-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsignals.py
296 lines (234 loc) · 10.3 KB
/
signals.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import numpy as np
from scipy import optimize
class SignalModel(object):
"""General signal class:
model_size is just number of parameters"""
def __init__(self, parameters, interval_length=1):
self.parameters = np.array(parameters).astype(float)
self.model_size = len(self.parameters)
self.interval_length = interval_length
def get_samples(self, positions):
"""
Returns sample values for given positions
Args:
positions (numpy.ndarray): positions to evaluate
Returns:
numpy.ndarray: sample values
"""
raise NotImplementedError('get_samples must be implemented by the subclass')
def norm2(self, parameters=None):
"""
Args:
parameters (numpy.ndarray): optional, if provided function returns
norm of the signal defined by parameters
Returns:
float: value of the L2 norm of the (continous) signal
"""
raise NotImplementedError('norm2 must be implemented by the subclass')
def path(self, point, change, n=50):
raise NotImplementedError('path must be implemented by the subclass')
def square_error(self, parameters2):
"""
Returns the value of MSE, or squared difference between self and signal2,
(treated as continuous functions).
Args:
parameters2 (numpy.ndarray): signal to compare to
Returns:
float: value of MSE
"""
diff_parameters = self.parameters - parameters2
return self.norm2(diff_parameters)
class SignalPolynomial(SignalModel):
"""Polynomial signal on interval [0,1]"""
def __init__(self, parameters, interval_length=1):
super(SignalPolynomial, self).__init__(parameters, interval_length)
def get_samples(self, positions):
positions = np.array(positions)
samples = np.zeros(np.shape(positions))
for k in range(0, self.model_size):
samples += self.parameters[-(k + 1)] * (positions ** k)
return samples
def norm2(self, prm=None):
if prm is None:
prm = self.parameters
norm = 0
for k in range(0, len(prm)):
for m in range(0, len(prm)):
norm += self.interval_length ** (k + m + 1) * prm[-(k + 1)] * prm[-(m + 1)] / (k + m + 1)
return norm
def path(self, start_pos, change, n=50):
start_pos = np.array(start_pos)
p = [start_pos]
value = self.get_samples(start_pos)
new_pol = np.copy(self.parameters)
new_pol[-1] -= value
for i in range(1, n):
new_pol += change / (n - 1)
r = np.roots(new_pol)
p.append(min(r, key=lambda x: abs(x - p[i - 1])))
return p
@classmethod
def create_ls_matrix(cls, sample_positions, model_size):
x = np.zeros((len(sample_positions), model_size))
for k in range(0, model_size):
x[:, model_size - k - 1] = np.power(sample_positions, k)
return x
@classmethod
def create_derivative_ls_matrix(cls, sample_positions, model_size):
x = np.zeros((len(sample_positions), model_size))
for k in range(1, model_size):
x[:, model_size - k - 1] = k * np.power(sample_positions, k - 1)
return x
@classmethod
def compute_ls_gradient(cls, positions, parameters, samples):
x = cls.create_ls_matrix(positions, len(parameters))
dx = cls.create_derivative_ls_matrix(positions, len(parameters))
g = - 2 * np.dot(dx, parameters) * (samples - np.dot(x, parameters))
return g
@property
def degree(self):
return self.model_size - 1
class ConstrainedPolynomial(SignalPolynomial):
"""Abstract constrained polynomial:
contains all the logic needed for ALS algorithm, but constrains need to be added"""
def __init__(self, parameters, interval_length=1):
super(ConstrainedPolynomial, self).__init__(parameters, interval_length)
@classmethod
def create_ls_matrix(cls, sample_positions, model_size, tr_param=0):
sample_positions = cls.shifted_positions(sample_positions, tr_param)
return super(ConstrainedPolynomial, cls).create_ls_matrix(sample_positions, model_size)
@classmethod
def create_derivative_ls_matrix(cls, sample_positions, model_size, tr_param=0):
sample_positions = cls.shifted_positions(sample_positions, tr_param)
return super(ConstrainedPolynomial, cls).create_derivative_ls_matrix(sample_positions, model_size)
@classmethod
def positions_derivative(cls, sample_positions, tr_parameter):
raise NotImplementedError
@staticmethod
def shifted_positions(sample_positions, trace_param):
raise NotImplementedError
@staticmethod
def zero_transformation():
raise NotImplementedError
@classmethod
def compute_ls_gradient(cls, positions, parameters, samples, tr_param=0):
x = cls.create_ls_matrix(positions, len(parameters), tr_param)
dx = cls.create_derivative_ls_matrix(positions, len(parameters), tr_param)
dtr = cls.positions_derivative(positions, tr_param)
g = -2 * np.dot(
(samples - np.dot(x, parameters)).T,
np.dot(
np.diag(np.dot(dx, parameters)),
dtr))
return g
class SurfacePolynomial(ConstrainedPolynomial):
"""Simple version of constrained polynomial on the surface:
constrains modeled as simple rational function, x/(1-parameters*x)"""
def __init__(self, parameters, interval_length=1):
super(SurfacePolynomial, self).__init__(parameters, interval_length)
@classmethod
def positions_derivative(cls, sample_positions, tr_parameter):
return np.array([x ** 2 for x in cls.shifted_positions(sample_positions, tr_parameter)])
@staticmethod
def shifted_positions(sample_positions, trace_param):
assert np.abs(trace_param) <= 1
return [x / (1 - trace_param * x) for x in sample_positions]
@staticmethod
def zero_transformation():
return 0
class FullSurfacePolynomial(ConstrainedPolynomial):
"""Simple version of constrained polynomial on the surface:
constrains modeled as simple rational function, parameters[1]*x/(1-parameters[0]*x)"""
def __init__(self, parameters, interval_length=1):
super(FullSurfacePolynomial, self).__init__(parameters, interval_length)
@classmethod
def positions_derivative(cls, sample_positions, tr_parameter):
coef = 1.0 / (1.0 + tr_parameter[1])
return np.array([[coef * x ** 2, coef * x]
for x in cls.shifted_positions(sample_positions, tr_parameter)])
@staticmethod
def shifted_positions(sample_positions, trace_param):
assert np.abs(trace_param[0]) <= 1
assert trace_param[1] > -1
return [(1 + trace_param[1]) * x / (1 - trace_param[0] * x) for x in sample_positions]
@staticmethod
def zero_transformation():
return [0, 0]
class SecondSurfacePolynomial(ConstrainedPolynomial):
"""The final version of constrained polynomial on the surface, as described in the paper"""
def __init__(self, parameters, interval_length=1):
super(SecondSurfacePolynomial, self).__init__(parameters, interval_length)
@classmethod
def positions_derivative(cls, sample_positions, tr_parameter):
cos_a = np.cos(tr_parameter[0])
sin_a = np.sin(tr_parameter[0])
b = tr_parameter[1]
f = tr_parameter[2]
return np.array([[cls._denominator(s, f, cos_a, sin_a) ** 2 * ((f * sin_a) + (s * cos_a)) * (b * s),
s * cls._denominator(s, f, cos_a, sin_a), 0]
for s in sample_positions])
@staticmethod
def _denominator(s, f, cosa, sina):
return 1.0 / (f * cosa - s * sina)
@staticmethod
def shifted_positions(sample_positions, trace_param):
assert trace_param[1] > 0, 'b = ' + str(trace_param[1])
assert abs(trace_param[0]) < (np.pi / 2.0), 'a = ' + str(trace_param[0])
assert abs(np.tan(trace_param[0])) < trace_param[2], 'tg(a) = ' + str(np.tan(trace_param[0]))
cosa = np.cos(trace_param[0])
sina = np.sin(trace_param[0])
return [(trace_param[1]) * x / (trace_param[2] * cosa - sina * x) for x in sample_positions]
@staticmethod
def zero_transformation():
return [0, 1, 1]
class SignalExp(SignalModel):
"""Real, periodic bandlimited signal (exponential polynomial)"""
def __init__(self, parameters, interval_length=2 * np.pi):
super(SignalExp, self).__init__(parameters, interval_length)
def value(self, x):
v = 0
for k in range(0, self.model_size):
v += self.parameters[-(k + 1)] * np.cos(k * x)
return v
def path(self, start_pos, change, n=50):
p = [start_pos]
start_val = self.value(start_pos)
new_parameters = np.copy(self.parameters)
for i in range(1, n):
s = SignalExp(new_parameters + (i * change) / (n - 1))
r = optimize.newton(lambda x: s.value(x) - start_val, p[i - 1], fprime=s.derivative_value)
assert (np.isclose(s.value(r), start_val))
p.append(r)
return p
def get_samples(self, positions):
samples = np.zeros(np.shape(positions))
for k in range(0, self.model_size):
samples += self.parameters[-(k + 1)] * np.cos(k * positions)
return samples
def derivative_value(self, x):
v = 0
for k in range(0, self.model_size):
v -= k * self.parameters[-(k + 1)] * np.sin(k * x)
return v
def norm2(self, prm=None):
if prm is None:
prm = self.parameters
return 2 * np.power(np.abs(prm), 2)
def next_zero(signal, x0, steps=1000, precision=10e-6, gamma=0.01):
"""
Finds a position of zero of a signal using Newton's method
Args:
signal (SignalExp): bandlimited function which will be searched for a zero
x0 (float): starting point for the search
steps (int): maximal possible number of steps
precision (float): maximal acceptable precession
gamma (float): step size
Returns:
float: position of a zero
"""
x = x0
for i in range(0, steps):
if abs(signal.value(x0)) < precision:
break
x -= gamma * signal.value(x) / signal.derivative_value(x)
return x