forked from pytorch/examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
91 lines (80 loc) · 3.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.multiprocessing as mp
from torch.utils.data.sampler import Sampler
from torchvision import datasets, transforms
from train import train, test
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--num-processes', type=int, default=2, metavar='N',
help='how many training processes to use (default: 2)')
parser.add_argument('--cuda', action='store_true', default=False,
help='enables CUDA training')
parser.add_argument('--dry-run', action='store_true', default=False,
help='quickly check a single pass')
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x, dim=1)
if __name__ == '__main__':
args = parser.parse_args()
use_cuda = args.cuda and torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
dataset1 = datasets.MNIST('../data', train=True, download=True,
transform=transform)
dataset2 = datasets.MNIST('../data', train=False,
transform=transform)
kwargs = {'batch_size': args.batch_size,
'shuffle': True}
if use_cuda:
kwargs.update({'num_workers': 1,
'pin_memory': True,
})
torch.manual_seed(args.seed)
mp.set_start_method('spawn')
model = Net().to(device)
model.share_memory() # gradients are allocated lazily, so they are not shared here
processes = []
for rank in range(args.num_processes):
p = mp.Process(target=train, args=(rank, args, model, device,
dataset1, kwargs))
# We first train the model across `num_processes` processes
p.start()
processes.append(p)
for p in processes:
p.join()
# Once training is complete, we can test the model
test(args, model, device, dataset2, kwargs)