- 前置知识:PyTorch
- 作者:Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam
- 文章链接
- 代码链接:
PyTorch中似乎没有MobileNetV1?
传统卷积神经网络,内存需求大、运算量大。这使其无法在移动设备以及嵌入式设备上运行,因为这些设备计算资源非常有限。因此,我们需要一种方法优化神经网络的运算速度。
Depthwise Convolution
是Depthwise Separable Convolution的核心组件之一,如图1
所示。若输入是$BCH*W$,Depthwise是指将输入分为$C$组,然后每组使用一个卷积核进行运算,每个卷积核的通道数同样为1。这样相当于收集了每个Channel的空间特征,即Depthwise特征。
Pointwise Convolution
是Depthwise Separable Convolution的另一个核心组件,如图1
所示。Pointwise本质上仍是传统的卷积。若输入是$BCHW$,Pointwise对做$k$个普通的$11$卷积。这样相当于收集了每个点的特征,其实也是通道信息的交融。
图1:Depthwise Separable Convolution核心组件
论文中一个标准的Depthwise Separable Convolution是如图2
所示。
图2:Depthwise Separable Convolution
网络整体架构如表1
所示。可以看到,第一层是stride为2的标准卷积,随后是Depthwise Convolution和Pointwise Convolution交替堆叠,没一层都构成一个Depthwise Separable Convolution。
图2:Depthwise Separable Convolution
由于我的方向和边缘计算相关程度并不大,因此并没有阅读论文中有关计算复杂度的部分,有兴趣的同学可自行阅读。
import torch
import torch.nn as nn
import torchvision
def BottleneckV1(in_channels, out_channels, stride):
return nn.Sequential(
nn.Conv2d(in_channels=in_channels,out_channels=in_channels,kernel_size=3,stride=stride,padding=1,groups=in_channels),
nn.BatchNorm2d(in_channels),
nn.ReLU6(inplace=True),
nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1),
nn.BatchNorm2d(out_channels),
nn.ReLU6(inplace=True)
)
class MobileNetV1(nn.Module):
def __init__(self, num_classes=1000):
super(MobileNetV1, self).__init__()
self.first_conv = nn.Sequential(
nn.Conv2d(in_channels=3,out_channels=32,kernel_size=3,stride=2,padding=1),
nn.BatchNorm2d(32),
nn.ReLU6(inplace=True),
)
self.bottleneck = nn.Sequential(
BottleneckV1(32, 64, stride=1),
BottleneckV1(64, 128, stride=2),
BottleneckV1(128, 128, stride=1),
BottleneckV1(128, 256, stride=2),
BottleneckV1(256, 256, stride=1),
BottleneckV1(256, 512, stride=2),
BottleneckV1(512, 512, stride=1),
BottleneckV1(512, 512, stride=1),
BottleneckV1(512, 512, stride=1),
BottleneckV1(512, 512, stride=1),
BottleneckV1(512, 512, stride=1),
BottleneckV1(512, 1024, stride=2),
BottleneckV1(1024, 1024, stride=1),
)
self.avg_pool = nn.AvgPool2d(kernel_size=7,stride=1)
self.linear = nn.Linear(in_features=1024,out_features=num_classes)
self.dropout = nn.Dropout(p=0.2)
self.softmax = nn.Softmax(dim=1)
self.init_params()
def init_params(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight)
nn.init.constant_(m.bias,0)
elif isinstance(m, nn.Linear) or isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def forward(self, x):
x = self.first_conv(x)
x = self.bottleneck(x)
x = self.avg_pool(x)
x = x.view(x.size(0),-1)
x = self.dropout(x)
x = self.linear(x)
out = self.softmax(x)
return out
MobileNet主要创新点在于使用Depthwise Separable Convolution来降低计算量。