(("FISTA", FISTA(psf, tk=config.fista.tk))) + if algo == "GradientDescent": + model_list.append(("GradientDescent", GradientDescent(psf))) + if algo == "NesterovGradientDescent": + model_list.append( + ( + "NesterovGradientDescent", + NesterovGradientDescent(psf, p=config.nesterov.p, mu=config.nesterov.mu), + ) + ) + if "hf" in algo: + param = algo.split(":") + assert ( + len(param) == 4 + ), "hf model requires following format: hf:camera:dataset:model_name" + camera = param[1] + dataset = param[2] + model_name = param[3] + algo_config = config.get(algo) + if algo_config is not None: + skip_pre = algo_config.get("skip_pre", False) + skip_post = algo_config.get("skip_post", False) + else: + skip_pre = False + skip_post = False - # model_list.append(("APGD", APGD(psf))) + model_path = download_model(camera=camera, dataset=dataset, model=model_name) + model = load_model(model_path, psf, device, skip_pre=skip_pre, skip_post=skip_post) + model.eval() + model_list.append((algo, model)) results = {} output_dir = None + + # save PSF + psf_np = psf.cpu().numpy()[0] + psf_np = psf_np / np.max(psf_np) + psf_np = gamma_correction(psf_np, gamma=config.gamma_psf) + save_image(psf_np, fp="psf.png") + + # save ground truth and lensless images if config.save_idx is not None: assert np.max(config.save_idx) < len( @@ -173,9 +237,13 @@ def benchmark_recon(config): ), "save_idx values must be smaller than dataset size" os.mkdir("GROUND_TRUTH") + os.mkdir("LENSLESS") for idx in config.save_idx: - ground_truth = benchmark_dataset[idx][1] + lensless, ground_truth = benchmark_dataset[idx][ + :2 + ] # take first two in case multimask dataset ground_truth_np = ground_truth.cpu().numpy()[0] + lensless_np = lensless.cpu().numpy()[0] if crop is not None: ground_truth_np = ground_truth_np[ @@ -187,6 +255,10 @@ def benchmark_recon(config): ground_truth_np, fp=os.path.join("GROUND_TRUTH", f"{idx}.png"), ) + save_image( + lensless_np, + fp=os.path.join("LENSLESS", f"{idx}.png"), + ) # benchmark each model for different number of iteration and append result to results # -- batchsize has to equal 1 as baseline models don't support batch processing start_time = time.time() @@ -197,29 +269,52 @@ def benchmark_recon(config): os.mkdir(model_name) results[model_name] = dict() - for n_iter in n_iter_range: - print(f"Running benchmark for {model_name} with {n_iter} iterations") - - if config.save_idx is not None: - output_dir = os.path.join(model_name, str(n_iter)) - os.mkdir(output_dir) + if "hf" in model_name: + # trained algorithm (fixed number of iterations) + print(f"Running benchmark for {model_name}") result = benchmark( model, benchmark_dataset, - batchsize=1, - n_iter=n_iter, + batchsize=config.batchsize, save_idx=config.save_idx, - output_dir=output_dir, + output_dir=model_name, crop=crop, ) - results[model_name][int(n_iter)] = result + results[model_name] = result # -- save results as easy to read JSON results_path = "results.json" with open(results_path, "w") as f: json.dump(results, f, indent=4) + + else: + # iterative algorithm + + for n_iter in n_iter_range: + + print(f"Running benchmark for {model_name} with {n_iter} iterations") + + if config.save_idx is not None: + output_dir = os.path.join(model_name, str(n_iter)) + os.mkdir(output_dir) + + result = benchmark( + model, + benchmark_dataset, + batchsize=1, + n_iter=n_iter, + save_idx=config.save_idx, + output_dir=output_dir, + crop=crop, + ) + results[model_name][int(n_iter)] = result + + # -- save results as easy to read JSON + results_path = "results.json" + with open(results_path, "w") as f: + json.dump(results, f, indent=4) proc_time = (time.time() - start_time) / 60 print(f"Total processing time: {proc_time:.2f} min") @@ -283,7 +378,11 @@ def benchmark_recon(config): # for each metrics plot the results comparing each model metrics_to_plot = ["SSIM", "PSNR", "MSE", "LPIPS_Vgg", "LPIPS_Alex", "ReconstructionError"] - available_metrics = list(results[model_name][n_iter_range[0]].keys()) + + if "hf" in model_name: + available_metrics = list(results[model_name].keys()) + else: + available_metrics = list(results[model_name][n_iter_range[0]].keys()) metrics_to_plot = [metric for metric in metrics_to_plot if metric in available_metrics] # print metrics being skipped skipped_metrics = [metric for metric in metrics_to_plot if metric not in available_metrics] @@ -293,6 +392,9 @@ def benchmark_recon(config): plt.figure() # plot benchmarked algorithm for model_name in results.keys(): + if "hf" in model_name: + # doesn't change over number of iterations as assumed fixed unrolled + continue plt.plot( n_iter_range, [results[model_name][n_iter][metric] for n_iter in n_iter_range], diff --git a/scripts/measure/analyze_image.py b/scripts/measure/analyze_image.py index 7e7a3ff8..cc58d4f2 100644 --- a/scripts/measure/analyze_image.py +++ b/scripts/measure/analyze_image.py @@ -41,9 +41,9 @@ import cv2 import numpy as np import matplotlib.pyplot as plt -from lensless.utils.image import rgb2gray +from lensless.utils.image import rgb2gray, gamma_correction, resize from lensless.utils.plot import plot_image, pixel_histogram, plot_cross_section, plot_autocorr2d -from lensless.utils.io import load_image +from lensless.utils.io import load_image, load_psf, save_image @click.command() @@ -121,15 +121,26 @@ def analyze_image(fp, gamma, width, bayer, lens, lensless, bg, rg, plot_width, s fig_gray, ax_gray = plt.subplots(ncols=2, nrows=1, num="Grayscale", figsize=(15, 5)) # load PSF/image - img = load_image( - fp, - verbose=True, - bayer=bayer, - blue_gain=bg, - red_gain=rg, - nbits_out=nbits, - back=back, - ) + if lensless: + img = load_psf( + fp, + verbose=True, + bayer=bayer, + blue_gain=bg, + red_gain=rg, + nbits_out=nbits, + return_float=False, + )[0] + else: + img = load_image( + fp, + verbose=True, + bayer=bayer, + blue_gain=bg, + red_gain=rg, + nbits_out=nbits, + back=back, + ) if nbits is None: nbits = int(np.ceil(np.log2(img.max()))) @@ -194,6 +205,17 @@ def analyze_image(fp, gamma, width, bayer, lens, lensless, bg, rg, plot_width, s cv2.imwrite(save, cv2.cvtColor(img, cv2.COLOR_RGB2BGR)) print(f"\nColor-corrected RGB image saved to: {save}") + # save 8bit version for visualization + if gamma is not None: + img = img / img.max() + img = gamma_correction(img, gamma=gamma) + # -- downsample + img = resize(img, factor=1 / 4) + print(img.shape) + save_8bit = save.replace(".png", "_8bit.png") + save_image(img, save_8bit, normalize=True) + print(f"\n8bit version saved to: {save_8bit}") + plt.show() diff --git a/scripts/measure/digicam_example.py b/scripts/measure/digicam_example.py index f6e51cb6..edc56e55 100644 --- a/scripts/measure/digicam_example.py +++ b/scripts/measure/digicam_example.py @@ -18,12 +18,14 @@ from lensless import ADMM from lensless.utils.io import save_image from lensless.hardware.trainable_mask import AdafruitLCD -from lensless.utils.io import load_image +from lensless.utils.io import load_image, load_psf +from lensless.utils.image import gamma_correction @hydra.main(version_base=None, config_path="../../configs", config_name="digicam_example") def digicam(config): measurement_fp = config.capture.fp + psf_fp = config.psf mask_fp = config.mask.fp seed = config.mask.seed rpi_username = config.rpi.username @@ -32,6 +34,7 @@ def digicam(config): mask_center = config.mask.center torch_device = config.recon.torch_device capture_config = config.capture + simulation_config = config.simulation # load mask if mask_fp is not None: @@ -41,18 +44,39 @@ def digicam(config): np.random.seed(seed) mask_vals = np.random.uniform(0, 1, mask_shape) - # simulate PSF + # create mask mask = AdafruitLCD( initial_vals=torch.from_numpy(mask_vals.astype(np.float32)), sensor=capture_config["sensor"], slm="adafruit", downsample=capture_config["down"], flipud=capture_config["flip"], + use_waveprop=simulation_config.get("use_waveprop", False), + scene2mask=simulation_config.get("scene2mask", None), + mask2sensor=simulation_config.get("mask2sensor", None), + deadspace=simulation_config.get("deadspace", True), # color_filter=color_filter, ) - psf = mask.get_psf().to(torch_device).detach() + + # use measured PSF or simulate + if psf_fp is not None: + psf = load_psf( + fp=to_absolute_path(psf_fp), + downsample=capture_config["down"], + flip=capture_config["flip"], + ) + psf = torch.from_numpy(psf).type(torch.float32).to(torch_device) + else: + psf = mask.get_psf().to(torch_device).detach() + psf_np = psf[0].cpu().numpy() psf_fp = "digicam_psf.png" - save_image(psf[0].cpu().numpy(), psf_fp) + + gamma = simulation_config.get("gamma", None) + if gamma is not None: + psf_np = psf_np / psf_np.max() + psf_np = gamma_correction(psf_np, gamma=gamma) + + save_image(psf_np, psf_fp) print(f"PSF shape: {psf.shape}") print(f"PSF saved to {psf_fp}") @@ -72,7 +96,7 @@ def digicam(config): ) # -- set mask - print("Setting mask") + print("Setting mask...") set_programmable_mask( pattern, "adafruit", @@ -81,7 +105,7 @@ def digicam(config): ) # -- capture - print("Capturing") + print("Capturing...") localfile, img = capture( rpi_username=rpi_username, rpi_hostname=rpi_hostname, diff --git a/scripts/recon/digicam_mirflickr.py b/scripts/recon/digicam_mirflickr.py index a7e25ff9..9835de0d 100644 --- a/scripts/recon/digicam_mirflickr.py +++ b/scripts/recon/digicam_mirflickr.py @@ -8,6 +8,8 @@ from lensless.utils.io import save_image import time from lensless.recon.model_dict import download_model, load_model +from huggingface_hub import hf_hub_download +from lensless.utils.io import load_image @hydra.main(version_base=None, config_path="../../configs", config_name="recon_digicam_mirflickr") @@ -34,7 +36,7 @@ def apply_pretrained(config): with open(config_path, "r") as stream: model_config = yaml.safe_load(stream) - # load dataset + # load data test_set = HFDataset( huggingface_repo=model_config["files"]["dataset"], psf=model_config["files"]["huggingface_psf"] @@ -46,21 +48,44 @@ def apply_pretrained(config): downsample=model_config["files"]["downsample"], alignment=model_config["alignment"], save_psf=model_config["files"]["save_psf"], + simulation_config=model_config["simulation"], + force_rgb=model_config["files"].get("force_rgb", False), + cache_dir=config.cache_dir, ) - test_set.psf = test_set.psf.to(device) + psf = test_set.psf.to(device) print("Test set size: ", len(test_set)) + if config.fn is not None: + raw_data_fp = hf_hub_download( + repo_id=model_config["files"]["dataset"], filename=config.fn, repo_type="dataset" + ) + lensless = load_image( + fp=raw_data_fp, + return_float=True, + as_4d=True, + ) + lensless = torch.from_numpy(lensless).to(psf) + if config.rotate: + lensless = torch.rot90(lensless, dims=(-3, -2), k=2) + + lensed = None + + else: + + lensless, lensed = test_set[idx] + lensless = lensless.to(device) + # load model if model_name == "admm": - recon = ADMM(test_set.psf, n_iter=config.n_iter) + recon = ADMM(psf, n_iter=config.n_iter) else: # load best model - recon = load_model(model_path, test_set.psf, device) + recon = load_model(model_path, psf, device) - # apply reconstruction - lensless, lensed = test_set[idx] - lensless = lensless.to(device) + # print data shape + print(f"Data shape : {lensless.shape}") + # apply reconstruction start_time = time.time() for _ in range(n_trials): with torch.no_grad(): @@ -79,18 +104,28 @@ def apply_pretrained(config): img = res[0].cpu().numpy().squeeze() plot_image(img) - plot_image(lensed) + if lensed is not None: + plot_image(lensed) if save: print(f"Saving images to {os.getcwd()}") - alignment = test_set.alignment - top_left = alignment["top_left"] - height = alignment["height"] - width = alignment["width"] - res_np = img[top_left[0] : top_left[0] + height, top_left[1] : top_left[1] + width] - lensed_np = lensed[0].cpu().numpy() - save_image(lensed_np, f"original_idx{idx}.png") - save_image(res_np, f"{model_name}_idx{idx}.png") + + if config.fn is not None: + dim = config.alignment.dim + top_left = config.alignment.top_left + res_np = img[top_left[0] : top_left[0] + dim[0], top_left[1] : top_left[1] + dim[1]] + bn = config.fn.split(".")[0] + save_image(res_np, f"{model_name}_{bn}.png") + else: + alignment = test_set.alignment + top_left = alignment["top_left"] + height = alignment["height"] + width = alignment["width"] + res_np = img[top_left[0] : top_left[0] + height, top_left[1] : top_left[1] + width] + save_image(res_np, f"{model_name}_idx{idx}.png") + if lensed is not None: + lensed_np = lensed[0].cpu().numpy() + save_image(lensed_np, f"original_idx{idx}.png") save_image(lensless[0].cpu().numpy(), f"lensless_idx{idx}.png") diff --git a/scripts/recon/train_learning_based.py b/scripts/recon/train_learning_based.py index d5e6a111..72128fc0 100644 --- a/scripts/recon/train_learning_based.py +++ b/scripts/recon/train_learning_based.py @@ -35,14 +35,17 @@ import os import numpy as np import time +from lensless.utils.image import shift_with_pad from lensless.hardware.trainable_mask import prep_trainable_mask from lensless import ADMM, UnrolledFISTA, UnrolledADMM, TrainableInversion +from lensless.recon.multi_wiener import MultiWiener from lensless.utils.dataset import ( DiffuserCamMirflickr, DigiCamCelebA, HFDataset, MyDataParallel, simulate_dataset, + HFSimulated, ) from torch.utils.data import Subset from lensless.recon.utils import create_process_network @@ -51,6 +54,7 @@ from lensless.utils.io import save_image from lensless.utils.plot import plot_image import matplotlib.pyplot as plt +from lensless.recon.model_dict import load_model, download_model # A logger for this file log = logging.getLogger(__name__) @@ -98,6 +102,7 @@ def train_learned(config): device_ids = config.device_ids if device_ids is not None: log.info(f"Using multiple GPUs : {device_ids}") + assert device_ids[0] == int(device.split(":")[1]) # load dataset and create dataloader train_set = None @@ -193,8 +198,12 @@ def train_learned(config): if config.files.n_files is not None: train_split = f"train[:{config.files.n_files}]" test_split = f"test[:{config.files.n_files}]" - train_dataset = load_dataset(config.files.dataset, split=train_split) - test_dataset = load_dataset(config.files.dataset, split=test_split) + train_dataset = load_dataset( + config.files.dataset, split=train_split, cache_dir=config.files.cache_dir + ) + test_dataset = load_dataset( + config.files.dataset, split=test_split, cache_dir=config.files.cache_dir + ) dataset = concatenate_datasets([test_dataset, train_dataset]) # - split into train and test @@ -204,32 +213,63 @@ def train_learned(config): dataset, [train_size, test_size], generator=generator ) - train_set = HFDataset( - huggingface_repo=config.files.dataset, - psf=config.files.huggingface_psf, - split=split_train, - display_res=config.files.image_res, - rotate=config.files.rotate, - downsample=config.files.downsample, - downsample_lensed=config.files.downsample_lensed, - alignment=config.alignment, - save_psf=config.files.save_psf, - n_files=config.files.n_files, - simulation_config=config.simulation, - ) + if config.files.hf_simulated: + # simulate lensless by using measured PSF + train_set = HFSimulated( + huggingface_repo=config.files.dataset, + split=split_train, + n_files=config.files.n_files, + psf=config.files.huggingface_psf, + downsample=config.files.downsample, + cache_dir=config.files.cache_dir, + single_channel_psf=config.files.single_channel_psf, + flipud=config.files.flipud, + display_res=config.files.image_res, + alignment=config.alignment, + ) + + else: + train_set = HFDataset( + huggingface_repo=config.files.dataset, + cache_dir=config.files.cache_dir, + psf=config.files.huggingface_psf, + single_channel_psf=config.files.single_channel_psf, + split=split_train, + display_res=config.files.image_res, + rotate=config.files.rotate, + flipud=config.files.flipud, + flip_lensed=config.files.flip_lensed, + downsample=config.files.downsample, + downsample_lensed=config.files.downsample_lensed, + alignment=config.alignment, + save_psf=config.files.save_psf, + n_files=config.files.n_files, + simulation_config=config.simulation, + force_rgb=config.files.force_rgb, + simulate_lensless=config.files.simulate_lensless, + random_flip=config.files.random_flip, + ) + test_set = HFDataset( huggingface_repo=config.files.dataset, + cache_dir=config.files.cache_dir, psf=config.files.huggingface_psf, + single_channel_psf=config.files.single_channel_psf, split=split_test, display_res=config.files.image_res, rotate=config.files.rotate, + flipud=config.files.flipud, + flip_lensed=config.files.flip_lensed, downsample=config.files.downsample, downsample_lensed=config.files.downsample_lensed, alignment=config.alignment, save_psf=config.files.save_psf, n_files=config.files.n_files, simulation_config=config.simulation, + force_rgb=config.files.force_rgb, + simulate_lensless=False, # in general evaluate on measured (set to False) ) + if train_set.multimask: # get first PSF for initialization if device_ids is not None: @@ -278,6 +318,7 @@ def train_learned(config): downsample=config.files.downsample, # needs to be same size n_files=config.files.n_files, simulation_config=config.simulation, + simulate_lensless=False, # in general evaluate on measured **config.files.extra_eval[eval_set], ) @@ -289,20 +330,52 @@ def train_learned(config): for i, _idx in enumerate(config.eval_disp_idx): - if test_set.multimask: - # multimask - # lensless, lensed, _ = test_set[_idx] # using wrong PSF - lensless, lensed, psf = test_set[_idx] - psf = psf.to(device) + flip_lr = None + flip_ud = None + if test_set.random_flip: + lensless, lensed, psf_recon, flip_lr, flip_ud = test_set[_idx] + psf_recon = psf_recon.to(device) + elif test_set.multimask: + lensless, lensed, psf_recon = test_set[_idx] + psf_recon = psf_recon.to(device) else: lensless, lensed = test_set[_idx] - recon = ADMM(psf) + psf_recon = psf.clone() + + rotate_angle = False + if config.files.random_rotate: + from lensless.utils.image import rotate_HWC + + rotate_angle = np.random.uniform( + -config.files.random_rotate, config.files.random_rotate + ) + print(f"Rotate angle : {rotate_angle}") + lensless = rotate_HWC(lensless, rotate_angle) + lensed = rotate_HWC(lensed, rotate_angle) + psf_recon = rotate_HWC(psf_recon, rotate_angle) + + shift = None + if config.files.random_shifts: + + shift = np.random.randint( + -config.files.random_shifts, config.files.random_shifts, 2 + ) + print(f"Shift : {shift}") + lensless = shift_with_pad(lensless, shift, axis=(1, 2)) + lensed = shift_with_pad(lensed, shift, axis=(1, 2)) + psf_recon = shift_with_pad(psf_recon, shift, axis=(1, 2)) + shift = tuple(shift) - recon.set_data(lensless.to(psf.device)) + if config.files.random_rotate or config.files.random_shifts: + + save_image(psf_recon[0].cpu().numpy(), f"psf_{_idx}.png") + + recon = ADMM(psf_recon) + + recon.set_data(lensless.to(psf_recon.device)) res = recon.apply(disp_iter=None, plot=False, n_iter=10) res_np = res[0].cpu().numpy() res_np = res_np / res_np.max() - lensed_np = lensed[0].cpu().numpy() lensless_np = lensless[0].cpu().numpy() @@ -310,19 +383,31 @@ def train_learned(config): # -- plot lensed and res on top of each other cropped = False - if hasattr(test_set, "alignment"): if test_set.alignment is not None: - res_np = test_set.extract_roi(res_np, axis=(0, 1)) + res_np = test_set.extract_roi( + res_np, + axis=(0, 1), + flip_lr=flip_lr, + flip_ud=flip_ud, + rotate_aug=rotate_angle, + shift_aug=shift, + ) else: res_np, lensed_np = test_set.extract_roi( - res_np, lensed=lensed_np, axis=(0, 1) + res_np, + lensed=lensed_np, + axis=(0, 1), + flip_lr=flip_lr, + flip_ud=flip_ud, + rotate_aug=rotate_angle, + shift_aug=shift, ) - cropped = True elif config.training.crop_preloss: assert crop is not None + assert flip_lr is None and flip_ud is None res_np = res_np[ crop["vertical"][0] : crop["vertical"][1], @@ -367,10 +452,13 @@ def train_learned(config): nc=config.reconstruction.post_process.nc, device=device, device_ids=device_ids, + concatenate_compensation=config.reconstruction.compensation[-1] + if config.reconstruction.compensation is not None + else False, ) post_proc_delay = config.reconstruction.post_process.delay - if config.reconstruction.post_process.train_last_layer: + if post_process is not None and config.reconstruction.post_process.train_last_layer: for name, param in post_process.named_parameters(): if "m_tail" in name: param.requires_grad = True @@ -380,10 +468,22 @@ def train_learned(config): # initialize pre- and post processor with another model if config.reconstruction.init_processors is not None: - from lensless.recon.model_dict import load_model, model_dict + + if "hf" in config.reconstruction.init_processors: + param = config.reconstruction.init_processors.split(":") + camera = param[1] + dataset = param[2] + model_name = param[3] + model_path = download_model(camera=camera, dataset=dataset, model=model_name) + + elif "local" in config.reconstruction.init_processors: + model_path = config.reconstruction.init_processors.split(":")[1] + + else: + raise ValueError(f"{config.reconstruction.init_processors} is not a supported model") model_orig = load_model( - model_dict["diffusercam"]["mirflickr"][config.reconstruction.init_processors], + model_path=model_path, psf=psf, device=device, ) @@ -407,46 +507,92 @@ def train_learned(config): dict_params2_post[name1].data.copy_(param1.data) # create reconstruction algorithm - if config.reconstruction.method == "unrolled_fista": - recon = UnrolledFISTA( - psf, - n_iter=config.reconstruction.unrolled_fista.n_iter, - tk=config.reconstruction.unrolled_fista.tk, - pad=True, - learn_tk=config.reconstruction.unrolled_fista.learn_tk, - pre_process=pre_process if pre_proc_delay is None else None, - post_process=post_process if post_proc_delay is None else None, - skip_unrolled=config.reconstruction.skip_unrolled, - return_unrolled_output=True if config.unrolled_output_factor > 0 else False, - ) - elif config.reconstruction.method == "unrolled_admm": - recon = UnrolledADMM( + if config.reconstruction.init is not None: + assert config.reconstruction.init_processors is None + + param = config.reconstruction.init.split(":") + assert len(param) == 4, "hf model requires following format: hf:camera:dataset:model_name" + camera = param[1] + dataset = param[2] + model_name = param[3] + model_path = download_model(camera=camera, dataset=dataset, model=model_name) + recon = load_model( + model_path, psf, - n_iter=config.reconstruction.unrolled_admm.n_iter, - mu1=config.reconstruction.unrolled_admm.mu1, - mu2=config.reconstruction.unrolled_admm.mu2, - mu3=config.reconstruction.unrolled_admm.mu3, - tau=config.reconstruction.unrolled_admm.tau, - pre_process=pre_process if pre_proc_delay is None else None, - post_process=post_process if post_proc_delay is None else None, - skip_unrolled=config.reconstruction.skip_unrolled, - return_unrolled_output=True if config.unrolled_output_factor > 0 else False, - ) - elif config.reconstruction.method == "trainable_inv": - recon = TrainableInversion( - psf, - K=config.reconstruction.trainable_inv.K, - pre_process=pre_process if pre_proc_delay is None else None, - post_process=post_process if post_proc_delay is None else None, - return_unrolled_output=True if config.unrolled_output_factor > 0 else False, + device, + device_ids=device_ids, + train_last_layer=config.reconstruction.post_process.train_last_layer, ) + else: - raise ValueError(f"{config.reconstruction.method} is not a supported algorithm") + if config.reconstruction.method == "unrolled_fista": + recon = UnrolledFISTA( + psf, + n_iter=config.reconstruction.unrolled_fista.n_iter, + tk=config.reconstruction.unrolled_fista.tk, + pad=True, + learn_tk=config.reconstruction.unrolled_fista.learn_tk, + pre_process=pre_process if pre_proc_delay is None else None, + post_process=post_process if post_proc_delay is None else None, + skip_unrolled=config.reconstruction.skip_unrolled, + return_intermediate=True + if config.unrolled_output_factor > 0 or config.pre_proc_aux > 0 + else False, + compensation=config.reconstruction.compensation, + compensation_residual=config.reconstruction.compensation_residual, + ) + elif config.reconstruction.method == "unrolled_admm": + recon = UnrolledADMM( + psf, + n_iter=config.reconstruction.unrolled_admm.n_iter, + mu1=config.reconstruction.unrolled_admm.mu1, + mu2=config.reconstruction.unrolled_admm.mu2, + mu3=config.reconstruction.unrolled_admm.mu3, + tau=config.reconstruction.unrolled_admm.tau, + pre_process=pre_process if pre_proc_delay is None else None, + post_process=post_process if post_proc_delay is None else None, + skip_unrolled=config.reconstruction.skip_unrolled, + return_intermediate=True + if config.unrolled_output_factor > 0 or config.pre_proc_aux > 0 + else False, + compensation=config.reconstruction.compensation, + compensation_residual=config.reconstruction.compensation_residual, + ) + elif config.reconstruction.method == "trainable_inv": + assert config.trainable_mask.mask_type == "TrainablePSF" + recon = TrainableInversion( + psf, + K=config.reconstruction.trainable_inv.K, + pre_process=pre_process if pre_proc_delay is None else None, + post_process=post_process if post_proc_delay is None else None, + return_intermediate=True + if config.unrolled_output_factor > 0 or config.pre_proc_aux > 0 + else False, + ) + elif config.reconstruction.method == "multi_wiener": - if device_ids is not None: - recon = MyDataParallel(recon, device_ids=device_ids) - if use_cuda: - recon.to(device) + if config.files.single_channel_psf: + psf = psf[..., 0].unsqueeze(-1) + psf_channels = 1 + else: + psf_channels = 3 + + recon = MultiWiener( + in_channels=3, + out_channels=3, + psf=psf, + psf_channels=psf_channels, + nc=config.reconstruction.multi_wiener.nc, + pre_process=pre_process if pre_proc_delay is None else None, + ) + + else: + raise ValueError(f"{config.reconstruction.method} is not a supported algorithm") + + if device_ids is not None: + recon = MyDataParallel(recon, device_ids=device_ids) + if use_cuda: + recon.to(device) # constructing algorithm name by appending pre and post process algorithm_name = config.reconstruction.method @@ -460,6 +606,12 @@ def train_learned(config): if mask is not None: n_param += sum(p.numel() for p in mask.parameters() if p.requires_grad) log.info(f"Training model with {n_param} parameters") + if pre_process is not None: + n_param = sum(p.numel() for p in pre_process.parameters() if p.requires_grad) + log.info(f"-- Pre-process model with {n_param} parameters") + if post_process is not None: + n_param = sum(p.numel() for p in post_process.parameters() if p.requires_grad) + log.info(f"-- Post-process model with {n_param} parameters") log.info(f"Setup time : {time.time() - start_time} s") log.info(f"PSF shape : {psf.shape}") @@ -492,8 +644,12 @@ def train_learned(config): post_process_unfreeze=config.reconstruction.post_process.unfreeze, clip_grad=config.training.clip_grad, unrolled_output_factor=config.unrolled_output_factor, + pre_proc_aux=config.pre_proc_aux, extra_eval_sets=extra_eval_sets if config.files.extra_eval is not None else None, use_wandb=True if config.wandb_project is not None else False, + n_epoch=config.training.epoch, + random_rotate=config.files.random_rotate, + random_shift=config.files.random_shifts, ) trainer.train(n_epoch=config.training.epoch, save_pt=save, disp=config.eval_disp_idx) diff --git a/scripts/sim/digicam_psf.py b/scripts/sim/digicam_psf.py index d68d35be..5a54cc4a 100644 --- a/scripts/sim/digicam_psf.py +++ b/scripts/sim/digicam_psf.py @@ -12,6 +12,8 @@ from lensless.hardware.slm import get_programmable_mask, get_intensity_psf from waveprop.devices import slm_dict from waveprop.devices import SLMParam as SLMParam_wp +from huggingface_hub import hf_hub_download +from lensless.utils.image import gamma_correction @hydra.main(version_base=None, config_path="../../configs", config_name="sim_digicam_psf") @@ -19,7 +21,25 @@ def digicam_psf(config): output_folder = os.getcwd() - fp = to_absolute_path(config.digicam.pattern) + # get file paths + fp_psf = None + if config.huggingface_repo is not None: + # download from huggingface + fp = hf_hub_download( + repo_id=config.huggingface_repo, + filename=config.huggingface_mask_pattern, + repo_type="dataset", + ) + if config.huggingface_psf is not None: + fp_psf = hf_hub_download( + repo_id=config.huggingface_repo, + filename=config.huggingface_psf, + repo_type="dataset", + ) + else: + fp = to_absolute_path(config.digicam.pattern) + if config.digicam.psf is not None: + fp_psf = to_absolute_path(config.digicam.psf) bn = os.path.basename(fp).split(".")[0] # digicam config @@ -27,7 +47,10 @@ def digicam_psf(config): ap_shape = np.array(config.digicam.ap_shape) rotate_angle = config.digicam.rotate slm_param = slm_dict[config.digicam.slm] - sensor = VirtualSensor.from_name(config.digicam.sensor, downsample=config.digicam.downsample) + sensor = VirtualSensor.from_name( + config.digicam.sensor, + downsample=config.digicam.downsample if config.digicam.downsample > 1 else None, + ) # simulation parameters scene2mask = config.sim.scene2mask @@ -110,19 +133,26 @@ def digicam_psf(config): rotate=rotate_angle, flipud=config.sim.flipud, color_filter=color_filter, + deadspace=config.sim.deadspace, ) if config.digicam.vertical_shift is not None: if config.use_torch: - mask = torch.roll(mask, config.digicam.vertical_shift, dims=1) + mask = torch.roll( + mask, config.digicam.vertical_shift // config.digicam.downsample, dims=1 + ) else: - mask = np.roll(mask, config.digicam.vertical_shift, axis=1) + mask = np.roll(mask, config.digicam.vertical_shift // config.digicam.downsample, axis=1) if config.digicam.horizontal_shift is not None: if config.use_torch: - mask = torch.roll(mask, config.digicam.horizontal_shift, dims=2) + mask = torch.roll( + mask, config.digicam.horizontal_shift // config.digicam.downsample, dims=2 + ) else: - mask = np.roll(mask, config.digicam.horizontal_shift, axis=2) + mask = np.roll( + mask, config.digicam.horizontal_shift // config.digicam.downsample, axis=2 + ) # -- plot mask if config.use_torch: @@ -151,10 +181,9 @@ def digicam_psf(config): # plot psf_meas = None - if config.digicam.psf is not None: - fp_psf = to_absolute_path(config.digicam.psf) + if fp_psf is not None: if os.path.exists(fp_psf): - psf_meas = load_psf(fp_psf) + psf_meas = load_psf(fp_psf, downsample=config.digicam.downsample) else: print("Could not load PSF image from: ", fp_psf) @@ -163,7 +192,8 @@ def digicam_psf(config): ax = plt.Axes(fig, [0.0, 0.0, 1.0, 1.0]) ax.set_axis_off() fig.add_axes(ax) - ax.imshow(psf_in_np) + # ax.imshow(psf_in_np / np.max(psf_in_np)) + plot_image(psf_in_np, gamma=config.digicam.gamma, normalize=True, ax=ax) ax.set_xticks([]) ax.set_yticks([]) plt.savefig(fp) @@ -183,16 +213,18 @@ def digicam_psf(config): # plot overlayed fp = os.path.join(output_folder, "psf_overlay.png") psf_meas_norm = psf_meas[0] / np.max(psf_meas) - # psf_meas_norm = gamma_correction(psf_meas_norm, gamma=config.digicam.gamma) psf_in_np_norm = psf_in_np / np.max(psf_in_np) plt.figure() plt.imshow(psf_in_np_norm, alpha=0.7) - plt.imshow(psf_meas_norm, alpha=0.7) + plt.imshow(psf_meas_norm, alpha=0.4) plt.savefig(fp) # save PSF as png fp = os.path.join(output_folder, f"{bn}_SIM_psf.png") + # if config.digicam.gamma > 1: + # psf_in_np = psf_in_np / psf_in_np.max() + # psf_in_np = gamma_correction(psf_in_np, gamma=config.digicam.gamma) save_image(psf_in_np, fp) proc_time = time.time() - start_time diff --git a/test/test_algos.py b/test/test_algos.py index 0ea89f14..441277fd 100644 --- a/test/test_algos.py +++ b/test/test_algos.py @@ -169,10 +169,10 @@ def test_trainable_recon(algorithm): psf = torch.rand(1, 32, 64, 3, dtype=torch_type) data = torch.rand(2, 1, 32, 64, 3, dtype=torch_type) - def pre_process(x, noise): + def pre_process(x, param): return x - def post_process(x, noise): + def post_process(x, param, residual=None): return x recon = algorithm( @@ -206,10 +206,10 @@ def test_trainable_batch(algorithm): data2 = torch.rand(1, 1, 34, 64, 3, dtype=torch_type) data2[0, 0, ...] = data1[0, 0, ...] - def pre_process(x, noise): + def pre_process(x, param): return x - def post_process(x, noise): + def post_process(x, param, residual=None): return x recon = algorithm( From 3af7b1427475158c814f05b71cbda255e4c1c2fe Mon Sep 17 00:00:00 2001 From: Eric Bezzam Date: Thu, 8 Aug 2024 02:31:20 -0700 Subject: [PATCH 07/12] Fix for random shifts. (#139) --- lensless/recon/utils.py | 5 ++++- 1 file changed, 4 insertions(+), 1 deletion(-) diff --git a/lensless/recon/utils.py b/lensless/recon/utils.py index ca25a704..65c6e238 100644 --- a/lensless/recon/utils.py +++ b/lensless/recon/utils.py @@ -474,6 +474,7 @@ def __init__( clip_grad=1.0, unrolled_output_factor=False, random_rotate=False, + random_shift=False, pre_proc_aux=False, extra_eval_sets=None, use_wandb=False, @@ -554,7 +555,6 @@ def __init__( post_process_unfreeze : int, optional Epoch at which to unfreeze post process component. Default is None. - """ global print @@ -612,6 +612,9 @@ def __init__( self.train_multimask = train_dataset.multimask self.train_random_flip = train_dataset.random_flip self.random_rotate = random_rotate + self.random_shift = random_shift + if self.random_shift: + raise NotImplementedError("Random shift not implemented yet.") # check if Subset and if simulating dataset self.simulated_dataset_trainable_mask = False From f5adda7a89372653d78f19f7205de0200b7b4d3b Mon Sep 17 00:00:00 2001 From: Eric Bezzam Date: Thu, 8 Aug 2024 05:55:35 -0700 Subject: [PATCH 08/12] Add support for uploading dataset with ambient lighting. (#141) * Add more info to renaming script. * Add support for uploading dataset with ambient light. --- configs/upload_dataset_huggingface.yaml | 1 + configs/upload_tapecam_mirflickr_ambient.yaml | 23 +++++ scripts/data/rename_mirflickr25k.py | 13 ++- scripts/data/upload_dataset_huggingface.py | 92 +++++++++++++++---- 4 files changed, 108 insertions(+), 21 deletions(-) create mode 100644 configs/upload_tapecam_mirflickr_ambient.yaml diff --git a/configs/upload_dataset_huggingface.yaml b/configs/upload_dataset_huggingface.yaml index 61c73b55..8017d21f 100644 --- a/configs/upload_dataset_huggingface.yaml +++ b/configs/upload_dataset_huggingface.yaml @@ -15,6 +15,7 @@ lensless: dir: null ext: null # for example: .png, .jpg eight_norm: False # save as 8-bit normalized image + ambient: False downsample: null lensed: diff --git a/configs/upload_tapecam_mirflickr_ambient.yaml b/configs/upload_tapecam_mirflickr_ambient.yaml new file mode 100644 index 00000000..0d62238a --- /dev/null +++ b/configs/upload_tapecam_mirflickr_ambient.yaml @@ -0,0 +1,23 @@ +# python scripts/data/upload_dataset_huggingface.py -cn upload_tapecam_mirflickr_ambient +defaults: + - upload_dataset_huggingface + - _self_ + +repo_id: "Lensless/TapeCam-Mirflickr-Ambient" +n_files: null +test_size: 0.15 +# -- to match TapeCam without ambient light +split: 100 # "first: first `nfiles*test_size` for test, `int`: test_size*split for test (interleaved) as if multimask with this many masks + +lensless: + dir: data/100_samples + ambient: True + ext: ".png" + +lensed: + dir: data/mirflickr/mirflickr + ext: ".jpg" + +files: + psf: data/tape_psf.png + measurement_config: data/collect_dataset_background.yaml diff --git a/scripts/data/rename_mirflickr25k.py b/scripts/data/rename_mirflickr25k.py index fb4e125e..90cddb43 100644 --- a/scripts/data/rename_mirflickr25k.py +++ b/scripts/data/rename_mirflickr25k.py @@ -1,15 +1,24 @@ """ Utility file to rename files in MirFlickr25k dataset (https://press.liacs.nl/mirflickr/) so that they match the names in the larger dataset, i.e. removing "im" from the filename. -""" +First download MIRFLICKR-25K dataset from the above link and extract it to a directory. +```bash +wget http://press.liacs.nl/mirflickr/mirflickr25k.v3b/mirflickr25k.zip -P data/mirflickr +unzip data/mirflickr/mirflickr25k.zip -d data/mirflickr +``` +Then run this script to rename the files (updating `dir_path`). +```bash +python scripts/data/rename_mirflickr25k.py +``` +""" import os import glob from lensless.utils.dataset import natural_sort -dir_path = "/dev/shm/mirflickr" +dir_path = "data/mirflickr/mirflickr" # get all jpg files files = natural_sort(glob.glob(os.path.join(dir_path, "*.jpg"))) diff --git a/scripts/data/upload_dataset_huggingface.py b/scripts/data/upload_dataset_huggingface.py index 8f760961..9011be68 100644 --- a/scripts/data/upload_dataset_huggingface.py +++ b/scripts/data/upload_dataset_huggingface.py @@ -15,6 +15,7 @@ """ import hydra +from hydra.utils import to_absolute_path import time import os import glob @@ -52,6 +53,9 @@ def upload_dataset(config): config.lensed.ext is not None ), "Please provide a lensed file extension, e.g. .png, .jpg, .tiff" + config.lensless.dir = to_absolute_path(config.lensless.dir) + config.lensed.dir = to_absolute_path(config.lensed.dir) + # get masks files_masks = [] n_masks = 0 @@ -70,6 +74,7 @@ def upload_dataset(config): # get lensed files files_lensed = glob.glob(os.path.join(config.lensed.dir, "*" + config.lensed.ext)) + print(f"Number of lensed files: {len(files_lensed)}") # only keep if in both bn_lensless = [os.path.basename(f).split(".")[0] for f in files_lensless] @@ -83,9 +88,20 @@ def upload_dataset(config): os.path.join(config.lensless.dir, f + config.lensless.ext) for f in common_files ] lensed_files = [os.path.join(config.lensed.dir, f + config.lensed.ext) for f in common_files] + background_files = [] + if config.lensless.ambient: + # check that corresponding ambient files exist + for f in common_files: + ambient_bn = "black_background" + os.path.basename(f) + config.lensless.ext + ambient_f = os.path.join(config.lensless.dir, ambient_bn) + assert os.path.exists(ambient_f), f"File {ambient_f} does not exist." + background_files.append(ambient_f) if config.lensless.downsample is not None: + if config.lensless.ambient: + raise NotImplementedError("Downsampling not implemented for ambient files.") + tmp_dir = config.lensless.dir + "_tmp" os.makedirs(tmp_dir, exist_ok=True) @@ -109,6 +125,9 @@ def downsample(f, output_dir): # convert to normalized 8 bit if config.lensless.eight_norm: + if config.lensless.ambient: + raise NotImplementedError("Normalized 8-bit not implemented for ambient files.") + tmp_dir = config.lensless.dir + "_tmp" os.makedirs(tmp_dir, exist_ok=True) @@ -150,7 +169,7 @@ def save_8bit(f, output_dir, normalize=True): df_attr = {"mask_label": mask_labels} # step 1: create Dataset objects - def create_dataset(lensless_files, lensed_files, df_attr=None): + def create_dataset(lensless_files, lensed_files, df_attr=None, ambient_files=None): dataset_dict = { "lensless": lensless_files, "lensed": lensed_files, @@ -158,9 +177,13 @@ def create_dataset(lensless_files, lensed_files, df_attr=None): if df_attr is not None: # combine dictionaries dataset_dict = {**dataset_dict, **df_attr} + if ambient_files is not None: + dataset_dict["ambient"] = ambient_files dataset = Dataset.from_dict(dataset_dict) dataset = dataset.cast_column("lensless", Image()) dataset = dataset.cast_column("lensed", Image()) + if ambient_files is not None: + dataset = dataset.cast_column("ambient", Image()) return dataset # train-test split @@ -175,17 +198,23 @@ def create_dataset(lensless_files, lensed_files, df_attr=None): [lensless_files[i] for i in test_indices], [lensed_files[i] for i in test_indices], {k: [v[i] for i in test_indices] for k, v in df_attr.items()}, + ambient_files=[background_files[i] for i in test_indices] + if config.lensless.ambient + else None, ) train_dataset = create_dataset( [lensless_files[i] for i in train_indices], [lensed_files[i] for i in train_indices], {k: [v[i] for i in train_indices] for k, v in df_attr.items()}, + ambient_files=[background_files[i] for i in train_indices] + if config.lensless.ambient + else None, ) elif isinstance(config.split, int): n_test_split = int(test_size * config.split) # get all indices - n_splits = len(lensless_files) // config.split + n_splits = np.ceil(len(lensless_files) / config.split).astype(int) test_idx = np.array([]) for i in range(n_splits): test_idx = np.append(test_idx, np.arange(n_test_split) + i * config.split) @@ -197,10 +226,18 @@ def create_dataset(lensless_files, lensed_files, df_attr=None): # split dict into train-test test_dataset = create_dataset( - [lensless_files[i] for i in test_idx], [lensed_files[i] for i in test_idx] + [lensless_files[i] for i in test_idx], + [lensed_files[i] for i in test_idx], + ambient_files=[background_files[i] for i in test_idx] + if config.lensless.ambient + else None, ) train_dataset = create_dataset( - [lensless_files[i] for i in train_idx], [lensed_files[i] for i in train_idx] + [lensless_files[i] for i in train_idx], + [lensed_files[i] for i in train_idx], + ambient_files=[background_files[i] for i in train_idx] + if config.lensless.ambient + else None, ) else: @@ -212,9 +249,17 @@ def create_dataset(lensless_files, lensed_files, df_attr=None): else: df_attr_test = None df_attr_train = None - test_dataset = create_dataset(lensless_files[:n_test], lensed_files[:n_test], df_attr_test) + test_dataset = create_dataset( + lensless_files[:n_test], + lensed_files[:n_test], + df_attr_test, + ambient_files=background_files[:n_test] if config.lensless.ambient else None, + ) train_dataset = create_dataset( - lensless_files[n_test:], lensed_files[n_test:], df_attr_train + lensless_files[n_test:], + lensed_files[n_test:], + df_attr_train, + ambient_files=background_files[n_test:] if config.lensless.ambient else None, ) print(f"Train size: {len(train_dataset)}") print(f"Test size: {len(test_dataset)}") @@ -230,7 +275,7 @@ def create_dataset(lensless_files, lensed_files, df_attr=None): # step 3: push to hub if config.files is not None: for f in config.files: - fp = config.files[f] + fp = to_absolute_path(config.files[f]) ext = os.path.splitext(fp)[1] remote_fn = f"{f}{ext}" upload_file( @@ -241,18 +286,19 @@ def create_dataset(lensless_files, lensed_files, df_attr=None): token=hf_token, ) - # viewable version of file - img = cv2.imread(fp, cv2.IMREAD_UNCHANGED) - local_fp = f"{f}_viewable8bit.png" - remote_fn = f"{f}_viewable8bit.png" - save_image(img, local_fp, normalize=True) - upload_file( - path_or_fileobj=local_fp, - path_in_repo=remote_fn, - repo_id=repo_id, - repo_type="dataset", - token=hf_token, - ) + # viewable version of file if it is an image + if ext in [".png", ".jpg", ".jpeg", ".tiff"]: + img = cv2.imread(fp, cv2.IMREAD_UNCHANGED) + local_fp = f"{f}_viewable8bit.png" + remote_fn = f"{f}_viewable8bit.png" + save_image(img, local_fp, normalize=True) + upload_file( + path_or_fileobj=local_fp, + path_in_repo=remote_fn, + repo_id=repo_id, + repo_type="dataset", + token=hf_token, + ) dataset_dict.push_to_hub(repo_id, token=hf_token) @@ -271,6 +317,14 @@ def create_dataset(lensless_files, lensed_files, df_attr=None): repo_type="dataset", token=hf_token, ) + if config.lensless.ambient: + upload_file( + path_or_fileobj=background_files[0], + path_in_repo=f"ambient_example{config.lensless.ext}", + repo_id=repo_id, + repo_type="dataset", + token=hf_token, + ) for _mask_file in files_masks: upload_file( From 7dd98ced08a775255bbf238022655facbfdae0b4 Mon Sep 17 00:00:00 2001 From: Stefan <46031448+StefanPetersTM@users.noreply.github.com> Date: Thu, 8 Aug 2024 15:21:15 +0200 Subject: [PATCH 09/12] Add simulated background (#138) * Initial commit. TODO: simulate_background has a reconstruction issue, likely normalization related * Adapted HFDataset in dataset.py to handle a dataset with background images * Adapted HFDataset in dataset.py to handle a dataset with background images * Resolved PR * Resolved PR * Merged main into dataset --- CHANGELOG.rst | 1 + .../train_tapecam_simulated_background.yaml | 13 ++ configs/train_unrolledADMM.yaml | 2 + lensless/eval/benchmark.py | 27 +-- lensless/utils/dataset.py | 67 +++++- lensless/utils/io.py | 24 +- scripts/recon/admm.py | 8 +- scripts/recon/digicam_mirflickr.py | 8 +- scripts/recon/train_learning_based.py | 218 +++++++++++------- 9 files changed, 248 insertions(+), 120 deletions(-) create mode 100644 configs/train_tapecam_simulated_background.yaml diff --git a/CHANGELOG.rst b/CHANGELOG.rst index 625b51cf..6d80fa84 100644 --- a/CHANGELOG.rst +++ b/CHANGELOG.rst @@ -15,6 +15,7 @@ Added - Option to pass background image to ``utils.io.load_data``. - Option to set image resolution with ``hardware.utils.display`` function. +- Option to add simulated background in ``util.dataset`` - Auxiliary of reconstructing output from pre-processor (not working). - Option to set focal range for MultiLensArray. - Optional to remove deadspace modelling for programmable mask. diff --git a/configs/train_tapecam_simulated_background.yaml b/configs/train_tapecam_simulated_background.yaml new file mode 100644 index 00000000..c415e6cc --- /dev/null +++ b/configs/train_tapecam_simulated_background.yaml @@ -0,0 +1,13 @@ +# python scripts/recon/train_learning_based.py -cn train_mirflickr_tape +defaults: + - train_mirflickr_tape + - _self_ + +wandb_project: +device_ids: + + +# Dataset +files: + background_fp: "" + background_snr_range: [0,0] \ No newline at end of file diff --git a/configs/train_unrolledADMM.yaml b/configs/train_unrolledADMM.yaml index 6e5dad43..238bfaa0 100644 --- a/configs/train_unrolledADMM.yaml +++ b/configs/train_unrolledADMM.yaml @@ -34,6 +34,8 @@ files: downsample: 2 # factor by which to downsample the PSF, note that for DiffuserCam the PSF has 4x the resolution downsample_lensed: 2 # only used if lensed if measured input_snr: null # adding shot noise at input (for measured dataset) at this SNR in dB + background_fp: null + background_snr_range: null vertical_shift: null horizontal_shift: null rotate: False diff --git a/lensless/eval/benchmark.py b/lensless/eval/benchmark.py index 055f9803..41d43ab4 100644 --- a/lensless/eval/benchmark.py +++ b/lensless/eval/benchmark.py @@ -121,29 +121,16 @@ def benchmark( flip_lr = None flip_ud = None - if dataset.random_flip: - lensless, lensed, psfs, flip_lr, flip_ud = batch - psfs = psfs.to(device) - elif dataset.multimask: - lensless, lensed, psfs = batch + lensless = batch[0].to(device) + lensed = batch[1].to(device) + if dataset.multimask or dataset.random_flip: + psfs = batch[2] psfs = psfs.to(device) else: - lensless, lensed = batch psfs = None - - # if hasattr(dataset, "multimask"): - # if dataset.multimask: - # lensless, lensed, psfs = batch - # psfs = psfs.to(device) - # else: - # lensless, lensed = batch - # psfs = None - # else: - # lensless, lensed = batch - # psfs = None - - lensless = lensless.to(device) - lensed = lensed.to(device) + if dataset.random_flip: + flip_lr = batch[3] + flip_ud = batch[4] # add shot noise if snr is not None: diff --git a/lensless/utils/dataset.py b/lensless/utils/dataset.py index 723fae5d..5ce95f7a 100644 --- a/lensless/utils/dataset.py +++ b/lensless/utils/dataset.py @@ -1288,6 +1288,8 @@ def __init__( cache_dir=None, single_channel_psf=False, random_flip=False, + bg_snr_range=None, + bg_fp=None, **kwargs, ): """ @@ -1327,6 +1329,10 @@ def __init__( If True, randomly flip the lensless images vertically and horizonally with equal probability. By default, no flipping. simulation_config : dict, optional Simulation parameters for PSF if using a mask pattern. + bg_snr_range : list, optional + List [low, high] of range of possible SNRs for which to add the background. Used in conjunction with 'bg' + bg_fp : string, optional + File path of background to add to the data for simulating a measurement in ambient light """ @@ -1508,6 +1514,26 @@ def __init__( ) self.simulator = simulator + if bg_fp is not None: + assert ( + bg_snr_range is not None + ), "Since a background path was provided, the SNR range should not be empty" + bg = load_image( + bg_fp, + shape=lensless.shape, + return_float=True, + flip=rotate, + ) + self.bg_sim = torch.from_numpy(bg) + # Used for background noise addition + self.bg_snr_range = bg_snr_range + # Precomputing for efficiency (used in the SNR computations) + self.background_var = torch.var(self.bg_sim.flatten()) + else: + self.bg_sim = None + self.bg_snr_range = None + self.background_var = None + super(HFDataset, self).__init__(**kwargs) def __len__(self): @@ -1623,20 +1649,41 @@ def __getitem__(self, idx): lensed = torch.flip(lensed, dims=(-3,)) psf_aug = torch.flip(psf_aug, dims=(-3,)) - # return corresponding PSF + return_items = [lensless, lensed] if self.multimask: if self.return_mask_label: - return lensless, lensed, mask_label + return_items.append(mask_label) else: - if not self.random_flip: - return lensless, lensed, self.psf[mask_label] - else: - return lensless, lensed, psf_aug, flip_lr, flip_ud + return_items.append(self.psf[mask_label]) + if self.random_flip: + return_items.append(flip_lr) + return_items.append(flip_ud) else: - if not self.random_flip: - return lensless, lensed - else: - return lensless, lensed, psf_aug, flip_lr, flip_ud + if self.random_flip: + return_items.append(psf_aug) + return_items.append(flip_lr) + return_items.append(flip_ud) + + # Add background to achieve desired SNR + if self.bg_sim is not None: + sig_var = torch.var(lensless.flatten()) + target_snr = np.random.uniform(self.bg_snr_range[0], self.bg_snr_range[1]) + alpha = torch.sqrt(sig_var / self.background_var / (10**target_snr / 10)) + + scaled_bg = alpha * self.bg_sim + + # Add background noise to the target image + image_with_bg = lensless + scaled_bg + + return image_with_bg, lensed, scaled_bg + else: + return lensless, lensed + + # add simulated background to get image_with_bg and scaled_bg + return_items[0] = image_with_bg + return_items[0].append(scaled_bg) + + return return_items def extract_roi( self, diff --git a/lensless/utils/io.py b/lensless/utils/io.py index 3beafbbf..5596befd 100644 --- a/lensless/utils/io.py +++ b/lensless/utils/io.py @@ -6,15 +6,16 @@ # ############################################################################# +import os.path import warnings -from PIL import Image + import cv2 import numpy as np -import os.path +from PIL import Image -from lensless.utils.plot import plot_image from lensless.hardware.constants import RPI_HQ_CAMERA_BLACK_LEVEL, RPI_HQ_CAMERA_CCM_MATRIX from lensless.utils.image import bayer2rgb_cc, print_image_info, resize, rgb2gray, get_max_val +from lensless.utils.plot import plot_image def load_image( @@ -386,6 +387,8 @@ def load_data( psf_fp, data_fp, background_fp=None, + return_bg=False, + remove_background=True, return_float=True, downsample=None, bg_pix=(5, 25), @@ -527,17 +530,23 @@ def load_data( ) assert bg.shape == data.shape - data -= bg + if remove_background: + data -= bg + # clip to 0 data = np.clip(data, a_min=0, a_max=data.max()) if normalize: data /= data.max() + bg /= data.max() # to normalize by the same factor if data.shape != psf.shape: # in DiffuserCam dataset, images are already reshaped data = resize(data, shape=psf.shape) + if background_fp is not None: + bg = resize(bg, shape=psf.shape) + if data.shape[3] > 1 and psf.shape[3] == 1: warnings.warn( "Warning: loaded a grayscale PSF with RGB data. Repeating PSF across channels." @@ -569,6 +578,7 @@ def load_data( psf = np.array(psf, dtype=dtype) data = np.array(data, dtype=dtype) + bg = np.array(bg, dtype=dtype) if use_torch: import torch @@ -579,8 +589,12 @@ def load_data( psf = torch.from_numpy(psf).type(torch_dtype).to(torch_device) data = torch.from_numpy(data).type(torch_dtype).to(torch_device) + bg = torch.from_numpy(bg).type(torch_dtype).to(torch_device) - return psf, data + if return_bg: + return psf, data, bg + else: + return psf, data def save_image(img, fp, max_val=255, normalize=True): diff --git a/scripts/recon/admm.py b/scripts/recon/admm.py index 1d1c261c..a98b76e9 100644 --- a/scripts/recon/admm.py +++ b/scripts/recon/admm.py @@ -29,9 +29,11 @@ def admm(config): psf, data = load_data( psf_fp=to_absolute_path(config.input.psf), data_fp=to_absolute_path(config.input.data), - background_fp=to_absolute_path(config.input.background) - if config.input.background is not None - else None, + background_fp=( + to_absolute_path(config.input.background) + if config.input.background is not None + else None + ), dtype=config.input.dtype, downsample=config["preprocess"]["downsample"], bayer=config["preprocess"]["bayer"], diff --git a/scripts/recon/digicam_mirflickr.py b/scripts/recon/digicam_mirflickr.py index 9835de0d..c74de25a 100644 --- a/scripts/recon/digicam_mirflickr.py +++ b/scripts/recon/digicam_mirflickr.py @@ -39,9 +39,11 @@ def apply_pretrained(config): # load data test_set = HFDataset( huggingface_repo=model_config["files"]["dataset"], - psf=model_config["files"]["huggingface_psf"] - if "huggingface_psf" in model_config["files"] - else None, + psf=( + model_config["files"]["huggingface_psf"] + if "huggingface_psf" in model_config["files"] + else None + ), split="test", display_res=model_config["files"]["image_res"], rotate=model_config["files"]["rotate"], diff --git a/scripts/recon/train_learning_based.py b/scripts/recon/train_learning_based.py index 72128fc0..77e6e7d0 100644 --- a/scripts/recon/train_learning_based.py +++ b/scripts/recon/train_learning_based.py @@ -226,6 +226,8 @@ def train_learned(config): flipud=config.files.flipud, display_res=config.files.image_res, alignment=config.alignment, + bg_snr_range=config.files.background_snr_range, # TODO check if correct + bg_fp=config.files.background_fp, ) else: @@ -248,6 +250,8 @@ def train_learned(config): force_rgb=config.files.force_rgb, simulate_lensless=config.files.simulate_lensless, random_flip=config.files.random_flip, + bg_snr_range=config.files.background_snr_range, + bg_fp=config.files.background_fp, ) test_set = HFDataset( @@ -266,6 +270,8 @@ def train_learned(config): save_psf=config.files.save_psf, n_files=config.files.n_files, simulation_config=config.simulation, + bg_snr_range=config.files.background_snr_range, + bg_fp=config.files.background_fp, force_rgb=config.files.force_rgb, simulate_lensless=False, # in general evaluate on measured (set to False) ) @@ -332,15 +338,19 @@ def train_learned(config): flip_lr = None flip_ud = None - if test_set.random_flip: - lensless, lensed, psf_recon, flip_lr, flip_ud = test_set[_idx] - psf_recon = psf_recon.to(device) - elif test_set.multimask: - lensless, lensed, psf_recon = test_set[_idx] + return_items = test_set[_idx] + lensless = return_items[0] + lensed = return_items[1] + if test_set.bg_sim is not None: + background = return_items[-1] + if test_set.multimask or test_set.random_flip: + psf_recon = return_items[2] psf_recon = psf_recon.to(device) else: - lensless, lensed = test_set[_idx] psf_recon = psf.clone() + if test_set.random_flip: + flip_lr = return_items[3] + flip_ud = return_items[4] rotate_angle = False if config.files.random_rotate: @@ -367,69 +377,42 @@ def train_learned(config): shift = tuple(shift) if config.files.random_rotate or config.files.random_shifts: - save_image(psf_recon[0].cpu().numpy(), f"psf_{_idx}.png") - recon = ADMM(psf_recon) - - recon.set_data(lensless.to(psf_recon.device)) - res = recon.apply(disp_iter=None, plot=False, n_iter=10) - res_np = res[0].cpu().numpy() - res_np = res_np / res_np.max() - lensed_np = lensed[0].cpu().numpy() - - lensless_np = lensless[0].cpu().numpy() - save_image(lensless_np, f"lensless_raw_{_idx}.png") - - # -- plot lensed and res on top of each other - cropped = False - if hasattr(test_set, "alignment"): - if test_set.alignment is not None: - res_np = test_set.extract_roi( - res_np, - axis=(0, 1), - flip_lr=flip_lr, - flip_ud=flip_ud, - rotate_aug=rotate_angle, - shift_aug=shift, - ) - else: - res_np, lensed_np = test_set.extract_roi( - res_np, - lensed=lensed_np, - axis=(0, 1), - flip_lr=flip_lr, - flip_ud=flip_ud, - rotate_aug=rotate_angle, - shift_aug=shift, - ) - cropped = True - - elif config.training.crop_preloss: - assert crop is not None - assert flip_lr is None and flip_ud is None - - res_np = res_np[ - crop["vertical"][0] : crop["vertical"][1], - crop["horizontal"][0] : crop["horizontal"][1], - ] - lensed_np = lensed_np[ - crop["vertical"][0] : crop["vertical"][1], - crop["horizontal"][0] : crop["horizontal"][1], - ] - cropped = True - - if cropped and i == 0: - log.info(f"Cropped shape : {res_np.shape}") - - save_image(res_np, f"lensless_recon_{_idx}.png") - save_image(lensed_np, f"lensed_{_idx}.png") - - plt.figure() - plt.imshow(lensed_np, alpha=0.4) - plt.imshow(res_np, alpha=0.7) - plt.savefig(f"overlay_lensed_recon_{_idx}.png") - + # Reconstruct and plot image + reconstruct_save( + _idx, + config, + crop, + i, + lensed, + lensless, + psf, + test_set, + "", + flip_lr, + flip_ud, + rotate_angle, + shift, + ) + save_image(lensed[0].cpu().numpy(), f"lensed_{_idx}.png") + if test_set.bg_sim is not None: + # Reconstruct and plot background subtracted image + reconstruct_save( + _idx, + config, + crop, + i, + lensed, + (lensless - background), + psf, + test_set, + "subtraction_", + flip_lr, + flip_ud, + rotate_angle, + shift, + ) log.info(f"Train test size : {len(train_set)}") log.info(f"Test test size : {len(test_set)}") @@ -452,9 +435,11 @@ def train_learned(config): nc=config.reconstruction.post_process.nc, device=device, device_ids=device_ids, - concatenate_compensation=config.reconstruction.compensation[-1] - if config.reconstruction.compensation is not None - else False, + concatenate_compensation=( + config.reconstruction.compensation[-1] + if config.reconstruction.compensation is not None + else False + ), ) post_proc_delay = config.reconstruction.post_process.delay @@ -535,9 +520,9 @@ def train_learned(config): pre_process=pre_process if pre_proc_delay is None else None, post_process=post_process if post_proc_delay is None else None, skip_unrolled=config.reconstruction.skip_unrolled, - return_intermediate=True - if config.unrolled_output_factor > 0 or config.pre_proc_aux > 0 - else False, + return_intermediate=( + True if config.unrolled_output_factor > 0 or config.pre_proc_aux > 0 else False + ), compensation=config.reconstruction.compensation, compensation_residual=config.reconstruction.compensation_residual, ) @@ -552,9 +537,9 @@ def train_learned(config): pre_process=pre_process if pre_proc_delay is None else None, post_process=post_process if post_proc_delay is None else None, skip_unrolled=config.reconstruction.skip_unrolled, - return_intermediate=True - if config.unrolled_output_factor > 0 or config.pre_proc_aux > 0 - else False, + return_intermediate=( + True if config.unrolled_output_factor > 0 or config.pre_proc_aux > 0 else False + ), compensation=config.reconstruction.compensation, compensation_residual=config.reconstruction.compensation_residual, ) @@ -565,9 +550,9 @@ def train_learned(config): K=config.reconstruction.trainable_inv.K, pre_process=pre_process if pre_proc_delay is None else None, post_process=post_process if post_proc_delay is None else None, - return_intermediate=True - if config.unrolled_output_factor > 0 or config.pre_proc_aux > 0 - else False, + return_intermediate=( + True if config.unrolled_output_factor > 0 or config.pre_proc_aux > 0 else False + ), ) elif config.reconstruction.method == "multi_wiener": @@ -657,5 +642,80 @@ def train_learned(config): log.info(f"Results saved in {save}") +def reconstruct_save( + _idx, + config, + crop, + i, + lensed, + lensless, + psf_recon, + test_set, + fp, + flip_lr, + flip_ud, + rotate_angle, + shift, +): + recon = ADMM(psf_recon) + + recon.set_data(lensless.to(psf_recon.device)) + res = recon.apply(disp_iter=None, plot=False, n_iter=10) + res_np = res[0].cpu().numpy() + res_np = res_np / res_np.max() + lensed_np = lensed[0].cpu().numpy() + + lensless_np = lensless[0].cpu().numpy() + save_image(lensless_np, f"lensless_raw_{_idx}.png") + + # -- plot lensed and res on top of each other + cropped = False + if hasattr(test_set, "alignment"): + if test_set.alignment is not None: + res_np = test_set.extract_roi( + res_np, + axis=(0, 1), + flip_lr=flip_lr, + flip_ud=flip_ud, + rotate_aug=rotate_angle, + shift_aug=shift, + ) + else: + res_np, lensed_np = test_set.extract_roi( + res_np, + lensed=lensed_np, + axis=(0, 1), + flip_lr=flip_lr, + flip_ud=flip_ud, + rotate_aug=rotate_angle, + shift_aug=shift, + ) + cropped = True + + elif config.training.crop_preloss: + assert crop is not None + assert flip_lr is None and flip_ud is None + + res_np = res_np[ + crop["vertical"][0] : crop["vertical"][1], + crop["horizontal"][0] : crop["horizontal"][1], + ] + lensed_np = lensed_np[ + crop["vertical"][0] : crop["vertical"][1], + crop["horizontal"][0] : crop["horizontal"][1], + ] + cropped = True + + if cropped and i == 0: + log.info(f"Cropped shape : {res_np.shape}") + + save_image(res_np, f"lensless_recon_{fp}{_idx}.png") + + plt.figure() + plt.imshow(lensed_np, alpha=0.4) + plt.imshow(res_np, alpha=0.7) + plt.savefig(f"overlay_lensed_recon_{fp}{_idx}.png") + + if __name__ == "__main__": train_learned() From 69495335924abdfe036ce9b36bd22744872123dd Mon Sep 17 00:00:00 2001 From: David Karoubi <58142621+Blopgrop@users.noreply.github.com> Date: Mon, 12 Aug 2024 14:42:40 +0200 Subject: [PATCH 10/12] Add mask adapter (#132) * Need to take pictures * Finish the fabrication doc * Create function to generate mask adapters * update changelog * Add doc's images * move adapter fabrication in correct file + bug fix * Remove cadquery import. --------- Co-authored-by: Eric Bezzam --- CHANGELOG.rst | 2 + docs/source/fabrication.rst | 16 +++++++ docs/source/mask_adapter.png | Bin 0 -> 82634 bytes docs/source/mount_V4.png | Bin 0 -> 91000 bytes lensless/hardware/fabrication.py | 71 +++++++++++++++++++++++++++++++ 5 files changed, 89 insertions(+) create mode 100644 docs/source/mask_adapter.png create mode 100644 docs/source/mount_V4.png diff --git a/CHANGELOG.rst b/CHANGELOG.rst index 6d80fa84..dfeb053a 100644 --- a/CHANGELOG.rst +++ b/CHANGELOG.rst @@ -15,6 +15,7 @@ Added - Option to pass background image to ``utils.io.load_data``. - Option to set image resolution with ``hardware.utils.display`` function. +- Add utility for mask adapter generation in ``lenseless.hardware.fabrication`` - Option to add simulated background in ``util.dataset`` - Auxiliary of reconstructing output from pre-processor (not working). - Option to set focal range for MultiLensArray. @@ -62,6 +63,7 @@ Added - Fallback for normalization if data not in 8bit range (``lensless.utils.io.save_image``). - Add utilities for fabricating masks with 3D printing (``lensless.hardware.fabrication``). - WandB support. +- Script for Mask adapter generation and update new mount in doc Changed ~~~~~~~ diff --git a/docs/source/fabrication.rst b/docs/source/fabrication.rst index 83fc3963..d4ac9bdd 100644 --- a/docs/source/fabrication.rst +++ b/docs/source/fabrication.rst @@ -7,6 +7,14 @@ :alt: Mount components. :align: center + + Note that the most recent version of the mount looks like this, with the addition of stoppers, + to prevent the mask from scratching the Pi Camera. + This new version of the mount can be found `here `_ + + .. image:: mount_V4.png + :alt: New Inner Mount w/ Stopper. + :align: center Mask3DModel ~~~~~~~~~~~ @@ -22,6 +30,14 @@ :members: :special-members: __init__ + Because newer versions of the masks' size are smaller, the following adapter enables + them to be used with the current mounts design. + + .. image:: mask_adapter.png + :alt: Mask Adapter. + :align: center + + MultiLensMold ~~~~~~~~~~~~~ diff --git a/docs/source/mask_adapter.png b/docs/source/mask_adapter.png new file mode 100644 index 0000000000000000000000000000000000000000..e8cb7eab3cba0693c11f18f0c165a92d88b70728 GIT binary patch literal 82634 zcmeEui$9b7|NpvG?hdAtPEOr-q1(BGQw${ul@6FQB?&P(jm^-la(6%_hbSuN(@2=v zK`4qOV_Oc}oM&4$r)_M;@0#w<_xt%DeqWDA+Tq%+>w3Lkhv)10dcHllc)><)^Zv~s z5J=AU?CHxO&;||&Bm?<XnXpkW3<;#$)?zs{wVIMcfA1hZk%TO(s+~YXO*)D zOgG&%ezWbs^TK;!agYV-sXO(%M62Ob0p7(6wcj%?pQ6g>=)A0cPWX9M&i3~|wECx` zF>3B&VrLT*v0FSl_Vku(&6)iudKESC23MT>^dJA@`JAP1La!)xX|aluuMq4~S=3das*L1xgl~}w|=Dli9(@9p4vM&I4tu2-lF@xBVDVt z6O^!I<08Ly>_y95l)!a*5Ti%j-H#1tKJV|QRJylT@eov8M899=z07r>`P6?4kx#Ci zygcW_9hv?6_C2sEc=zr|U0t2BlLE|($tQYVi;Xq&U@#b}sb^*7RkmtPgga4$0>S;v zPP@W3x6%S*e3>#5alBNMFq;hP<5Rt>=D(RbOiWDl90K{!w^3x)E=Z|$YU<|RqT(e) z)Yo;5)FL%sFli^a*K;}-OjiEP8>rK|<(oEn5q15#zK6x}AH~n!`h>bJNFWq)zXDoo za~pw@q~}mr!S}~||I~rO z!Lgw2&_+yseH-;pWo6}&fe3xx!>H84M3n5Jm6g>9_2c;Xb>j>#%&ix-H7Co^S>K1h zzt*&CudBJ_M)Wvg9CI--F)@ikrLGT3G^r9!l)L_@E5vy~BxLR{RX zs!rXeGe)$CM1HXFG4rGT9~caB_jQXn( zO14(4L&I<8FW@D4jvxJFl9?nRp*+8 z@8Sw;-s@{AMb zVnH7&w*Lx&guj3&OS;o&WPZNEjiy*$G}v_rPY<_M!-*UHjc%N8C^L6uey34;o8w{v zc9l3hmbX?|l$F0v7=iZLb{gzYIe$(C{SiL6PnMl4Pd%4rfb+)l7#<2d4z_HN(5Ap= z@$acCQ}X!BnNt#8d{ge~GBaqRBYk!=V2K02Eb%(QSlgkjOS#PSdbiU$-ey4r2=+x3 z;ltHOb>~8^#tZKn+0h6{3<7}|eR_B*%EjE!umaLNG!q&hO{lB0)~T$VE&Ip)L-e=l ztE6Dx8qJOZr(~P@r?ZGutW9i2>q5HL+a;%FDyxih`^Q+fZBz6q5ruHMw{Z_U7>3O8 zT6nvMH5A^R3;g+rf{y=pPwBl#qK=~$;qv& z5edA(XlJ-Lwh^x zz62hHx+&4X?fyPz5h1Ayv)%Rwt(mO)!I0igFTqhy6rcRx#_`EDF@rlHPMn4xrVkD( zI=A`9ykb84J~-{&Qm=1fTmqj83AyqUf}nuL^vITQ^yMBss)7%@=jvsg^QtFpC(ca-CULtGbcNxs_cxMjUAh zlQSCH*8SW6nq>a#AEFE$_ZE=($bmQxrE=s4e4;nA>y7xn zQ^=8>6&oK2b({++;(tp)0WY1|y%UNd!}u zrr7?o#uNq>dHOpHjS#+c|GGHmIHcZ2{z)$}7|A%Q5`HspA`*SKN^VjT*$7g31hvO4 zbbCJ&L1eBRw@FiQdpl6!HQeD@{^QZ#0T z_g0ap#trRS4koXW6Hem zZOMw{Atf`Q`_)kXl@xsJz}?CP8gHT<9J((l=BVS*O-&ZW-LnYQ04eafUmk#d#+#Zl zzP8gDipSZAzhCrjcoP)4RG>MQd_`6^sbytm%(q$O*Kr zSA0KN7E<-lD3~9NAJMv4a^I#%fdWBo}M7j<6avL_or$O-2I4RJ(&|WhfmTo5#}w zSgoO#20AaoKVh3Ld}?04pPn@Mxgt14g!5mDqf|Ylh{|Q6KpKO2VNuUQ`b8~l3Wp9DyhF|1WO_nYG zJOQo6c|NAffvqK@%GJnQH%nGa0>#;O0oI=Ss!G6W45_p=BT4FQLYC%YzV;)EldKH_ zlJEk^2nox-DrG{!!ax_NCY+edC5MFUd>=$bA8bKj@@^}{iUii3 zg`^#r3fAuwp7ZUV0`P^$fmE)iOPm}Tpctmj4UQxqgLvYiEo>BdNv)Z8H>p+SE@Iyk3;ql|UHgat5iHIn1 zONYQisor0V!_?N^waJ!=krfA^OMq2?q-gajKii|D*gNyNI-8@MYoj4gQdkVp8LOrR zp~fq2reZO8E6H&v2B{6r%o+6|IDn$*m<`pTW(&0oyj3-2?ZE;$MLjZ1LV>YFoT^m+ zbs&wMzdZ0<^P5I@TtPY6vxn=fZ|fABEyKG`V4_Ui*TGc6jd^0Dq*=O$K_&ipAZs+z zljb>+Wpsh>;$K}~DftXyaA;$Mz%u6}M`Xvf*!k5%`vVIGzTPjN^qLECN>lP{mdG5A zbqLNR3U&rKv~NzIXUVO92;-&zMJe*e4^+)g#LSGawa+jWJu#k^CS$y}EE@1~5@MgZ5`pQ~dD74MgMzBeH$|!6a&Cru9|ipvw1f0D1jSU)mydPQ8kqv zgzf=4yfG&rCEQs{36>YY#P_Iv@F)WH1{HVyE1iH${hi|}$2%fBt$PFh z!}GFIm&uUO!*=#=hO*KYJ%9HfhejHjF6>D#t?+)qVtP64+pq{8+6gA*D9XcH*fE&O zbqR%|S60;|^O^RMojRDC(uDLbYI*=DPN7GCRS4sUi4m*G!*W-8m7a?~`!T=08fdZz z)JdBexTUop`oUjoipFm9Md!jT1a;>xqlSX7UW+}I-#k>-mgsf~sgHlj-IG_F;kt9E z&4zp&C?W&uij!ion#RT*D)Wt@2Pp}9;(AcEBXF`0{{oiH3FX5yU3Je&u4Z&jxAAFNi^;NkH3O&tf@r~ToAp_c7#2eB;@!PF6 zE6uMky<=a|C0sb?=lkvyX;S)ymGvEzs&SR)>fLC6#26lSh$a9L8CD5zie|u0e1xCn z(YfdfxM}A76Qvc=+8#zH_Se0+ttu#+dl0JKA4*m#Fluyz81F~n0?NpquHK&eJOvxe zi7$h-d{x4Icq+4AR?hOEEmTyhEnE`&BI;*V@BL%wK3R*!lb+Ed_ttX5FSt}R{A5tE zNS!=Qe92AE4K=_qNlw$mpU%fvyN?r7J#kU@rmv9%(}R0d0=Q4Pp{8z47WkhBh6HuB zN^C{mHe&4|w;Zhl4h^zmwt@}p8N16F+Sd-ftW;1HCBHZfbe+MrGN8k^Qq8nz^JhcN zG!4*L5BSjSBwgIkn*Z{`E1~>GBb)Po!@Z*l5gAAVk4`YH2yr;XdGEB~mBZZwL*I0O z*5z37osxTon!jwX+^VZ_2kWr)5XY0uHL2oLuUqxyuOCCFbZ-=aMfTzMmS;sZ0Fb}1 z3k1s82(}6!I_j9dGMb;64z@qHzvZoyPb~k1jo1=c+~))5Yls{C=_a@csqS@c-XQ5U8Tp~&MTXpeb?i23wOfQwB_Ah=Ch8u(!V3abM`{( zbHvqEK^bLQ`J8}|D`}2R;;b5ZGhh()^{T{MlC&@-s6(*qz0qBmp||cZf>U8(^P|Hc zpKoi1I8dCCkx~5{q_VP7$1Lo&;(lmJPWccD32pH=c`d{z#>xuNwGPm3)4gzc!NZ!{ zd?7#RR;;!XtRg*7Gu4ZyM3W4(=1z}Hzn%5)_`*Fv$GCd!a{9Q3`NM-u7*C_mDa--` zqm1k~!xMru?{t+RQppuVuea`Avw;%Ks(|6>Y}oZk=ReD`3xs)mTkFLkkkAkIPxeG0 zyt~jUg3%W2SHlth?9Uen1dDFhS63uSh*sP)T278SiX`OH%2QJ6tFIB7sx;peh3YX^8}Z^pOYiNtyA7X{*-@?}O1)ovLWU%2evg zSp|jOTaCYgjIXZ6%7zbbMBiSSw!Wr2G3hP_gH<%84&fwj4%-1VN{<8RNJZZfKnNpQZ{tO>Z<7rx$?K2U@lOla;kIBQZ87^gFcL&1UTOL zN764n(CWlQpK~bd?wa;7%cy*4l*G&p*IT?>&hV_v_2M0%k>^+s;o(jMt+6h`kY}X% ziKBZl?@abOV*o~TkH%Ps=u2xlAMFe<7Ug7=@$)>p^AkM^yb!-D>8x39lmV*)!O(^J z0i539Tj+f^12R=&-9)Ldv;Mil%Mt->wO$uLbLv%`h&8JT`rxtFLp;hw=4%kh%FmJr zq;SV92EyBBc2I!-ME$6P8upvktZ{NlE~Z zb!b&R1}bIvJ*i!^5lF$$P3|AFS{G1a!9CRAdwiSDO`wI<8bFB`5J@8XKL#{K`t(h+ z3@@e+9^3PW=(N63!9&t)^}WYN#*i#mZ|K3wTmQIy?Sm#+nZ#UilI61iAk**LF9+?? zSZBt}uh5PT-;)Y(+g}x=l|ohO{XSmCAhk(^%fG)oDgmKu5apKtoO}t3<+x3xXgM3d6Hw;$La56NX+%bX3FyM^507 zEyam~)1HyXsY*(9y=yVHrK{JpAQfd8&2vVic!e$*NU>_UA`E{704Zyi1Jc)1!owIu z$j|QF(6hXE1y1L(TVuM_2t#llUD^2qbJWtJ^l$hEyk2oRla`4Je(&gJw!MPin5e1s zpiQ$=J}~y$klaN6r**GQ;u$+R@?fNNBC;MF-41TjRUJfe2%6vNI$D z{T8mzpwm@C+OlWx?!5(Clgbge%Y^8qn|%Y5!=cfHVjQO=ZWfJzr#CX+=M)rSnYh94 z1xB`!uox)Lw6=RQRTjuv?v(M(41hhzcnFa#fUP(p!u*rnaL_3NPrS+kct>|B-=rnA zo%S{GXHVN)aEFe&Ywl;X&`%X>CL9XCirgE1lNdZ$e{g_o{2{7taYa%&GVo>C{8a!F zUtWGp$zFE;3j&(%;8Ysog^4Tdb5Zq#l|0ZK3g-vG-Cyv_-|~rDfxZ|dupWR$L!Chn(kI}UHPt>tZNldRi#~Mss-90iF+aNg? z)XbKBh3Nl%X zt(C~9`zQdtbGUSIDm?0riX$?ewwo+R*;Cc~<=qS1yNGHv9R>5C>ZMnf9!0gh)lwy;*}`5UAQX zf^U}^{4{R)$-*?U&?1(%>dlL8H|_iW{q@{j0Al-Zpc{9At4OeZTU=~|i<%};n^q!G zvyZ&DwtHZ?Wx|LJIQOCdVRO0D=A}=8S%mYso00hrpvNjb18w^Q^XtrGV>Ic9>k7s{ z1N@O7i&>-eEpxYx#=2PGE`4s#tSn0sNf_?am6a`|Nq6r`Dt^*Hikl)j{wn@h4g$Tm z2GZn*KSzkO?)A5Nnk0iwtkvaC3)Vs;siW=Yw`rd;t+yA=i+%9#oXbidqZ@-CS24>% zg!?gNo2bxFiNHx*=7=jhS*@$Oo{?SlbusgkGsc{X_fp#MmJ|b2pDkz=#Y@I5SOUdD zt#7H5`#A-2OuIAKzpW35umhE4r`!g$lfjX9r}s%# zc7gQa(y($lgnv+Bu?Y&Lzsae3{>>CZuP`uX16L13LTH#tg|OJfCTXA!NPshvzd$}* zY3o*fb}{vj)l0{Z_U&GI>Zl;hlhQ4diLD~OmI7W?4Pb)S`pX3CYY`ESG#V{?uc~8k zx}%$t18^K@{=@XHpt8aT@0w>&rHnj)um=AkOQdhcoLRH?5i_%jjEvopaN);;z^fmY z11i$LSy%;zJUMgb%)&yi1E;h&cQd0H@DZt}CRqD~gy+;uEGPMlS&$@>wx1 zh;NP|4crL0dGoBi#d5U@V(QJzQIL;d?Z$`O+S+P?^foi&Cp|OhV)VZ+x3`l4qC^Fl zZOtAAUVoyhrgk}obuu|+>pds_$}RxCt$l&?GoeH5a@r36bDqlLS~$vNMc8a+OJ!n9^;wldcPnO=}hHvr9i>a@<-w1AlWr-TVFX=d(akGrqJ| z5P)wp4k@lo*ENL(R-_LM3@o&&u3U70@E!l>80}EHPd&h)nk^sk1r9%uw?D9uuT}W) z=sn&gOz`0DxE+97nXaYCP_8Ra?gr}d`x(* zkWZBKPNhHk2d%9yUm-ZUo_I~e!S7nD|Ic?QDl3zxKEGy{Yt+8gE%T8s!dzEyXkd9k z&FJ{|%&nWz7&iEBWmZ%kqwmt#bGw zMW87JhP`{9zQi3dzK{uw0D$2-$CR;jVTK+F|E~`L&bMDxwYSDE?W*^8zgek}?TJI@ z-$q4+YCR*J0EY!&(%#Im@vKzc7t)b*}_ErYw!i5W> z&7k4+|K5Y#w-ja5Dss!Le z`g(e{s}O;Vt)JP}R=Co9FqLZ_5TDdXid%SxY^sgK)cR3J##qXv{BFBci#=WZg?4y~ zTC0TJS{?V+-W?Mn$7uZxbm41_lmJ=wAe0M$fNuFtp%eiMqaK&fh=Z)g?F?hA;`OToLBhs1r?$L7HE7OgP7+`ip?uz9v*VdlMG<5-I6LJrVC01StZ`dSDkNPj1ooQ3Zl zpexIN6x7*PPS2)4rpXr6qZjSIl6l0g?SG3eOe`e%ZB+hRb?cvjSBuPmvdsOQx7g5t z8H+)oZTHV7XuQ6$?q)h>y|?m@{28ERd>Hx_9*D^o{t-Nako`VSQjr@yj{6mN`M#H| zMN`pc+d}JN;QEHoeL4FuFIenHA^sspdUJv-mWK7BFhyUSJLI=oC#CPQH%Py<0gt^# zw@7L?^GBD#JNIjCqQsz$bKk$6=y3_K1#B;_)HaP>Mc2SX^8_E#Nb>R93EsC|;?rA2 zMbSGpbftD@7_x#ao)Q;YcSy(h)M*R@EhRnqe7+RY&q}*)pLK}gJF*MuRk7Ah4Xa3Y zAj)!8;zati5WfNBLs3^Rc-QdhQTfOA_QEeSRig*7dbn1>!cYW9`95wHdBPEXfOjP6 z#iZp>lF0{PWY}rE-r{>qgh6bBIr#I=5QDLI!<~Oj6p|jEC_SW5Yg!<5F?7USCk*x< zdYC9)aQU>U9=+6)2o5Z??|!NqPmG`y&KBjn95tWUVfp51k#vCO9GIdewcnRhlvd_{ zuegze#x3Zr&gq?~T>0ZwU10eI&x2&@$21VoF~?jXAKIn5Z;LM6F7ZWKWVoI{rn#|T zjuzXG=^|^66oj2Gk?S;IRb8h{IU!k%i1|vyr zk+X*~)=PT^$S*I4#f~Yii3T#g=W5Y0E8OT^poGF^fJeFL&=M5iRe#5};V8tEIgGq% z{PRHgE=*29YAb?Kg={W{@xBizFwsO|V?kwddu+UleUkWFJFSs_ zv8d72%J9Y9%>z4~uq~pR!!r)D(_5PLFm^)o-JV`ec8J#VB=xWXwFwK}vy}-gYs82G zmEFkkE}{Yy^gzRHUuhXpS#wfL;CDjdR|OVw@NFEA(yuXX`UEF=+$#8arW_!{x*U6* zxSJT5^5HHxvkac6bhe>p2$*A@cIb|&07Na_iKXJmn{-DFCup0@5zO=3zvoR_nk&|5 z_?pxpbhfm;Pv@Gy2z^WDY4lPcBwzQp#Ko1>3ocCyu}pK;Ji{H`I2j(XVokkI;LtEC zpwQ)C;cC9R)Xj-s>0T}MCJ?PL#0Cu&z&Edk4o`Poq>WBI8P>B;oe11M_5|XQSDL`v z(zY?I0&WR3xL;69LGab5ZyJ#`&~%&dFKrdv3GNYSt5|@g6t~V@M;?wnu~?k2EACb%mRowf7Ka=tc&2XqzfBgGioZ-y%OY*M#+uBt}HmL zI%ax=+5WEu4*(*nzVYz_^VtUuQ?Gcj#c^VTgNWX)*+W1*7_UBIHp+Q3{IGTYVB3ya z55!UY{$+;~iz^?yy2Uwb&}!TOcajRhFl1>%wc*I71iiX1#qs2BhGX>z^R0XKegh zKdmLf(LGJZKntlPzvh@v-n{vvuD+gqEN|)Y3UyWFEqX;w*#Usa3t8pgOc7uV>WDB} zm}La*3gbm}C%2;px=^%MeyJuxRwQH9`<+2ijTJPGgBG( z2X=K_JaZ)PlP}S`syn2`?Q(?ic+}K%9X9%yqiO(nMlmp-mop*f!Z}8uD-S1e!fBu_ zr%qG|A3TKG0BL9gyM^3cpnP;4cMc1C8qU+(**M%%{gz{0Q8BOx`A$<-RO&7xJt3PB2X|DBs7x zm6t$Xhbl1kAxyF;F_DaWuPtUuMXRv4-6 z$*QL7qIAqyhXcZFM1#7S^dVfR71}exBLx4B( z3rdw2GU@@l3hbd?yOj2vu@M~Fws{W#qrR>+H(UO3A6^zWt>WA;@!sia7SuxKxv8OK zAXY^$lG_=rpS$1+-^Szg+l6shnSwgy z7z+TWWm$>uwgx5r01vtkdo2YjY`oxSac)b9IHVd=FP3R;eO2lad=*lhi2)FDA9D{21<>%zuSS z_4DXNM`)E)7CP2<+NOJi5AG%WRbFoV-fYrN81aM$`r>Q*0|w0MENPM<2y@tsh0CpQ zxS$^WN^7_mPYiju{DsW1{Q)rO!Ioil4{j&$HZL!{q$2g&s=Ljq&u*i%#y(p>=h+L* zoGbjJoLGfMOK@cR?!&oT+M}mI4JAMmrg`!_Bk;PR1vOGGKct z#crf%0x%V0gPS24Wqxu7;k>c{qcQnFE#t#s(c=5WRoKnbj0O~CR`e~Vt8gw6{n%_hp7#@!E#`O)V$`>?rJ!Wnk<%9c#@H3h3V=ekKjKGLzJ7vH<&^~J?)^4=t z?z-gL<$J5_fg#0ndFEv&JeUjZvw@7ij|Kb0^o*pf>#eJsT|75146;8Dq{I0YfH{fG zw5uW<5zfoslQxAnlGZvyX$KF81RBL$9N%K4ef4|Mq{adrbG8sLZAw~sKMhHPag_u8 zjZU369u{~sq8_)Vmr{VK0L|tKdDe^fFgo5Lyo8%<-$fSWhX2ETx6)kFVc0c-Y_JWC zrNxGkd|8%5={&TTaAVn~ZlreUeFxK8b3X2vhxcvc8QIXVf>uP{@O-hehtq03)ZXBQ zL*eVt7>lRM&AuaViVM3LYOiAGoh`Y1W-by9sG#=%nx1n~o;YEHPi(A*lpd0gn@Ozp zmtZ;dfSEUFdT!!&mX_Oe9LXFqqz0d8EToC^4bUON3HqJrqm!Yrp{ECSe#J78EqCx# ze;~1E<$fl^X_Y?ChU@oS4hMhEQ4GiAm6kuG6!SXMF)HDzF`!4Ot)ljNI|nn3>A>VR zuc&)1!eh0M+z`3_f1#$XGzVQ?T56ogaIcM-zpXNv@={)-UW&cK%4=v1xBC$$ZRQ;LY(8twrEU8d% zrh2BpC7H$HIi7s_ z!0qTOPQq9rKY}6f>&&m$qcsn$_~&eN|mlf2k7zR$9J9hj1>Wf|4A?IQsygcru15&1;}H4Kif)W8{dL7 zIX-xzMsG+F#D%w68kp21JGWl6*xMcQ5Br@*WuUf4-iw?NNJ1e8kZ*a5u135)YO*c{sC4dLe*}B% z3|@F#=05bx=$RB8#>xOd74;{|`4Vog095Cjcl5C3v4lc8Fh&tm9$bnRyhn zdzJb&nW9ns&pKC03ak*hv5xs$={RM#yg=2lL4>yFI$rYZkeCL%djgpPcle#heRBo=FCNU02oDg&8sWzf*-G#ssIiWnlg&Pxv3CGR$%dfvrxE-i(xJ{NB0A>j5 zt%G);LxrM4Hys)p%{{Rp;8{=WyvZp2km+sTK5>FH3)NvS_j?GU-B6MGnWfs1k6ujr zpy~%uF_VqF?(|ufvr)h?&tI%sz%)%NVG^3xdsxI@!ok9Axwi&@1KBVmD`{DrN#<85MBv)LY`O_oGAgcuM}L} zV*qghxa}XHb$I0}j!V-7q|G~MzToMdU`%-;w%|`%`pn35_+7gB8|N1$rIUkd482ZH zdB>R65$L2tc%%!{Z-&(uYI#jcLw%C_Pi{MhFqG;MA&* zjfniR#f52QXHyrUsxXNn>ucRS5_QxoFXZYNKiB^9ZH6J?MPQ2p2Ymy6Ab0YeM^1q# zE}Q*!b4+>ZL&}aKnGXwL_xS!5nQH{aGu;?3vwzf@#rWvnkvwy4$;?R>Dt@6I!9z02 zYif=v6pQieKq;1MCjH*qyEE?i;ul$qaz@Pgrf)8pfp6trUgyqopA1Rpy=ED-n`EVI zhdT2?DlIsWRO$a!u>dTm>gvkd9F@dealJpvN5?w+#t%iYH==!n9yL{odj2vo;h(uG zGyNVPd|4{I2cf7?hT5zIA%|kD8~*V-=jo&aHYT5s<7S%AI~(uY z{AL*$(33T|6JrQ4&lC!!dSL2>4e_;*Xni6l_2EHT*?usw_f1`5xa=saY#tbm63k0| zgcA!l$~G~ow1#Ol>eH6Yo)MfC3|fmM4E8o8+h6YC9>HLa0MB(jpK{A0VfWcpu3!#L z#+*=E1LGZu@0t_c?-Si07y_2hCvF?%U?z;A1*CD(7IgFjLl|92h50i40@rsL(?iGO>dm8UU*}pIEJe1#;wvuhK;M#2=8?_vytib%rMP%b4>1 ztkBa3cZg*Rh|R-6MPZPU&HOvV)$iWj3^qJuBs<3y0(*39Yzn^-TcwcCTF2|Ff)JQ4 z59Z`F#^0)sJZ~M~SeWa)-=jO^Wp+u$KZZUANqjDgYY8bgTiiD!gebpG;v^n%BmZVO z@bWb-$2-?q9W+wezOlRjp9V7ZNdW;uj&UZf|_ z0^_h0D|9uz%A&X;BLwHwI8g>X)(-K``P%sYNBO>h~_li&3zuX@VZu*&{BVVQlNuA>tJXc=|?D^^o-v&~fl>d7;RCRSs?> zVE9oJ4NJSOn&uHa@ROTVShcYVj$Nh%6)<9*VmH`#P-r9v)u&vPW8k!BzA3lCsw$3O zKIRIt+$~L4F@n6+r99EH|LS>WMcg@mG+jB)V<;#5+U;=D92kA4tVV)@Gjr+N74*%p$n=#_y_Hi{2y(gOl`HvgJrp*Bsy|8xeoy@G^4D;$KCtn| z77352-H>$oDq`TeKAo;GoqTPDJy_5x^f2QMUbt|^yI07AI8h926omA1kW8rOp5UXn zkU~eOGEfa>9u)N4W_c5}QS<&<3$pPuvZ8eFB?YOHqO9a~rYh+Auk%T%Z@#?h>XVf` zchgAz2FdK<-MCvW@w2WZE%XBf$=@hq14vu0^&siPlRk@=xVN;c4NT<_l^x5UxG0CB z@&xzYDL|EiFQtb%tMFzUmy&$oN_FiZ~w z)6^jEbX2}JaF4S5GVQw=hbjXe%DyXDZrxL$Cn@lf7Amw<4wdO0hh?+b0O@Ke6}Tjr zne1IIG&^$SjZ^@DF<;&jUjgJ`#L^>xXhMKF7W0*dE8sy1$BfQWJ(Qdj(8I7RAeZk- zfjB*+i*>Hm8kd2)Xa$3&nr4wS!0`>LZcfHm!=As2Zyi`FHsn zir(8aj?G_k;RSwX+m)7@4_p_t92>I+I*4}iB)F|rWxAO<8Jq~jgsx;`E|0R=xg%Gj`r|Kr{-wST61KRoB`?KaO5YA1W9RSsc{6{IFDX1 zl#_<6FgD1TxxxH`$Xj2sm5bBfn`37)gJ9;4!)baFDs9$h<5kFVKr4*lUD;WMx2AeY zCnIZ!?0^F>{Hyir+>M$`%j;wEme*fJ-MKw6o@B0YkB`0)u{id6Le9vR>a}0*H_+EC zEviJ^cNNn#S#}+s_w(n=a*9oRQB|zbDlux6kM=4(wwQf)99)scju8GM#Jhho-fDzN zoCTCoV_#lUv4qFvBgLe?&;^Yuc2GfjbF{AcIy|s%vhEZxPnVtlkoTMM_rFln8i1a5 zpZtw&lreYVSqntNY+Dvsk2eTe4-pLb4sMm#b|-9(78}A0C76JF zX@>2-UxXgyy-q~;NbA0G2<@SIXZWWVG0+bVk&3C}!*VHaeLRVaP4`xF;#P2^cJn=J z*GI2*B85Q+IA?#0)wXK6@uKrN|LfiTz^*uz*qM{kq9CHgqjIZ>30uMTNP&I)>IRm7 zs{Mr8rRXvJF{t-$K3X>66q6BywiJ#S>SB#8fx5`v9GU9yX(W_k**8z~?ybD36aq*C zZ*ommxsj%OQnAI4+DRjE4aB2?2gj;N5x{0-!71Qje4Usq7J{>ST_BcG`yA+Qz0j}kL&1xoD=oL{g#KN^n z!xD<2QK5H0JW${tWe1OQN8Ae9MKL`T7IcqFKj0a8sTK^{?7HgHr!rv)bzGPC$mj~c zs64>-)3RfWg-_z@rlx^6TP{`c`Q?RW!$B=%CS9MbSXo4Mi+NFd)hTp6W|qooiGbB- zPrUnUUh>rgJ-Fu?t3_1TMVi0x=z@#)DRbN*DS~!~v?1sVjM+=O+X!j@AcL zrwTLenYk(s*Di$vjFSNW!fgj7Ns+IU1`KdsVgJ~y^^CF!^h6%*1%FL9+J*Y_rY8C{ zF#SM1cK><~V?ILh_A;945S=T;YxNUO1~#&ZZ?((LIB3rGKI8N2dWHUQecn<8XYc9? zKg<1@pUF$1$9boSb5Pe*R!n%mL#!HG$ZJ2F-70$TknY8+UU@0a7c1a^PF+?nR+)n=K4l!tDL)?#l-^CGQ3Hd z%wj3xQ;yao%3YN;nB6*CwAgDAGBRPX;yLNCe(8{96bco2oO!Wcw;@(Lju5Vf%CsCdsrtk3JP?@Yz9v_WZ-^2L-36VMI}W2^_V9lH+b#QSwM6$c?l+zR_nk z{PlG5C4y^N(+y<);8gT3M6rp!FgQ%xqM-dGDt^Ymn3VHQwEne`ZlnT%dT3pv%=CnH zkIUlwk1y{af!#ib(&w?pvEENhec-sg&^qyzQ?B4CWeRd7x&^T-H_!Y})O0)PeKUtn zuaDL*JQ6*P`NI17)LdW^;Lkkc8Q-ddSn4$5OybXsQ}XxGN1DfIqG+}`*u za$MV0BtVzmY4$4yn#NYoypAHxZL#mp?>_0?V4Lzvl3 z3q1(ny)`JJ-wjA^`pD!$Dd{5mAZz~Gy~_ACATZ25eKLCZ%i)UnWo(IBO1WoRLf0KP zzZVPm3JnDzQ0Rugg#5`#UkzfU}W5$=a*Fn@($KDpI0V6h9u4@;tO zTXS#SVv7Yr_`OE0p{_rgU}KE!Ul17Nk-Vw-qT(yJqq&3&c-^k_Y5EfbEmvN?uCZMJ z;l9auJxpl!CruH*0;z+joSPlvuA-77BwOCLFF9(&U2G8j%}8b}mM)BcJCmGg=1_&7 zPDY3a87crvAgwUKPBUZU66ts;$Xo0NjF-}(Q9u>S%Cp$+w3`b#FwJ{1fO{+0vq@GU zV@2BFe}=$Ob_4xmTnkQJ4AaH7r463{q*F5RH*@sP;@NQ1eX{+p2$yp1-)%?8z8&=A z4KyRdaHS1;z&_pPa5M7mHjHc2(X!a?IYhU~S8$iL%jD9y#n1-xD++m&9dKCve&_Du zkRYdtOOH|t;_=uI60M4CBS?SIh4azw-wKfR;_K<{%Rel3%RWYj!b_$E`T^i~o)V4;Z}o`> z+>JLl?v|(YsdwQL{1dNC!KQv9lw8%`kvMq6WO(6aYP#I)0e!2umBrgHe!{&~F+VGBqQ_#M`p5=2wTA>8*1GJOrA5o=;*MJLaK< zxWr|v=J>DO{YO(LeqT!Ce_8kPciBuZxi{~?tZgO5=c`!dx=D#p)ZB-#@WvDMu2}P^ zS?_#wySlfh7B88MRu0#M*JVZ)*@l~8apJXXjp>9ns{vh z*(?6Kt-3m=Jn;}SVim$5qG@+h{ML^x&PSSE8a2&3|9A`hjfLxjtqooG%6lQ1cmD=Y zbtL{jrq0A4$~J8ON;Rd7r=-nRPh|?B#lB3N6ltGEX@almm_}fo-Eb$+Yt4MY~54UVj`R{Jxce33RRF`xz!|MSUOGn)M${2zE*9~D zjbPKeh2xT$7Htl`{F-+E0su4U<^9SnBW1faU~ zajid*Yk!J&XZhav=DK{EaxK4saMj+IS@|RbEPg}#)nQ3hC|l^Dl4M)2ZnFw5_dfkz zR!_+%w?DIEzv$%irl%KLOwroMb9_3@g|~b6TRBrBO{wp^^AHgpp3X7cbjSUEKxHO1 zGx5&M#hyI0#eb>p?ebd7;^%Irg4Z+(k9fOT0qh7Z-B?yZ!6j=1Zei61n>N(CNv{%} zW$%j~>bd}{5{hJO%@lahs<#TLPafG}mZq5d?z`@YAT|&O&6Qs<5|{RUf|o=(K3nKN zn}>jVkHpN!5+4v3-^zueDS7wHOhpl$uXY&zo1)UPRs5(EGriZ+rVYRaF8QtiQDbZnX`J$?Q$qpz9X{A`o@Z9i2puj zHU?zn(!^cAF+K=w;A?fE@s?5F@?fGVmlaskr z;tkP2=#%ZCzlXp4?bGhDZw(4D6^Q>w@%2MFtOvp~Y@s#5C0>7cW@5gtL?Z1csOhm? zvKUfshM4v4|H~B@%kH;Crf4{#RmoIr&C$#QqUnZoE&os-f}OQV_aZyq>ulOCogS4z z^j2IF!l-T1k(It9^(FG+UdnMfu4tKAZG#@6FEA&IV^ETEktKS$dNuLTxM<4N9sK&F zns6V?N^MJEso+E9t!uG(FYjL>5&O+S*Y6$8adWA_1Wb}iw=gqXGvZsf?Tlx4*u;fT zB17V;>z~%E+y(j|wFpy#9W`YG|;O|Iyy)$0;=E#v$W;2gs&`L6wTm4Y&b*&*?n2V#q0dxnoSx;w?A1Ju{=KxH0wyij;{^8cv*r+)U687-2kup6kt=UAi(@PZ z667BLy=T$K>X_9(53ryuER~f>RU>NDV|MWy(SFW|3k*40QBq)@N$G*9v3@VR|IJ{w z%06ea*@Ul9=9T_G&!!RFTcgza^i)yR3#_HQPHjW#s2?1Q zn91o=%3v$2s%SsJ*j2fG%}{Qtt;wJadYUC`2eX3qG2iar5kvv{OwH1ICs4R{ z8`QDASF8OVFen}Z%Zc8`|J(=*({pN=53og6D`yZ5Iu1WS*)t?m8=_T!mj$7rTlNc0Zi>$a~!u}qHvzpluXWxCdwKYj2 z&jts3VyBgorWo|K3l-99zVQCSD^~3k)mT$116+Q?=dO;O9kFE5ML&?PhJlLa&xJQm z9SavNW?dpN3@@@z`n_6*g7xxpONJR)nGPny<1bkQIM!zpXu@PACEc>I`HZatQs&(W zyUNSjZO}YGh_dE149b}28n*YkCtDKk@Q3|$DSyDZxLYJ%FvwnsP1(<1F%vm7J+a)p zC?Rx2_+Smx_No0Q{QVstBCNh*$FG8~#ATM$ZI`&_^o`;2#nrXUvUgn53pwm;c-kax zqLf`Wn6Fg%o-gcO-NQ5-UyrK1WCD~u`>Sw$`gqt}6<;X#H$^`JmP3C)?uU$08m_15y&5eutW?`kCFilNK9gv8?+{fAQHdhi z+rQR)>VK;xFphEreUl;jy`)bPaIAoTxp-gFY93H=FC?I3_)LN*;v=N`IR`0xzIN7g ze$uC|vd`}tHE|#AM|ju}b^_%49$c(P5-WQD*>P7ip$F8uvaE~ygpT>5tz@XOEm?`4 z>UrFEb^zwcy)w%yFOR1W332dO-th;=oZ>`>KFe^!YNYlgQz7vk4gnqNp`cgA+XNQO z;@KD81nUIAaep*{Tt!X>7`OTuZq)PrzHm|z@h~o9m6aO3k9Zy))?M2Tyxw38XW8)6 zHxDsVN4!iO`2b~J-C-K8O|IJ39x*GzTyUz<1nu$E>vDH%%@M~fRiFQTh$8&EcHSVb z+W={rChPFW=l|Xb@V|t45D@{X(&%yXUj2=7(#CwFK&>IuWIuaYguL5YU3N8K6_n?O zaOWURu9*676a-6#NkW&JUp3a>k7;xx!rU!g=Ek-Q%DcM-%7h6z7I8DUmY_0t!w^oT~8mb>dLEfFX6n4Z8WSC)Lp@#r^ae0>-bT;D5^+*qb{8#RUsA%1O7S7r*W ztjQn+s&OvlzUwnr!)AaJ?aoBs#wCCH8S_T~BUQGshW7FQJENbXJaJRGTwBXk(XX(b zQsiXSP;eQ8P;l%hJ-ITIQIV)Ov+*zyk!!W4+lLqd~vr1@#a4BB)V^5jzhWr%u?I!+iKr16I>HdMM8rOdb zZ{$VBn7e-S=)6Z>r|I_ISVUGQrAWAqm@64iJ426weSA%6(>)L+33V|Ep`3-85*(oH z>aE;>K5M=EWwpz3+>MTLx&ubzJsVZ>GL~Q#R2WQBVF;Za^e-U408vArrXy0O}a?- z*dQJI!tr9DO4zLwL|7xEtgo2$5#rpud)ZtL&D1_ix$^0;@cyWwRO$XPf zV$8`NgG|3%Ao0&w;@1{&clbv#z?@j2!E}5oZb4pwsZ<|z8=QNwekdZLW0+gSi*gDw zG86R(dS3Y9bHz9pqW`h)#GZ(;tuIa$Q)n0y&GPp;NS=My;=hBzq~D=gqqn_%UtSXj z#Ix5?!5a&hgV6b+ApeFWe-1ij==Z;1TJAP1cBTJ7!_2JuY8+zoE=8Zx0sFx89ow*( zQ9UBUXI5o~A`OSos*F>jxV$kMgO$pO_gB)BBdMMSt`_7<>QyoYZuD(6G~Awm0nwlR%k{Eb-EX4t$ZYk7~3W)31J;GV~&~Q8_O!TdA;Hew+a`MGxt$^gH(~ zl%QE7B4Sl;SuHQoU%q3hlcrSO$3?0`rgl_B_=P3Ll`aP8{ zq9UJZ1_lOC3!a7CYmO1k`XDVW&DSDk;QQM>3p9KZBs5jy{Cs^Iw5i4b0@~G;veB!a9Pq<>I8(>@$kzQ>4X ze^U`x{*C`iEz(w}_dI21>neeMrTg&aCzpEAxp(qQoK9DfL^ajeA0ZJ;@hq7KXkdHmnu@@|L(DO8TVi|i+H?aj`fL{3*i{3<84`W*0$u!KvP|9_Kr5VQR;KIG{B5fPL@R@I( zUh|O}c=N}}l4%D;3fnRq{3Z?P9tf?zbayS=crYR?$GJ{d!F3|>iHNB$YYzfl7k(rh z-(M%Npo*?Ps)BJ>o#7{4__L={VwxZ0? z05)782V<;{!U?@Zcq2>c&wa?NYmZ)8TIsetQMqYRi?+ciSfe(j?S>-!DcQ!g@3_Yb6N z)~@i78;T~>i}IcF*1MF`!V)7e@U2nF@!7SXp&9!lYDI~Zv<~7T=m&0Z6$!4FmJzf8 zsy9lieC$=!#ve#v2nXg9=;I0;zKg>ZdI23Hg)WqeIdRpK)1U+It?h+!MD4Zkx;% zr^wkx4s)7DULM&~)nApY+9psx@GpReKFao56mSQ^RF1(x{730uBwvTmT)cf zkIs`v@zTnbdr9<+$FVHbs948no50E?6}%K!z>P^>F$f_aDR9-C zR5TH77Y@g1jbHss6?qKWOqr(`=;|KrgwYL*jnm)#oL^Rqc82le^Rku2$K2JcvVZr? z2Q!?Uog?zptDBSj@p9K{Mi+d`qF1(?2D8o!_F*AAK?M1CqqyqLSEw$@&D4p25ik{u z?Gh_eI~_+G6ilXS7}geV(N=-$XN0a_gs)gSL0Gqm=O7AP&)aYrzT54DLBQ(awnUG+ z5xtOazBPK3eH<9^wSFAu`a%Sc2>G(qS|xF+&ET@A=6=T8g%8|bW$#@X2Y~~n@Q|An zX2A!|v2KST2k$6YPFHZ?J-<&2$byz&veSLJrP|F-opdms@b3`rh5^9nYEPR-HDcrBO|`S;uo{)VH6Ok%4E0&a;od?Rz{NmjMj}HUH(PRnpt#?Xvf5gQUK62= z=v6BXpz|&7i=Jb9dt9u6_fh#}Mcn_Irjh0T!Z@O&Ms796f2~v+@e{Vb7`^&H;uNx% zv8~T6Z+p_G%-3dMgl%fW7O}_ND5JtNE!mli8ll4@_Lp-$ z!6&Yo;Dz`y9qu|CCjW$%z zNXNl-l9meeJZYX~WWJqczQ!kdT=~cUdxJF_C3$3*oedXSgEnzK`MqDsx6AeygBr%_ z+OM1u>I;~NbJrM+9B>}lMWy~D1rv%4!$lnILk;M|ESS{A zy34>#mMbw9Wxsg?*KTyQ{bH_T`)CVgYveJCsoa3Ig>%lnD~fipGX)9QtvG7gb=0uf zx$0oL7o6|aicLNDkSZ}e2Ez9}5OLR&-ek36B#L{ZIVhtj#5a4*3DA$Sd&B)os%)#| z^|aUGh8nH6)V@8%nnJ^N zwp65>Pw2sNtT&XikcWJL z4q%^-3hxiED5pIxg%u9{w&wo3EMz6X7^{3X1F?TWtrg5P#)bv6l!{l~`^v5mb-I?g zM)&wD{h&Lk#I&m2!I*4beOXN@D6d!@!ObjVxJN!CTrN}(xNcmfBJ4aMpdBLGh#7_j z)zpeDzNoGzS9(&Q2GM>aQ`R5*a?QOnp7p{Y!!Qzk@-c~G`Zm$EWP6)N!Sej+7_Z6x zQzV$MwN>-HPy`k`L^=Y6&I5^#zG0KfwQI*pTesgM?<37F$wK%(uEX4)XK~)& zVPd2+Du@F!`P?#^d2oLyIOQVlax~*Ao5Qne=^TTN?<6n7V=_&66>ezA$6ylNxc zZ|3|geDR*zwv$-1=s_t^*jkyFxvDaeuiSPH<;$(V7Fw&9i&$fYMlV9AK#^nQWAvvl zEx>gkY4*O|13Lvdl_wth4q}j@rRjxym2s|NN{_%YbhJOm$o+2HsnO?)gC&YXotwb9 zM?bZAiKic?wsL5fZoItgx=H>QX?7B5?r~oj-=|hqCpUmE2@r>uD&h7ipQcrxG70_( z-uHkEza{8*&rli!7YWF)WTsYtdcexbfTNgsv7tU5u9&^M)hZwht-&d#RNq(DE$v`HZ`JxitUA%F1%N_2yE(W7T6P zw}(PlFyy?tf(8D&J!s!X_kpot11flL?$a5fRhG&L?N;R#nGXaJa8;C}fT(W-&_0ks z4PRY7kwKGqlJl$CLdrC0$sXmB`UP4Fz<0}P1j{S{#?mhB)ouU{={=JDr+74!a`JK` z@f8<%hKX|ijf98b)rUIPD>}0Jga;g8X2Hy+**E}fBJkee^e}cR0vi?T2;xosqY2Zv#&Ih!gfD~IbYDVF*DTcU zAV>RpSAqRvr?wE>FF%_Z9hHK=qbd&-jYO|O$J|+E>nubG8};auh1-gIN7CrcW!ZkK zKUh!j?9Oke{vD=7ZOBxhI$?3cUd^NDb1T0oIdWfDsD9YEVxqpxwee>TwW0$|RZA5f zb*5%!A`v#mb#eX5fe6T)8TBf%#a8hHuGQB<33zM;O<>~{j8@|F9wZ#X+8*0*-C0j- z#C_5{pQABYN&rMffod;g?M;qH)U($BNlp%b1^Jsx@+wD>k#LveNdNx*HJglMKcM>0 zDgzRE6W&(LeZQ;Hdhe*fbwC;BSAM*=OtNq2;6o z{8%KRcd+{MJKn_i|6DbfPi&G%+EX3;!0m&RECT<`pG zI--hL2y!SumV_0wHz;Jve1~SJCBg< zuwkj@HTLQ5YLdXRT@8BU?p=iw!*a-t#P+lbBGb|LoYnX$Op)38ep&HDO5{lIGIX&U zM*=;FAt9oBv%|1gtHw)FXeToFsesu=`cwbgSy`1*M+U%8R)&D0(3OKE72NtWx>ycC zb8jVPWMn8j>oIU21vM(Nj(QW&RyMBp)g=${r{h79ClGmhbuo3j8=mP^?~bB;zC=vX5)~8HR3g;tqp50IC&K^YKONrFLO5a zzcTR`i4fr)LVZi4^k-*gUanrC)g)$X^FIEu1b`sRJpmk))W(AEBf%#cmMlT%$TQb* z@05=AgwWJZ=i7&@#~9Dfl<kJZcjWal#ho6pHM$nU{LA70ZyGKsVbVlZFR-uctJ@Ru%? z^Lxik+&dNBb6X~+xN5)!?5|!8{7-t)Siu}XEqa&5w1!gkRu-9=?+eBpl$O2Kw=SnA zWQB${zmS5m98c0v?!~oI+TVPSxL_$(e9CZ`+@7EQ0Y~_2$i+=>-x0sb3`sM z_yuIpK{Ct#_n-iy*ad*JXx2nc9_1sWHWgVr^)J3gA@OegvPK!4Axu7rP*rH78-q#>r}^&YV7@XLx~wpbwD-;IRSz6s|8KAgkVh~y?|D$S2YIO+M}|- zIszP+8oDFS&=!ilLrG4CipeCdzQWVV>8oa&c;i*%By1Q8P+PV(v%Rg-e< z3m2`w#K$+v$r(XAYzsx|-nyx?eI2Ur*^OqaLauUhlrHJXwFF!8ZOp)x0V7)Bl>IkwgoUuS#0VK zX0x)1!V{RbtFex{bcoWgKb$>ew(e+H5ZX|bZLkd#M4(jK@YcNOCQ6!AH-wi}pPRos z%#F^{)^YCunHe2HD2=k;B6MIdS3XU@ZcAFFSQRmUR(=I^Op(wA$RKCPan;WR%lGvZ_=R1GuXr51R= zQIJIu1cZV2&&$abJxx*5Qp4Z!Q!i~PzXcu0d| z($_0}Jt-hI5%oy?N<Oq{7_ROmWT&rK%+Uem3KU zcXZWkPw$fR%EVP7VlXVJq&&HY^WC*wIgF1g3hZ zPWWHji{pO2ouZ?3Lp)H#7eDW3)D(fDFX0Ga)D0HegsZVvu#`32j=zH3s3l7xFWR}< zM2VrFX}O1R?;ISn`dFW9rFt!|msg&|0Z37**E+$l@Lvw5i_7&GYYGPM;)t`q5?0+< zr1<7dly{J37;QQY|H_LJg<4fe$jN7u#}-Z1jn>yTFEr$tNSJy(s&?J8ES9p8B?_ zBmP)b$=LRFe6I}>*gFkF=E>zb)mL5I>!>?&T2_#*s)Y1ECq*ET ziQqe3_tK%Q0MRkO?oqe+*KnEE)4GQ(WxVqCyftEr*7gqe4Kl;cuNZWHJ0pW~H}dM( zA)uxZ%O!J-CY8>besl(wc1nf#=*XJt(Bw#&mYikB>hqjLEy!$503A&%5#c%!Ra2t| zQs_c(dzs&1YDXisdJJ7Ejg)LB7aHANDwj^UjaHdgGR9FdlTG!MNb`7n_5G(UF=w_vUXE-=TuQO^-&|-1#83CsaWJrv---99seaiZDdN~WUGiNp6Wmqf4 zUl&U}513b_%5j496BxHjfm!f-?tIR#8mwBR4u zlqHl5C{pc)HbmGrnmbFyIPHn;UZ52OxLqDm&b0@&$CA}8gR~@MpOjYBs9e$|x9d%` z@=xWn0g4QGesYC%UM#869O6@WS_``~y04P^)r2AI&?%Pe$a#_g1^P=O+g^5|Vr(ZY z_i2f)rzh_j9_PvTUi@ZMuWL)h#F@t;EbUWE<5 z)T@IIwi1IE^LTiU5hvaHG{P-_m zOSdF$Pq&=zL)^V$?_8l-xp=XAUO*>=vywRoX3xpAowevq&E~_M@8xdQvJ1yNFKh=MkC8cfTxC1Qqo0@t^Ughp_?zQM z8D|`S)WB`X^WRE30D&}OXb2VN71|;z@{yB$uevRN-^nkIhP8gR`bH<1%8&pp5hA<< zxXNFS5P||G1wa!Q{}cB#W;{0bpYQ759oPW!sqnFX1;Un=@K`Yuqmt zX%1%~Vl7wJ5^s?Be#Ez9CTn~NR5Y~*9A5LwsR8Qh>eW14JV>2ojRD+d1K8!3TmetA zowU514;uBDk|oSzTl^rN)^R6G5)0Fj5$Y=|)({=oXvU8}&$!qUpxeA?CG@9ie?&IV zY_i3|%4{;Pi?VO>hAhddq_UepiM4Zm7HxkU( zo=3`8REFi*3GSVT{A!hdAVfjL*+2I=k$mG!I;r)5o3bQ9nG?T?d2fd~*AChmD{(Nv$PjqU}UW>OJeB;=KWzpl4laptJ zg%7h2PGiGw&uBkmAx!w0I%KcwTb*UBwSSu60GHa*=+xeaHx(>B?S@j56CotF3*dfB zU5>cTFkya~E_GEyZN2J!qU8`DtkGDX}!dlRyOoB4XG@&tSpJDZUR_aWpj_TS}Vc4SGX{D4MkB74piH+p(MRq9kYwqoK#n)lhPM-RnMX|$xW>utm@=koaVRdw)k zaRE0zDepW+^|QounvR9J5@_igm(cjs{j%F_7{ZcfHuYBDvYy>`a$*!a^h>?}r+u9J z7}p7z-S%5t@HQZYX9Ae6$ez`)w*hDY_arJm+9XP=G!`@2`-y|$2Ps~WEQsD+<*@i>6sQNX{(`PRtD zNbo;$Wfm9TQ27{73iLoy&?B&;C=L|xuIIuZVQ6dApJrLF#` zXK`63SR7xt0{8yUqu8(_gopIahSLq+>$Z;9`srl6f{R6otoXEZ8Xf1TXoLpVwjE~6mO8COHzk=nz>wQ<8!Om~cXc;dC z;>3R@!*4uBnYjHK@hfL_+&(1;8hx|^m#*Xmw|w; zn~utdt3Hp<@YG=87w_4q9>eevk{@MBiT=h58<)6@stt~DT|#~5EG}3bVceS!s;VopZvyWULPh z_}|Dq5s16ywm$=GAMGonX|ND|xP;>XGyc4RHP2}|Ip0fMGKC}k_f{myWqs;=@&}96 z5?1Z{wis1hf9r45b-m*%&M|hnjprNBbkLpITrzySzv=m?dh=L7Hy%GwROLnO8>_pi z5`5eH(kXc7>)}1DP3wFWLux74_>5iA@kEtVd`o^`KBQ!1TsmSAqxX`J>xb)MAqWk+ zzd&Tp&9`e+-SXy!vXch9tEdW7}l!)ZNz&A~-7$CxT3=&tE`6h9o93;~pHdjYiU5M|Ht8=U@l z9fnZjw%c|2KA!vUx5VeTI5`to7}wZ}&pOgh_RMy|muw?(LFZrJV#>d&h%#fW8if2TjY_sre5WEMdN`QCdx0 zZP0ehzQ`xXOcMWody1!Klq8p#4j19ti@{Dmd%YTY735pLMpO3u`*?SHsR3vV#b}0C zuEWA_r+zKLCoTM!4510@JO2AjWjOxSlU@e7pZx8H`keW9MC%KMa+ug|DfGd2W-y{AMVN1bC@r`B47ic#@A<lso#$b${g~A!&m#C>gp#L05x12|$gh*S~?_9{U3*72C zm5sd58mXc!x&#<2do8@N<@$G-!`hM22n`M8;3VD_)a37fR3nk=_L4W^zLRNp(AeDk zd%1+KAARosT}^hhMJ&5}-GgTjod$0$+<5d;baY6VeB4(DXVw$smEQjQO&5;F1*P(K zTI}pmU0%b5Il;g?S~iU*-(NOPCWqH_69oY997^fWHBRRgNwFPy28$y)TCy(IYJwn7 zEc~X6e@*ozk@i!9vA&Sa3#TIVpPX3ao08MS)J|(Zud1y4^WwzKTf17J|NRo@7v|n* zC@MbLh9552~c-3l_Tz1YhYc!ZwgZ9)B)6nh7f)-_i0 zJ$h-J(k3ZzQoTh#FCL>k;s;6@jh9DntAEy?=kwpkClW>joTLjmkjEc(KZ}cHwF6}? zIB-1vd+62nMXR%$j9c^A@vd82V5bQA-=1wDz^p8>>k;ei(``P;6_@y*jxRIwK~z2Eow@l2 zB=36b1N*b)S*Av{x`TwtL#)jf_!B?B<>O3i6tn`zH_9vrH~s zj+wXrmX{-XCgRaC6jk8tc*k3bwzT>nl55_jlkHqLlXf|FG0d=rrID)Mo{=nB2{C}^ zL2xNPe5g6e?|u?&xH7RqeSUhY7jke8OGdRbr&K9^2U1lb$))Zf0^#DWr#UDX!grv> zn#72;Vqf8769`F^hh84JnUQ$H-AX3&QgNIX+o%DAZ3OZctDw#qov2Q7^DF68Bj2>u zw}c}b=vph&Cccc6d<ar)IHq1~^nLZFdciEK*HAmm>)-mC$OLIq-%ikqhg`O*AI-q`$wSUU zDT;RcxZ5FGl@gJ>jy>uPpecl2~HYJ@z``|_&n}kcqK7dK}RJBwMyuC~5lRR?dNJdJ^d6jL(w(NuR ztFPp5h%Y*TIE^*-zO?JZMZMU+kOV&~RhLM)As!S?bYAqGIAz4FrI&3qJw0vj=%^1C zw#r_vo6e+9)ququ9UZ;$V;IDSsaZa$*E;s-17cG@M*D?pK9Un0oNfa4OwP9K`f50x zT^Gd7i5&qO^n}jw%GAP|ba>VW^Gl1*O~z|2ZI1u3mA!G}1?bIWWoL(Lfb@qB!FK22 z@|9HZNbNE3=y8OtLNP$S{P%Heo-YSy?3jpFFkEH4hCtxfftw=#Nbhq_*E91fhb(`$ z_9*{UTVAe^gO`4(2(nRnmS+mt7oI$5JpxzqO3(~XAx)O3Rj4!_qUPJ8%Q*BzuFJf# z&KDK%HHmU1Wo12~$8O%*U9TsExB^u!+y zk}LE@@R=^%(miQ`mNL#36Kr2{ejia2 zbm^et+Htb_NrU;ylell%={-LIUd(^^z$|cIC@1qqARfcFbJiE|FY-P`by%WNw-cm- z<6gl>Ds8D|AVCAP!~gH0`n*f2-D?QZzODFVtXE3DV(O_gZ=a4Q+^?@ZOyWb<5EJEN zJa?EIiDPpS7`d|Vb~#afc~U*(bU6q0$s5z*TwJN;`#XUu(Lhg+AA6Tkvf%iB!|`)A zVSS{uLogS%IMi*TGkUZdzxDdYhiSC0y?9IS=ul>9sT^%%!`}J=>ciffdv>qP`zi`C zJ8YKyK$%{Nz@4W$RJFX73p_E5+0tTlkbbxl^2f4y55^CvZ&&M3`+MXhNPWq_sgKkY ze4^;_9_*mSZeKmfYoJj9Zi(hYWiCh!4Gqxz4;TChVoZu;0I0CO9us~1eRlPyM4DER z1jTekUa2&nO<<+GhK0X6j31;w2niaST^B>MjlhNJP+6l}2pTkQRIZho2oo$lj}OjH z^j|9*b<+~s;8XvCST4Wcyap2f>K z={ha8+NH(l_aOxO`~psvHLTP~rW9XjIWE*k{ZkP96MXEuLva2nIR*U0K$W+Pp(VCK z?r7Knwc+Pthg#N5P2qB4C7w;W&NCTU87{82;FA@}$;o4$&PJzVst8}q9cHp@2?(jG zufra&&%%EgaoK3I#|qW`^&sLQ>A5Zh))L&(Dzrr6d)~{Q zp&Z;_m$=2-iGDc@F;WE+{yfL^(Cw&tzv8ZCf+E-PUE$25o8I1KrH%v1iHT!*Pb`A6 zalBRb8mY#(0 z7{-AV-oDwapCgtIPRpzMy2tpe%U_KOrujt~1tjy{cb90$;=!q$`PIo8G4t%sA#d)v zPygke(cLFZEA(c7+uw;VXIx~el(u;iGJ@C`kbV4>_xYaVV15P$GIe!zft<)yOjGw* zR!t&%Y%aWE`LnYO#h#u|T@s4Eu#NEz4#P3#M0uuyaZT`u*l>#`?noj3O9RhiaPmNro;2fu4-rS@<_-C;M>y5BTPL!azrt8G~a&yr*Cbi=ej0@sia|u{pZ~^a&=GItkXZQ{K9BN zReA!r3`_`s0J7aF&0e8Cc$sH7UZG6Gg(YBzUTzVK30)n-HkNeg-f>cqxfAA)#I@O^Tn$;a(KQ3-k|GC9=6#rGN@M2u5QjqL;1$LusuTqj8;Lr^;Q%lzb_<2k|g z<2+u-W@L<(jh^EhZ^>E5Px$J&?~QD7Lc*X15CejCI#8oL2EGNAzu)i63wGAJu5yeo z;bHw@s^Kz=sXCh#BE*A*PaB$@Q4tH<29*@BekP#~{LecJoc!Q8SP4RSW^ewk#fS;r zD5s+Dyf5}uUk{r$QTiPd=IsrDh9C6%(&?&hT3>LgCkW6)N9W)k62Ct&B6Ena$2qJB z(0<_lj}CF2kYy)ug9jiu8rR z0x4)dW2fCS958W2D;Tk%kb@Hn_w6gHmkey$)xn17QEPVy;Otf+lj&Gnara2;Ep^93IH`$&~v3Ea8wDa!nk)o6)cRTUQ( zFUGKZW##0W!J*v#P)FzEyYTSf{y3X)N}O@tR*$KB8vZHBuhLBaQ;xR2VNd88xL%f* zbm@rH)8%hFES4&0z#}&^`&U+0#tMF>?5~^PY-?PuLd~$WQYp~R!f^Vp)vKjZAP2a^T2&PM>~@1i_%Y1=W#q-Spa8Tt{}y z*|5phnZg-O{AX8`h{y_UV3l=bA73M0EmK+H0EpYjmgHl*=7!5rB&6fF9)MugWB6}C z1Pta4uPq72-J6~*g0-C|k*kcUK*aI(UWZFOVe*S`PwjP5izV8@!QoWjnwfCjv)u;C z5g-z^Z;24LB>GC~v?X)-Cp{k%eDWYR;k=WQ`qP24U>$)LbNgdmBOKtF-v;MTmCeOy z8rKO4&JOat&XNW4!VHZ2z764{a$e-JKUk2A9wNj?2C*TS*BX=FJ@RHOYr%vNa(o*hDw)JPFKKmNO*+1iu6vPEdKl8 zc+(m|Ltdpaka|AADDE-{bY)KLP%FNQyUl|ohO}QhXP5T>smDH5zBCHL3dq6_tF=al z`*2%DKvGbVSS8=Af2R_!tCvt->0%s;V}Jad#m?xU$C3?{ZCkhsf!x;IaVgE%M!`FW z)D>mkvPDau|G*CUd?+U;$6ivns`n53gE^FY%`j!C7c?6>C$}UjfID;!B17D#AU7wfD_r8b)otwNIYQ1Qbq3Z zDa7Za*vz0~$&r*oAjA?Us_hv$4^yU5$w1q#Wa+@63-4;pgc3v7bHkT?`qzjQP-fCh zGnH>W)6DaUt6A)w5>9+a#j;q=kCu8~U-X-O=uE^gL1ed{UAN^+*s0zXFsA)`#t%k2 zAPi$8vR!OYUao84{vl*%KGOV;WCAA@7fd(BSln$LaLce|iImD%-?)5z_v8~e8Kw+| zdo05tjKLWIhSm?m0*-&_ma==`!Zchcin4##JNE}%7AWrwjE)n9K5kd&KEJW8@9SOG z==e#iBPseUCrFxS@BLHAuBkBx#WdAS=e@PP!Sj9hGH#~wHtUX*TJ+ScrfU4ggSJc; zDNC8RZ{I$iX~6vyHQ^hFz}*jS%kB9bdjK{|8F8NvsM6|)ES}wvd+w{a&pV)LUA#R} zVu31t({6By${)Zf94&bn+X2Eq-)86lkna!@refIjUl{zY&Ub*W!zFS!&qQdxPP)yI zU>?LaLt=5P1Q!+Ep zjf{>)N6P~6Oejpc0EIHv)NH%|?^`0v&cuU)OUk(uf@(pM0+mho6_M;^R!}n4LXX0G zTIkf_$)ASiJa(mwBxzRpLIUOD2P7rYQj79l@Efo`5Y`{k-iq#HUqD+^lr;WN^X;=6BkI5}+=a z6%J04fC$6lMa=(lxFg1SBE?BGsa0$sQ&8Ga0cJz zE2hTne+tLGx7qJqDa--F!2C`etvkSvqY5R1N|>9@F;roju9jC-MMH0}u&g|;9FCH9 z7SP#V&1n7Fo^q*Rc+cGA!Gj0ofIW9G3RIv>4(;_Z<@snuCgZGMJct>E8D8dK)Amo8;;+@o6+Pw`By9O>t{+?c4}Rh(I#0oMV@gc zu+y?&7bZ?&38~$nn zAE)~%Nvz?wU~RncC!Y=YSUc|Q>QEvq!BDf8mr_h&IHT^E;4fg-q-c08sbF=Gw~rO0 zc79{_<`VJ4c10hV`fctP7oy4&OsFlXKCsqD!?I?E{BQNCI>D3D&oc&oiU-Z}4)%NV z{ivJ3R6n+7rR*EM&*=DiUpr1-#i(%ZPl83|&A*W#n`SA_#pLH7mR#Wtd%Jbtf%-0^ zP|r5>PW{cl0vFphZgEfJjCE7xAHw6VR99!#o2Hx;GIet+1YS=;PVNhc^1#?2DXRmY z7@c{ppysT~>%4y~C!#JEz^G!O`|t)9TGTgB;v+mzG+^1i>gk8_4*SL8Xl#9rm`}irW2I^p}vAy~@)-`Gvj(p_A0QA}pr~p^0 zGs6~tq}hX!OVywKc3xj}^1kQl5vT4M{>67etR@gBv>4U{aq(Tfjagyuiv4?5Mkmwn z{U`JCw2)9MjFo}k9R_Ztb%c_a9)beUz5Ma|cK_`MBF*pWFZIH}tbyabi2YL)W8sCv%$_|8aeoVY6y~Wmb!(doNoL#}jLK#gp8$as}C+k@`w|uRo zCGc#`PRsif91^rSjFc1*;027k;`N@Nmcmphey#5<@q<>;e1tDF66|C zXI1y-=Qp02qr{W&in{*3>n`$Vn%S@r0p5e3-ak26$SAQ<60Ac8{u!HC-;BK2di#Y^ z0;N4T=3;(e+x$Uu2f$VrjE#(psw0Dae0;{P1MSVzA{ll28w9@L)%gdn=OTr7*mGjj zmyj$&8;%79wz1YR1T{x@J%(pu9@{ zasf>RuFLN1LHNzV;NF}*ZS1m<3>(&K96!YoqtqpIWIuNEW$}-Rv?x_{hLMGsw;`F9 zQdl2$&9i$xqx<~_@H2bZs~UZTKEHqeftLIIY^X`-aQlU%yV60=<{zc=b<7D=HXjky zPH^&cQ9fSTv|(df-po`Ie~^zvWjlw0Nyayy<+OzFlF9#t%*kXQvwM7R0<=MGb+ACz z>7{{Uc8Q;Vf1+mmxRKWxtTiaU7;)|nvliQV$4B2BN&-tG`Oh4c3JP593mUbVY#FFd?rWw@|dR@Vp_<1>f*}IlTuPe^1o2f$m_+)f_ z@pD~zh>e|qreJcKZk8iLnlO1?+FN&x0|M7!1e`h!K|y1{sscuZ+{tE#uRQyEEVnhL zI;lmJGgu&?S}NWIuNX#G z%bonMpBd{mTI>`FCdZb?6rx9;VH$&b-4`3|>`v!*R10hy;IUzkdU%Kx@9O4sU`X;O z{b^-a7Bw2&PTxO(G2sTWg!4tsZU?L z2NKodB=6jG5HJtvV5Dn(bukKOaZuybN^iA<<@n#Y7f#N|xTKY+z!sk64n)w|K&hiO z1hO$~;Xeh1vL>mBt&Th}N&3W5F0LA-KQAaTN$S)(ND~cp^G+%!X;Hbz%rbpJvC%6u zi|TLJAFh9c5Z%A>yav>UH!WVa?8paAx3$a?1>3cYYHB*cZnTQgCCszvm@&K<p#7UMT(Xc7c^PVfxp)=2gU9)Cn2%7gI|pgp2qIpWGMJf0@7hc zdHEqMB;Mv=F~2A(11wDOW?65eqN zY?BKdq@b(Bg+=pJy1>_u>+U zZpX2Mb9Rtq=1}qab$M)6xp z-Bgy!RRSHt3Eoc?C)WTHjd}CtXw@qeQD~wEC^g0n-EmeQ%v|=tMBlm=d;`&exoQcW z^wQ%(0$}5e2g4}E-{S01R8p#gDf1GepJ{4;rGC#3Pu&~v{(1YQ?Wug$KV{h6jpbk0 z-s{A_OGxlwWo1n)+E)cu@I*zU3rU{zX-&1RepK0d1utMFsQiYIyS!0Q-0|+$ujC?g zSC|Rj8Q5=7s*kT^EEnX&((`b~RCDbr+wml+3(1lp`fI_g8o)6Yc)%N*B_zQ4g~-vD z{q;jh{?Qhm`f|y)R)20+^{mZRCeKVUV^ssqbz`V8ED)Ff81%*n3&Pg+wuPBl(pyoF z`w9Ywq!UM#W@jeIA+3Era7@>2wTv*Y)c#&k4kG1qy&fltvQ6@gu#&{&m+bDkSo8`& zA}(-na!$AXoSOP%Ic$Y#g#KO-*fGHC>+@682yV0S)DW)h%oq)eI0+@UZ?$!*(<0>_ z9v)KioM%=U;qEa*_{{L|BhZdj8W|aB#~1U7dBZOsEq3a<8@J$~?ov-SE5cv!mZcyL z$ppdPUkQcpbVgx+Es==6YRdy+NOo+-COGHMZ(v-Q(idJBi$lwW2z0Q4~4#tj*mSwe$A-N@?x zj!oa?(xkB4wl#BBCB(A7veR0p}&hMCR-s2B3mbtk{lB=@*aeROT80# zVK$lOSR=$8qgzZ>g_`I3AJeje;wcaqj5CphZ==wim=ve=2Q~Ruj+(L7J=>_s zPTwMS7P2DvAA+(*|CKLh-6wFDbp!I|XXDN9N_u$91@m7-IE#A0Y?_#{kU`$#fQ-Tf z#k;*Lh>cb3?h-Dow`xRj#zcqo7LFFHZ^ga+N8cOz8Q28H^ZZMogv5eFr$9jiHLJkY z(Jh<=ak6fA6t(yRtyRMVkCEZ4o+QahKennHH>zPkoSj3KAvTY%B_gE9_7u=zkUakLAmo&f`H!G(o(*Hk`mZ~H1T1k zc%W;}1X&mVB6j-ppXVV`u35w*8ee&Q5SpyZ$MKSX`-}Fw?hdpA<$?DLe?2ji&zicnG)P4~A^!o+ z$1QR^-ePE3UnvUR`8e%Ux;hpRlp#9jI*@(Yb(cph4DCa`yf6UCtw~gd#B(2**xXkF z`A|bSMLlVVapxaGTak@JrAvjm{c8vy9RHJ&9d&m}Fo(YOe^g7`MTJ?90gytS5ivDk z!|7qj?N52=-0HR;HwG~9_PHFXTaghvzxAUei2TDCYec|Lm;KD3p-#2S%8uy1$nD?BjT`qr&H< z@e?kJ3!$>La>ry|)>RGA!)lSgfvbEYkZfJ+S77-_@p811escIODhmZiyxkxn%Y z4Gh>%R(Vvdt*zM|iurUWWZLEG^FRuSUocS#6b_QFukUp7n&D)_=t_-JPwmdsvG~LX zF+H&1PyGDJg(x%sP)EnCx6#n!fCzbT-tymT@hhN8I_Bh+AK}M&UBVeYMlo%PnOX2S zNc;6j*?j!`HPW>R;8*-RM!#Pz{}9vF`A2YHR%$&==g*GP5-yaqvQ6mI8*+5`DS73Z zrMWZAYAKvMAA(FI zPvQ&9Z0vCoq!Df~$GFLgu{ot&Sy)(#--9{0CDqILP|C~E(X5=ilv7?Rb!jLAoInzE zsfNXZ1lxrRRe`o3}9T}siY z8Kpo>M1(?MXDj^6(j?4yu~M#kdwVY^|NZ_GQGl4?4f{_$&Fw?MqL*)-z-?|e=8&UN zlN0X_8^>`YBKx>EIuvz;rJF7l1EIF69g}Zo3Dw;xw&5#I)m=u z`~8R%=-xuZiTFpVarQ7LyB!4hudeZ_{~durAZKb?TJBilLMldvhpRa|SEs|g)xTZ4 zrQ;idsj|-*-za>E#=d1mFlDoYD6=Uumm>wV+(>>uRl-%c%i2?->|$>YT?lSGQT)U} zlei4eUrRSz$31d(w!DA;6{l`Kc&?txsVS>M6sl~_fv#stkDs|4_A&MxxWTBY^-m9{ z=lDTT96h7Pa2Em6T~wAxR7;Md z(fsuNbtWP|y2&QtE%0oW_4PLki;60MLgQ$DLscKT6*+x+!=@_NBrM&Q)p|DcZI-}I zi^r8&9gVu&%IC;>(EDG_%{Qv4s@IpmY|+N>M#@%DJH{TO^;~T?eO6{5C)?jD} zO6$(l8T3r4V{~B&dqfQ*_=69FTBAE~Bs4>%-ru&#fjjKI7WI9IUc!RsOvYSG5XU9N zxzC0|Odhp+K!OLeANRVl`KvP+d|C-;9Ok!gH@~TJ93t82)zB?YYGax$!WSOfw3aF_ zdzjpRXRg`5UjnMp0L@wu2A0dth!csgs;p!?-!y#XjA0*b;1v7=dWcq^|C%1+y8XIRcweCpgHoE6bq!G#oz zBWGL#=4$Q0ia=cSVgxhF2Hfv!R;?1+K*Y7c7?Wvdl#-lW^6uU7s%7Mtz$RNbY=k6} zpYgzgyvOl2juu1kuyTSyMc?$rqpo4~3VR>KJO_Ep!haIPBw1TefPyyvH~xicv9lnG zwWjSU`V8I15i5@6KO0dFQ5qd_!{dKrD9jHNU(5gT?S09Pbf*P?XY!3<91HO)U&PF6 zRjw}JZe)~v{%pq_lQ_|{;fUZy1=>;n?QnbKZ~8r!E3yTV>06u78>^=*V_&2Px3vqGa8Ck zV4dq~7`n0_Aa?HgB7fJ9uJYbg;tJZt%;LUJm>dUyzfG;|D$9PLv&B#9e6fN;DQ`i6 z_#FT0W8B&4ntZB-#gHo_%%7YT0+m-RV-h_$dV6nMcE0ZK1>ldIuMBen=ET{(2OYjX z%Z~j0bGclD%3B`bfFn-(((sAow}o;*QkXMYPFv39dqsmKf8u@#E>(<|{{FGAr* zJ~f0e;^--z@+ru=y@gjsu8;$X8wIe?liRon1ap%+?_mnD}0rXzKX$ z`+8wvc@%VI`Nd~ZNPICcUkn(+3%ADMYahC}1x5weR?x(#^Y(oG(L!?kU?)1K*}>wc zJ?jEiGr71UZZKkHxZg0w#;YMUB?X;R(bnF6m?U^T>M-$NF%PA7?}lnO^7%)$g6fIQ zrQl_^a}|OoMSDxoXsfC(wzUvOEScsjPnz93ZelY_sdRZ^IXR6*c}^awD_Z)R3HMfz>s${W2< z5bhI%Hg|!cvWTO8wc+31d*0k6Y|`|l%}bLBhuY5~eFsrDaN57SlZLP$9$Ey)<^ar6 zv(&*j5zkypi|I)eOqDLU)@|@4&7#KDw@z#f4B3`2HE%?>qst8&s~quTV@u3PaAzz- zdK#>0c{zNKkOoVh^itsOM5Z(Q76dlAdwmE$&IIz8{G6ec&LrF@ww+<)vl)yoxL-&} z2)d}K?N1rIwL#b8ifaO5(A@&cThCM;FnuzrFd`$eON}zbPQX*m+^5)XGOS6mQgp!uX6e-udRFY+p?D?SE0 zO;MCUJPg4`#D#)lvXO~lW8)3D9Ukc{KLWm$8yDLP% zi~M-_1QVmsIXNqy?d7^Dd#s<0UE7gz0y`8ZRPnW8kFlxo3_MOi1d1>8+B@b||I?_y zSe>%tEoR;1U&e=D{GF0kf_HE2`jrr7qVP*ij54{pnVyQ;cg_qEgG4N6b^%3@jAhL} zU#NLT#x4b>*?Ji23`{|@$dTNa+MASx#+_~UokW2hEB5O%-BLSH+a*@!C6^Z_>#tE&_V(LnI`l>uzVVoKLY|q z(CiD8Fq8ERJuC7HG8>A9&}vJZ7*t4ASTmn4iDLON$+5B?k1oEZ+#zpx5x28kc*k(& z@_sEM$N<1F?TONsh~VI@?@W*$HJl>U%xv<{?`~-gjTvaQQn?=8VR_sf0d?9>M7K29 z#!VB|0>b4W4~<<)K`@5>ymHlS3L8kaadX=Yd&guaaNybA5(qW`?TBLlTIb3Vl7%0xY#7}#`Cht-u&9>1W|+Fh$qN75^?J|$I5@r1a)k~ViHV5- ztwJ2k<8He7m4o)~Dt!)c%XReaaTc8}Ou=>%T`_yAmnsyWwd??o48**W6@bf%(7YRS z*FPY@!u;o#B3pZy)v<>V7yY)KiDA#Y+8%dvkA@;En5U*@c_R}fo2R1rij-x((Zh>4Dsi6{3RBqh7&>Mh#SC4&}cmWxbR_Gfq8xEwh~E zfmwMuG2=d2*^3|cpQw}B_VQvKOk+M07!&?-2C+Ci-y?Gq+agnAhm$U%uz_EH9*`|6 zLnyA2;^HOyx3N124fzaxqPeY!JkoGO-2it-M|u&_{2Um3>GcY*pAMY1F?TL z>{=R_1FmTWP0q8sc|X#|m?);f>&9QF-Y9}#c~0OVd>Gsu+!Pkwt}GQ65|J(6c;#LN zs-?@f5-1khnlat39{e~wcQD4%VmMUACG?XO`J$YXGZ8b{^e7({22C3u>^e(w_j(ez z2pl8>R**W4LIX+Sx^Z}(bkVk#PurY=iYtE59#8b(;BDd9E|8H^{V7st^Jhq8%YIpB_ALizo?W`6t&S)zE z)Lu%xHEdq?Qev#%#x21U;v$D2O^Xw=raML6R)y6kE$m>@K>*F}xWn1AHc`=?l8Upv z1W9H+SZhZ=zhP2VfpkB!uQ>~U4^MgY(8Imn7e zG3st?shyHvWF@x+ne+tkbz%RG1m-h+$e~)JimP6ob@Olmt$2#++K^=agX=Tur~?DX z-`HI>p<7in53mQD1uON&%!m}7C11C@n`({}3|s?O&qzr*ZCT-(z`3$G7}>QW9~|1T zo9U*f@Oyt+XncGjguxyk2~CGYd^)hR>!wUu5jOl+L$cK5<@tKR)#HLG5#&{>5_CN8 zdFfT`J`=Xto*aF_CDh*jD>%n>th-?I2wK=x0->;yl7_5F_rT|3Uq}u$7DJDveB4}> zCTnKgwfBBbx~cZ2hxX2-BU@K`tqJ=c`~T*ae#lpJ`xO0(xH2dr1cHx>gnb9>&e5-# zV!&5if14x?X?multo)dPy#sJFHF*tsEAob+xseNL6jKEn)9pa-KuumrLuDl%kUT@VV`F8SG^ndE~FC)~Y%&C0eH%LW$rJuo;S=s(Wk`_35$Y z%9?~$40_Y@H^d~TYlp~zwSeN0GmK*^eTop1uPa?{2M!3Q5$IsR0d4HVTK`&N^d>UWWcoaa)wOc=#-(?%wre=`5 zH--$WrKreuVAcoOwV{D&VGB_KKQCIkcPB~*5DW6yw3#8^exTenP0P6_@uWZP6%N;l z?93OxL%W9z9vvN>WJtnM_jMCT{x<(ZT|`9vLs%1*=OpIXqw8zb=`z^(otK3gIQ$bM z%?6^(RtOySYbGMsSCh)KyrDla>p|*OL?2~~yb?m>#|rJYx_6>{r)e@C&T0NI&@48@ zU~rer7BDYRMs2Gsz5W&Kks6;)tN)p74d~@>z93Kps;Xl9T|6Y{&p>&595aiwoze#o z<^;3ybC9&#cRT9VTVhrj`lz_QRj(?b9CAY$@K5{S#Kld*@0<`(O4Qk$kd+wm>0)7Y zOzir_$Bu)H7(m19=hZ6`2S~a3b8s3cwF;kPfNUa@fx;n7O{v{~6a&#!1$w=Y9v}bv zy8^-b?uS>1wUvz{%=qNdZ}7&Jm8lQAF@&apkOe3qnFj8qlY{o}^s zXJE2(8Kf(_W;b{D@@TQJF`Mw80fpgvmjl*boe$`0w>uGo-xt7Q=-)u_(fd++&+@Zx z-g;!1`xNHa&??m}sm}_Ixphuslt*FfCO^KBWZmc?w!a>|3R)4oix?Z^g9L%1e(3>I z(A~RtyP9k|md5h&czo*}YP`fEjfNBaatMVUooZ^jB{x?nbzPE2rId>&4(??T$NxL7 z#^;ofNJTn9ROpq|;Vjp`s3%xgFR{=O(&VEhiuuT274__XTgQTDL9G8=9Z%TYg2c90 z;t(423M&0w>06kwZ|>eGeaCk7wPgMdlbkQZ{&S|=%rgYM#|=r-m8d1A!b0JS*Mp45 zBwV6bF67y6u&_W&B#$LaO*dfl?AsRn5#fJjuzExBsic7YB4p1RvTFs;zUvwuMLF@3 zLJp_1uQ-a)l0BxX2NI>s=M0!3h|dze{8rkQ4KMi8-DG6$0i?~}_tnVSwVO9r7Uu9H zfDCg3J!hS;;(9&H_oW{-!A7>F&6FCvsRG-Y$gNpexHLJ_KihtyVA|quNS3e2eZ45L zG3{lF;U4aT(U^_dvg}v^<^vZgvZfp}zA~`bOBl0tq^X#V3pT8?B4=m>!5-$Ot%Gze z$Tf1a*DGx3wN|)?+2@@y{$Fnmu6%53;d@D`#hIUtLTz5+HGIK09ET)l5&~k!qw+qb z)eoSboR(oOP>b8iQs4bNj>(`rXOL%fc!+%sNb1_y{u(HDd&(5wv6lWPpJ%83PJ&Qz zEX?XVCWiS{hj=!qUZ`A{8g)SFqPQDujs|zU5actpZ^)i-ci3I`jp9p}rECv`wXu&z z>2+Dp>gT(TA|>Bm&SDPiT|6ZCy&$OL>9Lm-gN78xJ}>DK+3x}JZbC&dDeiCX*kVYj)i zxA50IQ(fP&aQwV%vKqB^JjU{Q40AIEq(6{vCf-H2ZeA59FE9I8UgK!+|J*{3 zN6jcCj_qjjMJOpKw6Xo+_%njI6e5Ew<`WF*;Gzb1C?Mk&*_TdpKKEy(tH@aRV=CPz zv{Rq`JwH&hrILN-rqS*68dVMxT)T@+2dQwIeb#MleMVA!{muBEf%7DBJ0~*6tBISn;3aIl;HpmVYH|~efz@%+E&=KMtsRntd#K@YSQCF~i6B$65cKrSB<<+?Gx}hg! zJbSm^v^m$d?gZMNII91AnhVkRbZlir1VOXlJN<8j0$@Hn^?{abj{2-sYty3Q(nqWC z?5wO-P&#^+@f4*#>eKn`$=kxDx)!RqNYYrDmWO?p?jBiNTdSy5)l)hDrJ0V6mE6LQ zkqkp~TcbI#Jd8bb_uW#3W}M(^U-2y~{!P{^KfdniZduju`Q41D`AS8q?d_}FnW2XSSGF-64wX+5cs*{|%O;=9NL0<4ifLjyA(g zd)qg3CKr^1P1?|dfm;I@y@AGV8t6~}I^uV?I}O4H@n~~LP-or00D1WA&Yz{0?62zz z*NeSsQFsNxDrMBRf#N8Eu%_;;C1xP)a)MSXS^wkJu24OwJxyAY_Z*juY<>4=Q+Pb_ z2R~Jr z!!}}IaJWvRDda=$m%4@q0<`$D@oe#EPj!?DlnYby4drh{sb9zpow!>o_r*~Cbctm3 z=)X*+hW)pNMeF<0Kd9j_GPT6^X*!jRU2t#FNNO|17xvXM2dtV|2p`S;(xD4Gg{jcq zB6|w={zmp)u5aSB+W^7p|Dtiu#Agu7XB>T>X5F{b+g*7A-)eM=J|%>x+M94+48vyb z7C=Y3<6CyFV(A-S$B&Q_{9TMDBhO;{!hae}vx-AFqn|B()70g+=wSVIHflD-;AoeE z0OM_&jnrDyUjRs0&5{GUHlmF6>tfYs`F8?lI!~(BWBQ!yi84_ z!fu|I6r+&Or@drG+yaANiQ!4Yu8u5_q18p6pkb;ejGU{r$&w{qi44yA88xFUI`1g0{8ElDnCly1tlb zD(cRk1?JVSUc|_Sn-^6DcM$)chkhmb@U1(4+f_w>nd!|ryh|ZhiQc8@QD&Y%lHVXR z{tzXZ?QGCP=ctcXaI#3=Ou_O|Qboy1Bf(+2mWoGL&Co-k6$KJn{4oEm z zY#RTDUuurbbL4ikw-;3ujqHT%5s}a`w_;pTFX#fDg6HQq*_N34F&Wa9-6VFD^3Y=% zie1tzDGmcBlsMTT2lPb!{E>d9o&_5rR{y7rpegOg1zFgeGqJP|MItrfMgi?ZZnEt-D z2){aV&q5jM>yuYdbj?yg3S|MGB@2!QutB_)i~P5iHusU=ds=u`-E3(o)=xSwCU%bK zK!zBSyCrr7RcnoVla1rpIQmo~pSqh+lK+elwjjUT#TRHl~6rieVTb@t?$s3}&eODyA#k#vrR<5Oc20qPnAk$}n zQ$!8K-4p!$p<>N=68%l$ui@BTo8fC(v{D@j$U}X3v{*0UaX8Rz_4EoQS$cH7zes4L z>^gGT?Hm9aQqa37v%OT=-JarxSv^ae5uqNt(z<0EIt&5eqJF5y#n^I)L+1Elk}r0T zXddMb{f)SoGm>aqHn87KrhnZV5Zg2IJ|suwbH7~q(nzPcv>HW;U+{M~ovOJ57+Su~ z$a88hLmDnuzA-9Ev(Kt@?z1tQmZ^mZ5bSdvP}K-NxObXRXridh3L4jfMPE>qxb@*HS zATa8WkLf`A$+ei4klu^xi2}Eaq(-K`)CHY!J)h-m)!xy*SEJKb7t$t=A1f-!*B}jJtCu>S-|!FavULt-^-4FHRI|Mpm{D2dbS~#e`2tZz&lX#`dodjc!V~Z;2QRXU&9>M_U z5HOGFNtrl8^4S{JLI8Rip0KuejmI4)-(@P|oiz0d9CLac(BC4Zo zc{}*Z7+JIGtJu`!b*hnSGC!c^C$@8Yq-A+qchnFm!r_f&FOI3l?t7*ErF-l>&89a- z(;iY{h5pxHVW)Vo?JuzE*9DR*8UDF)K4H@8OUP~tNKyz@UJ7-;0oZW1F;mUDWe4~6 zHaxt_-1i~8@zJt`W$89El8Ou)C4h0`Y}yVDhGS`CCTiK?*z&f4t3J1Do_Y6DwnYhZ zx+5zpw(@>vkm9RAo8EM}Si&#$lS4zZoc>SuRZDJEPb{&hF{XJM>?mE(3S z=d)Li@e*jWi$0&IH@sJC=U29Ti_0X7r{+Sk9YVynV1-GK6{;ExgmtrTsZPvk4y$W9 z`g9ZsBFm^##OY$`2PFPSNcvu2NXHV~$WWv*e!vk7Hrp)Wgrtm;-!{0?JNxhCcf0ML zQOl<5N^Q1F7?-~>ayz}s>j~;3rt<_{S}!$4?T^D(yp2 zKE1d)&pn@Qd^e^nu>M0ym`Z^dZGVr(WB$3kv2o^YLE6J>7N!bE2kxS7jr#aV+nfF_ z-fSNTa*z$K2p(WAK)v9}0K)91NwnMbGKU|_l+IaisuZ`=ES6R^PVI=8xSigkpMBt1 z5K>7BejJHd6|AfTtgy3#{(q4f*N|ILQb+UMK(31Mc7sC0cL z7AsoV+OngM&3qcJA2+VCw8x#{UB=LL^}W5vD){j3jqnuX!$s>VS6|@asCBD^1rAKs z$QnnlLZYjWX%qz*U)5jAYKiTcOtq+Cex2xqRcYxWe1HFJ1DN5v_F`#ytt6C#be^;P zWn^XSDEU*vD0%wbk|#&hni1*|PwUPj6#p>NvZ#umtr2j@X2-dKpiqCDa& zAt^_Z&$6zc20iGUTHJZ@8sT(+x8}xv&B|;6y1HK# ztX?Rm#BfsZj9c^Yc^?n&6L*58gHVYI1xv}^sqR9;fS_UF0B`&^+-)uN`GdYnCkzcg zzQPLWV2m;51|8>*ls z2@%(_V@>N#4<8DbHLqB)s%lz^60~{D=yNI&ga`{AnC`9TVxW!U?_PLmVc(3av-@KX ztFYMG@6NP<^{A2<4*sbkNRgFRWIVt*xsHCz_^8 z>kVkZ=zC@|8*w9vV;B)YTN(%;7j<*d?G-=zXL^j6wRt4jgt!2x@c-84IR5;Pv-W$} z5g_5ZRcIGfhEPF=Z!2Jx0#YmdKXDye9XE-h5PuSehy8S916hf#XR}^YADLDZ&u4nr zlsCr4fJ~mSs&dKmrzv#$GOUku=eY&$=+P|;1A{mr6QShS*T`Qi&4fe(_x6#OXp(EGTA8>Bv632_9qDC^cpld4WiC4i1VKlk)T=?JHoF<2j?(eDE zR#9y$JAT|y55~Ak$-E_CTDEZ@SO2!MA=vw*ELXH&{}S3vSIEOiMW1u%()H|;eO7=@ zd{PKZt_b|(@0SWDuRVQg_kAV%g8`Q3=`2e?%aO}tpolf?!!ZWrE_`+5FeRaYC|K;F zrz3d5&%UL?VIx21O)Tf+M1H7lxNX(yc6(-XV@P&g9nZ7I%W00+_?KK|vDw7g`BwtY zMVswg3a6sBRP<9PfZPTo`$HP7XMaN*ft&9bZ%eZBB!^MGCKJqTP65R0pvhWFC!9_V z_oDx$(nr<*Az8L7u_hO?;ii?V3P=Egng#rwp>F4K_s>5B&&3)(+5CBGdFiT~D^J*e zKU;PHlr}Z5aak=^f|!6O^`?Z$NJx}AbteYf#z<+*$euDA11)Qhfl1C9NEW!obp?$n zl$YdW_J+>zgwP(_vJx$ZZtqQxkku^IFs?zYE47@rQC*j-z7+o`;Dm6{?sDvogj`Zd z6z@>giYr*v;Vb|JvYtu+_|X66j5owO!RqGtXtV4Z?f_P#fxd5L#RGTa^!V}jimAWR z;eXj_6K4DE>h!bNz=n&--!iEa`i&u>fPBSN*oMw&MTa->w9elmls6UGz- zPeGa5P20>zzNeq~?#Ctm49!4YV{|#6H7RU~&bW?TX*-G}CP>kCGxo!`7eRgjlHUKb zB!d$Zu3ioQa!Ka&4?>N1;c<6g*za{u?hz>VLc+LHuVMX#DfQ?vo?or~)<3J;`T8%z zCZkQyV!C`+1J-m6tDrsc(x5~zuHG^@KHr%1^j9#JJ^d<@OjCbMUv1n|Qr-VM z&&ZsbZ9tjiz^Qk|im0x9jTSAl^sH$UttJb;peWxnXlz_B4Cx4@vOd2$+-l8Yfv{}vsYcZeZo8&vY6$&M&>fvwvECG=hNV6Wg4)Nal-=BPYL0Ve~oeyVRC}KI+|23e*yydQ# z1nGDYkX=q@ipV;^kPU%qla~K{B0M}kdM?W`$Br}MkP0zk4eFypm#a!GYQjFh#FgA)DCtgJG=j=Nl z=Lfb0;OHFNkcff<>J#G|xnF7-6`dZKG|-m(KhW~9Yv>SY!|CnqUF!v+J;0oNL_cJ7 z#H~nSU%fg)4ZfG!z#fss;O4`RnKoypQ;MXyVDUBj~#3ZcxzX!l8rKP1MCXG7@rl})@ z%-H_#t9*Fb0%7dh8FU^f8apz$QU@R5sKIks6(~M%hqK4noM#q(5Re_BM7z7WVPj(h zK+__R7UKomE&O_v`g`%=*!S;W!1|8;RnE|a2&*03^Vl|eW~Sc`tbDWh!Bv}f8RVs8 zs)eN`aOZ0H(NSk!US5I#=tKd#<*0>`a{wNJC0+w};6|>LcC3t;+4^VbLhMkCEwhTP;(4;x+Gm{kI9G79joz^hEXc6~3Ma*>q< zU*Z+_|A_kPfTr{Rf7C-y5b=~y5HJo=kTCH;hN6U`j2b-}qzBR+9v~oL&|Lx>Y}BYR zQbb9K5hF%Oju2r(81Z|(@jl<*>%Th(y!L*-;u(*CT70*dBo2@eo^TUi zf<3bV2$K@R0{vUr#b(Bi8i3y$n#QGCKu;D-z@4@8aD(Ql7XTS5Lo0+ZFl-y_e_Vz> zFCh)k7E$_UZh*Vobhu2$n?8heAF}{?>`AbWzd}X!4t)S50_10NAYG01vT(7x{d-Fd zzfJs0b0D6-u#i%T5&+-uBUI9oKmmfsFlcOmM}6z;@6#b6{ot7n0Czw@Y_G;0{NebQ z&K)))oi~MQ>>&i^*ce|2Q^R-YJI{(T)AS6qj1Jb7*vwp#Xwl8~r1?_&(L*ODuKxZ6 zzHzw1o);AaeWs(j_B_Dpf>k;^U=Mb~M@SS*0tH~*er|d8I@Vg60G|Rz!}a#In!-r}9NcZ%o$O8N=cp$%G_ElEJDT01zn0kA*#*n=8Jh?D_T9La8n z|M!sqKNpt|rns)d)WH$WSU=HE4X8D3Q0PErI4VYc7yk+%2|1Ikq z%rs_C%i(dLYX(%Y&%5wu$^=|KSXI)C+WX%gu@4&$wu6TJnF?#f@4Lj=?n&&hz6zi_ z*<+czG~hB8-7rQW>(ZeMko*dmY#I$HV;8^aIZF6-qHG5Lzdtm#OK_{+#1Gklz>8Ld z!{OXTotXan8HB-v_-GC@Ak#r(_SWxTwD@6m){?rsP`*=pe2^77O_+Lt;>FVlg`zw{ zCkTc{$@)w&EC<`RXR5R&Rx^-Tq5vJ30k<{POtp|wruL$Y!pzJ-08Ed9D4r6iw|yWt zVp7uP%(X=1HV=?XyMg5bT!($)^}#ax47Px6V79%F&;8%`%trQ|ivFW{1PlovC9Gc^ z`R{Wf1o{X;nrJs`my0L(#FhWMaxXUj*kzvu zboyZG!2mf6LH$7tbnG(p0}|c}tsNl>rWGb-b%$1ODN`m#G9zTK8sQefMeo z8Ux^crEoHxgkq6{5tTt4u|rKyj$n5!>pjN+T7aFx?=t`p44_QfWoLZ#-d{|Azb)~i zEgtvH9sm=|!MsTK9pLx;{?Pl!xPb0JLm9nM)Uw_7)f4FVMST8MCE$bUmFY>4{8)Vh zm2R$i92dTsKlvA`L%J*2{Kl2qumP1aYyvjLtAh)Lm7Kg{EP7p}h;Pp)Vv|Q%%MPw{lkIz%7RUN%q!U z|8MEah?emI>w#}vJE!KC)}s4@1I%5VF3>ME{3|P&7PFxpn;7eruB$*ams^Y^t)h$J3f zp%T_u|6*kqcV#|W&ITXU0}JbS`^+bx;R>eN*83`&H&^RUk}{&maI#aRI9gbgj-m7o zw@a5U4;amjD8lIfFe2)IMF6z?R~D>qScqccgHi3UJCEvLeR{TtQw}%+U#b{Un1Ez54Bd(U zQotqmJV&**ZnzL9d-io^3mgwWkB@v(aSBZy`-Crf8@Bd{QKgLV%!yV0uEV@Q;snaA zPICxX?;>}fvvkF4E`w9(Fw%UK`_HOVMw(lGIetqH=@X1c9k(hwNEzL=+yz-d^Pb)DpzXEAN9wY}3e-t@~aQ;La51M}br_lgaUoT$} zj$F2wDz!nBa(n8Z?`*+;_>1q%p!$`Zr*6w<2C2wHbzJ6x_tSZ6vLA`QRValQ2MN|& za3g=J5SB{YgFuOh16(f`ihx)w*%k+|Z`+gZ%i{z;luD7%j`)#zGIvUaMl#5A;DK3bYBSD;XhIDs!JGM5NoKCuk7bww|tz>fGNT z)K&H{i1~zXT{RnC(hlqAz_Y6XS=7NkQL+Vyw24>jos3B7$hB`MZpaoAa;k|(~#mKVYrur@=S;l+n(OXlLiLN-b%jYX7tYE?e$N1 zbYoMle8{SAZ=vaMFx?2|Lri@s{C{tJ8N}d~$*8*Fwks=mk|12~xy52I7OcbB%goj7SeKQ;%zoVVR_{hYefvd1M?i)q`oEQHY)}F!3ApR+JG))n0Z8 zNbK)Tw5XIduyVB(!&7nf<0|*p9_yEyKY_w6=!(z5Ly*n7wMf*^wf1y;ge1xpfhd5* zfS2B(2t*Ew_!`;&+HM&CHl;mxB|B|V@B3}65CJ`Rhnt&@sgWVSyzcJ`ynqV18^O5#pU3Q_O}P=u{fWWE<;8w z((@<|0n!u8YsM>2O3xNF*>@InD&IUZ?xg2<8>@%R^qMlwxhPu5BW9YUgjflSKy!WP zKT%0DAYo)qd}qBJ@fKZ!bhgnyqpnosJH>KAvk@DtGA(BZAPT~?Do2CXPc#qq1s^bR znKxK6^ zT9&Cn>^veDT$TNIRYeWoUHftiQzX$IeY`b-g*Z*DuBy1j^zq{`W8X(ZF>`r&+&nLZ zCdTN`gMs_wAYgo;$7m7vGudbO@1qD)8%VchP8q1mq4P`=fnEG*WsH-5Izl*!BAt#c z)I-koYmh$f48G)*qR^vlF0x2T@YT0s%z9e&9e}{%qd7Lw=-1%uv+TIEIcBu3!W>xvt z&%q-Xndf42Ln~hP+*q8(ev>&T>WF6Xq*=l>)tA!GH0+c+r|VLFJ(XVlNnQSMi{ij5 z=}=x4ye?Vls`1NAY!g$+c<-+R_xN^ zKGy7vNLRK(?erP%FVw?kOOPJF-eMzD9i$H|Egr8%P_&11Y*!*D7i@`)@z^7kMjx3$0(rU*qZ zO3EM;r_Uy%$o7?EfMig=TB-tFZur1BYrSR=mOlJog$TIa9|x&GwJ_!!NxOe)~LoK|O)%!ShD9S?=alP!(`kR5}}o5 ztw5U8>$uJHQX~L$m4)4zXVFiiG3MHwHBoS|`e)BPa!-Y`rd&~nX&OxUBd!X-v=I@u zCF*LnXHzw}56iK%;^7AJUMf-kU78oGxNahHy+7#n=AhNJC9qpn^6E65qzHP*u>hBi z^lmLZ#usaPy#H3b+hj2J(QKv|h%tUa6v})7GK1B2*f$DR%0GdK#wk9PBI-^xbqk%C_W(Y zqS+Hw0(vf8ko+N7{O_RrJ0};ay1Cagki2%p*74FcNiDgy;wd~ez^<{kgp@5dh`*iA^Y{~UY zBD&jm3A0JIOTVV0*)0!U0KIk)ijo1bfx4W~p}D1HcdkybOSw*&XiKSWk(grDs{V#td5 z+*8~2SFQvMfv=twep+kh{3`HI{A;ybZ}c>29ogvff!y;U{v#C2mC14Y;y)?@neP&O zGQ~a~>6Qp2?u9|y>UXFI5iz+!Kn6SeujBpxAt3jxu^e;q#P%`Vn)C1F8!sn^&HlQak2!x{s-4j!t7ZjIMBCz-~@cTWGxPUH` z5>$PRi5vG>f6kEIpWD~5r0mjgVZ{O70g!!$dw z)7hj&7W^Hq<;pZAdnV0J{=8;hc9Ee+HU(L2FMHN|V3X^;RZa8sm1b@PXE4bok&CU6 z)5G=|Yvz^gid$$+?e5LTdS^-afjH?kzKw?JCd|zA*TJ3M2O4b< ztYvq`XfHR`0%o5MDXTZ+UqVj08;H9jifzS85XzeFl*x!xI@>SA{MR5mZC#3hK%vMN z?H~NUuy9Te$I!;gw0L@tr)HqxdCe@_>mZ^)lMrwDmuIm2OHwbU4(F+%)5QN2rkgb6oz=<;r7IOiT>R*=s*@s9;EMq9RzS&HVFD9F8wOcPwP0+k&_xj=R*MU)B$L z-(>lMAx>xek`P;1=a7i%!%W37^LKPsSt}&P%jVos<#3-VjRQa+l#87^$SXh@F2Nps z7q#-5eH1~&R#!0@+{SLLB+zdF+l#5rg`Kc+kAkLORpBn31-RPnFQFXe@!tC*D3MSkHQ-+pxv|e_mG$>me+4b>2$p8|+9?g-0HsP~txQQT(Ie zG_uHG>UPD}`q!%+lvTduvr!SB>G)razX9G}LiSy&K!&3c_n|D7^&Kt=mQmL?v&|7q zHN`s1ofi2o4dzG&-#@Xe-7(@h6NN#(nGI(N3cR}7a2*w)RSR8ya605Pokjt;0jmEsxrpA8?e))sFWosZt@wXv~<1kJ#4eEHxu;{+fX#D0IXB$>orYfX)FVZPNc z_3@kZl@Yf<_bS2cYAaXw56Kb7`*Z7tQPb~~mXV9eJ86Y#EcwkbdVz!}_U5&D=1RBK z{edLq!h7zm3|an5UgM8#_SHchEGDD0gYr&oagKLe%q=6Uvx(tW^#_wSghTQ97 zABIRbpjMpl`#4e4*{}3xRMJ1ak}bBS)C}GggZHu@Nw~adkByN6DIDjVSVI&j82R1q z4HwLL#9>O^3FGjQ#J6mkY6npI{j9{@Kp}{S9W%`NMe-PNoMa>KZ1SV1ZL8wnMNePs zvkIL8a#Ozivy||6zgjYA37i(kUhUjt`6=>rdZcUq9v^NUB*;0uMDcz`!$<5*Z5Qh|C;v8yC)sCfliS=mRWvLZWX4fi>_Gpd#qgzs_HJx>Y zkZ&VPZbfob*{0t^JBo`R_fyJfjTE_{@fjN+i-@g(wJ-jvTJ+?LUz!5pP=i4qqu6bA z7x_praoK9b9OVr_ssY&$c14L7>X!`{QvCWvdI|74k@_FFcY52Q$P7ePeOj;#ccd9d&r5^DWJ3S4~nyG|EPtY%EdAcg% z%5Ap!<7M(yPfV(R4*}FgeZ|2%uN~};NM8mW>W(g_?=7S+#ZpEUbfPcYtid>}GyCqL z)lpV#AbyX#rT1Nv^dpSp=PIp>mzVCnnxeU|GX9`N$u2rO!;m#LB(p~P?vP@pyZuaK z_8kpfEsM zPl~{34W@MQ4IWnLe&}2PYqf?s976DAS63Z$Q#<&_mbd03#wD5ahDi19#8jt&;0mW{ z1#sVL9Asd;5UN_+(6eQ4ny_y-Vnpo25VC5ATFA!IwSLx%p*;LDP#^~Gu6Ak#> zLRamlzC#5*x4r^lAx?k+Edk=G{3(M#*AIGyR@Zstgw&-Ii^=z& zwq9+}ib;KDr?Z-h%k7iB`!>juxeHWIeg8g@UltTla~UA=JopBA6gXZ}f0?@&GE?=g z-pSd%jHu>5YT|odCM_z$Ryv!KcyrYw$QexRQxC(8C_BhlvKnbNSNL4Jd)b~}zU7)! z=y)6Z$rt2XC=T*Z*LX5zcZ@PT+nKzZ%48gVP|uyN7;z}`-;GC+rMo;xUF70H=4um> z4_jDbyInn(bmSlFNZ*Iv@qdfH$mx;30^$OE+}bQhn$Wb~xQ77j61ykx#m&imrWEMu znrI}5^?e*WYqNXW@U|Lj%BMMfz4^+3Fa|vL8!_uPcqc0-wDQwDLVvv78xfLLF^EW+ zfK)L+f5-h@g=-StYqczUnfLv|z~1rIuXxzIs6obJVc~g9fxa2Hp-;8#t1`dcZDVn! z1fGM(T{RP@zm#6ThahYR6}gSCF<$j7#3Xu0|%M9Kyq9QLMeG(rPnEicYr_A-)scNgn9U zpJ7eA-o(xM6897@AyFVR+;n(9vT(dozyrQQyn+2Od;L~-WWm`hK-{DY#;}v#-&tSI ziV!OW!ae>ke$z7^kbez#`&k<8leL!?Su2J;TP1(3HeW`4K4UG64St5MxT#LD8yE#0 ztZ&_n+BKbXeiv}l;Jx(n?hv2vCGS4Q{ulwWO?QMHuFFNF4|t^?%8H$4A(D7N;`m<8 z!pGv7AfYSUj3fZgFs9cm6j^}`!9Xd5hc-YJYv1*%}KJ*j!(?n zM3aAX&&9>h)yEI=Vbpre&g3S&2XcZVz&-=0JRG}xtbm(1+tyYqIUWdf480j66cq+9 zQ!4~siMd<1p1L{&7&NA8RXDiZ)eACTd=@bO{lu@DNj>XTZm_tddNyM=4_ z(08?Y&vpu^%d8UXwezvzF3dEiT`>|4$#~2yh@eGFul$Kvu~9y=`)6j1p;-aB8KeeY zhM`tsBr~w2jGcPmHDn}Y=_Tx{0+pQP`*&Mlhjwf)`8aOA9?r&@iF(m+%Wk_L3G zt-~0)-6B5hI0+&a+Z7(cGUiRK+Wg7V2Wlf%ac!GPNl6oV%?l;U%F4(VpDer8=ha?x3E_i&hDbq%z@B4B# z_f6)Zq`qVqKJLL|hOL5Hxr7_5RUE;0u&Xsqw8v68r5)_+@6{sCB5D-5LKynhi zoqshGv703}$Fgw+!lXOtIvH7;$Xv!@byi; zU%T4eoQX#gL-D>Rt_?+njHt1EBI#Xud-w-1S86#rA*JBV(*GWKH@##4I;L{mb*D)w z5Uw0-D^(r;-SjMb(CwGQK6(65lQyXDS}hR3&L%+aMy9is>lAF4M!*89_;o};2RbH z0svd%m8SKy{y^_|Nn9{Idt+SFT^;QqPvw0cCwB7RWUpc&Vd3kgfU{8JCVq2D2KNKo z+gqwG86O*)Tt2r`YSC^G>wSrN0o1j}-psPFu++--O`<-zu006!9W_wmW-5mRF$UIS zPKb3TiNW7Toucga+k+zLGNqn!ben9~sb2O@NuF?cwb!&>Pv-4m*UntM2Z+X6uL?y9 z*7l+{AGa3u2(+3sdP4PXpzlP~DMTnv{mT%lc-%h(R@38!5{?Fp4Y7SBD|Vgbqw-T_ zQOSHc?e;{+9*y8`8}9e<$;;t#6t)5>JoyFn84!I~b z`|kSP@%~`znlM@U=1GdO!ox}~IBD8?H|JB`4|N?)a}uBu&d3BDb{56*X!T&85&@=~ z<`+%f#~SM)W}Of#=(IrtgII#_AYKB!-7KU&LztcNst+x{imtdPrPa;LBmtn*pebq5 z!MMEvj>`c*PiiIDe{AFsPBX0U^JjlSa7)XFI*moA7)qihU`=#8=Ps775BC0VK z&r6F9r<0;VS7WZvQ-kIY82ykXQb7658#hegu&o@KpI^tPEk?7OvTA>D`{? zY6mY-r=$O!yi7mor63PXNIe5KwftV^IL=PDu{vn^GU99KhEA%CB_GQYQ52{#cpz0( z=V#9}dj~#r2ENfGTuvF(yQgZBS1Ad^H@=qM?;%+Hb4t<{lh$IkKFtCbkiJs z&Gbg4ZWm53jOd%Dy^w)NbLwi;#GV`ba*bB+0_w32VMT`cwoa<)gAYNgfT%!-I1=Wp zuBtl01&ahlaoP@WvoZ6o5^2y@70_H!RSCk??0$IkfgVj`!m)C0O zOG9|?WR5J=N!OWxTzfc-3L#?x{>cfa2RY=Zk=ZntIKr{0T63~;7U=Z7 zN`9dECbvvvcI9=J1$=jArdNo!ETCJ@CD^%oU)2?GQQN0S@=6|+<$Fq6 z&^vYK93I_M;>4N^^$iQWs(>E2*+Hklb`iM`>7(e;Wz5b!LXn4)JGDfQgKl&~Rv!Pn zjIZU`Zow-Q;w^>;iI}-KGp=_=u@&#$T4@zFEleevX(H3@8Z{BG;$so#wRF=LWUPQ4 z5hrJSP4)cx@d7!+)>gn|UsK}~7|fDy1q!MyN4KTK5JTAYg`p~WI6eR~tBwFE@&6_R zKo4b5Ll@A^#Jsn^9$P|kZwx)5s{5P5%&I-QY?%tG6*8j;3#{`qd??|tn`i=>8If&5 zxDGl^z&2}iv*vY1D@p!P@REqub@#yPQV%}K+jb5YNipbtZNP2gO~AAnIHT{u6^H}V z+lADUJMrkJ$cMFDnvn$6jMjbwG%Enq8~Z`6?+#WyJNg#oz5`BnosWw09n}(BgZ)v~ zb(V=KRBgWSxlE6uhGuni)HdU>@^I`vnh+kP?Vb2_ah;9`_Rgzp;fsI!)>=@oCGKtF z3*k~8{)3MQ!x(FSE4m zsO5X*Nd^yn4Y9h(?n`@d#*U|5qMYofL({}Rq`o%;*Gw52EnI1|armL%!@y+Vnh3gJ zhM5E|#Yk!&Rvs}}sC#C|{tr9oMW9}4t_fe-%dxKu%RbOhc1po{)sjK2E(AAtz zTZ5-Ac2=WT|J*!1y$df5Uo$U{u~rT>8sq1#5^>S8aHBj384=&Enlx}v_m8?)fNpx< zX>Gu{gjR>=Xo&;OGx#vqN1&$2C!lSQb-R%SZk&c5s6x`g3rRPA`(_MzZH#%&rN&8b z{L5#wnPTyHH5a%)$Xz4|f8z9^QkBA6l<`XFiu}T72tURo!K)Om1x&wak{g7{k+j1ik$R3pDKy%HQ+v^c}Sqr7#-vT!l@0-R_pYt zMK?r?EfmWtLh4}>tG59{2XuB!qz$V{Jd~Y4M0~Wq=T6N_007QlKY#i1_}#@yi$tZ~ zcms})irfO67R|yOfS~RCtR-Pnhi`0rVA?;DKRq$lf|+^im~ac{=g=af+aH;vBqjR* z`dyFQNd~oj&B(Mu*NC9ys^BM&q#S^}Yzb?&%`<1GOfR4X1OkY=x-lR;2-rA)thoa^ z3ZTWb`n{ZXUtZnY_9t`BMGgNWbo4#AHM1Apn8(m6gM*WAjW2~X{p?Dc2z}rdSKUxs z-E4Hv^=U0!8g0j3X~j(7x{D;*kOIRUnHeUWK2My&iu8zW;Vi&g=5X*%80SxxcFs4g zJszbJ$o`KCCUwH(GuF>ISH6-*U(b@LGErU0cF|sH)UCuQzG1dd}z3?gj>~wdgPH zARTkItoF@%8qQjXF71$pO&80<`Y8dBwofGMs>Cz8bp3*?bEBK%j>}r+zJ{e zh9X#5zDoi=mHt=k1Hb9dkxw4cs`jX-qlA*#bCYCyOTa^U0D-%V$8BtEUgC^^ zu-E2NV(V&gWonNphI+c~#-R&r1*ze}eTauxQG_dD_Sn%^0*7r_vsv6}CaVH}9u<00 zWVlUS57ytvM3@+AAkF?+{Ac?42Bs9IGok6*PdX+eIfxp`n#<+?36dp53uqT2UF;0} z=`q5??d|PmAQEgufWqX!9o+8e1)n740evWSRsv))z)V;rPqVUVJ)zxa+I0Q%D{BT?`Z7uc>X4VdQIVBXpEsDt*SAw#i1$-o)pOlR!`z6NY2AXyf@*>T3* z?cJ58c&)Er9HR?-n;z6<6gPy2vxo|f_`^g~LqljRwWK&fv5bKfy{4<@;R>-!KqZmY zPwInSTR(}!EX$`7UG1{an`1%*1<3;#x-&%AlUN1Z6Foqj8uMc;yY2hBkDQ4fL(SQ* z;6=Jw-I!wN{nAK#6Fm~om6ohrmMOfEQ90Z@q<+3Y@9UE7lZ50yf_J3c?hj@4_gZw4 z@qX;HZ$4|_v(;#X z*=fD89O!grl5mH%7^|GWfBgZ2CBkT@sg91v4Oh2T4x@}tKRcZ84(Ms_YaFrkeHAKx zfhTvupwXk8QWIn=>W3Z>MXN`5(&w3@^awn9`oy2^uA+JP*70blx3=Y zQ9wHpH(`+J31w5AprPQ0xrto1dPj4IlU^ZB2wVn{7~{e9Zw3Y^4=|HDpkSARGxNZ77yjMP28R({eu z4l@%$XKi-s1QrB3epp>pJ&@ZGXbN>P*!Y$2D8`A%!WmTG{I#G8#M6p_lfWO~JvD9v zlP9xR&dh+I?Y9U`V)it&;U9Yb{3^7pPuY%J9^R{Bb0yl$rP@{a$x9sXxD2*;n~Qw` zxyH&#ZTSq+TvNAdJ0BxlS7f^=Gs;;k@>)CC_qH83;+6K`FIKsHIDvi~Ge@13IgT3$gx487nt>|lKs9yIs%hU_UgX+XZQoF1lCEpl&g zH7yE$qE182!b`DImrzObpa^`HE|HrJ3p)>DoY6$xb6R@uP}$SN1N~h4RV*#8KHzNy zEt@avmP-^=+yheojxyu#fgE%j=-s#l&j1^StQx?-2l4pnoq`UU( zvQ``ssLFS~e9ygf_?j#IS7voZV5YG|i0}kwiX!GKqOgb}g9j)pm~PG0j0xFc=Ae#_ z>p%=P7on-i=N9-NaC4C)Qj}BP!AuK_`1sVqBA2y`qzy_Xo94@w{R|o145*glpYjKIn6Xnh3b_(!-o-sN1EeqOSvl{7JBF+HhkH>94R6$0|q80b+%8koy*;; z$4)Ad{N(5Q4Gd-o^JnpqYU1?AEOn%MWRbBYFGwWg_O^XO4}@ z6_Ix?3f;Qgch^qG-`J#Y9*9{;7E+86B*e!m7?bt}3ElN!JUxnU@Qi zb~FK9e7N@Ww44t#kA{xl%6bs&jfV3dTOrJGwV(9@;>)xl>*SpYE=71?`C%u3;o^eh zJr)`!CL^-ZO)?`RHQTk$9wX)jXhX!Bp2r>RF~VU~FhzHG%OTxL!cZqa_&LVj=hC2; z<`(}O#n||G!hnPmuoE;D8RE3Tu*hJ8kVS^K<86RMn8P5=f5sHlX9zA?nDZIGqGycre9} zrv}6?07@?)N^ebgGurNJEOR)OR61+4xRx7t)?3=*vg*0 z&rGZ~R8+W4_3gi_C1aL&PUBf#U(BAa_Nj3ah#xVx0c{=`k*u(=5|nbjUi1yu^Hdg@ z3V!%5CG<3xIH`qV(H^h+q@?~q!;ksKxsMXaKzB8@KyM$Kdoj^H2B}sxchuEricmu|JZ4 z8%O2j5(NM8+#yYcr7mlBAzw%0j@p-;vuf> zh*mIW_KV5ke_^C*v%jkK$E_J@>>IWJ8RA35Qk}~R33D%HRbx{MJ3ag0hHO<(ygYVGs z;$PbP3`YV`*<_YcLn4uYrwo+F`nq|d)&Imf!t~^E&IP@xOgs>D;yRUQrfgc$S)XO1GHk?I`@ zDI8q(vml~}vdyx_SJ6q)z2KGg0&dfaY2eifHH#ed1aY5V?6FbxON%y}*2`)WxF3oa z-!@&a_c|##>ew7uY{>bRC17tGw@-$I!D?3o40sq!SkYTXFG->-|*1-sJBi~E$d zMKlX2&y^Uirf-9WIwFs%k_&73i za0!&OLN$v-K7e&D2M9KYe|-wpB86Nj2{&w2JmR7D1=spos}kA<8*+i4T?)Nggt8?R z5IXhxxZAsls zpV44VS^W9r7-9JFJm8?FtLtK<8+-CsnoV_dW+5p89A=mMgXN`x8;YXc7Fi zp_BSk&)hk8p1o$Jx=v2Qf%@%|@2YpY{-+o&D6oNs1Y;I>8a80Ve;p7xxc%3->40xk z?IaqG7IqC@)Y}0VlLD@B>C?;$=(D(jf)c<0(L*3eH!2Ggas4;vc`3g_SgEAQD2X!jzYQo!B{X;5utMSvY$LzGXcvvrJH$^lhz0K&(l-Y(pOLj;qCJe1p%9_wRH*b zQru^a4?$9tL&JB@RjN_6_@{y`5RDu zE6?5$Fu@@wa7d>@?e(4mh5cY!+^8*Nx-%NTbu^y=f8(U zrPZtVAsk7Y8yiCa%VS-?N5d^c?L^;Qs!=7R%k9?8COH&ew;{;*ELmp)(Je6H|9h1k zsB;)?T-rBDV43vtNLelh(|&LOIn-@g+FDsTvUaw;fUTb+fK@cMxgNH6AM8mna}Xb} zD?~>%d8Iy@(~u{k=Mh^l2?D`)Y;A+v*W~K}bxM?PL0q1B7AYvgFP!H&OkexvVNX;Jw zc_D~6U?Io6Bq%7@IA79}%I38K0zTHM`u}@?Le8fLL_D-q)6YJ@Bzf0W81mUK)8BJi*p+iB_9Sma^dsOpFazWi@(A4)}lv%Udr<4 z*)yUW+r7%-)!+0l{^~LCPz}KPt&ufv?DuQHhs~m8X7#A~Q^@|TS@7TZ^=@EbLlG(L z?(B4ReosrL?0l{R0z%dMM<+c&nST=f%hlq8^2cixYmBh}-PN5p*2co_l-!QSAC8L5FetSTL9*r00m%n=5o~pj(WfHBkCrLICwNbvC7-Q6MM>dsz$5p*8v1R`7=J3v&;Jr9ZnWanZ{$isT>pdh;46a0 z<7n1NDguGCais;P+k@(eDvo~}>KX%q9zwX6Ogy;HYBCIqP(T687}~UIx8Tc;;DrO9 z$_xKV(*V+CxxA4saQhYml)AEgqkWnYlEI6gQS(kK?llrc`E9!U58g$MpI?&k?$5FU zH`|Ko|DLk3TgMX}urgeAy0@z(hTFWD7l4ulun4mPz8S6keME3<^Lx!-grvIdfXI!* zTVyI+W|6c#3)F?nA#E-jTU(@~>{Dg*brAe%cEan8jNX67pCQDBX+?WwgtDwO0Cz);NW0-lzVM6w4?_Q=K(M7 zd#08^3VS!%cbb>-r{7N~s;{tU=c+_HHZuRG90jh=E1fnvl-}N{pr0sz#)#O}C@FHW z;YH9J>+jj3&8b>c-Nlo8Obc3{veu(}kq_xYvRhB|>-}~=fb&XLrZRnhXO5l@Ho!{M zVZ|wOH_w5`5SF0(B8>6i|qzi|_vw zr$a4hhw2$FNT3P?criXw`Om?KWE~*s8(w5+)p2S0;Mlr z*mh4e`M6NZDX^wMk97&q<|=>}o$>zy8wu`G;KWv+j{-O?H~|Q=vpCQ&P|w?}TXw&e zSEI#CUOqS#oOEvV;THsBA7Pg?NFtSa3T>#};tkwLSqBD-^k0DgS4(BC2TNT&@k#x`Rqgph0*%b?Ubq2-i= z#3-ej88h~MFHK2g9ob9PF_yzvh8h3+C+fWKhj%{sFlL_TndkZa?&Z4g`??%K1Gt;2 z(3$CETzC4>B=lIeYh;ab&WrkI_4o;RY!scPqIxzca2Yank`g*Wai&}PUL(a4(_XDA zm@#!I>Iy;DOii&_ONV~>6`)@ST6V7(d2hG0G*R~@AJ!8KpS*d{pkwU&F)!ABRxrr;Y;ymuH z{Mjqay{^=BgRB?-5Ljn=HK-PXyuO4C|B)g#(Vu%j2IOgEv?P_b`#0k7d6<=+QVrq4 zHs`P;O)*`IJHF5raAQtw$xc+!%|Wv;l}dW6FB6Dc!#HsT=OusIjM=nbydP)M@*7}nFflmY=yj66vz2S(xj&NAg_>7_|J&~ z7~CS5X-7{uvODi83XbL{ru&X`IB}+yZiRZfxg^JTsQDAW>BjmEG_pU$_eNp7d%!*5 zfCzCM1CIYt96C5OG-UIo`Gv0#jYzWj4)a2RDk$Fwtw{8f*t}QmKO9zG0NmkGA8w#u z=TQ&B>KNqS3B8PaNGlK89tQFz4cFE`rVR!iEa#_I)L@hgyZ9v>2~o&LJzSifhv*sA z=@@Kosgk0lx%tK|QN=(0_@mXyhy4}b0{^O*MzF#=_d`IbLr0q0EuXf~z!pKmJ8Nag zOc)U#^xk{86~epo6n?`qD;pi_=QYJx_1~12R-lN(YjkZ*ZWk`Z+zaZbJ~y~{HR%@u zj>lTt#BmEjkb;;!1+Wl2fvNLM`aaG@p7)Fl49d=^LCSZ{bKjy~&_}D$W9?dlf44>H z*zBuy2F)lcQET_QCzxjGWCQQ=*dMJZ;F7bJS(OaUmf@Tn;CEWw11ierc!Q1W_{YkI zP8EOw;I5-gzuNlfAE#%~Hx8D^72t%jH&y-p{iz5&OUdaNEO*ry&g~w0;KE2lNslSR zYT$M9iN3(DkQGC<`tn)G8RAC5L5l>41ZMB)%&bEhc6-VOBoSWMmc{;4ziy$&xdpqd7ffnyR_*MD-Kbe<`A3rWXqs23s zQnxizw!OeS9a3~_0EBpaw_LN%+WB1a_V4x|)9o3J)lzsX+Xa%{gBnot`}*25!Y z?LMup3v>uPKgsufl_VuI8fFd3NoHq_`?X|4axDHa!Q(9ng!YirDWvtE<=@%mdNe3o zhc|Tib_T+9J2|mWC?;cN6Kx%oSMXD!^a8dGHzhdss2O<`qXLg}t(`ZDxYA(i&<>WtH4r$=8v|nNk6@BG)JdMy(!KR`cslZ@uB(z_ zYhB&t#MQS%owA6azWDI&8j`BQaW>@$rjY6yNn$~Js_eL_g~cGX-`kBxXNv{L@-^%H z8b^p2?%d_6Gm{1^ozo-dUg4KRLipf=I# zgV+kfMY9ZtNSE$)b?uV1*-I&DaIA{sK)NU&8hZ0?4qrGP@lgttf;G1!7szWbUbW3- zSP}B_@;MzHM0P=tU3u0U-?G$lsI#%<>w?5Gly~f4wQo)A(mpZYKGAs!$T1hcSQTNu zl5^ww^|o#F)vH&pfRqSSehsb|Gz(uI}KXMUAnWW=|o)H;5Z{_ zWIW4Jpeu8o*YZ6c>a8-bA%*e${QO`k23W;-@7*9P3v%-u|HU(xR>ef!54dt=`tas0 zx}7seeUDu8)m{9bh(k5~8qfI=qO1kV#N8$f#EkII!=n6}rO)hPIUJ&oaJg9k9Y`yj z_Owt-gvI*L`1sYIJ$;XO`TAPo@zFq*D3-MNjo<;*ZlId{%1Q}LmREm%k_27tGzKFZ zMCfy-nf;w7t|s9ZkDPYW@1=mMj-wy|!mm63bJG;md$K^y^1U zt76AeiCp9L%?77VE&uhnK162723Qsc%!E{u1inaS4(#yMx8>kabz<{FG_;Ns;6lBg zRH8@K3Vr4hCQAnuabUqs7&Hf(p>aq|Gcy}NN;>rCssjSG7ohoj^X5%Zo8F3Rba~WO zR#x^s@`;Dr;tonC7ehWmPZho*rBrU<$Pae)s~ zv<$48X&t;rgM-eRU{HVJ)JKTUzM_(9$tA$yhUnQAUZtyI@AZCx4TM;)&EN^c4@fT9 z_U~u^yO}jes-m_oM5M8N;3CjDzGku7Vbb;MAtvI+QiGsQ0=+nd=FMkky!gNVJ7280(NZR1%CNeKJ9kU zL{gbSjClK_#0nB`iiY`xzbS}W5#YV!W!e=~Uj`lu?JtMGTcshl+%cXomAm9W_Y^to zrn>{k-!}&=#s0IgVe_ePID*<>ajJmy?YzpwT#YgcCrF zknK0_fGDi{g{_Mjfk-ktVu9^H1L1n8FKu?FhAbDsm$oxw-t@&Kaoj=^5)zK8MgrBH z!8_3uXxbX~fCQ#J*+y$_lXjC=eTygvcTA4mCbtPE4CcSm>Z03sDjM9)E(L?^(<^}P z`U_0p>&$i(`M0zAd=dl-my2efangD#5hOZW7hSx5ZYe5`!D2ww3p9vW&j+oP>>h(g zO+i5cL2~-sQotd`=L!WNQXM-!y*uW!@2A;x1a&%s5ArLHQJ#lhz(HzBrih7fR6{`xG zqtaog?^0AukBEp^#tkShnJ+9nv}@P3&9IHRlEN;@p?nU* z^W5SQg9lXLsv%Nw1_>s7`?d^=i_*q;GqVd76&0qYroH7}uHsD@85vi#l5bQ;Qz#>H z`mTR?h1etGi(T=8PR~S+>W0po?QAnkyZ80tVMXd4Uzd}3)Oiqhx(JA-7p?^prdX?@ zqCyZOdDTyQ8SD9bduIVWHdmTFN(>R4GJ5wIMc)E7W6f>U@jGWoPSk1jg)p zLHW`*<6XqRNLA59i$F|OY@o$tj8Qo;kZgJc_#SMnq0u_~;lnMyX*S7+U^E?dm*?`9 zHAv`xHvtas&CKQnBjnEF=?dli;=cCw_Okve!#@~nEI(!Ij$blP)s8Ro+0eA>A(KY) z3<*S8Uxwp0It7EGBp2H!;kzwF%>K{ukpBipejdS~h;IRo_!F%i*Hi2@aF&fdW{vxk zAwoVF7E*+jc+M^;J~O2kk~e{RHw=RQSqJo%2UAO7jCAqtRna$MI1uT(F0hi1>&#~e z;6AQ87Kls(I6&wq(uBSRDPwTg{K8#UO?WY0ebEMv?o@x$?UqQjjtju~S@s9GgLexe z8Au(CQ8d{C)OcTCdkC)~#G|BKSdWU=Aa+D8s2Q|00eqkH| zAQ_(uDg1YMePCaAk>x`5?aN;$p@l_p!(M+>=1O z1=v&ThYxo)A0^f47UegeH8EKqvGm2{`iL96vsP9YQI;9+@frriqWfM0GRDnf6Eon= zYM>Wy+fa8;mk$Vr8Nk2a>~_qVjI~XU4h|MULBfzkB6tGOy#s%^Sx!#k*xg(E_U&tv z{n^~yyzHmNli3^uh{D>;tRJm28HAZxLNm6@)g+2XF7SIJ8eCs_7$=Zx20z}ePIh1X z-ky1TXp0~lbq4V3DL%_oj!1n3r^krDNzIh1rcsIeP4Rd~F)=Z>`a=?Df0;*QJKeW+ z+)$(J0)YomKeZ0G7l18(DJU8gedG19z?Z2>p4e6ju6d!n-SaNG;K0&liqyN90_G(= zrd5Mdi=4)$rXN*$6<S#+H*~nf#l^LI0(j2Z8uz-PT0e05nX#p19KzwT zPso5jaAO@4($I9S7!SZNRS2%62N8ujdR4i@t$X&^RNdmd52VCSt#x`KSAf)3OE6JC zIZl~xb1NKsy{r|jaOAHXP;5&JrC{?91Ch6KGcr0z^ZoAKpVdr_jk~1>ivY zKy)qrkkWtyG-w^@0j}UiP-mBph@l-D0cr0j&cKNjzXpc>k-XtG3RtX96gPkK;jKb6 z#eqbD!IC%N%Ar=0dr5FX;SN5kxTWLy&EmAQ+V;Ri7Mrk=KU>d6achYIZ=T|0;eI&f z=82OhzhiV>4SZ`xJJ#slD9=_MO|^HyVM+HI}L7(uUEi3eH6xg_aa%|Xs?O(@A&*$}~KVAodN z&lPj<_UNM07>|3FYKm2N0LeHiK7dPMOz!3Y68lFEhR z1>p^&f++Q7S1#V=AtbtaL37TarDY8RM7+LRXOA;&tY#Iv$dKYLlnPJX&Hy7=F#S24 zd*Aqshfd9TLuC*ZAHLR{ZjbqH^X_Pv+xWb^zIqZW3|yen9KSm(YUr{dYtpYzv(stE z!%Lx<5k1@()MR|7+I<(2bm?cf`I+Cu#~SYuxt>Tu2p_2|J}LEq#;t}a8^Rm%lfi|i zCs?bcbNhEh@dkkvq92CqlsrtFn3pWq`#^srk(hvaSsz>OiF;2Y7fJ`?5*a$t#ca`x ze9ObQDQY&przq4$5Q{|64j9BIzh~9PVrwC! z_G|Fbula-|=9B^#HVXWycZZ6K(FXc2mbf1AAs(*b9kH>;d48?wi<%YUU5%_D-~+*4 zfE4aXK(0uN&`P|#QBI$%nstBUrcIZ(3V^k}XOdle?-IaFQZT5uH_D5n7A~!^B7@x?FQbW^L$F zmgZ3X@H)?#c^P4q;`~dWOtNko88R6EW!$7KO-gLS){H4W8=K5B-u2+`zoltRW=?y7ZvjhEO+c@(Yh(o~!iI{$`^SM; zC2N7=5nyhY=yhksib!RsOqlhqRy1qz@WB=TNm1k^*$Tk&wAnpVk!^A@!Yg?dK+$nQ z-T?Kj#ku9b{b~(sf+kg<$Wq{sHC{cGWO9TVzP5JIFWxwuLlrFHOg0`5##4z=eGt4e zsB1ZC+U& z*HKqjS8C*mKk`oKqmYGns5A2O)2xN|ngqYzjWU%q*)yNJ2mGGbk-_l0g)}EUom8Vz zZ)4?XtUA3v2c}iz!r^rMLlcL*)q+)}3m08RaO^!Cktoy)93LLcwr&nX2I5x+1+~+d;Ga_3D)fSf9?o}y;lSa+xWA!?0(s$Bq(^`-XhDk zs`5Y=Sy(ggG(T4}Kcve|Jy50DF(y&KAEZGkoB$4y)=yq&;3x?dK$AsQPGOHy*_)wy z*;V<$iJGg>R+;i;W@~-#cvyl0f(N2iT`%cU&zB%9cZ6T@ThvfXgJuv`;UQi#;hfX> zV&W>Ie$Yv#33VwH^B_Yn`@~MJH-}mpE!J>EBx)fQ(Y#iSff-@x7pH@S;G|m>*%x8AeCh4YPYhyUw=Ev0)b5UttpFaLBZLr7ThHhSykweg^yV{X zb){vNa&`a{3Y~sqh#6X=aYtzIpo1{Xh6*p+5SVCNc*STsZESLMbhL!d-^PZ9+`soy z8F;-SQWK3_M53J|4UDJ_nH$)D3!fR8t2h`8hKn5af<}&e$3^hL*i*y9!#+hEeQ3SV z+DiaIUl-9;K*0a&;%S0E{*@iYqf*&+8AwkXlX^4sypk&I1JU}02!#mffB3eoO4k9i zbd!>j8vbT&tB!LLc+h2!HqSEKB860UXcnoiK2y%$m>j+xHTe8{yJbRAlR$>3_#+A_ ze)bGcEJm^>sQHarx>o@4rj=fiYT%M7h}q~Q+eE{o>V!+2s%!e^&vx(LzV!%CbiQj2 z*QU)`ympZ)U-;mSCZ@GJDxA5(x-IPrLcqaD!M^;vY8lFD`5iWezNxJ{v0eOLOxnwMgyYl&ayp zq?bb%@9&fzK0l-V(_h!Dw)yN}=_o6|=Wty7E{z^<-P9Qs-QR1U?;7H7F+yvk&Lwr- zt+1<|6Kc8plQ%~mvyY@N*wE6N+SpVfsp#*-fSlF?aqp8gN|o}u0PYo2PSvde-w z9QE|tPA}2iA_3zYZj-ZtD{DJDD!DR(ppxaauH4DxjVsG22RiFdxNn~M%f)k8Q#n2U z%(M3a+9h1UPD!cl_ujgGU9cVASh^0S=DkmW(mAJn;yYZY3LBlrpB`8ac(hEJ!jspuuQdh(Js6@fgl{I=g;gA}!FZ$+6e}0mtDZem zJmK!IFiY^JgECD!9@bP%?;q638T@ti^tCb9BsWq~N4?+3!d5Um*|%8Mo$j1)qb$64 zcuD->`KiTPPSnb;)$zoAivg&~_QexaE|xM3V;A#M#YHIfu>In3|DS_2?k^FE$lCPz TvtPFmo%wgYGruu(Z9@MGv!)1= literal 0 HcmV?d00001 diff --git a/docs/source/mount_V4.png b/docs/source/mount_V4.png new file mode 100644 index 0000000000000000000000000000000000000000..1f8d7703138401074eef50df65e48c72e44bac6d GIT binary patch literal 91000 zcmeEu`9IYC*S|_d6k`{~3}a_P*|NoqJ^Q|lE0Zmikg_XTW{f4-FGVI~DRYe_OP10g zL!@X>QTFV{SjPH&&$#aUbKl>8;rsoedb~X{@7Hq9^E}Vw`qINF5JU?g$WWWWmP49vh7|3 z*qQ4jVyh#?@*^K_U@R;`tV`#;PRA*uGwu_l>?gWuEnrqlQD4pkfnM-*+T%&%f_#J4 zlk;+~UXkW1N8i5Pj)d4>xA(HIB$bbZ-){-`+%QydtzY4g><~aDDIWeMmy}v*^WRSb zD89Hj*nb|YjpQN(|NAiq;qklsfBY&JoBMx0$t%rqOX)w4SYliDzpns(!%3X4<-gu2 zfa-w|Ry_an$cOp=ul)Z9`~Rf*Op5UR4Ju931bn(w`c2 z*HdI?sM9<@Y_7~M(b8bJU~jnK^~j;m2iYHb_?ZVfTaR=cSsm)eqISBjs{X9us=a`# z%XoRd(6o&Yeg&(NrbzIUamB(FSv|Hy_ug|v-3i=VCl@rWw6RH!ZGWr#=6(2y)h>td z5`MzU_0IQOb*~}y=${5J0aqZh~HaD&~cp_3z^DP3F?sgdmih)J1*m4s^^e2*#?KgjUSM#+-yp>le@t#uJ?Zi&;QsV zU%AdNJ@X|0^8F=~XYaB*%4h$fAI@Z^1JVg|eZ(Ota9P@m0Z%IJ3=j(T}|+#^3Qm_ERjbMJ!IPVv!%mksia&ai}W{^&u%+8w5!P@%pAzVg0VBp_0&tEjiPS8(abFyhH`aW&q z0uR4rJx4@V+-C2^df4y`NE!ZuIAiAQd`z51lVT+u7UGy z{dvSQ&osZh`SME1520G*XZ_k9BRWY@oQs@wvD|e*xe`#b% z#W(L#x@9LC_vZnZsd&St5Z##w45jR-4J=w9?od$Q5X!oF1;v(hYI5 zpk4e~!cZ_^(a$32hU>=BEnD`%2Zp`lim`#X+f+PzEX9k7T)CAjaFjo9a(??lr5Kw_ z28UZ7vn-mHIApP8(~^-|MuNr@BA$fz)LFIwS1#MXM1SX-8~?gF+o78?pO2*WXA!iP0-wYZ?JeXr!V-~p$ zYC}U}F3Im}ogO667@dAFBob`tmfbO`&(lQF;&!!Az;-%&8IzhPkzzwu9l=k$UOd~L zI$L!i>#JlzL?HArXx(5t9k9{Kys_Qs@?Hjv^rSNU$Lqn^-p?^D+U|@_D_2fUr!Dh) zF)@%7Ip7DEC;a9y;jbb>)77a0!7OeIP=f}dLfX!`w^^?FnDsf+J4v78MA1gXy{>*& z!R;5?8>Yz42J;vzwup}wH}mkB+Mo%hYuNdAwQRp+gWUY!CKXY93rhXYkH%5gUd1+t zi-=^c^#Pj-6}jW{0poYts); zp0BU+&Q|F)eA*RB-4=6y=5AG6?7j$%xBRf~15;eG;t8RIKCg0A{inWnM(SEIdPCsp;^jDS8_&UvrQbe%9NLnzlscyF<+}3i;s z#IPB|Pa+4aB6v7U>@&I9>tJ}Nd|GT(VWWxEwXw3DrMLceo1@{&ZngIv5DRZ9#SFiXfddDaGhz95+Yhq z;F}EIE);&q$y57Mae>=Ppjwm;&N)yN-9~z>DE|AOTAdbu$Au_KgghiZDGPpZ;mQ0` z^X6#gg_vk&7{caCcS32zpAe&khvoTK2WTZmh&=GUKP`VbO>$*8>~&?w;v!yic6*3q z1oc>JSF#qe{YKBHu^4KR?bg`_FJTHB?W3QsQD`ig@KYwSm#@pk(@DJ-h7lWrY?$_o8^nX;%LXhZv4AF6n-Q za7Gp$~=Q9|nxpFUaHR??Y#LSwoC%pTAeaDO1+z2fOXt&u5Z}QBw(-bb_CZe%7q=Hgg(Y&He@jEMkqk|g=q6FMiDQb5i4geE8msZ560cl7bH)VRxau? zuLT;>_qrg)ICZ&{=ym-5VAqWHW`l7IKXC&@DsPl3vNWvWjN$KQfrg}|ATG2=$?9m_ z#$1+hxEx#Oa=XD3y6vm}BJ0el5mNcYx8?_P8sbq_hT8e2clkHt8l^(o=O2>B2IfmY zE~-uMugGV?0LIri&~v049KG^LMD0`$9k0U=T@U-))P4KQ4JW`gM?*3lzi^q`R!!RiMA$QF%O2D8;}2cYLPE5++-5>Ac}XhMkN2Lr*uoK)VSCD+A7jGP`w(G8)m&mTw&R(=1L4B`HKlyqbVQks^ zFvC6h3BOCiKi!@7-=EGbmG@zleBKBKmy}m9=l4ZzR96Ht!R;#5 z@Rv$PC7&2}5GVh<`}L|MK$giSE8|Gc0D~6iUa85G@k{NN=O+Dr=l;|5B#;fcgWWvB zFlApx^4jx$)wGprD%ra3(i)uU_!Vb(z3^2zw(V3fR~}kCZ06a0dtbhg^8JT_h+?~2 zRWK{ot8jbpUE{mQo+)R2akop5c76qMH{5;mQ7WVi&sQ$Q-SoV?k9@?HErwidnr%J` z@Z#XI;rntA=yy7Ok#VQf&$l)Y_Q&wV0&u|bz(`Y{w8vcYRrPI3+F89|m3GhM+;5kx zw8g1ZSAAD!%xCd_`RGTG&~q~vcdT5JG%~Rfr#~mISnKFp>PUpt&XxQ18|=ecws6Ps z$2yMY(3$4Fe{b%H74m@MzTa&X098iZA&r~tX2Id-*;i#ZRPSk_Z4#*@c=T&O-IejP zLr>4WKV67X^t>CD*%AKuYnD$YUcdi#;>A2j$dwjy+Jfwp`49;fe>4=?TQAqd+QN9v zLq<3X?_1vOU4E)b`6%Xg)U*g1W(P4dods9TE!K^-+;Bqm1%Ea;I{5h#(|YE+7tKV@ zT+Y0Kcqu%3yH9%Y#j>NwyisN!IW61X;5}Q$n^L%HS|lRy8Qci+RxU(di0vg$efL!e-)%PV6qR z2CA0U>0a5bP5ELXHqvT$ZH{MpHv-U(CTNJcKhir9>gF&JxB_+bqgy5 zyLA(6g^2V@n|gmzM6+S~Z@)@-DClRA6dqZ{krruHa9jg(HA5_fP(!%C8(>E24CU~yKS)D zw(Zh_tXWoEyY_aB> z$gSTA4&({s{`IB=bY|neZd%=M= ziLc}eb zswf_Y2!Kvw{)SW;b)Vv$Dwe7MKa~7R8RH7~!5&xuI3UTPx$-U(8aIeUYLUS@1o==J zmyFH%@h>Ke6YW~)8B95Q`RaUqdBqZ&>Dl4VMaoq7XlHj4<+Xog_c%kcYdj=sJ+yKD z))2}REIKr^&y*HF%lk|%Wv?pZOko@}5}qci*-z$iZYiXQyjLYZ_*~niY7n!Xw3zwQ zoK~L1Qb%V`&=x|f0M5NOH5;uB33Yw`MhlnC4BL%f4j*&LKC662r!G}ze{1_A-DFCV z86MzGqUYA`wKW98Ej>$LRy!xx-;R+G>W}Dyy$UH=W)Zj~LamngED_l+>yF*PC&t+L z!3c%(UHh4x?h1XLELT~~S=^kRbMeYteY~$%ZAxai=7SF4f3G5r!gHFp#<9q6J}Mpk z4B=An10(7yKiX>=a+gsSj{;>5B$_22#Zu->O@*WlSM=^;7G=RNAy_p?_6!P<3$B@x zg88r-r^#)21{il1QSeF~slVc8JBDf>Ms0wdrv|qMRj|kgd7&9G%_mi_RwZ?4U5y<% zp8}|ilZ`(Ft$}O46aKp${;w#R9|yTwoYM?A5quN^he|5>#6~mDri83YM6sH~bB*s< zM-I9xd=21hW?pa5NkQp2TN`EYPlz~=NIwQqoq4hVL=jkb~(0XxLEv+tj@PC$N=tQRc6V zy_t!8f=$7m-!9kBnupPY4t5gG`_f-SYzy!YJ(CM)J>K>-k^PkfN&gnww2Xg`!arMd zEjK5Laeprj_?n*^Zjn3^(NmKXp=fP*7?>)mL3o)3$-<$P#kX`*{Xcec=Aw>C1g7k1r6hRj?1>u8tp)|iPwMMTo$dZq z`@VNMUt{ktoz&TS_@WiqrobU>Te`*_PJC=+N=>}}&=~$30pXl=5i$lnlj)bls%O@J z<%*QTk~0u5=kcxklPx<-F0`Z=mp4Y*@p5vQ1(-;6(aMj8Acrh_$Zjq1E!cUYZ{O#| z8_i=IRw!RdoS5m^f~f63K-$!M;&7*jXL}inMQX+H+u|JfkRCz^jedi%k3mhri|qxAMFH-Z zJQaUQ68mrLT8(Pf_Gbb*6y1_AN4ZoLs%a`Ko&78OJNk!zQSh0`#*kN1ml2^1;mf~i zwWIM{&fbGDw$V*`6+zvcfpEF!R0s!OvRf`XQS~g#Mhps}iIz1`5*97VEGbc^_(hsc zYc<5k_2{5sG$9!dyY(C|CHw0~R+%;~%4G^7Qk^Y`@;(;6YkIfBCsTjPA&Hhf+o84n z$09n6LMLH+J(@1G^joSSl=1>}X>M>sWyx)Sz!B!_;?sZa(dx>4jvi;A;(SP|$ z_9LmQI)GGrHzQk}<=@vOFdU*9-0zq8>$sCGm&{AKX;2h}(jsMjh3~F&r_*PvP-xh1 z7omE;W04VT&xEqoy|`;I9!}y&8|vwW;$nZZo5@;FcKAYnq>)-hNwQ1D)2A0cfyb{d z0~{}B;ynYroOG$%lxrjE^EEgVJ~51FWauxrz+jl?%mNOKxVPN(?j?wjLz=)WB|Wx_nK8H-k4?`IR& z1aFHrmMXBRqdH%&;qY0rh$7zoi3So!u~MvTVHmol%TRIUKh!0+HY?bmyzwdmhG+me zCHyih%2qTbGD2syt9GL~{c?<-#?P+P<#ebffq3RO#t1g(3HDy74@UBYkJqjyV*uIT zk!En$Bebv=noKL?!KK=()1<<{8iX`W51};sphTqb1Rfd&z85f7TOdIGtG`<=*ZpAK z-JSIloyIwxPoY=alylV)c)6`vf!}|E3U+?na4Lv>S)Ufp6C`s@5@Pkz?#${4=i8O5 zf-RW(7}AVmA_qmOpOQR#7sx4JS3Xqa_AT}yghZ8;W3_c}Imhq=Ahz07Ul6%5JQyqx z#I8o6`>E4;#^sxNaQ9bmH8J%=6OlI(W%+nMHN zENLoq>Gm_1w0X7O$cn3`)N%EHYMvA)%lS>_i-o1BP753wvD`@p^KHzrp(akD6}Ya6 zhk@0MsflgovK%zW$Ty^i^OnsU17GS4%FV~0jwBbO?asPa0u~&gBM)i5c>5U{LY}ys z7)#$n)5!=wG1N<>sjPeWV(nn9Kv0k4F1`Ah^-#4=6}T6YFBS=4|F+5QA1IryK8|0T z5OR*if<<@4DF2>D_QmOhFMypzHELr9IhdC7~pRXT4-ztSJ@$0(Z;zXpJwS=V$Xb3&rUh!Zdmu z7gk~1_Qm1a**KOppcM7=>E-*kd4I>v7Dv|N>c6I+WHq%5aEhe5ljBV&Nx z&TsFz0PUdY4bJZ(JzCR%aG!`Au}ETpVQ%v^Ckb|RpQpRv2S)8Chl3#7ZyJ*Xhiwdc z=t#ryH*(!A&O5hRHA&Q_t-#N<+3+-X>`rB@l{cz+QHpYyRhhLT#5AU$iSh%jpD%fP zg!XWI-uvAaH+bn6|J%ENzI0hcZ+{JDL-lZ?JLrz6uE~gEG)_Rw$o>XMp6_@tM<2rl zNI?AfGzm_;{5qmUgMa)|zd;+YJxE@xWbIelu)l(XNr9c)C9l6kl;N;NR0pL^Dy%Fu z(UpHEnMldW{#8<(`Qttu23br}jC76OTbFb{*d~(=8E@oays;tCKVm{iQWeP6w|$;U zT|mejL1#qP^8AV0f(y2p^W1k1MR(4r*7;(PXdSL*&iuPbS>6U$GP~j}3{oylZ{e%9 zSCZSzl^*Xvw*^(MZd88q&ZXN~b|%!nDX()oayI{k{zLC~y++27=~|I2E*sKZ^^dYR zOFL>k?>o^C0_$fRd-`ZLZp$W;&BNj>UcH18*S@RIp;eQ(@kQIKNW(wrhdHVj*p}fP zeX8E1$B!*9-xn>Hz6vOxBjOE3BJW0Cr$cjOCnKQo24RpO%!MLg$?oQ+)R?Ty0VrJu*c>5kj$OSfZJS}vExKKZ-sv-ejtk}6)#P2~ig*9LA z@6Hjd2L$EjVS3RhNR$y?l%1$&^~SNWXRYP^Z3no!mzn@Ki9+}Gr*dEfcLqvniC3)6kfI_&br)E>!`!^41Mj!Wh<^t_=nNC=$T`5 za0!}>SoCwxlM6$nNq^yL9=Fzs41b|JS;hr+D^ zjQiFisJVRpp=0Ih^>W2@N^)kRl1))I0*1PWRecNK7ivR@v7aK*ut-|BJ5ppFNIZ?1 zj>2KgwLvqzuK~+!u43Xjo^QfTI%+vs!u8;G^ZGYCB5x=9mKM&TXi7E90muKx35x`x zP292rGPE5ytjir^RC@lrpi0M>X`@^KiA7ufX#%a9rXk;QHsjo$@VBI3m4>K+hPsfn}efclmX{Ljl3A2qPZozs2z&Yo)zwx;&z zZ6-N;lc<@#f`h*KCg4Hr;irY+ljYgpm|c%16Ge#G-~C(nCIJz`38P?xz(<%BG_d0? z6!~Fs{B1V)S?;(CQ-Abnvm)*peoaMk6_ekE!U5QjHN-vE9S%cQoTn}mYFEc`_(!>=$bi;P1G_YiH}~9lmIY7sU+$VipLdV^&FhK5=1X_ zZyRh~qauC$gMZCwb3g*A?B;<8*S>D$%DDo4fLCEr z{5bww;$c4{);?9B#o(|Ogkqw`Yt2d2cAw|-`9gD=%ol9fvoRBJwy!JU^sfqNSU(?N zjFw3_hou*gH<-}OAukF`Qtyb2IUJ9@sG-#6)PlRjZ{sxNb_XeBiId<) zJ%{Pj1%jkE$MWuJ)gN~dR6V8%tgvW{gFxSD5IagxxR0)GRCxDRKTRacZkOOc=KSMn zwLsnaR@V|t=~3?cH}A=!BSVhZUrYXXnCC!DLj!_G5;1Ce?0k}wTu0%Wm2(|%(ZR96 zZuttW;FY+Q*it4cn445*ZP`k=X-3uSDcw*Mf^2Z0CXP>mB!@ocqvZW-W`i47dI7De zz`2>bhz!tW84*lhJ!x&}W5~UtCPS`|@k0i3e%G$tR6QgP8w>!czH?7H46F@WY$u+3 zkA-SaBKSg`W0>w}N*pcQ-=(d|5|TePLzx0vwtE25IDjXKUkBVs@gJ!->PQO1M;Vmg>vvBx-T@ls8*{$z+}~7(U=-x>9H^P|!AiH1ek|;Hs*g;C zwIy9$ifM)U*<*2mo0soti?pR@vH%BdE1wHsZxP3M8I6EB`B)a9& zv{cydgIY4uB{T15oAT$Kl&xT(2vJFqcka{5PCchDS3xP_B5vh=&JQXQc7O-mF2C?i z?1mH1+q1AxI@b5{(T%v;a(bjkJMrRzZ|rP)3lgmh*9IR26VYnw2{)<~)RuT3ayD}o zxgkom8SF-@?rvuesL5A|e-*F&lRff<#obTta3BohFGnSH0vhqTB)Z04CWX{`5&V;=wdnh8L3m{MeL2noa ze7vf{|4!3#%Z@#FIL>|O`>9n#xT|7e?_^boSqt>&pD^*GU~RBw8bn+1p=8_f0ZHGB znRaEna{?=I?yUSZS0;5A^dERU-9ju(G=a}uF1Hl<$qy1a6dEqJJQ2cmRmwkp~@J}0r44cOxpRZ=%ni3+%4Lyftl5F$n`m z$Wre@SAUpQR9-@U4!L-5>5`R!unSe=vg0@G77JW=RlzHMH12#nv*O3SAmQVRQx)^2 zy}Wk$7Zvh|XdeBDv)^3{g3duzlCm|=0$}LPC_Xs}yd5I5fej#>ooHPaC9``I%xA+= z{)lDkH}O&6T3s*?AuDOLrC#J?FPl&^RZ#QF<%^>qE!|AFzT}jV_kGb=G{@F;5#>3b zgjwEB|9foRX1u@KDWmo^4yH|K!$iV-*4gaFGK^WcU*F69rcN^D{NRz1!(63Ul4xtn zOFSRGKnP~^F1%!PTRL&N?~IVm&qr1H3EN3%lp*twAs#L%NZ zgMdgSob!)iD}3aa1%y-EXr`=Ag5E%sW!!PCvATI{r*$RM+wa!qBr$zy=lsXyN3-a&gN&&w+>Db)--S#w?= zcvd1h4NV2yvF8t?{>0ao5!syc;LT&vM=Zp^R)D2M&I$>yO;&F@MjGbylxrp;(PzwZ zK;O~zq{yS5{T{g#-2>7wZGv2wqB&9Wo#c4>lAWf`7nuaYs*I#SklA7eV+7VCZ87T`=AFs5| z7%Aym)(Rgcdhd}wNCa*&%X!Bke=lpG;FTx-EH$ROx(g@d=1i_`Zd16 zRolcbCF&+#NZ%rg=dgf!yJuoZwj$r9i`}P=08)V10atTDe8t(BnR>Z z`;rJV#nDIv=GyK}Djf4{dV1S+Mg^C1=qfK60+#xnX})Ik&1?Q*e}(dobBwcr-2Z-_ zI67fMJu2~Os~tCsXvo@`n!iO8O+IlpJ>?Jo3k#aW-wDMxx02It1^5>B_SKN4R3Xtt zy63ONp&REb-`jqC$sI7rxoKj(29fBAEY}o zIhh;t>2;BcQppI2w)7X{b*+}`8d(;Zih>=pHr%LK6}UbCGu?sug=@;MDK}nGUao$Q zU!}wyNfHbIrE#>@ystmw?-i}Wxww8vcf9pH7C7x9=bsWM&)d6#c1QGPEhk$qBYt9+qiX+0g-n0G2 zMigBVdqv{#}O?&z)?Z{#Ha6wA$&UDU(U8vWq1(SUd zn?PX{BjT3i&8I5fGq*bcMAB#U_R)DU03JIQjxq?^^WFC%yYFup+jDTa$%qd~kr3&- z^|_Ja7P<*3;c(b);F&ZFGc!yC$uyhznLsJp8dOB}Ul(qjgoYj2e7v!Rm`%TMVz|I3 zb7s|`RkvAXSuznFm4lwhR@w3jeSyGN$9WfdcZPT6yFXXT`5Rw4=Q5MD4t;ZrEaTt2 z*39naFsSPJlzZNJQR#J1hUAp@>52QN!?#!8rl2kMmIOV@rLw-yOaM(dI_@*Tq6Mni z7^>@NfUwwtk;qJomTd~}vn5(BZ z6QI$V7MZ@|Qsa|Z`>P*1mULqUxlIu{o<~?aBIa{~GCN=H25L=$njO8+vv4ABS<8FH zoln|uyZpZ7sE6B9Vf`ngK;KIzG-_IN)LlYELUkU_ga93yuEW{JeRk51`=%O@)Nge@ zgBJ3s)Ebb@UQJYd7~p(`Ehx9a+rTKnnzGEqeX)2SAY+IM-pfeEc#Q2W-EZ!vC)L$r zjDvspo(nh%;k6>R4mb=@>+1BVUjh|~Ib~K3oZUE19!b26;Z1#J4<)oaB4-L3HEf~T z8$6d6NV6qHzC%xfza%x+>Uw<7akt9sB zS#6ZHw6U@r84jEILYYV9SFz|9^dc1rhMyjfT75PJ8PHkvAtdpq+ ze)_!J6-dY~=rilFlOj7O2pa3K0+R-gNz9LHJzEkKEK5cH)Ki>H-==hm!=^iqAHWg= zj4K*hQ`p2c)-(KImNyOtw;mM&6)4VzRPvPXI!0p4qh_BH_Mg8zeRKTf`WpGeQ1DcX z`m}JSth?I>N2kne(RkmW$ShUv#WE?y$6M>qmLoc?=&66t8Aj>wq+Tsikz3MT{x=)J z!1Q$PEPIdZt+5YD z^y7uxw?I>!Lm3WeQ?x9SN%iC^5VcS$)3+>z^q@Bq$(N@kXQmvqGp)^$K-xM~Ul17K zMUbCXwsVsmF`bet6K_mjg%thDh8DrYeZF+Vvv+Q9V7G3SHB~sDkfZF#hjj;=on5m# zMR;YWP_9%uQu8mkO#6__g|>&!p%xkg$Ap7YNSXM`YxD$Udv9ej-J&we|M5Y!&QA4V zx1t$CJrrho9oZ~XCCXiBo;R#~4Q1U|bm~g{#|kwN)^@7FENTt@1S7Q1`FxUF(a7{P zCWZ?YB~u{t!k-3+R=;A05a(Cf3R8;>v^?@k=bQl^0tx#WI`ga|03sKdx?16%GC71J z??3#7xXZtc$yZ$F>@!`?`q*iiiOJv4$d`?i(Xk%`l9t-Tpr}j@`uX8=?fQOi=}2;> zU8wb_ev*G)6QD`T94u7#&pEC*|s{P~&% zDzZLy;VW}l{aVfhsjTGxC1;$x(z{aW6_OR!hjz5pe$rj8;z6PX71JRx0XXyC`9B@rACJs(jbq5^1Au^FseQjGdduNY$_o_2?TbXF=pEl6*2bymj} zycGD^{?_>V`95qx^2edeUykW`3oN7Xq9^PGsaf;?g)nq4HL?&=9PE3u-1fQFF4Cq$ zolrTb@KwVw)Ee`bTwYTIjgpBn!~g=76NCN`y!B z9T@h@rZ`N=iFxWs^-dveQr>muTq*Tol=rDAQK*;dqN!we_ zGwalo-{1IU`tK+txj8Hqpn9zuD1*UCfR*o6w$(If2d8Rn43*OhA?k2O#L1^fMpGnT zq(eZ6T$U+%k0dXk+2}+b1lp#3M-;4TE&bz*Cfra~8G*Yg$LPD3f!Hw@Z zb7$cLleZ z_3J0uj0u-@;Sl(*kBoFiPv$4&OM43R{gD$0-wZ=rc@&vCsyJm{k#+AcFK|Bp$5*Um zdw9c5;9ts3PCoa+Qi!6omv56H5DLo!M2~9Np`%XF$7>R@)ZR#FSUn(#?)oT)k6ieZ z&GbQ4{YIOT!Jxz`OHifc(tO-+9RnSN^L~(eCs6#_=hRU9#$_0Lq(g@AddjqBE}aZy$>_b&SSEUaOq%>6VxXmkV?n zG@w4^kP%C!$;1`jvz$T+){Hp(FC)=rr@h)PNec3Ct8im}co4^rbliL9yGn1vqPHIA z*f1i{0w@53lCW@%2MSp0PgY{n43n;5USxf@OBd)b2lDE7PZ*i55zChrWJcLo`9Yyl zGVfSFXBH4RHKRb6)eMh{%-HQ2(3k$DRhJqA6i&T^-H*IScnAR&)31ul&Q@DGL;NNe zaxF}yIjLE4hbT-wdz>&TMTijg9jx6h{W5f~)XnT#DZ4W*@qdBKQ0>${gS(`H!y-4| zj=5!~2GGf^WPXSTqolKND3nRs0$l6wB6h@0u&%E=OujXpsr|acOl@z1J)o#S<`QQm z;VN^htP$yubnrGd3UwgwE(265e;iZE%&vbarM!4ef^Z9M9|<6-#W@sWazda#E+YUE z_-9x&!YV$Oc12WzWV&*uD&gF6+tZ|Gefkzi%cqj=H#%@WDmSCnkXK!$ZE1vUaJkCs zwXp3+>LaytZz4tFBc@wGyRB=_mS3fAGuoJ@Yqo}HYcmIHK+#HZnw>^+XsJrH71ZMf zNt~Ok2CEVJHRzhrks8lbc~(n}Xc_r_EG2xo`TpR`SQTry$|Cd|&h8}z+|SnkX!SQ% ziCJny>i>~J*0(_mjjU>v@mxGEhf0K|NQXd zUef4{;(CMKXG72LPj)8!yKVc~w$Ak~&lP&6(PNab+BlFOZ#)3fBR@%c_tkdk>2!8t z<|%mYNs)*El5_!OZ5AuIPK7>t+E*%v zgzb@Zq`CbeQ6H79IweI{K*7-8<%lVVkN)Rjo97A!1I;5$ZhlbR_+kos-FGo4E&CGX z2Wo)aa)BDP$Q|T1LQJ5qhsCM4!>z-bbjp4!_v%0aR zcL9<*`-mx1OwU6^iyMYQ3Y!f${;a88d7<-awW9C{}*~8F3Uf6((4b z^*HcqQR2SR+Jko=^KUe67RmkbT-%O>FW-0*`J&Nan1=@(FRjOJa}J_OEPzFskN53J z5VbSNeb2v0mqZ1QkYw$UNk3bEME!dqvovqN)xG8D==HbvZMK@{O6i?0ZyD1DPZe#l z)Rb~7B*12JwRnC59-eer`GAGuzaO8b?RK_;WeZOW99u+hy(=+a^4Jjw<~^;5iEP$| zu#mwIQ=thcb~k?1@d#Fm*{FZRRF>VTL=C-_#4%wEcq`N$AF8W)&FKZMF@)^+tsdLl zWd3MN!SK+qL>1Zn%b>l z!OeO2&B{)me+*ssz89CRaTe7hsN{(eOV|Ixo^A+vo^#O(Z#*>sO|f(9mYfQ3g2oFF z<0*0h8Jx^TTA>f?+X>s5(bidlTvLx`A97HN;9=JY1&M`WKP740i5DicgWPl9r9-L| z?ImuxKI&M2rmWqex6|SpnV0$d4mgkFuL_12Y+@QJgA1~+%EUR^XX@V+3#0J9-Y%QU zy)|;Hny9!ogh~Z+aKOrU5AEdf8131Z)6B?)-?|aLS1r+SJ@)5Fkh@K`ntiao_C%FQ zgxD$L2jfk*o{MZ}`A>nUoO&x5UuoWS)NbHtNevwK*DJ+DbCB28fU4o#ekf*QW5pFC zK2YaHc|~hG0XL_FiQwcjZ@jAd9~NPzGrzlF)w^7~by;?w-JoPEB~l8ec=_dUdEk2b zS9@d`#p5P>!=6C%=Ji+StX>Bt?jo0fGK*I>BSa~W3yp1c%yJq2b+nCG{x|xcNvttA zhKXAbqYT){8wvB*ff0c}(O0%Sl}<%GLiHhG`rPGGx?M~nXs|0cN_;y(BUX~Rw5hF`x$Q&_Rksp!@fr$=vppVivEiilBMula$-Dd#4wiMn1j` z9;q2khXxs;^5>m5uZa-UtxGAWb$#1gfx}bX+1~suzv!c9i+NkXs1hE6jRu-_3w8&A z8NSAE01X}%W+c}n>TMqmv@EaH1MBO@IR6y;6dC1TICE807L37g^m}eu#~#<_EUbC; zM1@+>g3_?(i@fm!K@zAXT6HGzUQ1==O7qhC=l~2F9NEk!T&qE~N(0?97tJ!dP}J_B zW@3OcXEg8Bak)azw(q!g07T}_IV&ZojH*{U^uK8GX4ys$)1Fm~zW)|J>{2<=0PNs( z*vHOX$AeG)Q9;l0vil;Ym4SilKJJP87ovleK!#CdSG?k&LCO0qqnkU0jB4sgQrRy!7Q)ZCZ;I z3%)+>)BfXbFu=P`dC3Aa(lAS{UxHU$y=1TJio(433}=f@yzs&zpMx8fJZARDyCS^1 z+JI?d)H^I+ai)M*i(Gf{jBihnt88n~h0$ttX2n@wk<_mF`b@pSGx4P7lCb@4{6W~W zJbr}YeD0t7+MOm3Z9}6t*6yb!Z_pygr4#`y=Vi!AJU|8oy(VFyc~Si@YbLHoHAE}! zql)*0%ivOfu_k^znh`51noP4lyEe#WsOyvdD-OJ3We68ab1)0(cwAs6J0gok)?8CU zT+f9gc1d;FYUU?Fmqt;eP+SvLd-F@!o3uH>0>1xRu-m-0d|r>IB`^(HN@-Ylsk8T| zE2vMaP9c|ngEn#hPK3%N?Hnjt2M%J-khIfg^T;^(Q?UPsJ}%p{%4o7PXH}^=V6=^% zErEs+_@89$D1v@{(30*x?c!m1=}M^&(DsHAYcYE0nHhkhsr?Z!L1|-=Cc^_ySwu(f zBt^>yTvt+-Q0X#^izrXtJ&J>Da=H&xQ&UjP3W%HlvpFC9pC3S0;~;-)KsC0v>vJ{# zYHoqbe{aB#k0{!D|1ghAZLmg%Zj6QP(`LwqYm9F{2wK)T+4Aba70WW^zJL5 zzE>>J`oT%XIDbqBsp6ZY*v%+KJ>{}dtw~V({h5xP55S-Q`LRMDHtD`VEG-ZBjQ=sFmLD)#QM7WJ; zK{u!c8L`@K7j--8Pj=KF{mpufZ_B<>uzCM$5(S3gpm}OtmQqsmtG{+XtyUQWsrQ*f z!^sgFncv@8b}x>2Fw^=A%~FG4*L&I}LIr2pt>d^_IG=MiGaX4(iaixEk!~zh>i#8% z-%i~(WyAV>K~h>5dpgHE9jjYh&z<3|yz>3BumCvqNogrGYKl-Wq*Q=#2ry!$={0Zl9pla%=zwA{}Ie5~yr<3PnG@ZtaeBv;jqy6mO z6Q5dUN(*W}SP-2mxC9rgi(UU=Vah3HaZb9mdTWMj%&TkcIH~F87ohUO7)B2|W%l#) z`SI8Z`e>XI_}8PlSSe;0yfg$U4(!GfgVen{OrMXNbJ638{FNU0#^;>ckM)MOK@s4ksz`pzq7$I`kUTZPf}j? zTo_(TRBW~BR8$4Bn%*b+XV+ZGjTSp-#yIwFVWDRR+9Sdg7X3Xo--c&mtvX%TKs{P4 zV`jN+Z1>aHD@x7_A`pdj7}4yq7b$*&%VC_EdGNQR*z%aQm4JyUj^CRb|Ev&TB% zR=F;CEbdGJ+F)c-i|tmCA}la>1aU;hycB)m?NpYF{Vg@G!1rpr*S>KNs=!URNT$Mq zk`v+d(YJK*WIO5bGW8L^r*dIn3CNAP+`cQz)dhLyTZ2-9Wd5`GaxK14va^-PVE9m& zYB-582yk0)rS6Pkeyg$-dpb*2K_>Hs=L+ZN3-sTOv1P?^K@D<`14yLK7=-Fc8CDsQ zRR~}n1e5;RO%1w>gnQaOL#H|DB0-k#PKH*p^~cnVd`9|G(<3{>Xc_Ls@Y>&xN@Y7t z^1DtR{EIIn@Q1VrszkwdT7=kP*|E6m459FmwRtdo=lI zFK4{Ugk-#GT$8?y^;LLO?#46XLE3jV+z?ATNsN0!)pd<4jM47?((owxD@99F!tr)P{04Xk&0A|eQhk+X&Oq1v5h2zY$3$h zCE2o55@QdIB_bo)itLf4GIr6FoyflL%gk8MGd`d1?>gUeUFSOIf7dmS_xpLjmiu+z z_e+_}dGItMRlGvF+?eCQV4H_Rbho!kCInafxrGH{S>mdPF(ivt1Y)D(?UmXOZBsHL z?!w%-gd#2E&61?~uy=9@gI!IIdyEP}+hy)7>Aiun&KDd z&!4=^BE%u37U7H`ePiLZH-*I~sEI(ba8>p~Y=tuN_H;FN_Qs2+OcXT;E&JS5&nB zW-^i(`1fbCLd$luF#N8x`*k59GAn8!Q;4Bri;n4MU~wqCwL51!-MV_?9b0f5F|Bh< zBk;GNf20DCX%~`-e1-pfr4NQ3V0>?hay!&~lo0j(S>t&1_2=+t?vvK^(;GPeYw!}M zI0w&Tcsr+hP<59F3dUfY41hU%D$iWpZK`40jWKW^{%A<@4j(iR+-wWK`JC-RLDg40 zl*LF`25-wqe{{yd$W}d_hdT?xs&lny#SQk)_sO{_*uO`1-kBonx^`QsgZkGAC$peL z1>tX&1QVc*_?|auZ|L%>yIT;-?^6ftZVIWVBL8F1bKJ~+CzD*4p1NS`=o#p{kfEMp&rM)up73dfVRV z`YyCZ{L>q_GX7zu!^GVI)z#mziet45aNEuiwBtIQX%YU!wca#VrBy%6wYbVC90zgf zXQ<^9?*;U|mSgVmgCQZZS6DXvGA6r1bmGhqdgluR`X)6^@DU-nVaQ)?dD9owq8p+7 zwpA>PZjRbQ6>BV*Bof!{^qo9dEpC1Rx6W^nv0-7KaYD-dF>s9a?)mw|-*W`L1+x*)wvA`bL* z6m0R%l>3uZZjpN}fm5qdhe0QUH9rwOa{Vv=9#c&nl0Vq`ZH{GKd%^cV9O|#+m(ban zT)&m$RdgO|Bd~;{`wU=L3>q2<$s(>rU-`{Y-(~ zT)TNURJs|dQ2(lZc4U$&lq13)nc~Jh;v6u}IQF$#a&^%#Q4NMAl=s-*nJ8qVr~Qy(uMSQ-Gc*1dL3s8*6g-tFdfa4LC2}7$bFI<{ln~ zZ4fSOxVN!L?a=fib(uxVgQ@k$ z(E}_;X+;6i@1lZ4Jj(mS!327>8<6C_AmkLbYD-O zrlGY>LCgSfq*KCk;djEq5{-*F_U@6;2xZF5dlp8iZPV-bNVgp(@A)gW!9-Np`1GAE zVRP*IwBSJiJW!jEbfEj$XaOrbwActBS+s2E=ze;4!akSn@OL(`VP*{MVZQ;QcH@I zd)#A~x=?f|YVUQjjCD=bi2cus#Ji7*1fwiwyWW^Zq|{`V2CA((SGu%KCND>}vsOBb zX5M>O(=gzuXAUJdxb3DmftVRjr4y*`t2=iJgKiegde8p?5h`txj2-zxj~^mq9o_;% z-85>^LxW^bddW)#@x`5)wD23U@c3~JYHAe0_QLW|EGE7`e1jKIhYV3j8D-&k>Qkn6 zZ5z!Z5Ibg!j?xEwoq*bYB*bouyXEQMS%>06@Xk30`2!3e$B7LaZ|#@4XnN6oGS?#| zEGM*QY8en%Z%7n4HzwV=2umw6Taz=R|9Ut9JDezJP`J169|f8Iakov@2PmcbWkES& zaXhCv2U5)XGwJ8lFVH;Wr}e@#&O$?(eFY{+hL(mVETMC0tzv5C6fVLotcXq7t>IGM zIei|#rX6CxyJ`T#$BOe?+y@jPd3 zQIE&KfhTT2T+9mmpMt|e$&WQ9Z>9L3Z;b=#qW~B#LaZ>0`^hO~VFJ+sCv7g(A5mL+ zxB*rznTi+7di-2Z$_^D?^HuR_`*gr^j&hbv~w%b8kM98p5lk(~7p7T1LfatRI zgPt>Jd)&Vh*;zP7jkkU1RJ^AWsYtpsQ3#x3)TR^RPL4U)PU2080C&qtnNxftl^qgv zG%K8wO|AB-Tfg2#pjJfo{M<4>xisDWYo7Pe5`QD{zfKP>MazJrt~uuu2c8K<5W-k$ zcbKpZha0e?(tUec{}3>~`)9&lCZNBw6L}@RhFpPS8Tlw%w3g`Y>Ddcf3waAPtXPKD zz9n3vs+38cDz1mrx|g$hxm8=$cjf=A+NZ%uuVn5!9f5K1xPCwEMv?=p zxvP%duYtarxN-9D=z7=Mql9F)?n@zR*^kV8j4;b$B=dxSuE$+c;}h*^#wY^<+l}+! zdh9@`idO?y{YO6^o@m8edMqt7uOrA51~Nmd(k{^fHpC+w!Og*Qcnfs&h%2_d2uQ9lpKc?0QLH1+`^qTWOUzvBwj-Z5k!z>y0wtHs@*ix7L6^cqt(cu3|Fr~l4#$3gn%l~@a!_C2x#(~LMYI5BD&yUAF z5zL^4rsN%R)*oL4O^(HKawr@93tp-apm3O09g`Mrj#XokUVA|u0t;|I{|>p%Q(gz= zkz!-2=d>^7M{RG#(W{20wu>~PFHW39Ai{Akd4s{N>ARa!#aCIy}rBJn&k|CYm#wIx%p zVXXgS;W>qjw6f21_Fk+0`zs3wf+V4CoG?!dt9|gTy^4 z|I9v{g2Bce`}bQU(CH|ZIQ))9t-DK zevuM!tI4PM%Sufl_KOnX%&Rz&q*L%+Z2H#Du&ZUoa#P5_qn~?qw0HI_(x>a7n{^#~ zBaMQDupf(camnoD;%R2!xD4d{#kt&s6ue{SusPTr^hAJC4al0YwdkD$>O>)BR7*$@ zKf@5cB>IVp7SA->I*szJ*}QI}F=i7Rl=xD~i+pGR@6&Nkx40Z`k~|*B`Yb|n0!f@_ z);qSZ+`&l)w8LgSimQ`Usp9GIQQpFrMPdj!Ua&%Gc++Q{ksBH8gj>ETqPI-whtH2h znY#@UCd5|*<5tZ_7vTkqz(H=FJiMD3SieXniu2ZKa!rQ5kVY#r)OlVA0rMlN$k=wq zHzg>&2o2<^aZS8Mc|5gr%ghEOMr3vQ1syh?{&mWyAM=cBQ97hE`_AcT7h+E!f754h z9$rQ~t#X9I5Bd8{sE!pWpR`+%+&(Sy_&agU8qqw*^yc~J>oaBc zA7qE3+#rBp97o3+UYebEjVn}RBy zKB4F(&h@~!e@><`P4{oPgnG!jc0I)P#MZBypz?fwoc_uvK$uob-@js_@=i(V0pA_b zOI=%cewrl~h^z44{HxD%|MBI1@C8=xwkLkMD02pX@;B+-eb!0Ca^nvBLiy|`TQTrE z0e04*CM#)^s?j^Y?p0?}--*sFL7x1R=HNGLof@03FB-Ls%^wZ97noTRC|ECsugs~T z8@QamZ}sKAh1QJqRDda)LYEU7$JFjA(PwA5*^Y+KvT{0t9ZcgCFG^xg#I|!HmCBv zuTT8~B=e1#dUVVC1^=GJi|xKTaSF|`d$XytXHhrvX$tx&ngp$J=5N|xJ zLd8_?c~q(s3QIx^*h`~*S9AjIv=iv}Voon;HhWoB-)ZS-dLmb( zwatP<1Z3LoX$2T#LE43WGAF0qALND}n+zY`AkPTE2+X7Q`2F7TYiNT^T!KaFh6uw1 zb+mq_<`G^B#mW^4T2Z^a;z#pxP~%`osG7R1pOB~Q5bZY#M&i4R_>eZm2@954o;XMJ z?Ge>|^yK6&Jb+0>4)JO43ia&)8b-18xMXf?z$x2aY!xNWqdnZ)!|5astXz99LFz!<~X zmIX>^QR(z8EE4(^j_h-PV)`_Dg-%!NWV{*0+$%yYSRa2MwAS03jXSBtBIIz=0-}}N zk1akM(+=J?4xY|&w3DuF0I#?9*hq5z?e!r|MlS843A_xSUM{ zrn#h2?Nt5u8GLhgs=HY@67#Ti6Ks%+=)4Je!A*c)s{U0C+8_}di;K=@Ml;5r93ys4 zPO>R4(JSXsG>h>HnO^E|lQc|AqNp$1zPlaqe|>;Il)YfbwKqjW+5X2EyGP&ozpP@oh z{!sZj&!g=Bk5jsnHf*CT?1YYKdxu^&oOIJ4SNZ%LAp(D+tl<;1irY?hTR6LGu+T-T$obXxC7nXY?^jtM& zN9BI}rx(NowabtWo9g8hwE{nJ@(o=R|M$fwdh^#ON^@}k=%!F2UQh>%5qm^mI#XleIIKd-v~u{`n5 z83moYI0cN_?}14oDpkCSyX=->oNa-$#K{b+N{a#nyfyIle?@j9Ma4k`<5;r8@ZCRW zwC-(5erX|NQ^F@PR!80yRiGdm!x)&4C0w{q!;F13FST^ae1i z4YrsCH1JCWbg{nQo88jsAv8@kEIlmB&*T$_$n)9TdwobJhY&Tz1-b#0m}`C9iSIUP zuZpGO4#RdIWqC}2sYTbD8&&PJ=8TCuz&6@r`i5jL?BH3z=#ya=v1dxUMQ#&`d!pll zrELivfg#f+Xujx}^+k50(}r>ef}WXT?!&xcyAfNJ&fiE2{4-U`2cRbKivE-nAnwYI zV)$|CW!vX&v?Y?X-sxKfk0sqSI?!6b{Ifo!rhP6~t@mQ1x?z`B<-QK@80#SKFONU+ zjjI8(Hwqh0HZO4;TC5e3(zwC@M^08(NejjeyIDUb3fs=x>al$$SNDz&H5C|dQt<|M zSZQkIwWCt^t)`CF2}Gv^u7mL?6kl1J&v3^HU{_O8pW*r2jiK&npTP%9A;&sbs_zmSn9BkJj!}-B9QF zHWx|xHYGYVh}Ah75RAQ}})=4`tXjtyFl)0`U)yaA>qzM&|Aa8sFX0wEWKZh8nvHB`7X+sGBw{~ zFXqQp2FH4Q&9Gpp>ooBIIB~}QoVubZ6o6d+jDgRR@x)#nTv9q-C0+U5i3(eH^^Df2 z&;3U4bJK%ljM(cp1b3;GwA@n%Cg_g%GB_h_s}WHCa=34-Lp0it*z?ZR0Fed$bQKKz z#1dU%^e0sYP}U~fUUUBbG|kOK4PT*aeJK~Fvo#*(X?e*STFSaiV?<$FOMY#$Q5ivg zf#*qi56wV~iSM{2aBg~|&+Teglc;j1KYIBh$S9V7GX=?7(w1WbERBHmC`)YzCZqU(6k1_liU+B&?_wj9&P>jkCmAJIpegLWvakXR2yI7RW%jE#2^Rl zQn4NuICUmZF!DOw(Kdt)BtV1*X#mbSG;50?{{76ne2v*$>L-kIb0(s!h}Mekx0_Zn zsL*Rw*(Ozbs5TfVZA7~rUCleDg!Y_McRL()QqimT1gp4Fc`*F%)28*Z|ChrtlON%_ z9ice|bxbCu^2@H{xf8;?%#45cGO(Cw8RMw^&O^4Jz5_f7zPI!@(KV4F^ed_z)u-$V4d=<-MB!IZIw3$R=T zFTQ%(R6s_|sz>T@I*?}e+beSx7#XXh4ZiDMcI8(8eFL~7Iu(AJv)uvKA7n>wGEcPS z*!+?PSflQ@V{VD+X+IYJZFBvmKTXmYoHsgNw~les=my4^?-ddz=syT`#DoJjjxG4A zs4dX`ua{JMq2=w*4*5`c3#}_J+BG7!+WAI!8w2A9l-d>W?}A!;1al?xevQ^7#gKly zKXf0`7b?iqiyw}K_ax6bo|G6%w;ZfA2(;!)j=#;;KK*ghA)Pa3y^^Ygcq7DHB}l5r z@CkKDiWMS{Kjwz3`N;TaB6)7b1@(cPVT;$xDBxVD~zoU}-EgJv_2 z4C!89>4Cbbf;oNF8B8PdtX<%|UcZI%&NB=XGS86^?1HLpUpo6AInU z_bS)EjAD~znFdy)8cL2$cyYj*=vWnE(l~0t;KSGZ?pESV+M}9z@ECjG?5b}am;JAK z{rb2g0Xdt3gGV6gDZApEP}8WhQ@!@$(5M~jXs$TOUgy*%ph&G49t{eWW9yzez!s9J z2`b%agXTa-Zn4bat$T$-IY_^FI9C4v}|iZmdz>I#|CE~e7ErG#)+S(6DxSZ zEfu`?^h6?ID5MWplY1X;0nwhjXVgY@PDY(24ilIE^B&4qr<@gM4sngweG*_@c0WAy^4uUpXA8tj2@+}mG_r2pddR?vt5ykG# z#U1w8ceNNi{!r3fljQ(gwiG<7?ryzj{y|;q-O&;wAcNHvV(a)cV|N%v7*|daqC8tY zEjLTrn>VV(b5W;A-LqWLsNFflC3r zU$2O?Cr&se$VAe#@iR9fO zMAEy3UJ-Z}HVJPQY$g8x__!)tVZhJ%{@))LBW8%;W3NZXxV_;DLh-5C&C?A zOdaX~hu$)!fu2Kh38amdtkz02sy~}9KnW4-E*BbF1imW=FNF=XeOd&+ZP6_GV}QO; zn2(dFvkVZ}%8lGZK&obl!}Pz?ZJ~BS>(Z}MXo{rj@-11dr$=VVp+inic0lYH>TX&3 zPGfrQcJaA)SA3mmrV{=hjsSDzLU~4S?4%DJa2_KWn$Z5~28DO|=tf`3uL7-kUGqDb zaM4VChu-r!)#nN}?!){R#Z0{nNxF*hF2nihnPn+sNl6U_t4nF}j*raV(26zynNb^A zcx^~#CIrk(b=_FK4~^L*Qvj#_X>H2R{qH^>b|z%{uE&;x{+>L$vvwCfCzw%O`KHpU z{PMxP)w|cPDg>SQ`uNLjFP$x!Ivwn!!?79f!?pQZ>#Ul;8WaA#15848q6N>xd&H{I%_e|A9+b9)bb0O_TxPt5J2XDyPpjm;_!B0~wT(bsFfoc-4e~bdM(i0%5kgt1CZgzK$`w!_y*TE>=6huzSGWll@9bE;k<&V|&(N*aDSH&xK%88W*JR>dhU7 z4wbZxkxlWdmm#5|-*8BRGo$q@wvHNL3e!X{KRA19>|*y?sX$!^{r% z;9fUO_p(@r3&u%YcKKsR--eXkab1PozTvFzw>#V?Gz+kM>gnNtNxoTrdfK2_P@nz= z#FC`*4TMZ!j7=s7h@XUcU2W!)(3h@YrBm4Y36Kr6RC%1{3AK!L6~iPvZilRpPYyVt zLKkuhZ}HH{lGK5iaO?E=vmUS$(T+VksVc7g0A*q;_WhjcG&>FDS1GjhxqciQ&}p$E zvY(!~T|I`j)I4pa3&w8GK2kTCe?OQZmFX~u9QyN7dcJ}G=rbGjPyd}&lO9{~EJMzr zf}gt}E#bQ^J1#)2Fv!XGUG90U?X1i_IC*?*{bra;!gu7VduNL3vCD{NP=g>rm2?F@4K2=a zD82~N#+94(Hx-_LZDiY2IQ6Du0CJRcj_*?104=u6FIlFGW|gKJ*&(1o?pt~jt|aAe zEMs4})z$K|D|oPXKPi~@@Cg2hn)XO*cOMRj1$S#yZZIYDVpO1Lv1guEIW9+ge%{qA zGu_f8bQB)wRZJ%jW%H*&)3vx(uRUpJTlFuH*q4+C}NDCic5s9 z3c8)KORG>`wL!c>Sr>gPRAp;^9oP;|_y(vxU>Qo;cRSCpGf|~(=U2>IiE7*lXn;_# z@z=9uBcGik1kB?t#BcQ6c)Et9y1jTHuRU??Wxu-y5*~DiUKer=@}23Uk%Y!{_036> zj*az~hO-4)q<{|rkIEt($u}x-+L@!KlH3RT=BV0QuMi4z8(ae2>mOduiqueSu-v$w z&EX-wrjrjnm{TY7m1G~13xU{#{IntGlWWm}nJDZ}gSBvaj9w_a-Zfu-_twMkqHwo@ zjDT(JSRy5je{_{~`{!PDu_4;{^J}avY=JK=cZ0Fn4pdW+h8^xvcAOmFX=3U(wCUu5 z3e#jtPR$a3qmQW7vsum<@0&?+DBoV`r1^WcDAN6;-*CotnOTq5n*&S@AEirlrZJ$N zTp&zHZ*5)g6&kCN$!L;%*& zq7Qn*+l7)js-W4uSP*arD9romaz4tDx&0ER+xi{+AEkpy$-&iK?5LTEl9r3W_yRuj z_&7t%JxHBANhklQeU`@HT9%WVC9e{109@JrsIc0Bbh3!fazluh+WO*#TWFBA!rs;C z68^h-VV}b3vu=Ip1SE2%AyHm+h|9=tHkbI8>a8Os{&J@Xei6K$W*FgImT`xG$xMgB z-(hixI?4Azs?e&{sZ}aLt84G|C3cwO43jodwi1Oy)YBg3n3?_e?-%v{?bSC{6J6LB zR{>LL`ua-_ROR!rIt5ER>uC5Mxhe0&XW7QS6w>dVifr>4?a9#K3!zdupXi1)2y0FJ z&O6XA;`$&KN_Aqnf|);yhoJbRQ^v5luGQcFS@YH8PvMFrq{DB?+sfQ10~{SHrvIaS zf9X_RU4cL>$wGp=xe#7_yLpMtdLWSSr;5SUw_jw|JW^3rWi{{IxO!4tc)N9VtYM#=5h7Q$&#ACv zs=TVmR=?=He(=Aj&X>GX%g27WtLIUjkJfGi;6atl(x1um0Zm-7xLGG-!9q$~8P=7G zQE?$fo*(IUKVImuYMun+_BlR!Mn5&nHp|}N%Y{RamtQ540aZ}3Cn!efVs4!PWP=`- z^=AiZlBVtX)N+u(m$RlxwVm;3fp2vQ)a_*jo#hb(bSn^XM0;oKXr6b@TFGi;a8~;Y)^ZtC^*h8Q5elxZ;bHUcmLxQ-XJmUS)j99L0wPyzKU7R$vOZ4?vftlp}F*_hOYIj%kAxzvbQ4X}VV_Si#h$)^#TMj4& zU92e$XN$K&+b&f#@3q`W&64L(6jDeUp4s&JP?{C+NYThR^*9lk>3j~&pn*)B2H|Ccv1Opwbnyn>?55=_6xsr_mO~@f5gxV!bH>M!i;g$akwB?fA(r|w-eHOjY5M^+hXtru24M0UwYG1Qa?n=IX! zsUG{dDC=om&Z_BL*xDfbmpiYsXUac&8qh-a_dnfFa80=+7j28Log5BmwCQmFGGHuk zWYR^4X{vb$c=9c>KvUH6{=T~HLfl;9XZazvvKw66Ah8%6r@=6h4z7sM0=`FisF1K* zWo;JvT0Nz%4-BJFh3ms&k`Bm~+j~xHtJE_SLsw)0Imtt%9ZISfoG!uD%wW;>7$%?siChF*iP5;W|MxImC1Kvzd4B3$lttN+Qs)S0dkreK_;hOPfG?M@ zY~9J3rvm+jR-c4hOqw(wBOD&ARDjDzpd+vI85H9NOO2gJarb$M=cn?-?en|zP{~y!BNh@#!KC= zT~m-Y>ibi}cYLA3;j;BsrGRz@KCr%$4O#BeK3NV;a?d9lx4zf@JvsI4s&!B}??wAE z;T?+Oh`>RP2vM`ZTlIL&%I;jFii*5ocd3-xUuqEWn$@JHYIHAb{=#rM6 zp>Y-k-t!;EUyDk)5ZV87E7AXU*9bZT!L+eHeBAlVmwEk=}$c&||>xU(*kWbA?h zZ5{#&5V&(Di(DYGse0`n@+@?u@cQ%<&AyMxJZ#^KT=y`=pjw2{vI`)IIFOkF;u)5Q z)0U4edxZLEWoX#nWb_FvcM=3gZ)kBjGs7q`Mmz*QM@eWs0N=h;LCuIG46YqCi0G6ijlq<`4_q45lAJh3@THmecPQ20BeI~eSlT}N1 zRMjFVBaR>ZPg7=K9d4Ucw|p4_IM5!DQF=T4r_S~3L6hW#h1nX6Q}UWorSwg~F%d;d z?*MLNY}8`?(EZ|KHtg+6R`^9zXy8*MFP4pLeJuv<>NVbBkMl5pHyyWr#mX+>X{&(? zpJI>esbzR*ofGL|{pVcr))wY0ZG?3J^_QGyL^i@sLDH8DLDHWQ`>mi91o7Y*^%K&@ zbniPZiWATL&($%)0b-XAxY)krNL~;<2JO9W_u7^(D=O#Py--4$+$b%dz;=esmiF8I z1Kw$FtV^-OHNk-GoieKb0(XMRb(hK2fV9a*I>lPV?t|}_Cg7Am$ZZ>9_k>_F2_s^e>8QKinntU9-sy*#MYms5D|h1Mb{wvf^pT(!Vvi-M(X?~G zn)j-W_0XyLw`F2Gtb^NUOMTL_Vgs4+%9=K%4q?XkSh8i;`^F&C~L{D zI2Dz&ecY=jn)kmmW!L%ijbsNL?YvQ~8O`t>s142}D!k3qMqUY$Cb4rxTwsR1~Do0-hDw`k&yKMFGBY*(UXK12Nb zoUSMip@i26SW{!OwiY&JTrl$8Y6;FYF-pZ(2Yh~{mONcrAg>~;r-o6Cp;L~VE6g7= zqA8C;O|nJBKY1%noI;dF>vIx1ltdDvod&0~7_;jJ($l@IL~w+^^gqAYh2gu!DcKrm zAsu8%aiqz&?6p(m z7`k-h&bQSfBp3$gH(?Pew z6%n7KM(cYo$Hqtoz?;uaq9hyZaJkK9CAewL+Bm-pNO1##Lq5*i#_}(Sn8u9?R+Mp1 zV{f^E8H)ueOoPfR^h!{RZXC7lw{G97K|8jj2kKa367SY! z+|}9a{Pe?QHtrfG;&7zK-$>oAJ?s{}4?wnz9JlYx5_C~=uS#6b;vfBIxz-NZh%Kc_ zQjN%AI)hevPM?Dg>6`L)xXTsTqL9JI@M2A!tgAanNS>F;#k012)LyP=FkU4}I)VNy zhi*ePZAjCBKj-7QSC`#VQ9&z9%N1K~Kc#U5pE10@^U&is`b|>xtfm<8Ph&SpdhANR zd?0^N>cO+tueay;{Gv)#L2dRfzM%uP_opHhb{O&A`$@h}bvE2C^Ef74A`Nr#2F*qL zCdtldFDo;OAhXy4dtOgn&<@IO0Qijmc9!DvE1`yILy0?6yt~*BLp>L#ioFBk+gX1? zRX7P(vv1LdO7qn_q!pXbGc^2w-}J9Y3VH3eaigkxYhOH-u*!&~Y+j|oy(mF<6ED7; zB}B;HXqJ9wS@07hYd7AJHo}QI-kF}Fwz1c6v}df=KSh@=C-@OtH&7fxw;-;F3~f^} zuzMK7d7w^#yv6iOQhi%}C=p2d9(TIeIO*@r>EMmu)`y{8N)-h&4a<`OcuQ0oXoM}> zzV(dg;3{+|c3MsLQT%cB!t&^R;C1LttV}~TeLFnJnTIZHM}?>BjPOKVZ)$dc9<5^J6Vlkm0{adztuYc3Sr*rMg$w_ZkN;wtH?(15wmtX$GB*XaT)~Xio zy(rRRsrONQw&!_^V6RUujR%d%r7=s(E8AEJ-pB}M>+^VH^j+-hS36n;(`Au6d_$3R zEl8_zy0NYNAWU~ld&||>m{KQwe>MMcR*2|X7gd98Jd_Y+i`nh_j&4SyZ(U^#%x_2u z&ynzmUS&&!hJN!IleUdT#HOl#3GVIAtmZ&&{xdqRw9=ZJfT~8?$x&6BfX9Ynt^Zs# zIyK5x7RS}%y~KfvJ)0E2{k{H@i4X4(S_4jrAGj{NqjmGzx1#!Kdg22u&ix6ggkqQW zYvudv6kKb$tpz1+TRl?j1;9!Gj#!)Bqp2Pfmc0Bz_``t%kqjxV zfs|(G*?$>~lS_xblnx=j|7(h$(iG4C*)*|H{G8)N;f{DVKA~1N56P?R$$li#?0tcKR2p1?ya_S0MZ|R88~jjhAMaOzh1*+Qs^;!xkTqD*fY%VbnM`o{L+d`v=0$5U1DkQfQda+3xFf2Dt#1rEx%;f?Lae3Z0$ID6>vML;-PIj&&Y(a#q>d{ zpzA2K7WHj5QW*noVndDAJUlA-1_$UOkJH6tAkY2iam@`Y4Sr4wohqsKL(kzW={}t! z;HzL{DwC*BZGCJ5z~iX%TXVpS)jM^cmB5(!bHUs3JL@Vds)_#FP9P0l+97?g^J)Pg z^hoUo7(X%fQQiB&=3l(ko%x#{$J9F=Sd$cf{Hrv_zq&@oEIb;^lPD+|DG^KEC7qBt zS7DCZjOWmakPW$5-}pFwOx_t{N7{}t*sko*F?xj=ZPEjXGz*IFwStmVVt3?XT-`_1 zeTp#uK4ww)xim&shX&cSNFxtwYlfPQ4Ye})i@sCwWZ_rW#pCW1rNuVUxR=h@k!2f> zRvp?q+q@s!TZOEfi=+PF(vqw3kj0nkkjSE{{VMF9X}K|zT(!=~nN5mX|Ns07(KqiQ zqj=K8uKPy=kX?n$Q}76@sXCqh^>5e10CBgT%#AFguHV2EfAE0*e64G!a(;q#StFai zY#CWvaZdM^O;loEI;){cSV_|+|0_5=LdDE3Z}pr@ICk*q`h1X4f7AM}P*}aJHvRdk zdEDW^&%O8`TG=(>0|LIrw_GKV!nMI0 zSmb&ml-KGO-u5F+#(p#@YPQ8ey6bmJ`G>nIW=$!Xkx8Fg6mV!S}>Xaa}zKoulSIuZkd~&1SV;mr~p{ zX|vnSUjY19x#36|m7#5`gp6_-@Q{(JbvS?GM&lBJDUTnoOQw zj**oo+ZdJ6krOMI{PC3ddgo6`b)`IzudCk7Rq$caU%%5GDg~K>wbH8Fy$R&iHzl&! zgY-1>xfPCIu(L$z7I?6x=?vQ#ETay5WwfJBNypjY4NEsLY*9-BI+d7rxJ%skyguE3!V^KtLTz8ORqn# zBqWB!5Ux0F51BcIF1y{l6>e#v(VsyGBDc#E+F<`}0^uqVCxj^JT85JSqz2EBbMb|Y z(IdeP7k^(BLEZxU)JdkWB-s#bhi7`RrhzT<$2rMnH7Hnpdz}}y*wG)?AnJFy(j;LG zvl_hUo6@MV>LvYK-D~xe_T%zoS*kmlYbtXStDR&e@a{R!m62+%A3+n-vCS!EWRmI3 z+hdEouJeg6(DD#fGzUZ2`#XK6-_JmeJUmm2lu0R(0qObJ4*H~fu`+}z*XeEKgHPMW#>;2O z7SD^f5ysMnps?EEf08$_;IK&A(g`o4gtII{YKdmGZHlVIfbWWlML?B?8EBe~>{EQR z^JZ_gA^43H_&>=sq?xzAU_Wqwwbi|u6kf^viq819J|^qEi@ayYUiW;vCx_JRQGJ?_ z$C}K2({HzX$~G2&!dx7UfU{H8#f>mkp&j8I6+!XULM5acWrm!C_D8kVRg%w{;*It{ z#`Q%d!Q3wdYsw%DvI-}_qQU#*nb6jHt_K*eV2{4uMmynOUz&2~26ifFye15-AU$3!S<#(`lXDT*;F;wUL@l@f{*2-$H>1$Sg?96M2Uvzs;(=_7s#4DPSO>(Wv zs6X`J-l%c&E>s}jTR`Lc>Tq-_SnRCn`H&Yy z!cR2j623{R81FO&nJ-*tIFNWoBmlRVJDkBP*8%t>N=ZAe2GR4l2{iq{0 z#U3*+2e;p^rX`#b=KUseR!48{wdfOkMuY!`{x)67(Y<;mvNkkvY_D$Y2I@M;!ZuFsl3q+t8_g^IuFb7g2YoI%9owbE2Fg|$k zV-*Wzy{RnLzr{`ds!7D^J9utWR=qdU--P)3%%L)anjbcSyf|YUzd|D0d33!|(EA%X zHTEX}k)rZY2SMv7;b69`T+_AsUEmNVA3RyDty z6hK?h3nj>pl^p$)I&6;~6zIJXzI+3)Sh$4SZwnFwxzE!l+n{ij`-ehU&9KaoD)g)s z^Ll#LlW^)xZ8kd86x5FGC>@zT?Lh^x8pw`AERdJcmywrqc)Z--0WRfo*R`BQc%Yw% zUzwA+jkHpEDw8M{R6%LCo%&lgOK1N_b!Uke?9}1s+<5uQ+vpoepFTYz$CvA>kK;t8 z?2-*u)0aN*4s|TW3aDp367`&4^^6)}ai%d}fI74!XUwIutlzKTb_&jO=thhxAFdOD z1Ld3h^#LT+_<1ssq^ALk!=50zhYr=&big^KYZR3vlI` zM6+nIDO7s83lNO^9$RnIEPABj0S(kTIjJ%3Ah5N+%9Hpog!i!rEL>@yZx^TrE01NO zJpaTN>5tUn%VK(JNEfMU=Rgz$>IVs1V-CCjg- zqZn!izC<=)0yHOI4qy(1gT+6w4w8XP1V{KBOdTxBJwB6NNjbu2V?2}Y5G}1Q(8lkKaceZCgPk-ZaY7Gjh=wPZj6K(T}>;B@s|Z9qR83@_Ns?zwy_>rvloA){Konn zk#k7@{#sQywE&J2c_t~D_ew%b7}ksMOxWFu@2nm}Ha737px|`nJMFv6^VQQM8|y&5ldzB!GVj@jk27W60WN{t-fZw5&t{fzEl{0T?3B4U-36w%v+H z`wMBTCBo=80+^qt7_u%&szLJAZ?!KAcv_)4SeXZ3xUIY#$T`f$l zwKE=TyvyUmh6&oB%0prMyh`J)X@~wwos-Y6&8Pc2f@U1Z73(L6PZYY!1S6lK^ZplC z?;THd|Hlt^l`cf~%8XFi2N7`;2iXbP#37qFWSw&~#IZy6ip+zSb)f+<~as#GnRm@wVXf8W7P-77)R#8eVuM98G-`+V+Ceh{(*9a-mQ!!`C*HB}cWS ze^h{LShY$Q%ofNDAcMqmiR~Xjq5j$0q1=18JIl5K6OEPaB(Y?Xg0#BL`x>Luf?==o zsvAZ`LI~2yAfnvvv*9DCZ^^FK0<;c{u`E&sG!yzutn@J+rbT?71p%Kp8VE-ZIu*)z zJ))m2!N>2!wIILO`IG=Jl6w(8F~akevy&t)7c$c3+!5o+l48t4^Q8gqVvRc}UwToz zt1{X!^C+gtQ zkDc~XPG(p#Lu8Q&5+Xf@57IvGc%`0z>{Ois0FayuZuu9wl!z`1v*d(ZS>k&9+bCxP zf3Oj~xm4cLKzX;jc0gSFzms-FbhLu;H{mS@p(j6Tq}xJCN}XH70YN8NkmfeqWRsr$j&;XLeq zR11zi)MYnr(TH>-d93cR-b5NObu4P~rAMhPb@oB4129)IHM~yKLM;^)la{TysxuzD zN)H3j?A_>n&eN6Ax)$+)$jA;MZxwk3$um%6}=jAC0e6UkrWLh7L(4l077{~ zyd}S2ur{8#t*+ah%EwSZqK&lcSNAV5-a`njGx~n^eqs-R1M88&zT+J&+jC_*^zFZU zh54e}+0adIgS9eCpk@(Fq|fU9w)tKZZk5KCOBYP@>F{Rw<~^LGTPH~!%0pU{J?2T<#ckC2S#$>&}0M$2u zsEK(hr?dOltbNJ+%{O;U_(wFBSi_cQHXOp2L!*s8oqM`gjA9gB2CI4`fVRHS>F*yb z<#$Z1uSct)B#jSQQyx+eRRNfoy+x?}yN!nXaerWw;}FZP>w>y&OUDvpmKyd-hmW3z zb=}W9l#%r53D;5KeJ$fZBN6g~>WZqrFjvT9T}?kCL><$65zW1a>C@$>T8g`u&li?5 zs7_NCkwc`vS+K?1%XZA01ThINA`C1svpl=deahm9wa?G#Z^3xrJ`3-55^3()&P>t; z(TpzLzNQ4#+|rn^4;2YJaoOv4oIc)vyv|Kea>VxT&m5QRkxW&3?HKh8A*g$m3$Te) zz?I|Rx{Az~nFCZEZf8BrsXGo`<2iQzv?E4RIog&x7r+2Op8RD%Wum^!!1a{YF&FYY zqVKp>Nf~mTTuDzs5(tpt&ayb}N1qsF@>W{8phZT>y-yG+pRdL>DG~%zWZ2l(D$RI3 z=kqZ_;@mIQ0(q#7zxG$lDvZ+{rH)1c3-Yr>&bo!0hilX4YhD;(*2-pXM1DFf2}(i2 z4K`a`5;xz`|K>!goM3R`uT_6Oif0^ZKD2M^zg|gjnCm?_=!RAzIvEk*6m&-q9XH~)#i!Ic*(38vOQcFmU`vKi1UJ2emcjC z@%!T|V)=n0nwJ?rsJ@=b;6Yh@o#r{0`n?g`e3x8*>&yF|tCcM}47EgfgS!`n^0&_< zskkbVP(9TQrB@qSx!Tn}x93uCZ8gcw%`z2Z9b&$Z8Yzl13%?0o8H(uxeZeRJmCz~D zR%CLlu>6Gm!pqH_!bcF$iCXwFt0^AUtL$rmZ};aU6gr3dh-h>TO;7HgpWQoYA(B=S z^QQ}&yPy6AiwKLq50PZx>V}d$OApje`xv>l5vPos{4+>BDa@@NOVv93APD=a7;BI< zHF)yM9?*Z21>g9W4T2KEkM>qep)*H|8J3IP#`Nzo>_d#d4)8q13_~p&N}7-JXUyhp z<(KMM`iA^P*e3{mAOIB)V50+2z%I&l%Dr^KhYt}ZC;nIx8gBG$9szOQ{0gb$+sUCJ zqyRA8-gD;IOXj!me(?r$pqK4)CwM>xY9W`^C1LmV3Dl-MM6z;OyPmi4y^PBI``07h4ec-5=&e7#9~d8^ zf8Nl4K^2@Mui)kwa16Z_jfZPNjW+o3W=T!ES*%)!bKeMi1qt)o$~|0>he#sLPo1o(#0=sSi@*l6Uy^T5 zmL)Z1`XNWTe`>9HM+E{m9oJHD=b^(9kL}h$Y9QJf`ZjJ#wbCvFGX;yd(b&Zv0h%CI z?_f{#|3teeD+A?zf5VV_u-@@28nMBE%_Rg@-jm{|2b`PJ%mgdjLA092CBrADxwagq!r+AcWl>R*%%9N#r_AgH~o#}Sa>$5Ug&xF!FzArVqJ>|4uF zFO)CLg$(!~3)~nbu_XE~kB*<_6ED^G>IOrz%goX3@wc*G{qskQ6#fe)Vxpm5nd-5e zdlsw?&+sgn4Rl-OFqS>CXz#XqIZmK@)0#5w7I|^C%DHzQZuwI@Lcvc}DcgjdXs79q zA{0k@tDjqSI(JbcH{TJfuu{Y^!57%gH>NYasj;>9X)lpvYC&)y6OGkFQ3d?$xrMrP z&fZ!yO@cvVB7yjr*DN(R1z7xX(7c-4iDLoi#h~xs0AlC*o+Jx_Ou;boImV%!ocD4P zmAV#-wrom^&{NKjqsjsG0D8Q!n8d@1goAw`5hQLNc3bRR6rJxC&%Y+SM`oeR9_lP! zK+H;SMY|MP4jml231dH}ZtWeubAh+GwKfa*9V;;Sw1%q=OFUxOsK)GrVN1wso}BcC2iWUJ_FKL!uNW)B7F~Hfm4(cbTpsQE{RgL5&T&!GBEh~0 zy-xyNGodx28(WyvC}Mo`o|^xblHwqLMQd&jk_-jy61b7K{w*_RLur!UPVbB8SY+CA z`tt>`CB&<#LA;8hVdV0Rw?E`EgID$`c*f$E!0+?{6{ZYTp*HdAv_Q5uznCUt|V! zV^$$II56%ZYIBwh9}|X^jtNx zc>CM*gYMxCW>t5EqqQ#c9MEnRZpU>|`9e?XEK}os)9?B9^mU&cPOXZz;R@>i>HvQv zZ4CgWR@(?_u&XRe_BL9yGMPdZXflOtG%SDajhk?z7zyX#snL1yXEWUbn2NlJq^pQ4 zFe_$S8l_fBuhy#L6n;MA^6>|gR0WEL+&V-Ditg2~k-GG#qO27IOQ!hVPlRiAIh#OD zd6K)WPI%x3n`VL%cfC{fI(Uit8)-mbvJh27nlvP;ok^h-zznE#h%lw6 zY8?`U@Aa~pPE9+JwKmG%w{iXQE68izIbNpc9|CuZZ^rV}^B2hY8lZ0H*)ktyMA8?M zFM_O!S&#w-q4TUE%nfb^7?=R}opi4EBF=_O8$cMw0z+Mdm+Z%z9MU|@C`tICD$8=n z(@y$nVB<^E!o&2FT&S}_O7)XD#=FQ@zbQ~po&(@gVR#edBEzh9N*y67>qq?SsW|5a z1ls>y()Wv6Xmu06%7t>yDF)7XlLs)??wg{9GAP+#`VchBF2ptTI7RCe3?mH4^n#!Svywx6Zk$D*QD zY58SRMSnR_jgFv~!|ea%w+k1ZYI_VWxh?K&*`e#EDU?7(5KTFHy?p-sMXL0a4>aw8 zT-GRGCdI6G{mrQRJsad%N=Ikh+}C_`?#EYV)s%*hyGM>cUP6zHl2bS@02JUv__pqg zwvL6z-xi(k-DG|Wx?t;F+O~-&!t&WVXSe0Tl(wbkykniLoq_5Rn{_Dlc;{<14qx~l zq~{yAs8@I+GgM)i+z3vcl|;RHc4MJGM`LBuisn5A3usRI%`A;R^NL^I@29SW=;F~ zF~9~|m+77#w`W8I_x7TE)pDL}-%TmwR^M-qGA1AFGK zdjzIVUe`@HRG-Ng>1MsG<8`B+OO`rQFx317XHZ~1^z2CTzkT)>q5$uS>2S4!nD6r$ zZuk7-mk;)?xM?u-@!nREy}nofozz9EbMrmHJiy+r@pT5LZj{rbmvZ{s=N5HJFWA%l zZ5OVfPu>YL?tdF^vyCJU#&x!4)f|p39-I+T%8%=5CN?K|HPuQ(2_MVQI*-_TqK$^f z^Hz*xvawt{u9>?= z;5Xq?WnP(d23p;y)bNomODZf_r+u|_kylJ2Z+;7#wxdhp`FJ;Lg;=FNTXiZZPY>>i zpfykIv{fX;NM+O2T0;z-Grm>5kMlKZBn)Evj-3ISp16={79%P$rLKRZ&u$iVgdYOM zZd`JAyWzU`>X%@jNMO4GvUW|YW(L7tdye=q%IUr#k#W?merR1l7tIc#=Xs^urczS{ zJYWZLui3FF*fndJ<$=SBy!gP+vyK&h1S5y@epxKs}R=oODyR zvHGZ*sX=QV+8_E7Gp@E2YCWRA)F2KOI9w!hUr7-iqkk~I4}0%-7uy5{|E*L#a$P0L z%J0#36)g;mfe#yPRP&MaX!pJZo>E?T#NPBu0}vh@W<_BU{XFi~i}w)`@zEd2EO}pT-JtFtMY@*J@ISDjIy(kXR#p`*&e@jcJyqQ^bkoef zpVlf%(KzaUg)jh`9s5(yJPI}6xrk%e(Cm8B)_gO}x%Mq+9;-a#j+tP-0OR@4&im0; z6XFfJ5kapU?w2FZ;nXMy3U8;0EKoX~QCQ8UYhve+qOQ{$>kckhr+@WqbwXVA3z6b` zMp`kU`ObPYG7^Lw>9~{U;!J(SxiZPp*CMm!P4Oz(W_oNtP7CAGDI-Uu9Qxa=>w`eV zd>`FJ=YuarA?~=kI1@+#u!lX+u(zmY{!*dp;qu;CXz~>jPUVEXQa84VX@FJ2ur>H+ z%anZbsg7>6n$4=8#%OUB%Y2qeS^@B&hO;b*>-g6-Qz z2+21qZEPkVoLl8r-ZtZH?P#>n(+G;0)_vHwFX$BrK$RhWfRGbLZ9akAoMAq?Uk%-6 zjS?Inkx7{Mi;Lb~-_q9C;A7-i$cfqc?0rAEU~Im=1|Z6mt+IUlX=YKfiQuGipsdg^ zI@!g%=WjFJ>!s|ZTlu3|%4%Q-xU0YTRsN(YQB5DIzl@K1Jr3`5mfg||qz7Vgecl6^ zAyKdD^pJ$W5-d!b`?#4|ANp=d=?FpVFSn2mBPw9!O?1lW{Z2&_`&%;SUL&nL;(B@1FfkozsT(5>k3N3FM9J4Dc55dUxw}d|;S$%15AM8=8Sl_9k;)DgvAWEepl*$_ zv=FFfGa>vK)IV4O^v!r={dP^yp#&ecn$PokX2z`fC%pI2AMROy4>{*;g3kX6u%Mfi zdk|$1`7(E?ZnE56QOoL*XVY7gcf~-n?1B05oA)XS?B@J52Ad;vc%JQQ(LM`0ND?~; zjL~7b9b3j}%_Sav0u?WY7e&p3EaRd_Kn45@D4*h-m{6*nryWQ6=?`8w?i(M@RB!EM z@r4;dY^&>neb)IGqp&OI)FCcy0jmcaz4mL~j)2X*7y&Un9ddXtHZ@B}{#G^8u^L6i9aq(qa*%zyc@#;K1 z=!kgr7&p~xzJsGwvJs08_h!wo_+b@eaVNb zGs(N%?RH%N0VmV#xH3*OUab9WE7bs_KW~5+0HE8RhFA?fRZB0=YVv9DiDYV8_`Eln z(2C#Ks1!aPYh18iKNqiE2UP06rJ4Q60K9{zKnnv$A{I+ua z429e3TIV-}V)q9PHSSw2O_np^0R)v?ul2K~`xpbJkoi6U*{@TwIvju?3k0PoU8m84|4aOcoCF%*ekP(1rSW@j^Uwvnt+{4jZ;BC~SB^4*OiPcoqAX!%l}!S+0nTE;>o%wE)2m>z@G{^9%j=Fl9bw!g0+E7fwP?-g~tO7$Jh`v-X|fg_rH7kI|^Jjm|cj zu?B$eBYf=Yg{N;~#&5p&!YtIRU`!V==_KO6R7yJAWE!)!HkkTrJsc9cdfiMSG!=W~) z@>_#GE3)S(D=E}uR8F%Apkv-y-03_UEQlkcdkWG+*@o8+2_>x@I29d%mEA9bRr zlqhG-7meOx64citm#d*LccJNp`^?L3k>Eu<4m49qJq9i-83C|n7j`ceZS52FB{G#J zQS`Mg{Jz4!!pI*$-0zfy5aLC7UOeQvUU9s!$EGaR6SC;eRUK?3Y9|bLKbvGTFUMpo zDxqrxzWXMvhplVL#m~PI4%6Q=%5~H;PWRMK`e{IX$!LLud5;iNEI4_2DCi@w0Gty8 z1WZ2KFE~vINP&yGSC#WjtsFCKPsUI|qvfCl;Ku%2;D1iPa}7Kx?)xC3!<|8AJJ5ZA zJexn`2oAZ_N#h=rI8#M8c0VJZZT&OJXQfAkw+!u3#&Q705R4;tk$%HVsL7-D*^U1m z@>9sm3Qm)=N2_56;+$=MLu$=WeKCe$+(_AD;W!A3-i-s0YVcNSx12tKlWitKddg^# zihioLVClz?xk)D2US*im1F6<2Ut&Lt2+`F2?TJ=rB8>#-1&`basUiQ=Skx!y9yM=< z&vWzx(z1?bM!5nLB+dUGhaSAlcUx{HsUCQ}@{{v7*f#dVh|{v*{*3|W!>9wbwiKgm zbQ_NWqH8AGr*rPh|Mi+>m!26jal-vO`&&Rc;7IJR_zPD}_Mg2mpa%(iK~O-S&*fTU!UrzRzT0Hn(W`Euf0hL4TJl5h zf+2#ARBuq{AD_)_ms>25ndvcP?K*p~x;&=TOY46YkS#o$Y*W+fT>ayNa_e%Yqh1n! zTOWYt2uRyy1CcJNVHL%M@n``$P3uId{=6OyK5q)bF-?L@tGD{xtX9GCRA4nmwcE=) zxD^}WUGTqo;qHqmfvK0X5z-jg#%J<98oJM7z!WllB4pYN}P`tr-h6*Wy&VTs~jl%h(ae=>hiPSBgK~7 zu`bv!GMon@xv1^aZu^4lX0bEmrpoaSwgS-5yoHAdmw{=s5xS(=nr<k!H2yFD08aHN``co$dFlLaVOUMP*5gN$%U%^-ox=H^Zx8xJBk|srA zQoNzp$DaJDrs}#J9Vv|kKslAs$MG#{UOX4i%0KT5FaKX~MV$U&#V7 zj9ZM?fCnr*PeCr!MTQ?w8T<);i~N(ysPxAf=ypn64E>QRrSe{hHF$0( zjQEBTsU`VuQno3u7WNTPGv;L4Fw&(CsG~U(C2;jB5#m5#s9CDt1ljJvJAR9#Te&NN zM?t%ZS)+u-@LmXJU5C2Z&9hmx%a9^44e`e5SJF+{4}{h)9_f;crnbB0Ih}T0E@cMb zVCVclX2DxRwlq<;z(t0jsQ|Mq92V*Yha;pu*Hfjem1ZbuP3c>Q-|V*R2(X}Ew^OV zOwXcQ>()cI#c8`rCtcflpnFd$3n(S~B8Qa<6@ch)2Y6}$fY#Ya2M>hI;eA$SVe#s% zOJe2zGdqPWg&S4_u&TY3q}m45ak`_O)~UQ$>qi`LLaK``s`^_2ms}7x`5G1J&#Lp` zAginJ>xld5+uxEp+=nctm+l{YF}b5YF9~0}yq<~4@DI*^&CO65?r%Cj3v%d*O2Q~H zbp<~)p0|vjPzgKh04f1ZU)+GB=9&Q3#>54^t#y0Qz>)QXa=ElmDw%(9@S_g6Dk(k=nWrytYl&cljc?t<)ZZ)!sS$9f}ngI_3>hRx*om zw~&iuT0zVG{_y*(*)w&(9xF1=kkJR|ke3ls$CF(c$5!^AJ#tXwC{92F7pwL)rbSA3 zvUAP4ej8igEG8T`XJ=tMX{sE&Rpe{v`)t9pue>R@v_mFZ>kOAz+n^=WwbDyCz@_fV z6Zz#YdLjPb01s2vgJ8+xn;~IDef;?@pZ^!^!@;*09sa`X!*Ry#mc+;2_r~HfmZIDZ z4nSNK{Ie%yBV7n3F;t^r#T}&bEPK*%zR+;=h(yu1qaD%j=&3YBhWC=5L&nZ^$-ZZou{%#!**$+Vh|=Cq`p@+DX6< zsW&>88h$*A;{tgHq?C2sbN2s!Y%KLZ(Dl`;Ks9$3*k3QEMkjyJj%XZTcvk}UyhT&N zQZse;=Q|jSAt3T@j{?chI_*R?>kgvh4;v3@f_YiyP-00CvG9HIv}sx3*4qzQNA3=| z7qO`a7cI(On60`to_MWF;KUW<`t!;5sw+9m)E)t3`qe@cMr`Efj;hI@n<}EgUUhjW zD|iPfA;~+@u99L3d9vo^dIK1u%UYCtuhmnKSa@;tPfq!mTf+t5g}k!gzOZkEJfPrK z{&x`Z*E^xuC;WcN;jW5=YE2P`wm^ll@4>$TKxbE=3vk*E!aVLWtP9q-1bTQtT?k?2 zka)p=i>`*|I@&fye7tpEwsml1^g_;CX|(36!SQw}GZH4N3McJeiRXBQA-BwU_cRIc#T(8eVav_1DZ=SPO39%pSDW0Yw-C7RL%d5mnhZ&K)UHn zDMr1CCVr&A!m?_9gUrcfpbrOhq<=zt7dOFo%FYU;aew=!tnsJ%n^y7UdHfR-Vz0pT znn%fD@j6--(py8z0iL#LJNq)|%o@rIdj*by7tqn~u|GdRxAr${3%|=5hNRUNS z+mm!j6On@UlbxDb)1f$={6NX_+G2rd}ZFt{iMBwaUKkN>H3s4Rwq)LN;bE6UR^ zt4lVWCCBXQjGxeADF@_BI;#~>N_5|Vx`3w2iG|*u&K09007DTY0bsxlI|{OGm&oQ6 zpFf6KFl}H_wnnbfHqltW{PBu#ZvoQ_Lq3c6ZYw@iIo|A-6iEwkDeKeC%FiDxjj9}P z0IfRND#|a?!k#+*N#hnvby__U&i=@-YRpDO`-uPJ5mzAk_dFau+FAUwBMb0}*tM3N zjh6t)>{lR~b%KbIArfsbtEGpq#o}a88kgsT$;bf&#t)-7@*^dm%F_?$w4Z786T^Gv z1>MG}9h)G`mMBW=_7eW~6RO!T#Y+b%cYuvz^8mcv!--{!{8WD_{>}Co82|?1fYWf% zFxTn(?@Txm5(ae-NhDg^%OemdAhEP#6f zB`*2jCQd*&(x2F+`!3AAXSOgpoBI5tumoRo{KFHqS@pTbu#OO3qU=1;G`LTjR=ajo zYdx{@z(uNBJ1thPZ(#9BN@fOEya3^!fRx2!p$bvCqq$gOuf~~3D$s2q2F!70;S=jN z-;{+u9Su|uSLEeZf6GAYtTz*E9hg6yn3&BC|NYK`i9{d>@-7~jgXOOacM5HPb*IrV z$nE+(*bHFyD)fKL9q3N|xX}NJmW_Sv#P7t9-cO}?18wyh%FLvObMvT^o`B;G9eTP3 z1G;p&1``12#)9pvd)3`*LH2vxfT#F5={x}l>%1)LvJR8Kb*)eM&pjf3q1>O-oxTRr(LS95G@YxbmnLw>x zib#j~Ut9UD`r&0ri29dbN-r3TKmJamnO$5AI0u-0xxOB0eyFH$iKT9)nW${#J^T<} zqV;=AIYp@K5#I9XkmkK;tEIdtM0B~-rCH4WhxF5M?+Us`eZx4_mAheW#qdJSkz~F3 zOaSfbTpTJ6a#>)1|H z4;p=CtAY#GZcU_8$Ofc<{q74Zdm_@`9yZ!V8`pJ?2?>~c-G6--90)njVSz{4;bvpFPzL2K=|%$3wwbkca|qMV_M zv*5<^h%Vb;7W$?y)5eER^%NDw=~124QS!Q0j$FmSmq6Q~fV={Xre<>&xt3ST-!Zy+P@y?By-psXPSJ!7eL?%eB_M=zC zen4qAYK3rY<^OrHQ%w8cBH8(Z+xd&ij1lZ7cR@?qiQUqb{b;~KF0n2wm$Wz>5o4L$ zpC~|sl6C-W1F2hh46r8wj0z<7(%xvX2^c_BZ3lZaN8EW_z{v&qH(XivI-;H6b>WK* zGlE4SZ$OgR@6BMhi#pvEeVtHIl6Rq#3T+h%lH27jy7FP%OUz*>L4BmrRxAes(@mYE zE@=N^hFDZ=OPW!F)?zCdC&MXD8x`E2N_ckUTFKlApgS8_RHXa6N<#>>5_@NKsR=H6 zhe54S)GpoWW#gQx%PR{eeYqDC5`D-6<>Gn@3&{moy|U zSh(zZK5QDe+^2@O&o%Kj>MJ|-tNZT#W5A;lrrw;WxN97twg-RN!c1STbz_H*MW@Tq zsVMjkoICwl>?9}J+m@_eHLRwKhP#2Qp=I z%D5Y+4{#Q& z>bFvNUmH#BdVuNnUgb8>DJO(k6nF0A&fw*8ml?Lg;~v|-8F?lwW!GAe(9jXTuiM=4~BuUTOquAE_ zZ@%XXjTpFO@~O}wzRGM@YJ3S08)8;$&un_Iw*&0_+|B?N05O`4cV^R_CGO6GUrYpY zf`srDp)Mx?YoN($nHx}?%6*?8%L?sD9e%1x5+XoHk=RWe z-9jR%=o@B~pa3^aS-R3?!%K$Z<`SM0jk;?=dXzq&Qh#o&a@*3kjvWTD&0nG16Q-U0 z@DtgV!%Jo%=d@1Yn=aZ`p#-11Km88AfwOfCFk@qq?#pnR7JDQ!Oy?yw1T?3ror|;t zGrBw@iX{^s8DPqs$8>BjygF#aUvgLn1K=VjN>xN{!Z;Hom!~$J^|i+a?aEhRgRjt0 z-BO6|Ukxol6(kTYUwlfVv{pChE>Snw_kUCmV8|HqT6Zja%zOB{15#-xTEujuP#_TU8PHNW&PJ+M$^E3)wMhTt`~NW z!v~KVH0X6eo#%sD9PR#R?*HoLQKjWcCGb%}fuj7=@Wk-grp%C;UK@G^GG5`$*jrr> z5exXjl@ATWiHBd++2C4?_)SB^68>U8weW~I20-WQcU3-Okw(F2@#H%Q%6x=(PgNGv zJiDV#IRjI9iB3O}(kFPLfClgqDJXoUYvWlLsf+1sCi|PmKr~{Ii?^+IUiu>2V5@j! zWRW8y8cXQ(9s*VB5~On@htzwagF0zb7iNfg~F_`A}Ku)h+WRA?P76rCvDgb{doZZ)Y>$6 z#}x3^&fBY^mU#H~LW&zEDw3MqaKVWZ=<0xkzXHn;!TUyth3Q!c!4+96WKuyiibSZ zW78ijX%RnOHeFwt4F1-ZxOs0u^q7?nzuB^VyFVRtDcU+%g^4v}l`UoS88G^D@b=&d z4+~-en$~pIBHA|Rzu_%P1cXlJ9`MJ9bTyW8B~#N^QY8Qy8|@W#_wn;UARo?X7dd9X zb)tvtyhmAC`9HIJv8A+dx?FO;3?#+JmyAOonhS}gH{lM@{rj}5e8|UfMtyIoi&GA1 z`k1XPRQ5uxp-+c3@R%jRbyKFUf4Hrezfien+$5KMdy=uylG_`l`N1xWBSC!|Ka&7A z6CkhogLM|kjnuPd;RjLDQa*AEW%;-GAk-t=Th2s-rD0-VUTavho zJo9loN}@mZot?^0J@D!zv~T1mh_62GSVddXo;*W_He}-df2!mdB?^W_ zl3R{SExi+n{T#p9k}W}D2`n4Ukj^-2YHlY5-VH5Y{@fO@+e9bT8rK&XHu>TSvPUecg^r3RP!T50dVOCYBeQVG$$O-uPXQk;XJ26Tk7Sa7?DCcg{cUXw~S z_JnQ7;I~e|@jxsHTBPrXXI3+9B@ zK!%q5e@?z&X$s7qNqp)sRpAmb-Am~Wz1+x*oO9C4kS(Fhx~amgX%)L-Ro3P!j#aY^ zR!Lt<=if^2dhH#)((kVoTH0(w7X1-1?xR4v+73My|F>RR5uusm<)YWOm!=SK{&xTi z;7Y=vtXbYZWr~CR^`rlUlczUt*ps=&IXoSOE?WW+UDHmis*-WkIb#CT#kjsNmJ3%7 zk3L-QJAn-j7y?=Tk2$%t^54D_Vyaw>u!HI_Ct{h)@}eFqTpW_Z-vr&&K1H7!(UH|7 zc6&nw^lYeO$2zA|M?O&>YKG^%MDgBpHmu-;n9Q4&$A~FHRn{ z8Z=CYKiO^%)V@aUx%g`8muJLJqvhfafOUD*c|nP14I3}d+$o{-H!2CQhJi_51$qeL zALyKs1|Mxq#Wb5ON(-3jND+U9kk_|1G85?7TTUy6H+ziFC9?o`1TkM9NO8ma$~#KD=kBx7d-Q$>c*O#) z#AOXlc{@D?Ahqi@{<~SR`N%YOz~#oW64%m@3b<;kaNhn#h_0qlmF?;=3p28H+(n`X z!H0j)w_u%saBCX%;wE#v%X@%=t}zFFWjLT10Ie<3&=op0<$9Q$1aaTtmQ$NVlZXu& zv{sAn#YK1w8Tck)^28&)RrGBfURyTVL$k>?w0wj~?Qu)V1keZM&9@P|{QnZCAL^Bf z@a$#)x(v!sH=ytES(}d>DVZf!=SJ+M{`E&ha?jCqkq+h#Jy#(VO`XM z0kEUoKZ#U*E3qAj_kmmySMaoOueF5sK!k-)06ky zAI|=){g?pe4H45@c`VMew{YJ`oS|&VGzR+WrX3I2Jg)1~&tuFO{5~89%r$J;`p@S- zO@g^w&4t_Xm#aUIJ=*VP%VJ%lLIa7y-UP}2DnJOEtbp3~_W#SL3 z2#=NAm*QyK?iiml#|hJ!FY#G6uL+3udrPsco(@)+FM4y4YRcBCdOLoE90J9_9js4b zcC2k~2KgVea9vqkW-6s##}5G+$s6$+s1}>VSkr2f#HyT@5R6%p$Mu8Ojjm+KV@nQ~ zl8Ava3&&1mC2$}O+|^4DnemMOj8X>NeHQHQx-2Qur!99oA(gxBDY_6>p_R5KqBK4p zW5)AvF**L(La4mqWI;`&#)iCtsOFA9je+<@dW(t2#o7w zZeSw48I;~ib&)V~r%Gi0z@B-epuq4mKoPmX@)R}_)mky%uUL5h(rcGnTUVdQ4IXK< zh?Z6Z^sKHm8Sxq}4)wC1ioX<(=1y#R2x8MDkzKIym~j&I_3?s=(#kJ-L+l9_35RuJ ze0cauc07zgp^?yrmcfIoZAMMf*>YDxw|39bzEOKaPKhOA4nbGiJq(Wi{Ac6NXe*mlUR#TVC9`Rg0lC=;L zo|{2y#)TDlIGDF(^BQSBS!QaV+-a;Ua#;7Z(vz(*Z<7v;wW?kW`km^bCK9%y-|y#+ zFchccO5RTI#fzBdx>hCQJc8DxDes57JVZS!Xr-X*Ke! zPo-JQ2&0G4{n%f{G+9}RvVu5cz-SILG}+ka6P~dZU>+&26O>Z zCT;&-D*CG_qItp(V9PXl3-)=CTN0B!z5DtKRfLbthCQ5|G4i?4StrIWhH4)H;ci;* z$V6dJj)bXMb$gk<0^2jW!y_y8z`NYJv{n|bdv#(fvUrnf8>4AhQ`VQMy(hUNQ?~gS z#IZG%3rzFOL}^(?V_h02eCg6-_&=i``D9<7dvH96g1L*Urwu$)Z!6yEEZ%?(HXCZ! z;h-4X9(E8P@WH@$n-s{1oE6>8%r?DgFe4nT&M!lryXV*7Q=5>NFN0^*4w_GAi`NLM zPQ$KoL|d$6mUvHt5nCoz%-2KYcker|BB4TKOqZT35PvpxG?Pv671@B%v2_{-R&RD@ zQq6++TpEPYk-@Fxb?LhPh;P{m8Ig%+@^ClEwdW9Z z7$nk2GKYT33$EnJ*QEauFkMUi@#Oo(sFJ=9BN|@8c)a=E$xNlIC@Y;B*4wQRJREVZa2vF{*SB;kZ8( z;K?vlT%a)TGn~Bvua}R1X42LJh-RkOq?uft#>xZ!Gr47)YQ*VN9?h;Aud>}bvEr~U zy*&;~;oD96@WO05sL3!WDx#KDiJlX^@$_?vt7R&;OUH*}rCF+bFSv}$go~yJbQBQj zS6;sYuE?lz^k~374Ab+ow`cOhF~YJe80Qi?;iWB8U4uBO)dTO}uX25SyQ4%^sCdr0 zP_s`q{X0=I^oBTNkwG6xc6J)|KeF$X(W$F{XbE0$$|xXEcX4ENK0&%BM(zNFb+yN* ziwXe(Cc&~w7HycC@nPn|Ty1?*@5hteYZHkGn-1KiOKnOs6kqxCKTFSPtS3fV2}I~l zoPWSEmg_gP$RtLYgJABaxJp&LE4E@#7Acb6sc#x0W3Zm6uSqT(u`Mnvh-HX<&U!C5 zYvOu+9WHnY`h~kBWBJukNyrfMEp+j1SaSvFq@B(sLSE|9S6uYr%5so-LpdbBV&c90_19 zz$Qpu77`J>n_CcHX|ZQ;`{1+`bR4;n@0k`1e|2z!wWQG1rD%NLaaL^wXUZ}#9MeX6 zX_TMN@{$M!_c>RzO2cdJIPzBB%Hh57TR(Dxwfr;skxF;B7@@N3F(agbkp$#kp=H|Q z{_V5ssQwYVaPE_XN<*03J+C5M`rsf(KaR4PD`L!zc;6Gm`xePgt2Qw|@p9=x6qFoY zUW?2NU0ED2FgLulJ|ez8{=3dB2rng4+a#`m&C)YbD^HUABfa*o%O=M3u5PO z`M#zy=+S9@{`Qe&XQwHb_gj&tnQHdRhIni5+41s7bD@jgUeI8%t|=jCxC(n>bwZ># z+hM;{K|H}a z5`R70tD9&ccPR)(*++-WczB+BTFNb1B;5 zbNphKk%NP6&uIUJ)G=r@>s41wf(jDpOt!`>lfCJLz>=2AUB7plUdo%t;#Z#P<=HGD z&G($FugeUN*C@?guN(wlx|B^+vz&@6cQg?HxbA)U4F+daxVla!`c z`yY3<+wHbZn%UwqWn^Y*mR906GnS^fj7w?=GPz`mXfEK2-kD}BHL=_#Ynz^6P{e6Gm|9S9!ZRecld7e#*AOzn{ZrZ4Lf2f*R zMD8lK76P-v!4+@zzW9|j#SOo0U%UP`4a91k6Wu1dobIPD9#N^IrODClU7J8Vx{xKk zW`zGZKY+}C!B3*Gb$Z+Kq`OgHXgrHi8$u{$fERXoToZc@CtJe)glT(>;>bH~^%JMJ ziEA_U6@F+q67iz3@w7jzyVLKlLk84L1GMY8^xqrZ7O?42&B3M+BF|-T$*Jow1;Ry|Q0n8ujuhl(4#&LHM9tptJx*Ev*keu*X*@CoWExX7 z_vf;x}DF)k+r*74p;o|?w5b2A^jc@my;wP z`Y$jW6<3OTr&)X>TpSNQOh|>!p79Ti@64Tzu0pSycKQ6?nt9CJH}S^vkU4v+NXZa= z^0|jQ0G&6O!HGkM`NuVWY*D{QGHja#1v!-LCOD`FOPXs)048;nSf~BY8L;x`fz3uD zDNSCKT}6Iz4OhBecX}VJ4?FeH@OaHZg|&48fv>9b_etyqdjn!UXmIH8nqpnS`Ok6q zQEPlgXm-)kdLFOuYgz-08YZxI?2DNXxq22+8}Qe1-FwG9q${RVw7X&P9UZ4#S$AFL z-xU2xA_Welqsk6h$u2oc`rdJ6RTDHMuP z<-yA_S>xUI;ed0_ZwwCl^v;_z*1gM+wN`9TL1~=6#q8H&i@74s zS^r}Cw8fjz;j)G*n9WJG&A!`z5@)*CbLK`Ifd)OlcsA*ky<>2mU2%SC08K`t7&%Io zn7%E5^Kb-k9)@ZX1~cavp|?-dhbqTe88IsKBj;C&khhUtbla1m*ujniacQPg%Avz? zFytj+{lrwBLpq>amejhX(Hfjcvw$ybZM1KlS6zVWw+GJ%Ns1o?9z9c6AMO{;B6WMX z#kQGD!Rt={PtPQK@+7YDF4~fuf4(Ng%(3wTt`vim?DRTZKij0CQIf6p3|^z(LNR>Z zdXwvuI?=NFYX8W-5NcKx*b(=5sDYeC{q7W8TKlTg_bNAECgOWXMEte(BEJS;?W8q> ztn_Vz$AU7Cheu99QRA!>t61pJeVX2RjX#?{N%=_kVXoII1d~HkPrnXX~Bq@?!weDs0aa8mmTlKMkhjet4bx@lf5M6W(I&N8R>4 z!D^SARtyvxFBRW#oQa;`&`k4#K;%3-;)2VpU^bm}q}^!nVb6b?)CZ4$IN+|uXTY9UYfI5i+W)H1+w5c{)x^|7rFl^u&IbE+t`o399h`f zTp-{zeguEo2=&Eq^V!-Y*A!x`d4I%H)QkEF5N^$Ty}2{LVAy!*a4@dq%%>Y__f5q| zITL?n3Zoz7p9s-1rUBaQ{B#na;Jc7s;Ur8bDdcz6I8cUitX;!W4X&=g>3`6J-fvg_ zac0!w6w2@l)WON$hD1p*&5MX|O}pe6?WI)as6EWruvnz&_@=kabO`rmXc!io_dQ`N z{@B&b4%AS(`%{vDc%^)QapX3I_s5*@^v`bm1U%f{_mU5iIn3hlusBd4pDUVlZg8U&{pValQz5h> zq;uF^AZ{>kn|R7c^N7`2UEjTPky1vTAzWE(Tg(DmSwv0?Z@^CloOiwk^~= zj0X4CB7ARSHY26=L8`B;i^+!t5fhbTcgz8WRKs_5dteexhOM29@1_yY+y>NXd_Y|} z+0~)G&35)|>(Yx!Wu)Lq?r8Yshal6uusX^CM`3;RsS$nPE1$%>_rSno6WM@veHc47 z(#8~b$s)5WqJO@0a6@cQ#56k$CI<0A?=a@KPmK-JRYKD$%wN3~SzK zC*C3EUF%*djs!GaAaT+tB)xX$D3v~cFA1wYY%?UFi9$*Qhj5>1yvq02U*>cXe# z-O$NR{^oFCOgY}(k~VIiy}%879lO{`&`ixyQP>A?2Yb}sh^|E#rOELWb|-VmclI9A z`Ky;5zjVO1@00nr#JIPCLfpsAXl$EHIa3`=SODPyw9Ice)oAn&PR6EUV6fZ<#ENv2 z?d%&Rl^I_5)ykm63o1W30p|@63ju%|?m2r$eK0~z_OsB35IXvz>!Z8wm4owvfwf_6 z#*ukdz@eO3PL3W0+RgxutVZEIz^D6{!^-b_`r-{-Z7>ypKVw_t_#}TCm zTIep5OU3J+U(u)4iV*l67Yt{BsO3$)|F19Z^RZt>E|E9Jy;F7JN>y+p7)O!~Hui@} zHUZF}Ho<5vE|BDd9~P9Z{HF9n@R821(W5GK(I;cXY+Xsu4l^bTqW^0z_mDney8%(a zMZXd~mEbmDlyL^VZ!iG6=9wE~g>H7U^FSG-?)1si(|8uGJ}+;|i<;yNYnh}2jjES7 zXp%o`VjFdLOq^eWR`cSc$}FIaakZBMC_kGHBJNrrCVuPf)T>Ab z4m)ig(z|fC6zr`Po(;lX%Q^=zKx&`+kb1&j^1NfiOaFn-bO*kBBdanWCYtle`~y|{ zYE4*lT4V+!ZNiKxO3y9o^83HHGR?p89b+-xc6oF{nQXueLTx;`PT+&#&GcoNi7D`` z?T5wyr2NUXjU-l8r`1En5Lt=Gj}*oGnf-{0kSK;Ws$G(5iSEBDS0F2%D&K`{|ZRV5LZzbY-F~X z_`4q>1uO96$KI9ok!N&PEZBO>S3kDmXFEuU$$;6$gw)~Y@nL!BCuMlVEO{rBeg*e* zDc(=nm3Dm3IJG9)znrzC5_*nLh}8f7wfdx>^G}H7j4_>Ho}S4(BC=|DBt$HTkyz`) zc`s#XRD75jgsx4CX8e!1LkwPm_+xbq?O!w!AcWEsANq19;RWhJGtdQp(FSg&#Zh!qgMsg z;nPQDDa9kOaxSaMhhLt8ot`q-T1k!;KyCjF;u)L%zdrFTL2lK(n^#YIc(%IS3@$(} znGQYR&X?8DQ%O@!sp@HB01oa_14^aPG!o9JA3A~lW=d5G22svdMoF+flXLy)*&f1OgTxUMq5e=r{k|%vUKSRuq7QX&4z>{7 zM*V9#ic7&GbUY$`)pnc4lv=|;H>tRWTeTf{*0d@o8YPOkY}CJ}-(bK4x1_wK8t?`P zdEC;*2>Z2x65CMQh>ZX*HJ*?c1v=a&@*9YPf?*UL2ar*POyTZ^%#e{vSmm+w3Elyy zL)|C?xmJiJHg4pzzf4ef%u(CH-D*4d@sk~#*rMVzZO|TR?)NdfL)HT_=~Y@-|TPBGw3}ei0 zcj>+E{v*Gbhmyr*QI9ZQOV$U@;M?e7WI@#bXuNzB_4g6QuqaFxK6|g3MA=XUdyG<0 zOqovz#u!E59$%7)YYFy%bx2ZcyP&zoMoClW1$Y*<)LcLek=Xd5{JjnnF{X6<^kY93vO+=zn-c<0#z&3^Nt5z(NN0w0Exd}??vhud&MzQdc%s^TdG=U~HU8lj z8SZcLjn^;-5Bp08ewHNx?Z5s9VQ_id7wLR+3Qg~I;QLCOigsbn%JP z@LP>LhmJatL4tfTgZDS>>C9Um1<$_lUmKh|e-4AE$gJ2yjEp*Tt35Et2-!_Pt-sZ~ z_gfS7eqIx{Rtbcf`NcM%6=kis1otBX8{=7yvHbmfWEP6!(l%&IQxpoecmyrGv-#3e+8;$3thA8P;h}**s&w>_=W*AE~bLO z^%@aoVA6mzT8B7P9B0K(l*{pszOweWUFLKjn^bj>&N$OKBpJMn z7ja*7KyMlaT-qaDC}_!Kq67C)FRdGW;q|oY%%wv}x7Pg@Ps5%bg3uVgHp9(r!}2If zQ(!gc1B)Xs1zVHT9d@GH>!T4*kH}uVRY3yRg53}>AtF28*cL2QpHqfBI<030Skl$k{p`I3Xl@{&l?p^0HmeORm7*hq-@Ah5YiUAT-! z0|nLTAFi6PaH=$eGe6U$XZ>rUJ%@$~+~|nF=#6{L!zqG%)UJ(WX&rT850ky;PP)Ie zh3yMRJ?#c!JiQr_U*5F13s^2!xr0s0FSvs5RnNh6!zbAIPTPh10g>UC11Yx6Ku79nAq#iyuNAog9`q3*`_ik zwXU9g!?nc`7jYSm9Kz%RgzO&Rg3Z)Huil%tJzaLV-v$tXWTgXDk$AYFoN}&3h@a+{ z98J{cCPoou@)66FU~|_k(}bPymd3k7C;jR#aL@SV68V9DKdaP&bV^N6NN%ph_4ZQ0 zeMvxZP>18n93?e1b2~JC`vFjQQQyxEc8X$X>mPLmZ_^@te<1aasVr-(lSL7^{1muh zSyzy`tX5#OT)D`nSMpAp{BbgSKE2SwxD8NcYQ(xec6)ZRq5 z7Sp@d6s|oUysh!EK=-ph^VM1av=Q!{$mia^zqaGUJ@Y@Xdf(a^ItJU>ZL1j^9yEXF z(c08Tl2?|jc&F)f)3i9rc|Z)ijSk77{@N2j4yI*?kf)SaE89T)J5a_Dcw&E%J%VO$ z>R7ErE*bDM8}9`2D*_QM9$oaDkiU_@&4X&C4xM|Nd}vE6xEC*JD7SO?W&(A0<8uRn zzoxla{Vr2B2Kv@2Th?(u%v3P?Gc4Z(t7mqJeXqCy+8L?MhO(tEE~Y{nfkXw`dHIVz zLIakNK~p}Z2U+s$LxitKHX?iV+KHxm(&7&Whd+ZIQfF0YI=c>~eWy3z;wCsjD+ola z5v}bg6ijGTIB#ur73PCW_7oz^iXq5kxBt(+o`D4X=UlX0ggRwSRFVQ>-q_Q+=3e|l z)7Ke(H{_471I*OSCp;xL|3#lRg}WQ$7`6JVfZ^M`EAd3gVXUkO47Ira+NGpeB*f_2 zc-x3$ZiyKzEy^1ksF@z53E7?7v9>}B^Thncs(NV!ZuaUyKFunuTIN`LD z9okrLAjr-A^BY@@z-OjhfOpS3i351XHxctoz;}8Nrsg)=BOq~Ty<5ZOt!r#crqq>G8X}tr;3}dm}&925z9vABiIObH& zn5tzWR)n8Y*UG-E`ExZ$WB6x4-rbYbN-loE#7+n4D*7N}Oxkm>Cv;*iA6BQK zaK4kG_07&zmp^Hoe7hH6%@~X8NsbOosE>-w3OuibR?l#u1_Nac!~6gGMuunH_9u&H z>7JDI-c5>+zz@~7zc|W7*p}jEJGtXGsQUdx>K~={``3Jli-rv9L}0TF6qi^Fkfwr* zrF}zQce1D!%}YHfMKY{zD&EC)WE|l10UMCpHt$0kS08Uk85uyIAY7f*Tj6=!nGwRc%sZTS$@O0d^h$*d_)H30a&@6juH;TOH3JF$o<2qDB9Fp(vj^pf%IXHN|f6t)sts2-nc9J@!c_UGHEeJ_Km*7q`*mfw&0MJW|-H zt4Awd!)BwAxDw>>ax$NRy}NQyYYJ(v2b%4`ryIOqzN;BpT60MnQhBO)(crn;-n``# zaa3)7GEh1PfbE;fpOn}9XUnsJU)@fNaJNYp$EgrHQ%g*6uH?59^!9%zq+Mak=mL-J)W(6N0r&H8HMi-nt`>E;oN2t*>CDr>PZtPPvmM2! zMu+uR!zZ{iBwh1d!E))0r1(j6>4)q~gg|B`=ae?KkJxG0Z_7Vrq(4P0#9iA3B*cvD zS92bodz`PZe{(TT)Li^32=Q;YDgkZgO|d!795z}e=-ExGY%3RG`@(OW>O3IW%-2u) z^QU^XjW=Lcxbj!8BKS2pL|KgzZE~#p**mDdPftL8POUn;2d|;iikD^HLgm5uwxbzN z9h`r$?-FyC>dAudOBb^*Z9jwcXns%s(DZaUyCBpo){@U(vHBfsySXw2gfg0J)oWW& zLjm`xjCVetcV(54f<=b1J4sCG4m3sKooyKFd(~~0w#ltHKBDV@GD=(rIZA@E^8+Ps z#Q{@HWHny%YH6OKo>2MWoTr@u%HkmXA7Tr4Yf5p$Q*{u%d1nN~;jnW*T2J*}WN+#h zUk<6!9Vm+vRdL!a<=Q#+$dLZ8$rBGk?)b2p6?T{F#Ap2OZgUJI)=?EQ*ycUi)IgU;Q=SvzO<4kABsxcNqCeeU$3;+= zTc3h7u=vR2VCOBBsg9SbbO!eh$l1uRA*DMZQtQ3@r4KZ(Ssa`d{YrZJ6UV05>PE6# z#8c8=2>{K&eNVg>+3}^o*pD*HI=A*jVR&s!|6pr6KB@Xaj@At*;rMIcvTuEM%H?Y| zKXESkfL<+fLVW>>zilApl%t{Yvmf2n#=Nb4C8r(Wxd`8U)Cn|-Tl@+vdvcM2fGDpl zg20l^`E!ww72b%?6Z)ii2_P;#SV7gxm>t}NQSY^7E)I*(5HgIH8sv|Y@A z7|q}UxbNq-Qnyfkbv^~AjY zIqL?aa8qer;Vgzlf_K~p>(64#S6-8H3CF+WeP6DJzL}=aDyC%}m*MxbZ)Uled0z2s z?Hy>;?|v2wHSm!palzNkD*jd6P>Zw!YR4NETN(=A=Nrpv8mti6Rh*H=@{$j6a&WGt z!c@wv{IXQ?WF^o02^)pe7{2pK-2)TR`{H>6_;)3tmv?RaK~`mpS5MIUwHb}3j0tI( zTjYZuW7lDaL#Fw@QDg&wQ*ZLC!uZ(3rNeZ_ zF{5l?Xa#!(Mr~~BdyDkesx91^BXC`SCq7^C%zxRazP?Zsi{;~O$Hknn;$AtwHp|TD zu}ZkdIcmD)XfZ=eii<9rfL`KOq8dbmj7@+!lB(JIi+BUdK% zi8%wqRA(vgO8YJ04YRFiauy=>ltnl3C~d7qm_Bj7&)GG>`knT2_mHe$o+=D2ar$l& zu#dGu^hxK0zbK%m+ti2o;ibXm2iwGrvrWO?Co$2Bzcxa~D(a=?wCsg2BeOUqd0&t1 zg5Y9DIWVBXaa#D$=0GKCA}G>m9MNhvZ?F}~`iJYkI;XTizqFc-Ul%XImi zeQe<|e<>KNZGeP&dn65w6$hkH7inIV&8ja-w|-1K_IH$gSnb;Oeu!t4t#I*>Ep5gX zBesPhNY52@W8=Vt`TWAMKt2$yx~PY1++~^wrv^+a#1_+<7Wn+bqr^bZ_2x@Z9H=PT zTpQjV0K|?i->nM4*m}Y_0?S_Y-Y7eL;16j=FS&|k zCY-O!1|n#w)6(Z1$}H+7(sZ@7MS|(Kw-}vqNE+;l8!uIPB)Gd{h&{2`!oXUN4R%(l zFk9Ap3?Y>ta!oMquL{L$!kyhQm&RuQ`6C%nq$4{g&pp~Uww6=3^@py_hG`)SmPorV zFrp~Zc$TP_g3Q;l+P=JMK{Nk7|6JoO3nRVSY?~x?0j+(2zfUDgmS116UoL&XqQE1C z)A`rV9XmK1c&vQqRPwd)*$WhM$JiOdmM-r|Pzb(Z@htc_&VD(#64@7ur`L8K;uV5tLpbR=nO$C02J+R@~lJeL7Mn^^vMuLWr2lt2rO;-S@6TIO=Wl*>+T?{hXgi zGu6h7`w=G0_&s5RySnpn0MaE*eC>~h0@2jR)s&65no1NNR^GVM%;p;DICC!$Lj%T& zkH37=eOkZ5VN91@*cG*xfo>(2Oz}Ip-YDCl_@5!&Mq8V&^n9Yrldut~(->b%L<^y# znKDV6LtCeu8|QYLZR`e(Ub(GSS);qufoB7P=(8V{`spk0_C$yOU=%cVe;L2EfAK2> zCo6j}lU3Mq%fiX+!joOOZgDWe?b&f=iK~1tGvX?nimW}C*4Ai$C2~?qYky5Nmd}K6 zeHZq$VPfHy(=Z<BWx`n;SJ#3K7O7C;lymAt)>@A%exK zrm|?rb0wn8(jv*&<4^0owF-dhx7<(2;~1OOSEF4)5`h`;?)$AfybXb?3WzxRjX!7m z7roAjW3k%|UpkdYOS-y-q<8l0YDlY(`77rwBqsT$pt^e8(4XhnQ5dm zhp`xkvxgM!^LBB#H7mRi4@|qTq0VHlXeskYV3lgM-f;)ej+N#ek|=4XDK)$Us`8Uro6eFBG@L`7WnF}n4JU5I2PoZ2+fz*pbb z1KS%^*+7DDY<+1_jSzW18{J&Egr}h3jfhhr#Mt0d=4-ZX?hE)via6Z6)9_`&hVlgo zjnuzVXoH75RFrT>QWu^`;*a2V?nivl);<-kg1&F^U1Zu$CtgL_`rLLd_zd;wSX|nx4+>36?rP?`t{yx03G0Ux;N=-z|W7U%0;lQ=dGk%AR zx<0m2f1R+Y=t`Nb#%DX-zQ6O~bxMeLZ3c&)zrq#eLsSn2i1Z3(dXy*8j~~Q)?v!AR zQKh;OK9etx6AR$+<9`J7aB9mUcM(Wxy(CkwUU$5vsxM(~aK-!;@fRIqI#S8iq{8q^8#a7__gabr~hMX@Z#XECEt;bDq(pOpL8)LNu8Kj?c zm!Ih3fH;NCouVIVVDaS(h5QT56fxKwS@&f=|J8>5TiUSnPr`E5@s@=7LkHIwSn7c2 z(bmnXO5|f{6)C9ph}p&}X=`@n1>ga-eyJfx3M`Webj-QEgumJ zH)_|*I&Tk{yrUI|^2k7qbMt=d6l&dFmrOWVuFTlvY`p_aVf}KVdSo|jD{z;_xj)qt z644n}!}u^$X%D%=M!P+Yz3R(5hkd})@r$o?N30B-i&N31O+%TiovByX-j}(e5<2e+ z_L+Qqaj`K-^vJxw)PLLK!X}ALy4PKGQdw)l!De`es9p?AjE*0FE&?%Fn2CY0W(uie z^#q(y@6YFTMRCaW$!$JFdi+8lPuVK%Xl|%jz3M9&gE!yu_io;eA4bE>fh5C7YWNOy z0)sg5XZwXWE&{O0dJ&&* z7x72SF;vJLCqErediw71qQ`rV-1FEv%za}5b7q0-QtNDhT~sTaPPM{W1X8XXY_Vb= zw$ozRRXts7mKi86^P|qk#;HM`lj;)dBKv7l?DS7t%@2`PCeet8k}q z6i%k5n3^R|sD;<$0Km8uq%SO|FC_F-IYY8oJ0&?USUXz=yi}E@O!IZIP7J!V3^vfp z{~-#Lnt7}yZp<&rvD~85%SG@$dy+>Nb^*zGrIH=-r56sw>1S7E5YxM-Z-JZS=z-Ml z^}ePK40iSu2Tod{vwA9)Eg8|TEQCT7b#OZI{Zi>%(E*`W$XK|n98PaV`re5J^yb6y#WN0R$ca8*M z>^!ZWn{3SK1<$27U-EBf44;O2b(^*2&Fb47AV-8gR8M~L=TYD`=AZqRq7MGMsMDaR zKnB`Oz}sRgQ?iI{v)n9m^z{&tpNP1- z6gR*weYn7%T}_ZAi}@2)3lR}mp06;ikir@I&yAHXht>^Z4w6Oj{eWj(F&rWv~E?aa{ z(8pVjj?b>FOy#Mq;JDh3JXOzFYfAw}kvm*=6X!IuN+dhl@~!1L>2=7!>D~G5E6BQw zIR)Od*yiePt4@EL>`963G2GAIY3@UG77VC-J4%y!r7&tb(<1S?8{&Mvs>eio698Pgl|xTcwLMDNu|D9t9DR7M&G@-l-0} z!{H8vYD@|Vevh5Xm!x_Qo$P#IGpfz2&4Bf^Eghm^2hn`jsTf{6&lQ#n6`Oy(SGq2uSyM8|*m%t{>r zDve1@2zEt`T`4@x)!ED++5W7l4>8^5fw%+kl5ynv-29Qz55Az|k%L#INW;Y4qyT3& z83}53;@6PC`XQW`>{Ri#u^imXgdoX?Y9%szdX^n^*hUYGC`}3C%1C3X1b75ODloH> z4YtlI4X1p{ewP$N5ZWC9SBH}Uz1Mdmjaav~3mU&&jzeI#>ER9!eU_prVo z=P_rh$=)3!hTZ^n(EWqsB+}_QvZb4H2XFzRcBvihrP~=Rw`+IfSgm!6$_^asp3SvE zp35Dsax<8^`(mqhzn(G8;`rzkMi=3uZM4ujhA%u>e*4D5;0~~b9OOzN;rItq^yRv~ z38wqPcO}>g6$9wS*xjbypDx6f;9+NuRdT~PseBq-n9@Cz#Z@v>h*)w=%V38rg^<|Y z=@HVo+%OBMrg-!~NuXzD8{mdMoKH*4$}(>+R=K@xwfC6{e@vvVeob3z-gpu-nUESW z+HEQiZ>A@=6u^P*q;2QpfHEJN9TjpJfHRpO}nPV;dHQn?yiYU8p z&2C(>Cx`PXyMGB*6(2-bH%??x$5{M{A$k+a%lSl`wwD0nLgLC@dGwVsbM()?3Hl8$ z2aUS?b&F`nSZPsmzUlzH=GY%FZc}XXt2D5(H379yy4)C(8Vx8rSDr{xv_xacytNoo zy9p4W$h9XOOPB3S&1upU)xn!=%#J;rNyQiQ#*g=d9ulS86h{%V zMpIOkfTaZe{Vo$W+zJc%9wEtBm4E5KHY=l-i)ZV67(ZIPNkMr6r_X*~J`1H37Nbv?D&zAv>j(En_& z3u8vId(@%!-1SM$MGw-3WpOc_rvR#%=Arr5Qa#hM(hcqeX=N z6Efd`h&E%7`SzpDxs6j_PelX?;!#Ns=#G5@v9urslxjW{(OSk;UDj(~v_@2(bM3Ay zZ2|{@-m3-ejaf0vX+N)45pl5K%XpWNt{HAxgkVHGl1#cvDEKc#QMw$b-blsY8(AV& z=q&LvHh4gRikA?=8zYb^35fpi@)-17erj)=lskEryPU$7MZitj(|&F>oz1S8)w1eE z``&}z=b=88>~0E?z@yb5pIPch?)kA^ZKYZ#RpiO$lB zd)jF44a5G9seEPlBCgxYB?Lp;Yx7!eJ~aPKyn|lg4UdiNb7U`s__s(bNl$Y5$F5~j zXcRX8y=|~uIWJl1M2XXY5i73$v}B5WR8Fw`H!L`7hH38O^Tr=2+iGu3b?DY6or$BEgma7^&VZ@$8p2u8I z7|Ry7&*txfAAcRS_l3 zU(d9q;}<+aKsgq0%DV+tng<|V#0%{EwBG*1|Lnl z)fJ=5S(FhkpQAPA#zPEyIti)eOj)&UoZv;?8KDOoefdXu@U$7tlk(=SP&|*#`=*Gp{M^2s*mx?tJ``UQq#t|(t1!Lm?13T6 z4m~{xgkeU`0Js)2wP*9sJ(PJMTi)mP_vOVv0{TYb9ha@T=%CsNe(bBEMDFEFgO9oC z5q~_XH+5mOpgP~Swl5-sP&cst-Y0oMI_S-`-H|UDTTgOFMx_NvUey5o;zC{$Y6Cp| zgpyCFt5PJkd1JE#+|>ZJeG48_tNrs1n9@FWm}k7g`-Qy`;Hj3QQ7`xDfLa^lpB{aQ)4xe2f%RzR55~a#DMlv1 z&QM#+NxTX5+Xe!}rs<0+64*@~&pL)Lbe*~*ILmY4t)4R=^OW9R&flP_j`8Si>g;o- z>_c*Do%9HpQ?jq8-#(?+GM8tq#<~dxc-F;$h}1(yaR0Lgc!&=N!ds#wd#=&hr0L;H zOr^M)%NhofulZutRk8PfK}Rwn*=|az)4tM~+?zfIjKQl_re@HSOxm;;c%LhF2m7=p`%pBdann zoBQNz#Zp7}vqoGoJg%F<`tkwfP(6}~3F4xPDG=$da_R%uvb_I>U26wV8q)|}1J9)? z6X@V^gY`eR`J1<|e@u=*08%qMb%$E=wH5-OMD~tto1GGcxg}&tRlhG1c@)mbhHZ9? zJ759~JUpM*?^0WUJ!%V3l%ew65)X;&mzjGs5w8DAYV;+Y)k33_$_~T|Aq_*BV6Vt3 zB*GI?eljt7pMUvTP&>?1?;q$oUm=Tm!H-{q8NBM_miYMM!S7q z_>RRx?_pS$kjJV%cd$mPOC@%!KJjHMO2OhQ57%F715I1-vk<|l|Fz@1|4Vxcl$+xG zobs-Z&n1yTTUh0T@Cv4C#yle#+777DB25^S%K43toKI0j<*dDr@8kJe4#lZ%s*c1_ z!^u{5B^%z|6f4mB($BZ~UyOXAmc~woO`YPAM>Z?LW^aLXdU|-KsY3G`S69-FpsbxV zV)cEnkFdGHabFRC(IUrbhjB&0kC7(Fd9D^uk*T)Z5}(JRsv`wsDZ-wy*da9Fy)#&{ zW)EBQr?z@vhwG&U(LF;lK0@sz+h85yLD+^(ps8LY&&3>o#2FNopR+a=lPFhmS#rL$ zAIwO9)T(P_?6&!6S`Wu5CibHx5+w6|lxk8XjW` zLx1?=gnPnZBXM;^9IIKqSZ0pGTVhCL-Oe8#g17azI%jmA^M<3U1?qX7iZP71c^X^| z-%h5Wnw^M9BtIjDv!kasue`bAf3dv_5%9QLmhcvWcxmSP)4;omb|BU?f#pI90V4H* zy#u;8VOQCkVa{WRt)mD*$=Ju%4y41(?~7+J4wEcK@kI_m&6po+DgGVM4Rh*Lla?xh zUdGh<^r=GIxA<7}>B1EW#Py>1`Hk|B6^wJy%A_G+cl96ujH&@6nOcn^iO0>hZZKL!@IfiBU?g0>cu2EY}( z!3Cqv;X$d8?(J0$b76GOa9eYdS;)3pCKsI+5nEPD8e$o_HZK{dS?+uVFe|j&DMt5K z=b0{oF-K~3r9ZV3NC$u=kD@QS=y!U5WJ*=Vi*05g)i^O@-$x+&3vZKm9oF$&dJjG! zPvqDwm!*r6k9{ml+qHO8i3ggYCG6r>ADgX`ZdMs=ya%XZK^MRiwk(z}q=^bIc(a`i zp96NdQ?KGsgq^7kljw2R`P~z(M`5|Iy!8^x-sn}pT4Kwkt2u2`IZh=JZGzLiiJj(N zFt~xySK5w>Lr2~TzF$ii@^V8%=^ngJ9^UXQ z4?AhaYYUxYAyZDbP;aH1KRI=&{k(6|g^d|Gz*VHGxeBw5sf_hJ>gL4cT54_k*OM3l zsum4kjB?Gyl(=$(ETynD_(omeS5{PypYp$8Y4>xRNL&p2CJfEBq^cqvd%O@fmEeZ6 zH5apj>qDwgrOV`^W{+sYaZV(E?4=A>so=nG?H8_rxJq|~=t)cqozz!K&>5zwk#55K z^^ypWW>bF#GD9pdYrr|BZscvr9r_^bNBu5`OnqI`#4k9Dt65I@<>+xdmokLzQ_o9p0TXts-X`c5! zEO};qkQk_kHj9Web)7<973uL>Zq*!+tapmij9E@Up=sBc0A(spc@hOD`PdL&2#5)? zwID5{7T22NFS%eSCac@57Xss5sczI2wa|$GVwe~xP4;Y|Lty4iFzK%*L|od2+Ph1u zu-Oe_CFDGc*|FdK%HoR;4>)PFi^;r1IHYUd=vd2T3|UVtV`_$?MX6>e{M9_S@oN6W ze2FU$Jrw)-_gTiE>cttmjfMN(10GpgT9SJglB)wp%K$`>&}oYDfua9}-kp8WnZoQX z^KMOOqb}WMz0UZzWOmQsmbo&<6OkzmBCg2IOoCN86*9kHdfF+vX)U&q2&)SvcJgH zr!(WZW6DN9%)iv*1vn$-s@bb|$H;oPK{f~ao3}L4b z&mn6n@Z2@fusDC7>U9`-nSQF5fIsx^$?}VAhgvIHRZ7E7;zfVJ2tv~JYxdOoU;Q~B zE`PV^oMs-~Yo0F8saL1O0j%rDHYdRP(*QWrQtOek`3IF0lX$n>qZ=I+r{_+MfBtRx zNw3>ZRjlCk11%=S9nHc6fYX9;F26NQ+C?*EHhJ+dgj>;x3AVJy%1FcchdEW~pal}= z%69E;yMn0txP|*bQ;;)l(bmnIOdh9^EVcT$`M04A1sIp2Xb9dwU1T=aaH4x^InVlC z5d`4Orl3G%v3Re$E5`J}^mD86*IDn>Q)huvw7G4DERDI+d@mrE7x9~N#z8iX2ist! zAxFQH?mL@H$ayRaGGNpy0C^~O#zuTuG;Fiii%T>0w$sjo4zvnuQ9#tOd`Zz@lX*j; zWa$Tr6b~G8M$%=$a_POm7^dt#!$eHnSWG$DUthU=U8S1s1JOmv?6}W|JEe98f?R1l zXna2&vev1zr%*^Y>?wIf=?Yi4Val-g_l%r4dx#l3D0p4i;W^n8g!$Z!_crVlD7kPh z+pxvVSa0;o*=F*u38B0or#1avb*lXhKtR+q14W#(<+#T#L1HV?MC4=Ae4RnOgW2Uj zpb}y3<==8!iLq59PGkFd;s9-bAESk_hT;R0jb;q{I00+FYh6T8`7!kFki*u*6{b?2 z5_NUb3PrvIL`4QFd9=ofK};{EjSi(Q=Qu5k+v;Wl{JHTi(xf0CAmMcGfJ3y2_E2|G z6PaF-lh+f;s~@D-3uP0Nt>X$NiO9RkY4ScJywePz!V!W*;o*U21$0Yy!ae47xDtf2yMa2JU@6F?(UjM)GX*s8~`9vb? zIWdVsin2RJWH7Rn!kD6t5VDMHW1Q0>+X!RHdNLU63}s(N3r(_R3?oa*&KMeFEHjqh z_3rbz@6Y{v+<)Kyef{OpBiH-dUa#x5KA&CwZD|8hvD}5<^0O>jdvq{*#&BF z1VKJVb?Sy=s_v+HMuJr}!=*oJxe z(*`ss_*7>8kU}71_~}?7kytx7fAT4QROpu&Zldb6R`9nW*UHjEDJ$2c29LU9$(AxD z(W#m|oz~AMYnwi6myJl%3Rg{#?oIiIdz5@0(zRqmXZ7mm?tN*E!c#GIi65fdU8iYC z5XR>N5+3k0Mo#b#*x&4ZKl>yBm6jpW7_YxF5G({+i3Iz8=%UOX zF~dmnEOr{h*R7{sXRbhpOme%U^pv#Fkvisqt?z6!_+ahSQ+QUfV2op~`ll1#D<RkV#(2NrxJr2QM1RI$*_VaYjDq~>CzD;j zmyHKoikY_xIa7M=ST0$W_Z-PBUMQYlEA4I-%M;;XZx#b(dn>n|jXhJd+%ynXd}Az> ztr>R@A%|>cd?c?8pEU`T>0WK#-YkLIZ-50Qcn>V7NDgE{F~0Q8oQAs$b1)=zwp}Qe zK(>`Gv(3GdrKIA?NG(wRGQR1j-Z?bpTl=1zM;QG4$~1Y>q|B^dRdssq)OAUFvrCrP zLxWbdYtfUz%p@(#oX~0vM{}@PyX)d&P9oVWWOTX7uyVU6NBqQWeP#A^@|({%jGi+5 z`Np1ITopVbur1x>->Or;=0NIupkz$n{G8mIUBa02S)_Bb zn0Q{Jv+p5^F+{%`HFSh&`!Je;l>R-*({1nKV$Z)E`tM0`)+Yx)`>wBzhn2E0(Id%g z1Clw+uNL}hOxS7CLjSCO-sUnjz%O{7`%bTq8eQUk`s;ODy9@SX)s@c7 z^PsLP#Hu&f+5!~4*zq&t7v)`lG*-JCh)q8WnbNZP_n;s%qmh1vxp<5;04iWa$ z{*bt=M+f$~T?PG48gn|@H5uWcsLJdpNt+fF)T=nOQHVBU=23?5M#4P(q#DYW<2IWZ zpck&yB;u^lQ2uKOT6(>?d8gJPZ_MroCviXa;2!V*KK}|ss6TZ(E!H>EdMr$?)jATP z-uJ@VI&zpZ@tQc$ zVAZj1d2!E@FlSQ@S{-XM!PdbCJH*Rwm`rg*E}Cs;BAD7OUch2+m~m6+0@j?p!iCYQ zGEZkc${}`)8Z{{0P#L~`T(MCv7vqfxEc)>vq%=9v`9FE&aCPtyy}Z|wny51udnKJ9 z`Cgq-ah+t}{n{q%VI|RN&o#RXUZd^E1f?b@7g8C$(pZ{VF2kb#GfkaJ|3Rx6zi4V8_&6Jj~QY+LD0 zCVN$A1)c^$!r==(>CEm2>1*2Q8a?FIzh^Mntm*Ukc{*;qZ+b?gf93g>X7BW0xWM}8 zQMJ%k=wiQvE;g6#gA*{+4`X5(?nkgaarC>rArI3v77r^%6RmGLkk*Qchixlt=iG-4 z>3+in>k^|`CoyE{(IKJ)lbfv*p2zx!trK4L5=rQ~$lACS!Y19dQt2{vmK(AymH&tu zCjwH9iLWdh2Oo~x8QM^!o?deaKE>7dk~bpCcRb8J!`nxf|15_NbcN&Bg`lFy-gB=? zoY{-n)YZ%FtDX7kgZtkkoB`YWeWqD_u3r&j!}!t(zlZS4a-;a4j#KDKb;SgZyp#pr zo)X^mRJIF?vMzgV$|b*=&hyp&0D?x*UJZG4t?Ur&pttIW!+Ff_&kCG(HOcknuG+dc z6^#UhPOuRn?uMJ0Ma0sCWC!Hv>$=r|(w|z+R};hG+xRvDKa)18wV3xYA=xBs^6M@m z)ZBMaq;c#E@AsxdeALYGEhGH)8Ah^%ebX9uJ}0MgZIfQ*We#lMZ}&i1#kc2MUkn9q zq-k;?amM;)V)zc^WPg-yhq5d$e~rI$LGAlgu%*Auy&k^SBK~#1k~;}mClWNv(fu=) zttB!I@9*(d#(Q`7*tL7SpZ*r&ejtj*(s2gy>)i2H-eMIoeOxjC;|Bq51a3;7<}{X* zp|?b2GjsOkf@yz93p3v&(0w^u#A%qiMjd2cWOfRD3t}(7W{sM{X9Yyo=Gm#H0QcCH zoe!X9W@);7yq+HqDwQ?Fh-7IkiQj%G?T?N%N2iS3zAlXwx~>ns8ex`AKCv%@YZQGm z+(RwGCcR0qGAm98K>v?U4M;|LypK{VTh&gR*6+-ERG`eEd@p`T7?PnqV{!_oYJcTS z%hLt6i|dJ0_SOq&znDD2T(C1J=Gx%eX6%lc1e|1A>`*&fQMBx3<5#RD2e{0poNDrc zQ&`oByv1X<^9*Wgzwz`oXfDl4g?*C%fjF%^HQai;eKS|L*;YC^AL;5;J*>kKzxOb) z&+M8D!d9`Mk}?)O9)!xAx|e~s=4etJ%a7RC3{Kz;KcrToV%mW<#Z>pSi_!U2aue>+ zK7FFDS|QuWiIV2fA6RuR@4at8I2(T-?|C&uc%|tA&;MVeLrOk!g2pput7hh2BC&2^ z2d%=izf>*bT#h87n2s)wvrHe)3ZJdVYMA2o&LO<>hwA6ZJAij54dpN+d7VDt+_^2m zq9MjE%Wkf>@B1}H`yrHRmMtc`(m+Q2E{bD3)c2QIYgCp;>oOaU4AXYj(FEbq*1I&2 zzw+(d!7xy-E6DX1RWq$P=)=?zS78mPEWL1g~G!&J&6%WB16t}mL+|)I zJtB8Mh8}8?VZ0K1(fYOs&Hw?PK#<0BIc^b^Oq@f6xofaMEPX@qgRn~SykDX@J1?r# z0Qqzl)7%?N? zs!}zM1HQ)7A$E3MBc-)oXHP3r2j0iH*lX7gJhox_4Ry$UXdoAO(3tzVSJ2b)K;8&n zYqsi?dd_ceOayKBckgHE6f~KOqJR48voCud8i~r;KA*48HXTq&n70Y50RWe`yA1^M zvo}N3zf|?Nh(mjM4BE>TCNrM(8FU}FiDpL6_fnM<(UcQ4Z zoXV)fxF9aOL^9QT2a1!(wo=M-e-zHt>KC6rQR323>5m#bI-OPcelm|TbQs)Hdbh|a zC?3JDJH~A+SD&86R1R4$32gEyx|8aIwsYj83?enYh$V}lsgpqm zp;^sLt+QeO{&51N3^3`hhJ4fQnYoAI(+`pIDjMm>C3Wa;iJE$nM)G;f_V@G^%`1A> zw6R{r2WiYQ>2zixMPgK4!*YAfNpy7j<(@xSfik1WB5ss`7HGG@T&Z;)Q*W_W&}8mv zcWB@H#2g&^nwv7oGb0?i{F-@Lu&OV0f98q=y9Dboh$iNngt-&Mx05+W=CMn3R`K~T z$8o26li6OP2SyqY##^|s5^Q}3U# z6t%5%Woo}*%~iUSrZx&iIb6dO`w6h#)V1Yi(*pK0m*oD?Vodr6N5u*xr^y$H%%08C z$+c-pUSMeYffDvJ5)VPE`_p}_-AwI8`sv@lV4C1S*!?=!=T(b93&ED+zVPNU6%KE? z*9xr<^}oUYjYssO2C9N9Y2MV+!~C$T*Ga}UHpe7dL*0tA`^%?#krSV*rO{cAt#)QP z+{v_TkBljOHgVie8vB=hq*41E<6d#Dgfib{F(|**nNlsU!g699s)l1#;_s0?pNAWO zqRah=n{slyB>M1O|8r- z-mt60n+)PGBztvfv@pH@irVOcL`^HwFLtO(g`66sUyhn(g&6yz9)Sc>t^NtD9wo;d z8(4T{cI}##A=eQ^xlD@jmVxWdXA|f7&y%A3N1O|ph~`uJ^`1!EBvenjC>p$&5vw5m z8u5Bm&@|cr5c8-3bEj7@Ck6L#n4_r5Qs4zk2XEepPCb#c>?3e>`Q$NZ#%cjU@Mqb! z1=SkG9ZZ_Q9UFU?X)Za+YGv*NRdeI=8RI%@(`uwjOMtwRqp8@CcS?I=e9^-{j*xdu zN3yL=b?el4WXhGmU_1LTtFG^WsZcj=xEH5&-@PnKZ7WG076!V-V7s^Z=xvtm9-q0B z3J*oH^ytruKtqdQ`LY&1P12m>dH}cpwzP{JSH-G=EGHQ`68>hlowbFbF`7H5xFD|E zmtEg`+8x!)4{8h*?RFfilj}_A)=wYTIk0(b4iPvxgUzI-GE2{Mz@ZVRECOdA5=2m- zG8Ma@*pWOR-JiY|G8UysCZiexop(mK0st@ATe;01xh(2(iD*$?_YwT}uG|#OIdfZh zd_mxGG1JRO%+b~3Y&`HiSo8^7gm2gee~BE7QPAWW@te?+R*jY{eING`FdsrTPPs|e z)NjJSrjGoVp`0H+bM5#So;A2TDYZ|m!QNc7f`s0b3 zQ);iXeY#eh~uUZz1mg~0w9CtIn4K%U7^=u+63t!;h6y5ANV0ory3F7#hgZM|)cEEt02#dn4t8Gsf zJtFmp*y@DHdVN<&pgue0n}>huBc6F2|52os@$4*ib_Ms4Fs#kUP6aeF&2LD=PcEms z8;npxc#9@k&kGX{6O~sU-|qu6uV2P|4h@I% zd;_BY{8-GM!Ch}mp?lnNfy#*!mi1fA>%QUchiIcf>_sFDLfVpTtV|U(0mZ#FBA)4s z(dZ#>z3^=@-KG)srB}K$n(SJ9fhMn}l(#OU{d)j7mwd|G!{H{YCQ;&>58KnHvkp$W zVchE(p}s0@gLNmj`cS_rdOe{+UD7@Zw!Ih$G%f?61O8)P`hV_MN3_?>IV6 z@(QYBTwIvbsxkN~|ARMQPY%U^Pb^DzU}e^hjmScR$*y8L>ux5AiEUThIS@BT$E|I4 zxEc6MZk9~ejfx`zH)l)@>-j$0>}Hfcx8qz1BBU%1M1Eif(QaWo{&-6L%xXS^WM3)h z?gP;toXkquZ;0cT-v_cij-+g>H1@Z$7czrT2jiEb1+@pu{LkLEn3qp)c$DTJb)Gr) zaaz__25&Bp-?*;=Z?s!JwxE#qRSNldoohhf;$!m@S`b0AH&G53Rzv3!yXPf8)of-^ zh~xxQoXSO^w}98s&=8#eaS($76M0ZGf&81gTlaPzrVjt%U(qBjJY~9i%`jQ1ni(@F zlab~pZ7HKzEya8}L}z}a#I+~nO@~)uJV zT>SQMZF^ufcHt}~QwS?dCxib-{+=r!UXg7yQs64WMTo7W7A>R=hT;j^&&1n;`fWk<_&aI!Xj z*pBS?WKG^HEK9E+SMGjl#2dU$?UZ=|beYygbF{qs#qF;UdAzR^u zeShY?EAjrFG@VHKoNeoHlfTM>XI@5vz%mR{zxobw{Ij5DLQRq6@bLI%hZwy7NWS!QsaH94ITKF*8tdtS$8(`^-+vN4uUyrIHN^wE)XK5be~MpNbz}iKdaE@Y{UdJ!0}3X9<8>2JX4ejyJ4t5 z^yB%M^(}}VaOFQmX2)EcpBjtXvg1*ZCD(a46x#4TmN} z$H8~%U2&cf+R_}X9U?GaNG%ZsE7u3pxD`Q@!!?>s)6r>J!=L?1hGbMyZ+IRy)DP63 zaIR@Rxg|}cs%F9J37Xk8qk@Xk&ZBr=Z*%k`;#RDSU;~i(cOP&)%vV)#(bKM8K!{VE9}%7R{B!NqsgZtrIoJbj zXeR%7GRaxqGWYv@18hvuz#=HQ?1bY4&Zph*1lGw}L_4yy^P*S6#^A4t*IaI9s7Q~C zI5?vO&GuRADI+X4Fo8T42Fje|Pgs@7+1KkZkjm21IXGt@&) zx(2#2W%ldOWKS^l02C^s@5BvNxIR@=c3h zbI1P6zrl835@0vd{^;hX4}Ry0&ufcHdcV*5`+ALn4%yZH3)6+HAl6241zWKd9CO#Q zKRiq;1fC2hhKxI=RQdJ=yh5}l?A!)apGPW3Fr-Wmu#hT+>5K1BSK|rm{sTPhgIr8l$8v< zIVBJxOF(B;DQgMz;AVN=`qbSa0;VvqXC#C?VQ&#Jd(MHCPcUY>1*Kn=98U$0Rj{`- zyzVP@b;S0tOcGvO-y2@$$5I*jYL6>fHZ4=k4jKa)gmNqv*f76rwB>BHDIGosKQ`X1 zK~wu)w#}apTIi@m$mY|E?v5;+^v5j3XKOsjy*3H8cY_v`2C~8SdN+C#Fmq2S9Tq@z zjdSO6);sD})Ysk4rfA;eR@@#X{DuP=ETkEHlVj3qrVjt88kc|?_sx)pO@P2JOtKcj zO=*i%5<2!UJnQpk^n~UdOBA$P?_tqwE~&7cN|K1yXa_@hwbs)D4|Dl_4sj>jeH~5n z73}j^-*Z=EL|h>pA$Ma5;=4})`u+FWw8+gLg=gYQp<+`q#J|_O_#4)FhI^-U@Gv@d z-ops@Y!@tyF}nWAp8785*p7ex8r|L;ZRRsb2AV~$iytSDw%QwXWI-1$Z36iqRs~TE zVewdspxy7wG)!TJ{o#d2R-d)0!Cx&Kuo6S{$E$4Uw(MAJ~IM zp8P)9?Z;^pxup!c23fPh`kLX(L^%Kx{Yk$5v`o)ktb8S%jpeP*0bEIH2n6Fik@#ck(x6(x!CS(RgJ+NV{rdCBG?N;~LF+AalmQNkwJs#O3-;?3~P$2v)f zo$p9vH4!xBq^iwwN;t3kxco;?MW*VLHz5y4tW&UhP1QFUzvgm>83w$6*j>=n9PyOO zEAz3WPWIqXOa_sv(Kl0Clr=2jc!XI~(Q(+38_V}##h^C;^m&L8y4h)S*?}Ld9=lIa zSY)W??*PtLir(#S_gFiEKWh(cYdqGai0+v?<0 zy#BsBQAea~%tPTtqO^)@j7xq+a(PCQX{*d%iN(~c>&)6kp0bx3JHt^t={EJU&E@VL z?;`omG3L;>vNjqnA-G0bX2}ayuRL`&6=^h3vjT4KM}Uq6ivvvq*4nl@84J=Ui^hk# z2v_Jv%VIT`?^}x5YGipDzlb)$c3zHpk(T-89Gtq)$OX72f-!&)#E%Qc_G0OtorUGE ziVUrOE=zyorfhx=7w(#5XNm}H?e48GOo}()&j6{u3O(L`{(!>%%cTiQfQ6#&!QY7P z4iB+ZYxEHJ2|!YL#3U{2m#p}LPOof;|aIEh8yw^hhHmCEUh(Pu%mB%u19V{Z&X?crb#0`EB z-lWb96Y|tob$S|(N71{JYgJMzo%1GASd%HM7EzbbQrnsC!5_P&&D3Cp0Dc$t=RZTu z5R6dodn_$b)|GV8RJqIfQu?oLQZozUF~ie?aAF)f6&D{9i7M9h?MGVPe?=+ zxcO~1;8qurIgcofOP^-ll(+UwP;=DT+mQFM`R%+v><>ebXg;$i~=EK0IQujY*6uf9w{x{ z)h*@UnOfdI{_gJjYc&4BkV_eLPmkf!M|o1wmNhc{0E5cUoM^tV^CuqoEt8Osn-B}Q z?ev5DdwOK{!i54#h$o{oXpa^&z1BHaB{dxy6b?(Y2 zbg|oPVACO#V4}K}+10&IR5mk*xti|u$svA!t%j_zFf8?L86I|qm{OzXffE~DTI0my zHXdPITa6!W*OxvviWw4-aqN{CstK@&Lgl7$GFOZ#HHb#?tVT+07uQ$0E+jG3Ybq6oQ-<3;dlz^7uGQ%NFM`1TxIxd6HG z=tL6-=2*2ct$!hV)~9zqw-)f(tffBBjzOQZ9N%CRO@s0hrwc~`lob=RVLj@3 zeoC{?K(%hqG)sSWJH1UMG1!$H3h0FZ@Z0P!Fcy@WyfJX0dA+j)f?)|Db;}ptIVD^l zPn#b|SME8Z87L07qvw4}nRQU=nPq7PC~IQ$)lfXWvXQCaD3KDpG=CxPMB z@sZWAfF1g)?B|AoN+_7>w`6-~?U8h?Kt^iPm8l*($&2|Dsj+Me9rB8Ol#nt->Xhv3 zBoCEr`To0e>Xc-1KE*9FWlGov__A&y#@x4Or&$@EtM-FJKoeoF{u55 zm73+Wk73Qd5}&K@#k^1AM*uJ;|kn5_G!rK4UZ2uvSFgm;SJ+>zvoE=APz zWUT?n*n5+UCaNuOijzR^&c8)wNb$t`jc;MuVuAXo8g-^rtpdPHEe{8kRxt4bw_PJ3 zWkXtjnMDn1CnmWe7G`$LY%StkbrUOy3wM%5ZrSFviN)Wv9bGC^h{%>df8IMsiRls- zpjscU+K<7zZw^;#pmocNL`k{p)DZGGy-M{$@^DquP}w5(>=ZT+JX`1NLawJ(%dH=6 zQ)eEnC6IE$`E!EN?JZEeQ+^#XV#L+}R#gxWAQbT);W<}*k0hIf7M-JDY`3LcV~3Vf zXcG2Z^EiH@{>V}xvrZ#gg$(*)omJVX8E6mXIxpM)R(E76k>zB2fmG?^jk0+6-{+e4 zPxt9tY-cR5ujD_r#*K5}=9i0%ZcG8x7=h%_tpC}zD1{g4dC@}3FIXwG{_evpdh+Q( zCdMl30Jpl`L0& zByRbC8G%($$l=u4$=j>y2}hF9_1JP=p_==Pjc8iQcA}y`z&B3YIGdGWPS9o6l6@K` z=2BhqhNiO--a`YJL`U&fcKz4?CBSI=_*kmYN zQ(f0&;^GOmp`ye=0J9*gCh`#?PQ6#Li5RUVg#dicYekKh&@Whbw+sp$(k2`77Y^{<{+w$MO3pwsav#X5}j zaCnsU?Xf!pM@^q3Y`k-T1cMD=vSFt*z`FAl`WSa?l)T$}?x-&?95p;oUMy!i%G%af z&sO0BWCAjji0=$^%225pQ&0g_o=+&!I|ry@l|)Agu>${N{s#dc4v-3nKQSVC>HPvN zU<1*n051Y~uxCGH37So-pE-_$$;Ew+5qcgpVp~jFH7`}GV;x~a2uhnau>k@`(LHJ< z)n~9qbwm}KFPVh`&-e-z>j$ETm`>t508PT&owgsS!~p~7Vz{Wt22u`@MRdzd@43&V zr6Zd()lb~c1Pyd-=yf_$^OW3e-NNi13roFDe5Zg)jj?}C_EE0FkSu84r~Yf60Pw?V z>)SeC)u)9lE`rTo0ceG=Qm2@SR1(r|BxpR26q#ierIh}#BV}9v)!ktS5AI1Bz|jV8 zTB#zO{L))^1~lGOrxsKV>8bew;6|!lH@|v1Pe3qvf>J(K(7of962Q~`$vOJw*I3K& zNfAlJ$)aIUX-E`BxH~BpIT$RmL~8Vk%j7ZSao$limP4$}FSNq)rGWYB#M-iw?Bux_ zUYA#USxnm*aJ}-q6BO2;z@ZbwLe{tx2N=kqc1wyUF6b>z*vCYU=$hpQ*=~pCwTz?q z&3b&mCgxf;hKX;aRyM_xXPt=eT3Ga=i765i4#d+r{r}K*-EC}9^bp(xx+6|MWl=FF zEHO_UHh%!v0|U<@<-*sNb7V;h%>;(8;x%x@3dWodAC7dM%C1Bdn#DFSRN|>7{xz?! zbNJIiq39;n`VX=D+O41s$9Q~YVux(&`09txGYiioqVHLnQT`+91ESE0{;raUR=@o+ zFHr;$J$cqRHa}Rgs6c^{cWPlE&8T*>4uBW0IS^`*mLt*tv-zg$J7YhlAy|U9b1D*k z!4RYDiyB>_gI)VStxrHyOt8M~;o4ELLmN7WQ78`bA&e7))`K^H2-xrw+6PZAP#{RR z%jY}5i^kMdvF*e{@Uem7wZRE!4I)kPcB<;i7IgM(HI;2{>DdpS9>V`N(KOm-9Tg&D z_t_4=r0vWL$_ASSg_{Qcsc565J$uG2OGIbutZUMM*!#D5gUCe>P3Q4oRzqA_48>Nw zucRzvd`Q0cvDpF-x;DKH%%Jt{=yL_wKOk9C zhoY}>9$6b905;Jo>WNZ~b@X&{q0P;4TzqLhzIJdj_|p3prV4FHFo)^!B>J^j--Z-F zK<3f`{pWPvPo1SWqG;)tV)DejS)KiT02+`!a~ ziV`~@j(#r!2&NrhtyJ$r<9pKDauZ~Z8Scf2JMD4 zL@qo~tDT5O$R3DO%ulnG{YTAx_^43T?^nXB#7E_|>sIMkLq;~j4dx2V1JWI*-I>+H z8j9YmVnx6z;3v>J_F+b5`FCJ!(IDF)@Ybm|N`H->>UyJEBAOdb@ikj$(mX)J_guiX*jkh;_DQC`n~95Lm1qB*nBg9F3%G`gx{+KDIK zb6Ky99c#BVyUj-3T<@Wq$ddXXL3cZmECrbbt^iOGIoyBEieEhhA>@`oVUWh%Vb83c zVKC_K$|J({fiLq&^dj>b?EUn8lLBW&N{+760S0 z*0)D`)1l`hpJmQFJwom-YTjZsgY24I2*Adr{3K-&f&DBDdDEr0@#8%y0qtoSzJC36 zQH_3etTtiDIaehhX7P3A^5)scX!M9piNb(`$rCehZ?GM99&?aXYgZsgPnyTg0L-Mk z+N#5_TTm1;lCZ&Nk8ZI`8UV0K<#3;SEXbY#|7V;ep<3lD9ij0 zIr2^0l^u}&>o_09P3UjtcInzf6)C|7@pwn69k8Fl*lE8u3b`efAhN^LB0OK6S036* z_f>t%7S<1ULWXq{CcdIY(9>)F1nO3Z+QMDCG)6zq&Tk0x&bwR6^v=j`nwm;yeBA>o zmlbNx?}WXA)WVK1ZpNtI$V%ZMqHY|jjWY1XN_VTwJJe2){xH|$o}QU&bQ0QJf6;sx zFrvL|T9f_M*2J{IQkqSli~xNeyYG}mHCZMe!|tQ^65&F#!B3UuUa5dqjf#DDDa4_JmcvHsdlznpX`*_ zs1>|!HJd@*QM5k5I>}?atDb^KWcu z&J1gNKc&D+4YjW5Xl>qk1PG0xC9Pji;6jdMxk|S^!nSQn8xNA1&Wp|Ji#ynq)#smN zO`k+fnX@91*Mg`_bq)Y~hZ#ZIU{`ea=G=H!IJuW{h!40lqJ%}D?FWVT(&$B!#^DonK}P@4X~J0uFO*e&!GeFc{=;;d`U6M# ze-mOpxXP(RYchnoG0Tw(&35)KnHmLSYe!oLT}5dehS_;b+Hi{YlOg945gGmoV1{fk-smIPJi)*t-e~U&V^tZO8Y9Upf+b2>R0hfz?4S-7h7KD{< zKGI9;d1ZOuksod~DrIEyWU|`Ruu1LOik`B?^g5qK$w{d&)T8Z(eclJuaL6$VGWItQ_m8eaU5}+uQUI-$mr6yN5anHhO6N+uSObGvk=}?pW+sj=hpBuhOA)? z_c!PZQs4`JTxZWvs9n{G=(*GV0TP}rt>a3qu~CIK9p)#R!%A+(1o}G7hU#Dq-5a7s zwL`kwf0pipOa+a!ZV>Y8H#Y2Bv-Q7Y#`wcw?pfI*%*1d5bns+yugZ`zzaxrq zLa03OKW#`bE@WPvv>~n5-~=@#rnr0=Un%Y|#p$$SGaYbuAdOqK+&hAt>LiR9C#V)Q zdM@hCn80!I6ugn%W4_JBZFSG(*@G(mC$pKoIV>f@atOpE{xkJZbP#?(b4=A6BiSveK&Y_G^LD;ex^u`jhbu7V<)g)6CF4SAZjV#UN9OW&}; zn&4h)Hc>XXd=u4Y%S(TJKlYRz7VI@2T7x#_O{;OcO_$gGOYf9aGl+1tGC8 zsdxZP12c!BFooB-IdZOUy7`ClOp%O$BMmN?xZ}M#RbtxUI$MOB#m;I0Y)}UXHjqGS=f7&@JQ_q3+6g#({3~rN{6=c{rPSuM2+^`IXKf<_3(-MukIqwwkCh|K?ihWCv^8t zYStJ|>5LV073;*#7Dh?aKDOFq{$6txFN$t@J~U_#eWvk#stxIpk5irRNya8 z%cxk7N#sB7d+vBLKfuW-5uLjNwj#C%UHDzWoDU0y`)(~;Z7(-g$^dhy@3UqY$d7cH z%WdiDW*f-+5#RW+K?KfOov>H5$ywo@0c6Q^hw=W4DxBi!5_rj8BXm zw9MV0Ln-^M{)^w#Y3m3k}pFO+Sy?@fn_d$(aXWEd?{((Xm8e2 zld;lKE?u0)bnNPLeP=0OW$ZOE$YBw^jKC|FijkF-DR`U)aDrP1pQED!R7$Qa+<=&y zZ;GJx24rF7N1#3U5&(Y#mKYw@~yu_h=ZO+FtajGHflc^ae95Np?Y;Osy zddc0A+rtR-+0x2V_xc={;IF+}Y6!pJCWKS}v_l>yAtiau#@({!g$Lm{4CW8TA#OaD z{d@bfkuWN?+}iC->b;TR=^JdGyf?z3@E%V zEOKk%4li!YhE~3~LL*P4GVoh-=HW_6y%qDNz5i563lGvm&)}DA5-(9#n-`36bmP1D5TTu6v1iDJi^JFne?ujg}nm4ynB*8zeGVWJMeio`@^ zlk<`f9NWAW{kp(WE^hb0%DO&j)!rhAbDFXlEj-Qi9OZo>keRPcBPUllI##@Fgz4Y; zwr0$#@LGL<=mJamDUy=mC#$@l*zG(W*kUs`uhd4|4oopOz`)Cl1+2GSNL4~WtF@oY zM_jy9G&u%uNvkXvzw`oqE_nvvS7j}DM=!? z_r)(Vm7q*!?axQ5vj_Lo?$z9W^x8X&e3{Emi<&b zAf{U$yR+dyGtT9mc{m_!c81i{H2hYYHZWxQ;WE+N6MJE`KSie&xl|k1%-3@;s$VF(ngr3KP(CJ*>M$VJETiOk_XsMov%(jHW>LAc#;# zK)gY)dAv^?W7i8gkVO;L@lxN>zuF-Qe?yQ^*4IPxMQ(Y@ZHl!HrBy#@biDL#zh{q! z-N4o1F))drH_51H<_u;`Z(lB}*_7XJrhmagD8^}LsoHwJ#2~sLP&PH!zprAhu~x=U zPsI5~!%O134`EN$LColZJ8*ztkp;$Si6S7EjH_^+23LGiHd{@zTez3%XrVCMm{ohM zm!mHkm(ArZF(6?|`0=io7q?Gp>6i%^;wK*vOsjV$@@Mhu=P<<@mq@h}Z~TPcE=q0Y zdqD*YreogM(iz(I8s8_GH@F}L+|h^LnnY)({H4+sx6gK|gmumWDCMO#MYE6{uOJ^ z1?HnC0WgoV=WQ##*F92>Ki%d*)~zNXpc$uDom-x@2Pk2p^7_4u6II!~pt}w7(Kv zAe8gj7q@djRRB_`oSc^eviRY!tpw3quksUaBZ4-6L>f-KsxS#=DruVA($bQ(?Dm&l+)i0YX{?FxdUwKu5t;Er@Rk-|B&*Nil!i3Ko6%mLFmFz@UgT-wFeOHKd6R;N#~3 zVj-Bq*q*6VvplHFQUoO_Gxa!CIkNIcRM5@ni2H_60ZYX{O`v%+i z90qTO>R7J9-%VW!TVJ^>0u4xmY6T)5@dugIz;pwE5iM^1xavxX(gzUHFR{&KfdYmG zKIGVc-3gXJgq8q90+$8CKo#~*AY3=AP>NDzmn1kr8Dn?Qc9Wyn2L4Y35<1I26yYrp z{1pqByx-Rmv1Vw$(i2}Mb&&U?nC?fI5IIh-9+<_MpPT-f0d;Ss8$hOu68P5#O3)b4 zPr13AuGNm8zeb>-#|rw1KtTbV|M~5I_TYc+!T-p@|LBAN$C^;4zMj8* cq.Workplane: ) return model + + +def create_mask_adapter( + fp, mask_w, mask_h, mask_d, adapter_w=12.90, adapter_h=9.90, support_w=0.4, support_d=0.4 +): + """ + Create and store an adapter for a mask given its measurements. + Warning: Friction-fitted parts are to be made 0.05-0.1 mm smaller + (ex: mask's width must fit in adapter's, adapter's width must fit in mount's, ...) + + Parameters + ---------- + fp : string + Folder in which to store the generated stl file. + mask_w : float + Length of the mask's width in mm. + mask_h : float + Length of the mask's height in mm. + mask_d : float + Thickness of the mask in mm. + adapter_w : float + Length of the adapter's width in mm. + default: current mount dim (13 - 0.1 mm) + adapter_h : float + Length of the adapter's height in mm. + default: current mount dim (1.5 - 0.1 mm) + support_w : float + Width of the small extrusion to support the mask in mm + default : current mount's dim (10 - 0.1 mm) + support_d : float + Thickness of the small extrusion to support the mask in mm + """ + epsilon = 0.2 + + # Make sure the dimension are realistic + assert mask_w < adapter_w - epsilon, "mask's width too big" + assert mask_h < adapter_h - epsilon, "mask's height too big" + assert mask_w - 2 * support_w > epsilon, "mask's support too big" + assert mask_h - 2 * support_w > epsilon, "mask's support too big" + assert os.path.exists(fp), "folder does not exist" + + file_name = os.path.join(fp, "mask_adapter.stl") + + # Prevent accidental overwrite + if os.path.isfile(file_name): + print("Warning: already find mask_adapter.stl at " + fp) + if input("Overwrite ? y/n") != "y": + print("Abort adapter generation.") + return + + # Construct the outer layer of the mask + adapter = ( + cq.Workplane("front") + .rect(adapter_w, adapter_h) + .rect(mask_w, mask_h) + .extrude(mask_d + support_d) + ) + + # Construct the dent to keep the mask secure + support = ( + cq.Workplane("front") + .rect(mask_w, mask_h) + .rect(mask_w - 2 * support_w, mask_h - 2 * support_w) + .extrude(support_d) + ) + + # Join the 2 shape in one + adapter = adapter.union(support) + + # Save into path + cq.exporters.export(adapter, file_name) From 85812fd192eda1900bdbcac88db5d07da06589c1 Mon Sep 17 00:00:00 2001 From: Eric Bezzam Date: Wed, 21 Aug 2024 08:46:46 -0700 Subject: [PATCH 11/12] Adding background measurement. (#145) --- configs/collect_dataset.yaml | 5 +- configs/collect_dataset_background.yaml | 26 ++ scripts/measure/collect_dataset_on_device.py | 306 +++++++++++-------- 3 files changed, 201 insertions(+), 136 deletions(-) create mode 100644 configs/collect_dataset_background.yaml diff --git a/configs/collect_dataset.yaml b/configs/collect_dataset.yaml index c54ef8e7..75df8597 100644 --- a/configs/collect_dataset.yaml +++ b/configs/collect_dataset.yaml @@ -1,6 +1,6 @@ # python scripts/collect_dataset_on_device.py -cn collect_dataset -input_dir: /mnt/mirflickr/10 +input_dir: /mnt/mirflickr/all input_file_ext: jpg # can pass existing folder to continue measurement @@ -41,6 +41,9 @@ display: landscape: False # whether to force landscape capture: + measure_bg: False # measure bg every x images, set False if not measuring background + bg_fp: "black_background" + framerate: 10 skip: False # to test looping over displaying images config_pause: 3 iso: 100 diff --git a/configs/collect_dataset_background.yaml b/configs/collect_dataset_background.yaml new file mode 100644 index 00000000..9f509eda --- /dev/null +++ b/configs/collect_dataset_background.yaml @@ -0,0 +1,26 @@ +# python scripts/measure/collect_dataset_on_device.py -cn collect_dataset_background +defaults: + - collect_dataset + - _self_ + + +output_dir: /mnt/mirflickr/all_measured_20240813-183259 + +# files to measure +n_files: 25000 + +min_level: 160 +max_tries: 3 + + +# -- display parameters +display: + screen_res: [1920, 1200] # width, height + image_res: [600, 600] # useful if input images don't have the same dimension, set it to this + vshift: -34 + +capture: + measure_bg: 1 # measure bg every x images, set False if not measuring background + awb_gains: [1.8, 1.1] # red, blue + fact_increase: 1.35 # multiplicative factor to increase exposure + fact_decrease: 1.3 diff --git a/scripts/measure/collect_dataset_on_device.py b/scripts/measure/collect_dataset_on_device.py index 8bb34077..4b1314b2 100644 --- a/scripts/measure/collect_dataset_on_device.py +++ b/scripts/measure/collect_dataset_on_device.py @@ -11,6 +11,7 @@ To test on local machine, set dummy=True (which will just copy the files over). """ +import json import numpy as np import hydra @@ -28,7 +29,6 @@ import glob from lensless.hardware.slm import set_programmable_mask, adafruit_sub2full - from lensless.hardware.constants import ( RPI_HQ_CAMERA_CCM_MATRIX, RPI_HQ_CAMERA_BLACK_LEVEL, @@ -52,7 +52,6 @@ def natural_sort(arr): @hydra.main(version_base=None, config_path="../../configs", config_name="collect_dataset") def collect_dataset(config): - input_dir = config.input_dir output_dir = config.output_dir if output_dir is None: @@ -162,7 +161,7 @@ def collect_dataset(config): camera.close() # -- now set up camera with desired settings - camera = PiCamera(sensor_mode=0, resolution=tuple(res)) + camera = PiCamera(sensor_mode=0, resolution=tuple(res), framerate=config.capture.framerate) # Set ISO to the desired value camera.resolution = tuple(res) @@ -202,6 +201,10 @@ def collect_dataset(config): exposure_vals = [] brightness_vals = [] n_tries_vals = [] + + bg_name = None + current_bg = {} + shutter_speed = init_shutter_speed for i, _file in enumerate(tqdm.tqdm(files[start_idx:])): # save file in output directory as PNG @@ -210,147 +213,55 @@ def collect_dataset(config): # if not done, perform measurement if not os.path.isfile(output_fp): - if config.dummy: shutil.copyfile(_file, output_fp) time.sleep(1) - else: - # -- show on display - screen_res = np.array(config.display.screen_res) - hshift = config.display.hshift - vshift = config.display.vshift - pad = config.display.pad - brightness = init_brightness - display_image_path = config.display.output_fp - rot90 = config.display.rot90 - display_command = f"python scripts/measure/prep_display_image.py --fp {_file} --output_path {display_image_path} --screen_res {screen_res[0]} {screen_res[1]} --hshift {hshift} --vshift {vshift} --pad {pad} --brightness {brightness} --rot90 {rot90}" - if config.display.landscape: - display_command += " --landscape" - if config.display.image_res is not None: - display_command += ( - f" --image_res {config.display.image_res[0]} {config.display.image_res[1]}" - ) - # print(display_command) - os.system(display_command) - - time.sleep(config.display.delay) - - if not config.capture.skip: - - # -- set mask pattern - if config.masks is not None: - mask_idx = (i + start_idx) % config.masks.n - mask_fp = mask_dir / f"mask_{mask_idx}.npy" - print("using mask: ", mask_fp) - mask_vals = np.load(mask_fp) - full_pattern = adafruit_sub2full( - mask_vals, - center=config.masks.center, - ) - set_programmable_mask(full_pattern, device=config.masks.device) - - # -- take picture - max_pixel_val = 0 - fact_increase = config.capture.fact_increase - fact_decrease = config.capture.fact_decrease - n_tries = 0 - - camera.shutter_speed = init_shutter_speed - time.sleep(config.capture.config_pause) + # display img + display_img(_file, config, init_brightness) + # capture img + output, _, _, camera = capture_screen(MAX_LEVEL, MAX_TRIES, MIN_LEVEL, _file, brightness_vals, camera, config, down, + exposure_vals, g, i, init_brightness, shutter_speed, None, + n_tries_vals, + output_fp, start_idx) + + if config.capture.measure_bg: + # name of background for current image + bg_name = plib.Path(config.capture.bg_fp + str(i)).with_suffix(f".{config.output_file_ext}") + bg = output_dir / bg_name + + # append current file to bg list + if str(bg_name) not in current_bg: + current_bg[str(bg_name)] = str(_file.name) + else: + current_bg[str(bg_name)].append(str(_file.name)) + # capture background periodically + if i % config.capture.measure_bg == 0 or (i == n_files - 1): + bg_name = str(bg_name) + # push the last bg-capture pairs + if current_bg: + with open(output_dir / "bg_mappings.json", 'a') as outfile: + json.dump(current_bg, outfile, indent=4) + current_bg = {} + #current_bg[bg_name] = None + + # display bg + display_img(None, config, brightness=init_brightness) + # capture bg + output, shutter_speed, init_brightness, camera = capture_screen(MAX_LEVEL, 0, MIN_LEVEL, + plib.Path(config.capture.bg_fp + str(i)).with_suffix(f".{config.output_file_ext}"), + brightness_vals, camera, config, down, + exposure_vals, g, i, init_brightness, shutter_speed, None, + n_tries_vals, + bg, start_idx) - current_screen_brightness = init_brightness - current_shutter_speed = camera.shutter_speed - print(f"current shutter speed: {current_shutter_speed}") - print(f"current screen brightness: {current_screen_brightness}") - - while max_pixel_val < MIN_LEVEL or max_pixel_val > MAX_LEVEL: - - # get bayer data - stream = picamerax.array.PiBayerArray(camera) - camera.capture(stream, "jpeg", bayer=True) - output_bayer = np.sum(stream.array, axis=2).astype(np.uint16) - - # convert to RGB - output = bayer2rgb_cc( - output_bayer, - down=down, - nbits=12, - blue_gain=float(g[1]), - red_gain=float(g[0]), - black_level=RPI_HQ_CAMERA_BLACK_LEVEL, - ccm=RPI_HQ_CAMERA_CCM_MATRIX, - nbits_out=8, - ) - - # if down: - # output = resize( - # output[None, ...], factor=1 / down, interpolation=cv2.INTER_CUBIC - # )[0] - - # save image - save_image(output, output_fp, normalize=False) - - # print range - print(f"{output_fp}, range: {output.min()} - {output.max()}") - - n_tries += 1 - if n_tries > MAX_TRIES: - print("Max number of tries reached!") - break - - max_pixel_val = output.max() - if max_pixel_val < MIN_LEVEL: - - # increase exposure - current_shutter_speed = int(current_shutter_speed * fact_increase) - camera.shutter_speed = current_shutter_speed - time.sleep(config.capture.config_pause) - - print(f"increasing shutter speed to [desired] {current_shutter_speed} [actual] {camera.shutter_speed}") - - elif max_pixel_val > MAX_LEVEL: - - if current_shutter_speed > 13098: # TODO: minimum for RPi HQ - # decrease exposure - current_shutter_speed = int(current_shutter_speed / fact_decrease) - camera.shutter_speed = current_shutter_speed - time.sleep(config.capture.config_pause) - print(f"decreasing shutter speed to [desired] {current_shutter_speed} [actual] {camera.shutter_speed}") - - else: - - # decrease screen brightness - current_screen_brightness = current_screen_brightness - 10 - screen_res = np.array(config.display.screen_res) - hshift = config.display.hshift - vshift = config.display.vshift - pad = config.display.pad - brightness = current_screen_brightness - display_image_path = config.display.output_fp - rot90 = config.display.rot90 - - display_command = f"python scripts/measure/prep_display_image.py --fp {_file} --output_path {display_image_path} --screen_res {screen_res[0]} {screen_res[1]} --hshift {hshift} --vshift {vshift} --pad {pad} --brightness {brightness} --rot90 {rot90}" - if config.display.landscape: - display_command += " --landscape" - if config.display.image_res is not None: - display_command += f" --image_res {config.display.image_res[0]} {config.display.image_res[1]}" - # print(display_command) - os.system(display_command) - - time.sleep(config.display.delay) - - exposure_vals.append(current_shutter_speed / 1e6) - brightness_vals.append(current_screen_brightness) - n_tries_vals.append(n_tries) if recon is not None: - # normalize and remove background output = output.astype(np.float32) output /= output.max() - output -= bg + output -= bg # TODO implement fancy bg subtraction output = np.clip(output, a_min=0, a_max=output.max()) # set data @@ -366,11 +277,11 @@ def collect_dataset(config): if config.runtime: proc_time = time.time() - start_time if proc_time > runtime_sec: - print(f"-- measured {i+1} / {n_files} files") + print(f"-- measured {i + 1} / {n_files} files") break proc_time = time.time() - start_time - print(f"\nFinished, {proc_time/60.:.3f} minutes.") + print(f"\nFinished, {proc_time / 60.:.3f} minutes.") # print brightness and exposure range and average print(f"brightness range: {np.min(brightness_vals)} - {np.max(brightness_vals)}") @@ -381,5 +292,130 @@ def collect_dataset(config): print(f"n_tries average: {np.mean(n_tries_vals)}") +def capture_screen(MAX_LEVEL, MAX_TRIES, MIN_LEVEL, _file, brightness_vals, camera, config, down, exposure_vals, g, i, + init_brightness, init_shutter_speed, mask_dir, n_tries_vals, output_fp, start_idx): + if not config.capture.skip: + + # -- set mask pattern + if config.masks is not None: + mask_idx = (i + start_idx) % config.masks.n + mask_fp = mask_dir / f"mask_{mask_idx}.npy" + print("using mask: ", mask_fp) + mask_vals = np.load(mask_fp) + full_pattern = adafruit_sub2full( + mask_vals, + center=config.masks.center, + ) + set_programmable_mask(full_pattern, device=config.masks.device) + + # -- take picture + max_pixel_val = 0 + fact_increase = config.capture.fact_increase + fact_decrease = config.capture.fact_decrease + n_tries = 0 + + camera.shutter_speed = int(init_shutter_speed) + time.sleep(config.capture.config_pause) + current_shutter_speed = camera.shutter_speed + + current_screen_brightness = init_brightness + print(f"current shutter speed: {current_shutter_speed}") + print(f"current screen brightness: {current_screen_brightness}") + + while max_pixel_val < MIN_LEVEL or max_pixel_val > MAX_LEVEL: + + # get bayer data + stream = picamerax.array.PiBayerArray(camera) + camera.capture(stream, "jpeg", bayer=True) + output_bayer = np.sum(stream.array, axis=2).astype(np.uint16) + + # convert to RGB + output = bayer2rgb_cc( + output_bayer, + down=down, + nbits=12, + blue_gain=float(g[1]), + red_gain=float(g[0]), + black_level=RPI_HQ_CAMERA_BLACK_LEVEL, + ccm=RPI_HQ_CAMERA_CCM_MATRIX, + nbits_out=8, + ) + + # if down: + # output = resize( + # output[None, ...], factor=1 / down, interpolation=cv2.INTER_CUBIC + # )[0] + + # save image + save_image(output, output_fp, normalize=False) + + # print range + print(f"{output_fp}, range: {output.min()} - {output.max()}") + + n_tries += 1 + if n_tries > MAX_TRIES: + if MAX_TRIES != 0: + print("Max number of tries reached!") + break + + max_pixel_val = output.max() + + if max_pixel_val < MIN_LEVEL: + + # increase exposure + current_shutter_speed = int(current_shutter_speed * fact_increase) + camera.shutter_speed = current_shutter_speed + time.sleep(config.capture.config_pause) + + print(f"increasing shutter speed to [desired] {current_shutter_speed} [actual] {camera.shutter_speed}") + + elif max_pixel_val > MAX_LEVEL: + if current_shutter_speed > 13098: # TODO: minimum for RPi HQ + # decrease exposure + current_shutter_speed = int(current_shutter_speed / fact_decrease) + camera.shutter_speed = current_shutter_speed + time.sleep(config.capture.config_pause) + print(f"decreasing shutter speed to [desired] {current_shutter_speed} [actual] {camera.shutter_speed}") + + else: + + # decrease screen brightness + current_screen_brightness = current_screen_brightness - 10 + display_img(_file, config, current_screen_brightness) + + exposure_vals.append(current_shutter_speed / 1e6) + brightness_vals.append(current_screen_brightness) + n_tries_vals.append(n_tries) + return output, current_shutter_speed, current_screen_brightness, camera + + +def display_img(_file, config, brightness): + if _file is None: + point_source = np.zeros(tuple(config.display.screen_res) + (3,)) + fp = "tmp_display.png" + im = Image.fromarray(point_source.astype("uint8"), "RGB") + im.save(fp) + _file = fp + + # -- show on display + screen_res = np.array(config.display.screen_res) + hshift = config.display.hshift + vshift = config.display.vshift + pad = config.display.pad + + display_image_path = config.display.output_fp + rot90 = config.display.rot90 + display_command = f"python scripts/measure/prep_display_image.py --fp {_file} --output_path {display_image_path} --screen_res {screen_res[0]} {screen_res[1]} --hshift {hshift} --vshift {vshift} --pad {pad} --brightness {brightness} --rot90 {rot90}" + if config.display.landscape: + display_command += " --landscape" + if config.display.image_res is not None: + display_command += ( + f" --image_res {config.display.image_res[0]} {config.display.image_res[1]}" + ) + # print(display_command) + os.system(display_command) + time.sleep(config.display.delay) + + if __name__ == "__main__": collect_dataset() From b439e0898c889a6d960dc100e36d0c368efe8030 Mon Sep 17 00:00:00 2001 From: Eric Bezzam Date: Wed, 21 Aug 2024 08:47:31 -0700 Subject: [PATCH 12/12] Accept relative paths for reference background. (#143) --- configs/upload_tapecam_mirflickr_ambient.yaml | 4 ++-- lensless/recon/utils.py | 23 ++++++++++++++----- scripts/recon/train_learning_based.py | 16 ++++++------- 3 files changed, 27 insertions(+), 16 deletions(-) diff --git a/configs/upload_tapecam_mirflickr_ambient.yaml b/configs/upload_tapecam_mirflickr_ambient.yaml index 0d62238a..f1196ca3 100644 --- a/configs/upload_tapecam_mirflickr_ambient.yaml +++ b/configs/upload_tapecam_mirflickr_ambient.yaml @@ -4,13 +4,13 @@ defaults: - _self_ repo_id: "Lensless/TapeCam-Mirflickr-Ambient" -n_files: null +n_files: 16000 test_size: 0.15 # -- to match TapeCam without ambient light split: 100 # "first: first `nfiles*test_size` for test, `int`: test_size*split for test (interleaved) as if multimask with this many masks lensless: - dir: data/100_samples + dir: /dev/shm/tape_15k_ambient/all_measured_20240805-143922 ambient: True ext: ".png" diff --git a/lensless/recon/utils.py b/lensless/recon/utils.py index 65c6e238..9c75877f 100644 --- a/lensless/recon/utils.py +++ b/lensless/recon/utils.py @@ -875,15 +875,26 @@ def train_epoch(self, data_loader): # get batch flip_lr = None flip_ud = None - if self.train_random_flip: - X, y, psfs, flip_lr, flip_ud = batch - psfs = psfs.to(self.device) - elif self.train_multimask: - X, y, psfs = batch + X = batch[0].to(self.device) + y = batch[1].to(self.device) + if self.train_multimask or self.train_random_flip: + psfs = batch[2] psfs = psfs.to(self.device) else: - X, y = batch psfs = None + if self.train_random_flip: + flip_lr = batch[3] + flip_ud = batch[4] + + # if self.train_random_flip: + # X, y, psfs, flip_lr, flip_ud = batch + # psfs = psfs.to(self.device) + # elif self.train_multimask: + # X, y, psfs = batch + # psfs = psfs.to(self.device) + # else: + # X, y = batch + # psfs = None random_rotate = False if self.random_rotate: diff --git a/scripts/recon/train_learning_based.py b/scripts/recon/train_learning_based.py index 77e6e7d0..6a048d13 100644 --- a/scripts/recon/train_learning_based.py +++ b/scripts/recon/train_learning_based.py @@ -31,7 +31,7 @@ import wandb import logging import hydra -from hydra.utils import get_original_cwd +from hydra.utils import get_original_cwd, to_absolute_path import os import numpy as np import time @@ -227,7 +227,7 @@ def train_learned(config): display_res=config.files.image_res, alignment=config.alignment, bg_snr_range=config.files.background_snr_range, # TODO check if correct - bg_fp=config.files.background_fp, + bg_fp=to_absolute_path(config.files.background_fp), ) else: @@ -251,7 +251,7 @@ def train_learned(config): simulate_lensless=config.files.simulate_lensless, random_flip=config.files.random_flip, bg_snr_range=config.files.background_snr_range, - bg_fp=config.files.background_fp, + bg_fp=to_absolute_path(config.files.background_fp), ) test_set = HFDataset( @@ -271,7 +271,7 @@ def train_learned(config): n_files=config.files.n_files, simulation_config=config.simulation, bg_snr_range=config.files.background_snr_range, - bg_fp=config.files.background_fp, + bg_fp=to_absolute_path(config.files.background_fp), force_rgb=config.files.force_rgb, simulate_lensless=False, # in general evaluate on measured (set to False) ) @@ -341,6 +341,7 @@ def train_learned(config): return_items = test_set[_idx] lensless = return_items[0] lensed = return_items[1] + if test_set.bg_sim is not None: background = return_items[-1] if test_set.multimask or test_set.random_flip: @@ -379,6 +380,9 @@ def train_learned(config): if config.files.random_rotate or config.files.random_shifts: save_image(psf_recon[0].cpu().numpy(), f"psf_{_idx}.png") + save_image(lensed[0].cpu().numpy(), f"lensed_{_idx}.png") + save_image(lensless[0].cpu().numpy(), f"lensless_raw_{_idx}.png") + # Reconstruct and plot image reconstruct_save( _idx, @@ -395,7 +399,6 @@ def train_learned(config): rotate_angle, shift, ) - save_image(lensed[0].cpu().numpy(), f"lensed_{_idx}.png") if test_set.bg_sim is not None: # Reconstruct and plot background subtracted image reconstruct_save( @@ -665,9 +668,6 @@ def reconstruct_save( res_np = res_np / res_np.max() lensed_np = lensed[0].cpu().numpy() - lensless_np = lensless[0].cpu().numpy() - save_image(lensless_np, f"lensless_raw_{_idx}.png") - # -- plot lensed and res on top of each other cropped = False if hasattr(test_set, "alignment"):