forked from shiv6891/ALFRED_MemeEmotionDetection
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
514 lines (357 loc) · 17.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
import numpy as np
import pandas as pd
import random
import matplotlib.pyplot as plt
import os
from tqdm import tqdm
import warnings
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from PIL import Image
from transformers import ViTFeatureExtractor, ViTModel
from transformers import BertTokenizer, BertModel
from easydict import EasyDict
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import f1_score, accuracy_score, recall_score, precision_score
from transformers import ViTFeatureExtractor, ViTModel
# Set seed for reproducibility
torch.manual_seed(13)
np.random.seed(13)
random.seed(13)
train_path = './data/train_sample.csv'
val_path = 'ENTER VAL DATA PATH'
test_path = 'ENTER TEST DATA PATH'
image_dir = './data/sample_memes'
train_df = pd.read_csv(train_path)
val_df = pd.read_csv(val_path)
test_df = pd.read_csv(test_path)
le = LabelEncoder()
train_df['sent_target'] = le.fit_transform(train_df['sentiment'])
val_df['sent_target'] = le.transform(val_df['sentiment'])
test_df['sent_target'] = le.transform(test_df['sentiment'])
class MemeDataset(Dataset):
def __init__(self, df, tokenizer, image_dir):
self.df = df
self.image_dir = image_dir
self.tokenizer = tokenizer
self.feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224-in21k')
def __len__(self):
return len(self.df)
def __getitem__(self, idx):
# Process the text
text = self.df.iloc[idx]['ocr_text']
text = ' '.join(text.split('\n'))
encoded = self.tokenizer(text, padding='max_length', max_length=30, truncation=True, return_tensors='pt')
input_ids = encoded['input_ids'].squeeze(0)
attention_mask = encoded['attention_mask'].squeeze(0)
# Process the image
image_name = self.df.iloc[idx]['image']
image_path = os.path.join(self.image_dir, image_name)
image = Image.open(image_path).convert('RGB')
index, _ = os.path.splitext(image_name)
image_inputs = self.feature_extractor(images=image, return_tensors='pt')
pixel_values = image_inputs['pixel_values'].squeeze(0)
emo_ftrs_path = os.path.join('./data/sample_emotion_features', f"{index}.pt")
emo_ftrs = torch.load(emo_ftrs_path).squeeze()
# Process the labels
target = torch.tensor(self.df.iloc[idx]['target'])
sentiment = torch.tensor(self.df.iloc[idx]['sent_target'])
return {
'image': pixel_values,
'face': emo_ftrs,
'input_ids': input_ids,
'attention_mask': attention_mask,
'target': target,
'sentiment': sentiment
}
from torch import Tensor
class OnlineLabelSmoothing(nn.Module):
"""
Implements Online Label Smoothing from paper
https://arxiv.org/pdf/2011.12562.pdf
"""
def __init__(self, alpha: float, n_classes: int, smoothing: float = 0.1):
"""
:param alpha: Term for balancing soft_loss and hard_loss
:param n_classes: Number of classes of the classification problem
:param smoothing: Smoothing factor to be used during first epoch in soft_loss
"""
super(OnlineLabelSmoothing, self).__init__()
assert 0 <= alpha <= 1, 'Alpha must be in range [0, 1]'
self.a = alpha
self.n_classes = n_classes
# Initialize soft labels with normal LS for first epoch
self.register_buffer('supervise', torch.zeros(n_classes, n_classes))
self.supervise.fill_(smoothing / (n_classes - 1))
self.supervise.fill_diagonal_(1 - smoothing)
# Update matrix is used to supervise next epoch
self.register_buffer('update', torch.zeros_like(self.supervise))
# For normalizing we need a count for each class
self.register_buffer('idx_count', torch.zeros(n_classes))
self.hard_loss = nn.CrossEntropyLoss()
def forward(self, y_h: Tensor, y: Tensor):
# Calculate the final loss
soft_loss = self.soft_loss(y_h, y)
hard_loss = self.hard_loss(y_h, y)
return self.a * hard_loss + (1 - self.a) * soft_loss
def soft_loss(self, y_h: Tensor, y: Tensor):
"""
Calculates the soft loss and calls step
to update `update`.
:param y_h: Predicted logits.
:param y: Ground truth labels.
:return: Calculates the soft loss based on current supervise matrix.
"""
y_h = y_h.log_softmax(dim=-1)
if self.training:
with torch.no_grad():
self.step(y_h.exp(), y)
true_dist = torch.index_select(self.supervise, 1, y).swapaxes(-1, -2)
return torch.mean(torch.sum(-true_dist * y_h, dim=-1))
def step(self, y_h: Tensor, y: Tensor) -> None:
"""
Updates `update` with the probabilities
of the correct predictions and updates `idx_count` counter for
later normalization.
Steps:
1. Calculate correct classified examples.
2. Filter `y_h` based on the correct classified.
3. Add `y_h_f` rows to the `j` (based on y_h_idx) column of `memory`.
4. Keep count of # samples added for each `y_h_idx` column.
5. Average memory by dividing column-wise by result of step (4).
Note on (5): This is done outside this function since we only need to
normalize at the end of the epoch.
"""
# 1. Calculate predicted classes
y_h_idx = y_h.argmax(dim=-1)
# 2. Filter only correct
mask = torch.eq(y_h_idx, y)
y_h_c = y_h[mask]
y_h_idx_c = y_h_idx[mask]
# 3. Add y_h probabilities rows as columns to `memory`
self.update.index_add_(1, y_h_idx_c, y_h_c.swapaxes(-1, -2))
# 4. Update `idx_count`
self.idx_count.index_add_(0, y_h_idx_c, torch.ones_like(y_h_idx_c, dtype=torch.float32))
def next_epoch(self) -> None:
"""
This function should be called at the end of the epoch.
It basically sets the `supervise` matrix to be the `update`
and re-initializes to zero this last matrix and `idx_count`.
"""
# 5. Divide memory by `idx_count` to obtain average (column-wise)
self.idx_count[torch.eq(self.idx_count, 0)] = 1 # Avoid 0 denominator
# Normalize by taking the average
self.update /= self.idx_count
self.idx_count.zero_()
self.supervise = self.update
self.update = self.update.clone().zero_()
class GatedCrossAttention(nn.Module):
def __init__(self, args):
super(GatedCrossAttention, self).__init__()
self.args = args
# linear for image-guided text attention
self.img_linear_1 = nn.Linear(args.hidden_dim, args.hidden_dim, bias=True)
self.att_linear_1 = nn.Linear(args.hidden_dim, 1)
# linear for text-guided image attention
self.text_linear_2 = nn.Linear(args.hidden_dim, args.hidden_dim, bias=True)
self.att_linear_2 = nn.Linear(args.hidden_dim, 1)
def forward(self, text_features, img_features):
"""
:param text_features: (batch_size, max_seq_len, hidden_dim)
:param img_features: (batch_size, num_img_region, hidden_dim)
:return att_text_features (batch_size, max_seq_len, hidden_dim)
att_img_features (batch_size, max_seq_len, hidden_dim)
"""
############### 1. Image-guided text attention ###############
# 1.1. Repeat the vectors -> [batch_size, num_img_region, max_seq_len, hidden_dim]
text_features_rep = text_features.unsqueeze(1).repeat(1, self.args.num_img_region, 1, 1)
img_features_rep = img_features.unsqueeze(2).repeat(1, 1, self.args.max_seq_len, 1)
# 1.2. Feed to single layer (d*k) -> [batch_size, num_img_region, max_seq_len, hidden_dim]
img_features_rep = self.img_linear_1(img_features_rep)
# 1.3. sigmoid -> [batch_size, num_img_region, max_seq_len, hidden_dim]
c_t = torch.sigmoid(img_features_rep)
# 1.4. Make attention matrix (linear -> squeeze -> softmax) -> [batch_size, num_img_region, max_seq_len]
alpha_t = self.att_linear_1(c_t).squeeze(-1)
alpha_t = torch.softmax(alpha_t, dim=-1)
# 1.5 Make new text vector with att matrix -> [batch_size, num_img_region, hidden_dim]
f_t_hat = torch.matmul(alpha_t, text_features)
############### 2. Text-guided visual Attention ###############
# 2.1 Repeat the vectors -> [batch_size, num_img_region, num_img_region, hidden_dim]
img_features_rep = img_features.unsqueeze(1).repeat(1, self.args.num_img_region, 1, 1)
text_features_rep = f_t_hat.unsqueeze(2).repeat(1, 1, self.args.num_img_region, 1)
# 2.2 Feed to single layer (d*k) -> [batch_size, num_img_region, num_img_region, hidden_dim]
text_features_rep = self.text_linear_2(text_features_rep)
# 2.3. sigmoid -> [batch_size, num_img_region, num_img_region, hidden_dim]
c_i = torch.sigmoid(text_features_rep)
# 2.4 Make attention matrix (linear -> squeeze -> softmax) -> [batch_size, num_img_region, num_img_region]
alpha_i = self.att_linear_2(c_i).squeeze(-1)
alpha_i = torch.softmax(alpha_i, dim=-1)
# 2.5 Make new text vector with att_matrix -> [batch_size, max_seq_len, hidden_dim]
f_ei_hat = torch.matmul(alpha_i, img_features)
return f_t_hat, f_ei_hat
class LowRankBilinearPooling(torch.nn.Module):
def __init__(self, hidden_dim):
super().__init__()
self.nonlinearity = nn.LeakyReLU()
self.sum_pool = False
self.proj1 = nn.Linear(hidden_dim, hidden_dim, bias = False)
self.proj2 = nn.Linear(hidden_dim, hidden_dim, bias = False)
self.proj = nn.Linear(hidden_dim, hidden_dim)
def forward(self, x1, x2):
x1_ = self.nonlinearity(self.proj1(x1))
x2_ = self.nonlinearity(self.proj2(x2))
lrbp = self.proj(x1_ * x2_)
return lrbp
class GMF(nn.Module):
"""GMF (Gated Multimodal Fusion)"""
def __init__(self, args):
super(GMF, self).__init__()
self.args = args
self.linear_1 = nn.Linear(args.hidden_dim, args.hidden_dim)
self.linear_2 = nn.Linear(args.hidden_dim, args.hidden_dim)
self.lrbp = LowRankBilinearPooling(args.hidden_dim)
def forward(self, f_i, f_e):
"""
:param att_text_features: (batch_size, max_seq_len, hidden_dim)
:param att_img_features: (batch_size, max_seq_len, hidden_dim)
:return: multimodal_features
"""
f_e = torch.tanh(self.linear_1(f_e)) # [b, m, 768]
f_i = torch.tanh(self.linear_2(f_i)) # [b, m, 768]
g_i = torch.sigmoid(self.lrbp(f_i, f_e))
multimodal_features = torch.mul(g_i, f_e) + torch.mul(1 - g_i, f_i) # [b, m, 768]
return multimodal_features
class ALFRED(nn.Module):
def __init__(self, num_classes: int, pretrained=True):
super().__init__()
self.num_classes = num_classes
self.text_encoder = BertModel.from_pretrained('bert-base-uncased')
self.visual_encoder = ViTModel.from_pretrained('google/vit-base-patch16-224-in21k')
embed_dim = 768+768
text_feature_dim = self.text_encoder.pooler.dense.in_features
self.fc1 = nn.Linear(embed_dim, embed_dim//2)
self.fc2 = nn.Linear((embed_dim//2), self.num_classes)
self.leaky_relu = nn.LeakyReLU()
args = EasyDict({
'hidden_dim': 768,
'max_seq_len': 30,
'num_img_region': 197
})
self.gated_cross_attention = GatedCrossAttention(args)
self.emo_gmf = GMF(args)
def forward(self, image, f_e, input_ids, attention_mask):
batch_size = image.shape[0]
output = self.text_encoder(input_ids, attention_mask, return_dict=True)
img_output = self.visual_encoder(pixel_values=image)
f_i = img_output.last_hidden_state
f_ei = self.emo_gmf(f_i, f_e)
f_t = output.last_hidden_state
f_t_hat, f_ei_hat = self.gated_cross_attention(f_t, f_ei)
z = torch.cat((f_t_hat, f_ei_hat), dim=2)
joint_meme_repr = z.sum(1)
x = self.leaky_relu(self.fc1(joint_meme_repr))
y_hat= self.fc2(x)
return y_hat
if __name__ == "__main__":
# Tokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
train_dataset = MemeDataset(train_df, tokenizer, image_dir)
val_dataset = MemeDataset(val_df, tokenizer, image_dir)
test_dataset = MemeDataset(test_df, tokenizer, image_dir)
TRAIN_BATCH_SIZE = 32
TEST_BATCH_SIZE = 16
train_loader = DataLoader(train_dataset, batch_size=TRAIN_BATCH_SIZE, drop_last=True, pin_memory=True, num_workers=32)
val_loader = DataLoader(val_dataset, batch_size=TEST_BATCH_SIZE, drop_last=True, pin_memory=True, num_workers=32)
test_loader = DataLoader(test_dataset, batch_size=TEST_BATCH_SIZE, drop_last=True, pin_memory=True, num_workers=32)
model = ALFRED(6, pretrained=True)
_ = model.cuda()
params = list(model.parameters())
criterion = OnlineLabelSmoothing(alpha=0.5, n_classes=6, smoothing=0.1).cuda()
optimizer = torch.optim.Adam(params, lr=1e-4)
epochs = 20
TRAIN_BATCH_SIZE = 32
TEST_BATCH_SIZE = 16
n_total_steps = len(train_loader)
warnings.filterwarnings("ignore")
for epoch in range(epochs):
total_target = {
'train': [],
'test': [],
'val': [],
}
total_preds = {
'train': [],
'test': [],
'val': []
}
for i, batch in enumerate(tqdm(train_loader)):
model.train()
criterion.train()
# Collect inputs
image = batch['image'].cuda()
input_ids = batch['input_ids'].cuda()
attention_mask = batch['attention_mask'].cuda()
labels = batch['target'].cuda()
face = batch['face'].cuda()
logits = model(image, face, input_ids, attention_mask)
loss = criterion(logits, labels.long())
# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
_, preds = torch.max(logits, 1)
total_target['train'].extend(batch['target'].cpu().tolist())
total_preds['train'].extend(preds.cpu().tolist())
criterion.next_epoch()
with torch.no_grad():
n_correct = 0
n_samples = 0
criterion.eval()
model.eval()
for j, batch in enumerate(tqdm(val_loader)):
image = batch['image'].cuda()
input_ids = batch['input_ids'].cuda()
attention_mask = batch['attention_mask'].cuda()
labels = batch['target']
face = batch['face'].cuda()
logits = model(image, face, input_ids, attention_mask)
_, preds = torch.max(logits, 1)
total_target['val'].extend(batch['target'].cpu().tolist())
total_preds['val'].extend(preds.cpu().tolist())
for j, batch in enumerate(tqdm(test_loader)):
image = batch['image'].cuda()
input_ids = batch['input_ids'].cuda()
attention_mask = batch['attention_mask'].cuda()
labels = batch['target']
face = batch['face'].cuda()
logits = model(image, face, input_ids, attention_mask)
_, preds = torch.max(logits, 1)
total_target['test'].extend(batch['target'].cpu().tolist())
total_preds['test'].extend(preds.cpu().tolist())
print()
print("-"*40)
print(f"Train Results Epoch [{epoch+1}/{epochs}], Loss: {loss.item():.4f}")
print(f"Macro F1: {f1_score(total_target['train'], total_preds['train'], average='weighted'):.4f}")
print(f"Recall: {recall_score(total_target['train'], total_preds['train'], average='weighted'):.4f}")
print(f"Precision: {precision_score(total_target['train'], total_preds['train'], average='weighted'):.4f}")
print(f"Accuracy: {accuracy_score(total_target['train'], total_preds['train']):.4f}")
print("-"*40)
print()
print("-"*40)
print(f"Validation Results after Epoch [{epoch+1}/{epochs}]")
print(f"Macro F1: {f1_score(total_target['val'], total_preds['val'], average='weighted'):.4f}")
print(f"Recall: {recall_score(total_target['val'], total_preds['val'], average='weighted'):.4f}")
print(f"Precision: {precision_score(total_target['val'], total_preds['val'], average='weighted'):.4f}")
print(f"Accuracy: {accuracy_score(total_target['val'], total_preds['val']):.4f}")
print("-"*40)
print()
print("-"*40)
print(f"Test Results after Epoch [{epoch+1}/{epochs}]")
print(f"Macro F1: {f1_score(total_target['test'], total_preds['test'], average='weighted'):.4f}")
print(f"Recall: {recall_score(total_target['test'], total_preds['test'], average='weighted'):.4f}")
print(f"Precision: {precision_score(total_target['test'], total_preds['test'], average='weighted'):.4f}")
print(f"Accuracy: {accuracy_score(total_target['test'], total_preds['test']):.4f}")
print("-"*40)
print()