Skip to content

Commit

Permalink
Merge pull request #155 from LCSB-BioCore/develop
Browse files Browse the repository at this point in the history
Regular merge of develop
  • Loading branch information
laurentheirendt authored Oct 7, 2020
2 parents e6a6872 + a4116b3 commit f73852e
Show file tree
Hide file tree
Showing 3 changed files with 11 additions and 7 deletions.
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
name = "GigaSOM"
uuid = "a03a9c34-069e-5582-a11c-5c984cab887c"
version = "0.6.0"
version = "0.6.1"

[deps]
CSV = "336ed68f-0bac-5ca0-87d4-7b16caf5d00b"
Expand Down
6 changes: 3 additions & 3 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,9 +4,9 @@

GigaSOM is a Julia toolkit for clustering and visualisation of really large cytometry data. Most generally, it can load FCS files, perform transformation and cleaning operations in their contents, run FlowSOM-style clustering, and visualize and export the results. GigaSOM is distributed and parallel in nature, which makes processing huge datasets a breeze -- a hundred of millions of cells with a few dozen parameters can be clustered and visualized in a few minutes.

| **Documentation** | **Test Coverage** | **[ARTENOLIS](http://opencobra.github.io/artenolis)** |
|:-----------------:|:------------:|:--------------------------:|
| [![doc](https://img.shields.io/badge/doc-GigaSOM-blue)](http://git.io/GigaSOM.jl) | [![coverage status](http://codecov.io/github/LCSB-BioCore/GigaSOM.jl/coverage.svg?branch=master)](http://codecov.io/github/LCSB-BioCore/GigaSOM.jl?branch=master) | [![linux](https://prince.lcsb.uni.lu/jenkins/job/GigaSOM.jl-branches-auto-linux/badge/icon)](https://prince.lcsb.uni.lu/jenkins/job/GigaSOM.jl-branches-auto-linux/) |
| **Documentation** | **Test Coverage** | **[ARTENOLIS](http://opencobra.github.io/artenolis)** | **SciCrunch** |
|:-----------------:|:-----------------:|:-----------------------------------------------------:|:--------:|
| [![doc](https://img.shields.io/badge/doc-GigaSOM-blue)](http://git.io/GigaSOM.jl) | [![coverage status](http://codecov.io/github/LCSB-BioCore/GigaSOM.jl/coverage.svg?branch=master)](http://codecov.io/github/LCSB-BioCore/GigaSOM.jl?branch=master) | [![linux](https://prince.lcsb.uni.lu/jenkins/job/GigaSOM.jl-branches-auto-linux/badge/icon)](https://prince.lcsb.uni.lu/jenkins/job/GigaSOM.jl-branches-auto-linux/) | [![rrid](https://img.shields.io/badge/RRID-SCR__019020-72c02c)](https://scicrunch.org/resolver/RRID:SCR_019020) |

# How to get started

Expand Down
10 changes: 7 additions & 3 deletions docs/src/tutorials/processingFCSData.md
Original file line number Diff line number Diff line change
Expand Up @@ -39,9 +39,12 @@ getMetaData(params)

`data` is a matrix with cell expressions, one cell per row, one marker per
column. If you want to run SOM analysis on it, you can cluster and visualize it
just as in the previous tutorial:
just as in the previous tutorial, with one exception- we start with cutting off
the `label` column that contains `NaN` values:

```
data = data[:,1:13]
som = initGigaSOM(data, 16, 16)
som = trainGigaSOM(som, data)
clusters = mapToGigaSOM(som, data)
Expand Down Expand Up @@ -160,8 +163,9 @@ extract information about FCS data columns from there. First, we read the
actual content using the XLSX package:

```julia
md = GigaSOM.DataFrame(GigaSOM.XLSX.readtable("PBMC8_metadata.xlsx", "Sheet1", infer_eltypes=true)...)
panel = GigaSOM.DataFrame(GigaSOM.XLSX.readtable("PBMC8_panel.xlsx", "Sheet1", infer_eltypes=true)...)
using XLSX
md = GigaSOM.DataFrame(readtable("PBMC8_metadata.xlsx", "Sheet1", infer_eltypes=true)...)
panel = GigaSOM.DataFrame(readtable("PBMC8_panel.xlsx", "Sheet1", infer_eltypes=true)...)
```

After that, we can get the parameter structure from the first FCS files:
Expand Down

0 comments on commit f73852e

Please sign in to comment.