-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfashionmnist_AQUAVS.py
257 lines (199 loc) · 9.6 KB
/
fashionmnist_AQUAVS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
# -*- coding: utf-8 -*-
"""FashionMNIST_SVAE.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1RGZCc5UM4co2XBKW3wA-TuTo6KFIxZh_
"""
datasetName = "FashionMNIST"
import numpy as np
import tensorflow as tf
from tensorflow.keras import backend as K
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Conv2D, Conv2DTranspose, Input, Flatten, Dense, Lambda, Reshape, BatchNormalization, MaxPooling2D, Dropout
from tensorflow.keras import backend as K
import tensorflow.keras as keras
import matplotlib.pyplot as plt
from scipy.stats import norm
def vae_loss(data, reconstruction):
z_mean, z_log_var, z = encoder(data)
reconstruction_loss = keras.losses.binary_crossentropy(data, reconstruction)
reconstruction_loss = tf.reduce_mean(reconstruction_loss, axis=[1,2])
kl_loss = 1 + z_log_var - tf.square(z_mean) - tf.exp(z_log_var)
kl_loss = tf.reduce_mean(kl_loss, axis=1)
kl_loss *= -0.5
total_loss = tf.reduce_mean(reconstruction_loss + kl_loss)/100
return total_loss
def sampling(args):
z_mean, z_var = args
epsilon = K.random_normal(shape=(K.shape(z_mean)[0], latent_dim), mean=0,) ## latent_dim = K.shape(z_mean)[1]
return z_mean + K.exp(z_var / 2) * epsilon
img_dimensions = (28, 28, 1)
latent_dim = 100
batch_size = 32
num_channels = 1
## ENCODER
inputNode = Input(shape=img_dimensions, name="EncoderInput")
enc_inter = Conv2D(filters=32, kernel_size=4, strides=2, padding='same', kernel_initializer='he_uniform')(inputNode)
enc_inter = Conv2D(filters=64, kernel_size=4, strides=2, padding='same', kernel_initializer='he_uniform', activation='relu')(enc_inter)
enc_inter = Conv2D(filters=128, kernel_size=4, strides=1, padding='same', kernel_initializer='he_uniform', activation=tf.nn.relu)(enc_inter)
conv_shape = K.int_shape(enc_inter)
enc_inter = Flatten()(enc_inter)
z_mean = Dense(latent_dim, name="Mean")(enc_inter)
z_var = Dense(latent_dim, name="Variance")(enc_inter)
z = Lambda(sampling, output_shape=(latent_dim,))([z_mean, z_var])
encoder = Model(inputNode, [z_mean, z_var, z], name="Encoder")
## CLASSIFIER
clf_latent_inputs = Input(shape=(latent_dim,), name='ClassifierInput')
clf_outputs = Dense(10, activation='softmax', name='ClassifierOutput')(clf_latent_inputs)
clf_supervised = Model(clf_latent_inputs, clf_outputs, name='Classifier')
## DECODER
inputNode2 = Input(shape=(latent_dim,), name="DecoderInput")
dec_inter = Dense(conv_shape[1]*conv_shape[2]*conv_shape[3])(inputNode2)
dec_inter = Reshape((conv_shape[1], conv_shape[2], conv_shape[3]))(dec_inter)
dec_inter = Conv2DTranspose(filters=128, kernel_size=4, strides=1, padding='same', kernel_initializer='he_uniform', activation='relu')(dec_inter)
dec_inter = Conv2DTranspose(filters=64, kernel_size=4, strides=2, padding='same', kernel_initializer='he_uniform', activation='relu')(dec_inter)
dec_inter = Conv2DTranspose(filters=32, kernel_size=4, strides=2, padding='same', kernel_initializer='he_uniform', activation='relu')(dec_inter)
decoder_node = Conv2DTranspose(num_channels, kernel_size=4, strides=1, padding='same')(dec_inter)
decoder = Model(inputNode2, decoder_node, name='Decoder')
output_combined = [decoder(encoder(inputNode)[2]), clf_supervised(encoder(inputNode)[2])]
vae = Model(inputNode, output_combined, name='S-VAE')
encoder.summary()
decoder.summary()
clf_supervised.summary()
vae.summary()
vae.compile(optimizer='adam', loss=[vae_loss, 'categorical_crossentropy'])
from collections import defaultdict
import random
import numpy as np
from sklearn.utils import shuffle
from scipy import stats
from sklearn.metrics import precision_score, recall_score, accuracy_score
from collections import Counter
#grouping datapoints by respective classes
def group_data_by_class(input_x, input_y):
final_out = defaultdict(list)
final_idx = defaultdict(list)
for i in range(input_x.shape[0]):
final_out[input_y[i]].append(input_x[i])
final_idx[input_y[i]].append(i)
return final_out, final_idx
#Ref - https://core.ac.uk/download/pdf/206095228.pdf
def outlier_detection_med_mad(input_data, k1):
column_med = np.median(input_data, axis = 0)
column_mad = stats.median_absolute_deviation(input_data,axis = 0)
#computing threshold for each feature
threshold_lower = column_med - (k1*column_mad)
threshold_upper = column_med + (k1*column_mad)
outliers = []
num_outlier_feature_list = []
outlier_level = defaultdict(list)
for i in range(input_data.shape[0]):
num_outlier_feature = 0
x = input_data[i]
for id in range(x.shape[0]):
if not (threshold_lower[id] <= x[id] and x[id] <= threshold_upper[id]):
num_outlier_feature += 1
outlier_level[num_outlier_feature].append(i)
return outlier_level
# computes noise level of each datapoint
def get_train_lvl(input_x, input_y, MAD_Outlier_constant):
grouped_train, grouped_idx = group_data_by_class(input_x, input_y.reshape(input_y.shape[0]))
cntr = 0
train_lvl = [-1 for i in range(input_x.shape[0])]
for digit in range(0,10):
z_values = encoder.predict(np.array(grouped_train[digit]))[2]
class_outliers = outlier_detection_med_mad(z_values, MAD_Outlier_constant)
for i in class_outliers.keys():
for j in class_outliers[i]:
# i is the outlier level
# grouped_idx[digit][j] is the index
train_lvl[grouped_idx[digit][j]] = i
return np.array(train_lvl)
#adds noise to y-labels using uniform noise model - i.e. mislabeled samples are given labels uniformly at random.
def add_noise_UniformNoiseModel(input_y, perc, allClasses):
final_idx = defaultdict(list)
noisy_y = [-1 for i in range(input_y.shape[0])]
for i in range(input_y.shape[0]):
final_idx[input_y[i]].append(i)
for lbl in final_idx.keys():
remC = (perc/100.0)*len(final_idx[lbl])
#print("Label: ", lbl, "; # of datapoints flipped: ", int(remC))
for i in range(int(remC)):
idx = random.randint(0, len(final_idx[lbl]) - 1)
newLabel = random.choice(allClasses)
while (newLabel == lbl):
newLabel = random.choice(allClasses)
noisy_y[final_idx[lbl][idx]] = newLabel # update the label for datapoint from `label` to `newLabel`
del final_idx[lbl][idx]
for lbl in final_idx.keys():
for i in final_idx[lbl]:
noisy_y[i] = lbl
return np.array(noisy_y)
#adds noise to y-labels using systematic noise model - i.e. mislabeled samples are given labels systematic at random.
def add_noise_SystematicNoiseModel(input_y, perc, allClasses):
final_idx = defaultdict(list)
noisy_y = [-1 for i in range(input_y.shape[0])]
for i in range(input_y.shape[0]):
final_idx[input_y[i]].append(i)
for lbl in final_idx.keys():
remC = (perc/100.0)*len(final_idx[lbl])
#print("Label: ", lbl, "; # of datapoints flipped: ", int(remC))
for i in range(int(remC)):
idx = random.randint(0, len(final_idx[lbl]) - 1)
newLabel = (lbl + 1)%(len(allClasses))
noisy_y[final_idx[lbl][idx]] = newLabel # update the label for datapoint from `label` to `newLabel`
del final_idx[lbl][idx]
for lbl in final_idx.keys():
for i in final_idx[lbl]:
noisy_y[i] = lbl
return np.array(noisy_y)
# min-max normalization
def min_max_normalize(lis):
minL = float(min(lis))
maxL = float(max(lis))
minMaxLis = [float((float(x) - minL)/ (maxL - minL)) for x in lis]
return minMaxLis
(train_data, train_labels), (test_data, test_labels) = tf.keras.datasets.fashion_mnist.load_data()
#reshaping
test_data = test_data.reshape((test_data.shape[0], 28, 28, 1))
train_data = train_data.reshape((train_data.shape[0], 28, 28, 1))
test_labels = test_labels.reshape(test_labels.shape[0])
train_labels = train_labels.reshape(train_labels.shape[0])
# convert from integers to floats
train_data = train_data.astype('float32')
test_data = test_data.astype('float32')
# normalize to range 0-1
train_data = train_data / 255.0
test_data = test_data / 255.0
noisePerc = 20 # percentage noise
noiseType = "Sys"
if(noiseType == "Sys"):
noisy_labels = add_noise_SystematicNoiseModel(train_labels, noisePerc, [cl for cl in range(10)])
elif(noiseType == "Uni"):
noisy_labels = add_noise_UniformNoiseModel(train_labels, noisePerc, [cl for cl in range(10)])
grn_truth = np.array(noisy_labels == train_labels, dtype=int)
print("Number of mislabelled: ", len(grn_truth) - sum(grn_truth), "out of", len(grn_truth))
y_enc_noisy_labels = tf.keras.utils.to_categorical(noisy_labels) #encode noisy labels
# callback definitions
def scheduler(epoch):
return 0.001/(epoch+1)
earlyStopCallback = tf.keras.callbacks.EarlyStopping(
monitor="val_loss",
min_delta=0,
patience=0,
verbose=0,
mode="auto",
baseline=None,
restore_best_weights=True,
)
lrScheduler = tf.keras.callbacks.LearningRateScheduler(scheduler)
splitID = int(0.8*len(train_data))
#Note - VAE trains on noisy data
vae.fit(train_data[:splitID], [train_data[:splitID], y_enc_noisy_labels[:splitID]],
shuffle=True, epochs=15, batch_size=32,
validation_data=(train_data[splitID:], [train_data[splitID:], y_enc_noisy_labels[splitID:]]),
callbacks=[lrScheduler, earlyStopCallback],
verbose=1)
noisy_lvl = get_train_lvl(train_data, noisy_labels, 1.5)
np.save(str(noisePerc) + "_NoisyLabels_" + datasetName + ".npy", noisy_labels) #save noisy labels
np.save(str(noisePerc) + "_NoiseLevels_" + datasetName +".npy", noisy_lvl) # save noise scores