From ce8ba9f2a2b051804aa6f30eb084d83c3d74ae66 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?J=C3=A9r=C3=A9my=20Neveu?= Date: Mon, 28 Mar 2022 17:50:49 +0200 Subject: [PATCH 01/11] remove lambda func from self.sed --- spectractor/extractor/targets.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/spectractor/extractor/targets.py b/spectractor/extractor/targets.py index 527e6d7f5..f1a6da64a 100644 --- a/spectractor/extractor/targets.py +++ b/spectractor/extractor/targets.py @@ -366,7 +366,8 @@ def build_sed(self, index=0): array(1.67605113e-11) """ if len(self.spectra) == 0: - self.sed = lambda x: np.zeros_like(x) + self.sed = interp1d(parameters.LAMBDAS, np.zeros_like(parameters.LAMBDAS), kind='linear', bounds_error=False, + fill_value=0.) else: self.sed = interp1d(self.wavelengths[index], self.spectra[index], kind='linear', bounds_error=False, fill_value=0.) From 086bd9b8f8e1f26489e6c546934f2c0ad8622464 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?J=C3=A9r=C3=A9my=20Neveu?= Date: Mon, 28 Mar 2022 18:28:51 +0200 Subject: [PATCH 02/11] remove lambda func from self.theta and self.N --- spectractor/extractor/dispersers.py | 57 +++++++++++++++------- spectractor/extractor/images.py | 2 +- spectractor/simulation/image_simulation.py | 2 +- 3 files changed, 42 insertions(+), 19 deletions(-) diff --git a/spectractor/extractor/dispersers.py b/spectractor/extractor/dispersers.py index 6808e5f14..233ffa0cb 100644 --- a/spectractor/extractor/dispersers.py +++ b/spectractor/extractor/dispersers.py @@ -625,7 +625,7 @@ def __init__(self, label, D=parameters.DISTANCE2CCD, data_dir=parameters.DISPERS """ Grating.__init__(self, 350, D=D, label=label, data_dir=data_dir, verbose=False) self.holo_center = None # center of symmetry of the hologram interferences in pixels - self.theta = None # interpolated rotation angle map of the hologram from data in degrees + self.theta_interp = None # interpolated rotation angle map of the hologram from data in degrees self.theta_data = None # rotation angle map data of the hologram from data in degrees self.theta_x = None # x coordinates for the interpolated rotation angle map self.theta_y = None # y coordinates for the interpolated rotation angle map @@ -670,11 +670,34 @@ def N(self, x): if x[0] < np.min(self.N_x) or x[0] > np.max(self.N_x) \ or x[1] < np.min(self.N_y) or x[1] > np.max(self.N_y): - N = self.N_fit(x[0], x[1]) + N = float(self.N_fit(*x)) else: - N = int(self.N_interp(x)) + N = int(self.N_interp(*x)) return N + def theta(self, x): + """Return the mean dispersion angle of the grating at position x. + + Parameters + ---------- + x: float, array + The [x,y] pixel position on the CCD. + + Returns + ------- + theta: float + The mean dispersion angle at position x in degrees. + + Examples + -------- + >>> h = Hologram('HoloPhP') + >>> h.theta((500,500)) + -1.3393287109201792 + >>> h.theta((0,0)) + -2.0936702173289983 + """ + return float(self.theta_interp(*x)) + def load_specs(self, verbose=True): """Load the files in data_dir/label/ to set the main characteristics of the hologram. If they do not exist, default values are used. @@ -699,13 +722,10 @@ def load_specs(self, verbose=True): The files do not exist: - >>> h = Hologram(label='XXX') - >>> h.N((500,500)) - 350 - >>> h.theta((500,500)) - 0 - >>> h.holo_center - [1024.0, 1024.0] + >>> h = Hologram(label='XXX') # doctest: +ELLIPSIS + Traceback (most recent call last): + ... + FileNotFoundError:... """ if verbose: @@ -717,9 +737,8 @@ def load_specs(self, verbose=True): if parameters.CCD_REBIN > 1: self.N_x /= parameters.CCD_REBIN self.N_y /= parameters.CCD_REBIN - N_interp = interpolate.interp2d(self.N_x, self.N_y, self.N_data, kind='cubic') + self.N_interp = interpolate.interp2d(self.N_x, self.N_y, self.N_data, kind='cubic') self.N_fit = fit_poly2d(self.N_x, self.N_y, self.N_data, order=2) - self.N_interp = lambda x: float(N_interp(x[0], x[1])) else: self.is_hologram = False self.N_x = np.arange(0, parameters.CCD_IMSIZE) @@ -727,8 +746,11 @@ def load_specs(self, verbose=True): filename = self.data_dir + self.label + "/N.txt" if os.path.isfile(filename): a = np.loadtxt(filename) - self.N_interp = lambda x: a[0] - self.N_fit = lambda x, y: a[0] + + def N_func(x, y): + return a[0] + self.N_interp = N_func + self.N_fit = N_func else: raise ValueError("To define an hologram, you must provide hologram_grooves_per_mm.txt or N.txt files.") filename = self.data_dir + self.label + "/hologram_center.txt" @@ -746,10 +768,11 @@ def load_specs(self, verbose=True): if parameters.CCD_REBIN > 1: self.theta_x /= parameters.CCD_REBIN self.theta_y /= parameters.CCD_REBIN - theta_interp = interpolate.interp2d(self.theta_x, self.theta_y, self.theta_data, kind='cubic') - self.theta = lambda x: float(theta_interp(x[0], x[1])) + self.theta_interp = interpolate.interp2d(self.theta_x, self.theta_y, self.theta_data, kind='cubic') else: - self.theta = lambda x: self.theta_tilt + def theta_func(x, y): + return self.theta_tilt + self.theta_interp = theta_func self.x_lines, self.line1, self.line2 = neutral_lines(self.holo_center[0], self.holo_center[1], self.theta_tilt) if verbose: if self.is_hologram: diff --git a/spectractor/extractor/images.py b/spectractor/extractor/images.py index 4d1d5c262..9d9dfbcf8 100644 --- a/spectractor/extractor/images.py +++ b/spectractor/extractor/images.py @@ -1190,7 +1190,7 @@ def compute_rotation_angle_hessian(image, angle_range=(-10, 10), width_cut=param theta_mask = np.copy(theta) theta_mask[mask] = np.nan # print len(theta_mask[~np.isnan(theta_mask)]), lambda_threshold - theta_guess = image.disperser.theta(image.target_pixcoords) + theta_guess = float(image.disperser.theta(*image.target_pixcoords)) mask2 = np.logical_or(angle_range[0] > theta - theta_guess, theta - theta_guess > angle_range[1]) theta_mask[mask2] = np.nan theta_mask = theta_mask[2:-2, 2:-2] diff --git a/spectractor/simulation/image_simulation.py b/spectractor/simulation/image_simulation.py index 7cfb5c258..e99c9fbf2 100644 --- a/spectractor/simulation/image_simulation.py +++ b/spectractor/simulation/image_simulation.py @@ -165,7 +165,7 @@ def set_star_list(self): mask = np.zeros(data.shape, dtype=bool) for y in range(int(y0) - 100, int(y0) + 100): for x in range(parameters.CCD_IMSIZE): - u, v = pixel_rotation(x, y, self.image.disperser.theta([x0, y0]) * np.pi / 180., x0, y0) + u, v = pixel_rotation(x, y, self.image.disperser.theta(x0, y0) * np.pi / 180., x0, y0) if margin > v > -margin: mask[y, x] = True # remove background and detect sources From 1056c255cc062f1f2e5164425ff9b7067aa25c3a Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?J=C3=A9r=C3=A9my=20Neveu?= Date: Mon, 28 Mar 2022 18:29:02 +0200 Subject: [PATCH 03/11] use os.path.join() --- spectractor/extractor/dispersers.py | 18 +++++++++--------- 1 file changed, 9 insertions(+), 9 deletions(-) diff --git a/spectractor/extractor/dispersers.py b/spectractor/extractor/dispersers.py index 233ffa0cb..1534e76bf 100644 --- a/spectractor/extractor/dispersers.py +++ b/spectractor/extractor/dispersers.py @@ -361,7 +361,7 @@ def load_files(self, verbose=False): 0 """ - filename = self.data_dir + self.label + "/N.txt" + filename = os.path.join(self.data_dir, self.label, "N.txt") if os.path.isfile(filename): a = np.loadtxt(filename) self.N_input = a[0] @@ -369,7 +369,7 @@ def load_files(self, verbose=False): else: raise FileNotFoundError(f"Failed to load {filename} for {self.label}") - filename = self.data_dir + self.label + "/full_name.txt" + filename = os.path.join(self.data_dir, self.label, "full_name.txt") if os.path.isfile(filename): with open(filename, 'r') as f: for line in f: # MFL: you really just want the last line of the file? @@ -377,7 +377,7 @@ def load_files(self, verbose=False): else: raise FileNotFoundError(f"Failed to load {filename} for {self.label}") - filename = self.data_dir + self.label + "/transmission.txt" + filename = os.path.join(self.data_dir, self.label, "transmission.txt") if os.path.isfile(filename): a = np.loadtxt(filename) l, t, e = a.T @@ -389,7 +389,7 @@ def load_files(self, verbose=False): msg = f"Failed to load {filename} for {self.label}, using default (perfect) transmission" self.my_logger.info(msg) - filename = self.data_dir + self.label + "/ratio_order_2over1.txt" + filename = os.path.join(self.data_dir, self.label, "ratio_order_2over1.txt") if os.path.isfile(filename): a = np.loadtxt(filename) if a.T.shape[0] == 2: @@ -402,7 +402,7 @@ def load_files(self, verbose=False): else: self.ratio_order_2over1 = lambda x: parameters.GRATING_ORDER_2OVER1 * np.ones_like(x).astype(float) self.flat_ratio_order_2over1 = True - filename = self.data_dir + self.label + "/hologram_center.txt" + filename = os.path.join(self.data_dir, self.label, "hologram_center.txt") if os.path.isfile(filename): lines = [ll.rstrip('\n') for ll in open(filename)] self.theta_tilt = float(lines[1].split(' ')[2]) @@ -730,7 +730,7 @@ def load_specs(self, verbose=True): """ if verbose: self.my_logger.info(f'\n\tLoad disperser {self.label}:\n\tfrom {os.path.join(self.data_dir, self.label)}') - filename = self.data_dir + self.label + "/hologram_grooves_per_mm.txt" + filename = os.path.join(self.data_dir, self.label, "hologram_grooves_per_mm.txt") if os.path.isfile(filename): a = np.loadtxt(filename) self.N_x, self.N_y, self.N_data = a.T @@ -743,7 +743,7 @@ def load_specs(self, verbose=True): self.is_hologram = False self.N_x = np.arange(0, parameters.CCD_IMSIZE) self.N_y = np.arange(0, parameters.CCD_IMSIZE) - filename = self.data_dir + self.label + "/N.txt" + filename = os.path.join(self.data_dir, self.label, "N.txt") if os.path.isfile(filename): a = np.loadtxt(filename) @@ -753,7 +753,7 @@ def N_func(x, y): self.N_fit = N_func else: raise ValueError("To define an hologram, you must provide hologram_grooves_per_mm.txt or N.txt files.") - filename = self.data_dir + self.label + "/hologram_center.txt" + filename = os.path.join(self.data_dir, self.label, "hologram_center.txt") if os.path.isfile(filename): lines = [ll.rstrip('\n') for ll in open(filename)] self.holo_center = list(map(float, lines[1].split(' ')[:2])) @@ -761,7 +761,7 @@ def N_func(x, y): else: self.holo_center = [0.5 * parameters.CCD_IMSIZE, 0.5 * parameters.CCD_IMSIZE] self.theta_tilt = 0 - filename = self.data_dir + self.label + "/hologram_rotation_angles.txt" + filename = os.path.join(self.data_dir, self.label, "hologram_rotation_angles.txt") if os.path.isfile(filename): a = np.loadtxt(filename) self.theta_x, self.theta_y, self.theta_data = a.T From 63156862d9a319f94a942f6745bb909ea9aaf338 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?J=C3=A9r=C3=A9my=20Neveu?= Date: Mon, 28 Mar 2022 18:37:58 +0200 Subject: [PATCH 04/11] remove lambda func for ratio_2over1 --- spectractor/extractor/dispersers.py | 9 ++++++--- 1 file changed, 6 insertions(+), 3 deletions(-) diff --git a/spectractor/extractor/dispersers.py b/spectractor/extractor/dispersers.py index 1534e76bf..c51f688da 100644 --- a/spectractor/extractor/dispersers.py +++ b/spectractor/extractor/dispersers.py @@ -384,8 +384,9 @@ def load_files(self, verbose=False): self.transmission = interpolate.interp1d(l, t, bounds_error=False, fill_value=0.) self.transmission_err = interpolate.interp1d(l, e, bounds_error=False, fill_value=0.) else: - self.transmission = lambda x: np.ones_like(x).astype(float) - self.transmission_err = lambda x: np.zeros_like(x).astype(float) + ones = np.ones_like(parameters.LAMBDAS).astype(float) + self.transmission = interpolate.interp1d(parameters.LAMBDAS, ones, bounds_error=False, fill_value=0.) + self.transmission_err = interpolate.interp1d(parameters.LAMBDAS, 0*ones, bounds_error=False, fill_value=0.) msg = f"Failed to load {filename} for {self.label}, using default (perfect) transmission" self.my_logger.info(msg) @@ -400,7 +401,9 @@ def load_files(self, verbose=False): fill_value="extrapolate") # "(0, t[-1])) self.flat_ratio_order_2over1 = False else: - self.ratio_order_2over1 = lambda x: parameters.GRATING_ORDER_2OVER1 * np.ones_like(x).astype(float) + ratio = parameters.GRATING_ORDER_2OVER1 * np.ones_like(parameters.LAMBDAS).astype(float) + self.ratio_order_2over1 = interpolate.interp1d(parameters.LAMBDAS, ratio, bounds_error=False, kind="linear", + fill_value="extrapolate") # "(0, t[-1])) self.flat_ratio_order_2over1 = True filename = os.path.join(self.data_dir, self.label, "hologram_center.txt") if os.path.isfile(filename): From e13b8e08c003257232e3475b5cd6c96680e8ee52 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?J=C3=A9r=C3=A9my=20Neveu?= Date: Mon, 28 Mar 2022 19:11:16 +0200 Subject: [PATCH 05/11] add github actions --- .github/workflow/ci.yml | 160 ++++++++++++++++++++++++++++++++++++++++ 1 file changed, 160 insertions(+) create mode 100644 .github/workflow/ci.yml diff --git a/.github/workflow/ci.yml b/.github/workflow/ci.yml new file mode 100644 index 000000000..0867aca64 --- /dev/null +++ b/.github/workflow/ci.yml @@ -0,0 +1,160 @@ +name: continuous-integration +on: + push: + branches: + - main + - master + - releases/* + pull_request: null + + +#cache: +# directories: +# - "$TRAVIS_BUILD_DIR/build/NETCDF/src" +# - "$TRAVIS_BUILD_DIR/build/LIBRADTRAN/src" +# - "$TRAVIS_BUILD_DIR/build/ASTROMETRYNET/src" +# +#addons: # for libradtran and astrometry.net library +# apt: +# packages: +# - gfortran +# - libgsl0-dev +# - libhdf5-dev +# - libopenmpi-dev +# - openmpi-bin +# - libnetpbm10 +# - libnetpbm10-dev +# - netpbm +# - wcslib-dev +# - libcfitsio-dev +# - swig +# - gsl-bin +# - libgsl-dev +# +#python: +# - "3.7" + +notifications: + webhooks: https://coveralls.io/webhook?repo_token=COVERALLS_REPO_TOKEN + +jobs: + build: + runs-on: ${{ matrix.os }} + defaults: + run: + shell: bash -l {0} + strategy: + fail-fast: false + matrix: + os: + - macos-10.15 + - ubuntu-latest + py: + - 3.8 + steps: + - name: install +#before_install: +#- sudo fallocate -l 12G /swapfile +#- sudo chmod 600 /swapfile +#- sudo mkswap /swapfile +#- sudo swapon /swapfile +#- sudo sysctl vm.swappiness=10 +#- sudo sysctl -w vm.max_map_count=1966080 + + run: | + sudo apt-get update + sudo apt-get install gfortran + # We do this conditionally because it saves us some downloading if the + # version is the same. + if [[ "$TRAVIS_PYTHON_VERSION" == "2.7" ]]; then + wget https://repo.continuum.io/miniconda/Miniconda2-latest-Linux-x86_64.sh -O miniconda.sh; + else + wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh -O miniconda.sh; + fi + bash miniconda.sh -b -p $HOME/miniconda + export PATH="$HOME/miniconda/bin:$PATH" + hash -r + conda config --set always_yes yes --set changeps1 no + conda update -q conda + # Useful for debugging any issues with conda + conda info -a + - name: before_script + run: | + # use personal github token to clone slitless github private repo + echo -e "machine github.com\n login $CI_USER_TOKEN" > ~/.netrc + export TRAVIS_WORKER_DOCKER_MEMORY=12G + export COVERALLS_PARALLEL=true + # necessary for libradtran make uvspec command + conda create -n py27 python=2.7 pip + source activate py27 + python --version + pip install pyutil numpy + export PYSYN_CDBS=tests/data/ + echo backend: agg > matplotlibrc + git clone https://github.com/Unidata/netcdf-c.git + cd netcdf-c + git checkout tags/v4.7.3 + ./configure --prefix=$TRAVIS_BUILD_DIR/NETCDF --disable-netcdf-4 + make + make install + cd ../ + echo $LD_LIBRARY_PATH + export LD_LIBRARY_PATH=$TRAVIS_BUILD_DIR/NETCDF/lib/ + wget -L http://www.libradtran.org/download/history/libRadtran-2.0.3.tar.gz + gzip -d libRadtran-2.0.3.tar.gz + tar -xf libRadtran-2.0.3.tar + cd libRadtran-2.0.3 + ./configure --prefix=$TRAVIS_BUILD_DIR/LIBRADTRAN --with-libnetcdf=$TRAVIS_BUILD_DIR/NETCDF/ + make" + cd ../ + export LIBRADTRAN_DIR=libRadtran-2.0.3/ + export NETPBM_LIB="-L/usr/lib -lnetpbm" + export NETPBM_INC="-I/usr/include" + conda create -n py37 python=3.7 pip + source activate py37 + conda remove --name py27 --all + conda info --envs + python --version + pip install pyutil numpy + wget http://astrometry.net/downloads/astrometry.net-0.78.tar.gz + tar xvzf astrometry.net-0.78.tar.gz + ls *.tar + rm -f *.tar + cd astrometry.net-* + make + make py + make extra + make install INSTALL_DIR=$TRAVIS_BUILD_DIR/ASTROMETRYNET + wget -r -nc http://data.astrometry.net/5000/index-5002-24.fits + wget -r -nc http://data.astrometry.net/5000/index-5000-40.fits + mv data.astrometry.net/5000/index-*.fits $TRAVIS_BUILD_DIR/ASTROMETRYNET/data/ + # make install-indexes + cd ../ + export ASTROMETRYNET_DIR=$TRAVIS_BUILD_DIR/ASTROMETRYNET + echo 'disable_jit: 1' > .numba_config.yaml" + # git clone https://$CI_USER_TOKEN@github.com/jeremyneveu/slitless.git slitless + # cd slitless + # git checkout spectractor + # pip install . + # cd ../ + pip install numpy nose coloredlogs six + pip install -r requirements.txt + # - python setup.py build + # - python setup.py install + pip install . + + - name: "full chain nosetest" + run: | + nosetests tests/run_full_chain.py --all --debug --detailed-errors --verbose --process-restartworker --with-coverage --cover-package=spectractor + - name: "nosetests" + run: | + nosetests tests/run_tests.py --all --debug --detailed-errors --verbose --process-restartworker --with-coverage --cover-package=spectractor + - name: "doctests and coverage" + run: | + ./coverage_and_test.sh +#- coverage run -a --source=spectractor spectractor/*.py +#- coverage run -a --source=spectractor extractor simulator fit + + - name: after_success + run: | + coveralls \ No newline at end of file From 2a154c68fc25bc87b717a52d408ca05d0b7840ad Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?J=C3=A9r=C3=A9my=20Neveu?= Date: Tue, 29 Mar 2022 10:08:15 +0200 Subject: [PATCH 06/11] remove tentative of github actions --- .github/workflow/ci.yml | 160 ---------------------------------------- 1 file changed, 160 deletions(-) delete mode 100644 .github/workflow/ci.yml diff --git a/.github/workflow/ci.yml b/.github/workflow/ci.yml deleted file mode 100644 index 0867aca64..000000000 --- a/.github/workflow/ci.yml +++ /dev/null @@ -1,160 +0,0 @@ -name: continuous-integration -on: - push: - branches: - - main - - master - - releases/* - pull_request: null - - -#cache: -# directories: -# - "$TRAVIS_BUILD_DIR/build/NETCDF/src" -# - "$TRAVIS_BUILD_DIR/build/LIBRADTRAN/src" -# - "$TRAVIS_BUILD_DIR/build/ASTROMETRYNET/src" -# -#addons: # for libradtran and astrometry.net library -# apt: -# packages: -# - gfortran -# - libgsl0-dev -# - libhdf5-dev -# - libopenmpi-dev -# - openmpi-bin -# - libnetpbm10 -# - libnetpbm10-dev -# - netpbm -# - wcslib-dev -# - libcfitsio-dev -# - swig -# - gsl-bin -# - libgsl-dev -# -#python: -# - "3.7" - -notifications: - webhooks: https://coveralls.io/webhook?repo_token=COVERALLS_REPO_TOKEN - -jobs: - build: - runs-on: ${{ matrix.os }} - defaults: - run: - shell: bash -l {0} - strategy: - fail-fast: false - matrix: - os: - - macos-10.15 - - ubuntu-latest - py: - - 3.8 - steps: - - name: install -#before_install: -#- sudo fallocate -l 12G /swapfile -#- sudo chmod 600 /swapfile -#- sudo mkswap /swapfile -#- sudo swapon /swapfile -#- sudo sysctl vm.swappiness=10 -#- sudo sysctl -w vm.max_map_count=1966080 - - run: | - sudo apt-get update - sudo apt-get install gfortran - # We do this conditionally because it saves us some downloading if the - # version is the same. - if [[ "$TRAVIS_PYTHON_VERSION" == "2.7" ]]; then - wget https://repo.continuum.io/miniconda/Miniconda2-latest-Linux-x86_64.sh -O miniconda.sh; - else - wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh -O miniconda.sh; - fi - bash miniconda.sh -b -p $HOME/miniconda - export PATH="$HOME/miniconda/bin:$PATH" - hash -r - conda config --set always_yes yes --set changeps1 no - conda update -q conda - # Useful for debugging any issues with conda - conda info -a - - name: before_script - run: | - # use personal github token to clone slitless github private repo - echo -e "machine github.com\n login $CI_USER_TOKEN" > ~/.netrc - export TRAVIS_WORKER_DOCKER_MEMORY=12G - export COVERALLS_PARALLEL=true - # necessary for libradtran make uvspec command - conda create -n py27 python=2.7 pip - source activate py27 - python --version - pip install pyutil numpy - export PYSYN_CDBS=tests/data/ - echo backend: agg > matplotlibrc - git clone https://github.com/Unidata/netcdf-c.git - cd netcdf-c - git checkout tags/v4.7.3 - ./configure --prefix=$TRAVIS_BUILD_DIR/NETCDF --disable-netcdf-4 - make - make install - cd ../ - echo $LD_LIBRARY_PATH - export LD_LIBRARY_PATH=$TRAVIS_BUILD_DIR/NETCDF/lib/ - wget -L http://www.libradtran.org/download/history/libRadtran-2.0.3.tar.gz - gzip -d libRadtran-2.0.3.tar.gz - tar -xf libRadtran-2.0.3.tar - cd libRadtran-2.0.3 - ./configure --prefix=$TRAVIS_BUILD_DIR/LIBRADTRAN --with-libnetcdf=$TRAVIS_BUILD_DIR/NETCDF/ - make" - cd ../ - export LIBRADTRAN_DIR=libRadtran-2.0.3/ - export NETPBM_LIB="-L/usr/lib -lnetpbm" - export NETPBM_INC="-I/usr/include" - conda create -n py37 python=3.7 pip - source activate py37 - conda remove --name py27 --all - conda info --envs - python --version - pip install pyutil numpy - wget http://astrometry.net/downloads/astrometry.net-0.78.tar.gz - tar xvzf astrometry.net-0.78.tar.gz - ls *.tar - rm -f *.tar - cd astrometry.net-* - make - make py - make extra - make install INSTALL_DIR=$TRAVIS_BUILD_DIR/ASTROMETRYNET - wget -r -nc http://data.astrometry.net/5000/index-5002-24.fits - wget -r -nc http://data.astrometry.net/5000/index-5000-40.fits - mv data.astrometry.net/5000/index-*.fits $TRAVIS_BUILD_DIR/ASTROMETRYNET/data/ - # make install-indexes - cd ../ - export ASTROMETRYNET_DIR=$TRAVIS_BUILD_DIR/ASTROMETRYNET - echo 'disable_jit: 1' > .numba_config.yaml" - # git clone https://$CI_USER_TOKEN@github.com/jeremyneveu/slitless.git slitless - # cd slitless - # git checkout spectractor - # pip install . - # cd ../ - pip install numpy nose coloredlogs six - pip install -r requirements.txt - # - python setup.py build - # - python setup.py install - pip install . - - - name: "full chain nosetest" - run: | - nosetests tests/run_full_chain.py --all --debug --detailed-errors --verbose --process-restartworker --with-coverage --cover-package=spectractor - - name: "nosetests" - run: | - nosetests tests/run_tests.py --all --debug --detailed-errors --verbose --process-restartworker --with-coverage --cover-package=spectractor - - name: "doctests and coverage" - run: | - ./coverage_and_test.sh -#- coverage run -a --source=spectractor spectractor/*.py -#- coverage run -a --source=spectractor extractor simulator fit - - - name: after_success - run: | - coveralls \ No newline at end of file From 75d9175ef9033a42955afc3eddbd3f2c1b397620 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?J=C3=A9r=C3=A9my=20Neveu?= Date: Tue, 29 Mar 2022 10:59:55 +0200 Subject: [PATCH 07/11] debug call to theta --- spectractor/extractor/images.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/spectractor/extractor/images.py b/spectractor/extractor/images.py index 9d9dfbcf8..5d60f2e38 100644 --- a/spectractor/extractor/images.py +++ b/spectractor/extractor/images.py @@ -1190,7 +1190,7 @@ def compute_rotation_angle_hessian(image, angle_range=(-10, 10), width_cut=param theta_mask = np.copy(theta) theta_mask[mask] = np.nan # print len(theta_mask[~np.isnan(theta_mask)]), lambda_threshold - theta_guess = float(image.disperser.theta(*image.target_pixcoords)) + theta_guess = float(image.disperser.theta(image.target_pixcoords)) mask2 = np.logical_or(angle_range[0] > theta - theta_guess, theta - theta_guess > angle_range[1]) theta_mask[mask2] = np.nan theta_mask = theta_mask[2:-2, 2:-2] From 9e657ca2e3faabb4dca31df2197e0ba71de0980a Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?J=C3=A9r=C3=A9my=20Neveu?= Date: Tue, 29 Mar 2022 11:00:04 +0200 Subject: [PATCH 08/11] cleaning --- spectractor/extractor/extractor.py | 3 +++ 1 file changed, 3 insertions(+) diff --git a/spectractor/extractor/extractor.py b/spectractor/extractor/extractor.py index b32dcdd5f..c518424b2 100644 --- a/spectractor/extractor/extractor.py +++ b/spectractor/extractor/extractor.py @@ -18,11 +18,13 @@ from spectractor.simulation.adr import adr_calib, flip_and_rotate_adr_to_image_xy_coordinates from spectractor.fit.fitter import run_minimisation, run_minimisation_sigma_clipping, RegFitWorkspace, FitWorkspace + def dumpParameters(): for item in dir(parameters): if not item.startswith("__"): print(item, getattr(parameters, item)) + class FullForwardModelFitWorkspace(FitWorkspace): def __init__(self, spectrum, amplitude_priors_method="noprior", nwalkers=18, nsteps=1000, burnin=100, nbins=10, @@ -789,6 +791,7 @@ def run_ffm_minimisation(w, method="newton", niter=2): return w.spectrum + def Spectractor(file_name, output_directory, target_label, guess=None, disperser_label="", config='./config/ctio.ini', atmospheric_lines=True, line_detection=True): """ Spectractor From aaa87a24f4e812cd8789f1c9549ebe6c32088eb1 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?J=C3=A9r=C3=A9my=20Neveu?= Date: Tue, 29 Mar 2022 11:07:40 +0200 Subject: [PATCH 09/11] add full chain test --- .github/workflows/build.yaml | 7 ++++++- 1 file changed, 6 insertions(+), 1 deletion(-) diff --git a/.github/workflows/build.yaml b/.github/workflows/build.yaml index 0fb7ab4e2..5cc60a862 100644 --- a/.github/workflows/build.yaml +++ b/.github/workflows/build.yaml @@ -38,7 +38,12 @@ jobs: run: | pip install -v -e . - - name: Run tests + - name: Run nosetests shell: bash -l {0} run: | python setup.py nosetests + + - name: Run full chain + shell: bash -l {0} + run: | + nosetests tests/run_full_chain.py --all --debug --detailed-errors --verbose --process-restartworker --with-coverage --cover-package=spectractor \ No newline at end of file From 7050a36190e681d3d7e225cfed3b68e777dd0e48 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?J=C3=A9r=C3=A9my=20Neveu?= Date: Tue, 29 Mar 2022 11:17:27 +0200 Subject: [PATCH 10/11] debug tutorial --- notebooks/Spectractor tutorial.ipynb | 93 ++++++++++------------------ 1 file changed, 34 insertions(+), 59 deletions(-) diff --git a/notebooks/Spectractor tutorial.ipynb b/notebooks/Spectractor tutorial.ipynb index 09426e727..0d5475b38 100644 --- a/notebooks/Spectractor tutorial.ipynb +++ b/notebooks/Spectractor tutorial.ipynb @@ -12,25 +12,13 @@ { "cell_type": "markdown", "metadata": {}, - "source": [ - "## Extraction\n", - "\n", - "### Import the pipeline" - ] + "source": [] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "WARNING: AstropyDeprecationWarning: astropy.extern.six will be removed in 4.0, use the six module directly if it is still needed [astropy.extern.six]\n" - ] - } - ], + "outputs": [], "source": [ "from spectractor.extractor.extractor import Spectractor\n", "from spectractor.extractor.spectrum import Spectrum\n", @@ -83,46 +71,44 @@ "execution_count": 3, "metadata": {}, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "No rebinning: parameters.REBIN is forced to 1.\n" + ] + }, { "name": "stderr", "output_type": "stream", "text": [ - "2019-09-22 17:10:10 spectractor.extractor.spectrum extract_spectrum_from_image WARNING \n", - "\tTransverse fit table after derotation:\n", - " lambdas Dx_rot Dx \n", - "------------------ ------------------ ------------------\n", - " 299.9477138279035 241.06076133993338 240.97342054074426\n", - " 301.1786183365247 242.06076133993338 241.97305822213752\n", - "302.40935806570116 243.06076133993338 242.9726959035308\n", - " 303.6399323681279 244.06076133993338 243.97233358492403\n", - " 304.8703405969484 245.06076133993338 244.9719712663173\n", - "306.10058210575573 246.06076133993338 245.97160894771056\n", - "307.33065624859455 247.06076133993338 246.9712466291038\n", - " 308.5605623799624 248.06076133993338 247.97088431049707\n", - " 309.7902998548115 249.06076133993338 248.97052199189034\n", - " 311.0198680285504 250.06076133993338 249.97015967328358\n", - " ... ... ...\n", - "1088.5689558098775 939.0607613399334 938.7205221532377\n", - " 1089.563863673888 940.0607613399334 939.7201598346309\n", - "1090.5583211020817 941.0607613399334 940.7197975160241\n", - "1091.5523279549852 942.0607613399334 941.7194351974174\n", - "1092.5458840938513 943.0607613399334 942.7190728788106\n", - "1093.5389893806591 944.0607613399334 943.7187105602039\n", - "1094.5316436781122 945.0607613399334 944.7183482415971\n", - "1095.5238468496393 946.0607613399334 945.7179859229904\n", - "1096.5155987593928 947.0607613399334 946.7176236043837\n", - "1097.5068992722483 948.0607613399334 947.7172612857769\n", - "1098.4977482538038 949.0607613399334 948.7168989671702\n", - "Length = 709 rows\n", - "/Users/jneveu/anaconda3/lib/python3.7/site-packages/numpy/core/fromnumeric.py:3118: RuntimeWarning: Mean of empty slice.\n", - " out=out, **kwargs)\n", - "/Users/jneveu/anaconda3/lib/python3.7/site-packages/numpy/core/_methods.py:85: RuntimeWarning: invalid value encountered in double_scalars\n", - " ret = ret.dtype.type(ret / rcount)\n" + "2022-03-29 10:48:53 Spectrum convert_from_ADUrate_to_flam WARNING You ask to convert spectrum already in erg/s/cm$^2$/nm in erg/s/cm^2/nm... check your code ! Skip the instruction.\n", + "WARNING: VerifyWarning: Card is too long, comment will be truncated. [astropy.io.fits.card]\n", + "2022-03-29 10:48:53 astroquery _showwarning WARNING VerifyWarning: Card is too long, comment will be truncated.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Set header key DATE-OBS to 2017-05-31T02:53:52.356 from attr date_obs\n", + "Set header key EXPTIME to 120.0 from attr expo\n", + "Set header key AIRMASS to 1.131 from attr airmass\n", + "Set header key GRATING to HoloAmAg from attr disperser_label\n", + "Set header key UNIT2 to erg/s/cm$^2$/nm from attr units\n", + "Set header key ROTANGLE to -1.5649679886158248 from attr rotation_angle\n", + "Set header key DEC to -18.557716666666668 from attr dec\n", + "Set header key HA to 28.17883333333333 from attr hour_angle\n", + "Set header key OUTTEMP to 8.6 from attr temperature\n", + "Set header key OUTPRESS to 784.0 from attr pressure\n", + "Set header key OUTHUM to 25 from attr humidity\n", + "Set header key LBDA_REF to 704.8599983162577 from attr lambda_ref\n", + "Set header key PARANGLE to 119.80701879120896 from attr parallactic_angle\n" ] } ], "source": [ - "spectrum = Spectractor(filename, output_directory, guess=guess, target_label=target_label, disperser_label=disperser_label=disperser_label, config=config)" + "spectrum = Spectractor(filename, output_directory, guess=guess, target_label=target_label, disperser_label=disperser_label, config=config)" ] }, { @@ -132,10 +118,8 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHNCAYAAAAwmVAUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOy9a6x121ke9rxrf4c74RhjS8aXGHNJUpAw4ATTiAQITRyEarsOClSQhkNlox7LRIkICaqcAHHVFDUEy4bg1CdASqEEX6CUi1IudZFqEIcagzEpLhfXwYQa2xhwbM631uiPNd+5nvHMZ8y1vnP23t/aX95H2tprzTnmGO+4vZdnjDlWtNZQKBQKhUKhcI7Y3G0BCoVCoVAoFEYoR6VQKBQKhcLZohyVQqFQKBQKZ4tyVAqFQqFQKJwtylEpFAqFQqFwtihHpVAoFAqFwtmiHJVCoVAoFG4AIuKhiPjdiPjlE9L+hYj4hYi4HRF/7TrkuyqUo1IoFAqFws3AdwJ4zolp3w7gbwL4n65KmOtCOSqFQqFQKNwAtNbeAODdfC0iPjEifiwiHo6I/yMi/vSU9jdba28GsLsbsl4mbt1tAQqFQqFQKDxqvArAV7fWfi0iPhvAtwH4grss06WiHJVCoVAoFG4gIuKjAPzHAP5VROTlD717El0NylEpFAqFQuFmYgPgva21Z95tQa4StUelUCgUCoUbiNba+wD8RkR8CQDEHp9+l8W6dET9enKhUCgUCuePiPheAJ8H4OMA/DsA/wDATwL4dgBPAnAfgO9rrX1jRPxZAK8D8DgAHwDwO621T70bcj9WlKNSKBQKhULhbFFLP4VCoVAoFM4WtZm2UCgUCoUzxF/5/I9sv/fu7aXn+/CbP/jjrbVTD4676yhHpVAoFAqFM8TvvXuLn/vxp116vhdP+rWPu/RMrxDlqBQKhUKhcIZoAHY3/2DZx4zao1IoFAqFQuFsUYxKoVAoFApniYZtK0alGJVCoVAoFApni2JUCoVCoVA4Q+z3qNRZZ8WoFAqFQqFQOFsUo1IoFAqFwpmi3vopR6VQKBQKhbNEQ8O2fuamln4KhUKhUCicL4pRKRQKhULhTFGbaYtRKRQKhUKhcMYoRqVQKBQKhTNEA7AtRqUclUKhUCgUzhW19FNLP4VCoVAoFM4YxagUCoVCoXCGaEC9noxiVAqFQqFQKJwxilEpFAqFQuFMUefSlqNSKBQKhcJZoqHVWz+opZ9CoVAoFApnjGJUCoVCoVA4RzRgW4RKMSqFQqFQKBTOF8WoFAqFQqFwhmiozbRAMSqFQqFQKBTOGMWoFAqFQqFwlghsEXdbiLuOclQKhUKhUDhDNAC72kxbSz+FQqFQKBTOF8WoFAqFQqFwpqiln2JUCoVCoVAonDGKUSkUCoVC4QzRUIwKUI5KoVAoFApni10rR6WWfgqFQqFQKJwtilEpFAqFQuEMUUs/exSjUigUCoVC4WxRjEqhUCgUCmeIhsC2+IRyVAqFQqFQOFfUZtpa+ikUCoVCoXDGKEalUCgUCoUzRG2m3aMYlUKhUCgUCmeLYlQKhUKhUDhLBLat+IRqgUKhUCgUCmeLYlQKhUKhUDhDNAC74hPKUSkUCoVC4VxRm2lr6adQKBQKhcIZoxiVQqFQKBTOEK3VZlqgGJVCoVAoFApnjGJUCoVCoVA4U+xqj0o5KoVCoVAonCP2J9PWwke1QKFQKBQKhbNFMSqFQqFQKJwlajMtUIxKoVAoFAqFM0YxKoVCoVAonCHqZNo9qgUKhUKhUDhTbFtc+t8xRMRTI+KnIuKtEfGWiPgakyYi4uUR8baIeHNEfOaVNACKUSkUCoVCodDjNoC/01r7hYj4aAAPR8S/bq39CqX5qwA+efr7bADfPv2/dJSjUigUCoXCGaIh7srrya21dwJ45/T5DyLirQCeDIAdlecC+O7WWgPwxoi4PyKeND17qailn0KhUCgU/sPCx0XEz9PfC0cJI+LpAD4DwM/KrScD+H/p+zuma5eOYlQKhUKhUDhT7K7m9eR3tdaedSxRRHwUgNcA+FuttffpbfNIuwzhFMWoFAqFQqFQ6BAR92HvpHxPa+21Jsk7ADyVvj8FwG9fhSzFqBQKhUKhcIa4W0foR0QAeDWAt7bW/skg2Q8BeHFEfB/2m2h//yr2pwDlqBQKhUKhcJZoOO114ivAnwfwFQB+KSLeNF37egBPA4DW2j8D8CMAvgjA2wC8H8BXXpUw5agUCoVCoVCY0Vr7Gfg9KJymAXjwOuQpR6VQKBQKhTNFnUxbm2kLhUKhUCicMYpRKRQKhULhDNEa6teTUY5KoVAoFApnisBufavIfxAoV61QKBQKhcLZohiVQqFQKBTOEA219AMUo1IoFAqFQuGMUYxKoVAoFApnirtxMu25oRyVQqFQKBTOEA2B3d05mfasUK5aoVAoFAqFs0UxKoVCoVAonClq6acYlUKhUCgUCmeMYlQKhUKhUDhDNAC7ej25GJVCoVAoFArni2JUCoVCoVA4SwS2dYR+OSqFQqFQKJwjaulnj2qBQqFQKBQKZ4tiVAqFQqFQOFPU0k8xKoVCoVAoFM4YxagUCoVCoXCGaC1qjwrKUSkUCoVC4WyxLUelln4KhUKhUCicL4pRKRQKhULhDNEA7GozbTEqhUKhUCgUzhfFqBQKhUKhcJaI2qOCclQKhUKhUDhL7E+mraWfctUKhUKhUCicLYpRKRQKhULhTLEtPqFaoFAoFAqFwvmiGJVCoVAoFM4QDVF7VFCOSqFQKBQKZ4tdLXxUCxQKhUKhUDhfFKNSKBQKhcIZojVgW0s/xagUCoVCoVA4XxSjUigUCoXCmaI20xajUigUCoVC4YxRjEqhUCgUCmeI/evJxSeUo1IoFAqFwplii1r6KVetUCgUCoXC2aIYlUKhUCgUzhD168l7FKNSKBQKhULhbFGMSqFQKBQKZ4naTAuUo1IoFAqFwtliV5tpa+mnUCgUCoXC+aIYlUKhUCgUzhD1Wz973GhH5aM/8qNb/Pv7gJkaa9P/tY4dpWlHntM0p6R/tFjm/bFP/hi8+9/+/qXkdeeyZ/q1tnPXXT5r6fblfOyT/4TUVdtc8zm1Po0+h7nu8jiWt8o0ymeZ375P37uS/li7Z7I23TohrZFj/9Sonmv1Yvm0Pfs5+bFPvn/q09F4PFaGftZnj7Whk/dOnj3t/mGeTvdaA+L42NQRNC4vU58i653otDvXZ8fH75osx+Q9kr5rV26XNd2wVkeXx/7jxz7l/qme0/3W8AH8Ef64fbA8iGvCjXZUnvCEJ+KT3vns/Ze22/+PDbCh8bNbmf5tt0+f2MQ4febp7utzbQdcXOyv5XPbbV+Wlj0qf0r3wEufh4de8oOH+5k28+H6axmZlvM/pfxj7TGqs8tbrrXtFnFxYfN64KXPx0MPvuZoHouygWU7Z/583fR7e+T2Xh5tz6xTPgccntV25Wf5v5O/7fDAS1+Ah178uj4vSbM6Zrh/s34qP8vrwP3G7eXGoabTPs+yeK5MeT3w0ucf6spyczqtw0ieTHtK/bgMmQ9tu0Xcd2tdR3D5rl1kTj3w0hccxq62iZHB5qPlaTu5z+65tfk/pY8ItO3ueB2zb6jMuU/zPuu8Nfl4vo700aid1sDtrfMor/N3Tsvf5ZkHXvo8PPTi13fX3vjIj54m0yWgNtPeC3tUcjLwIN+1w98meseFMVKGbXf40zwzr0309zkfVuj5nCrTnCBONr42PyfKOfPnSan1ye8sS9br4mJZtioEVaTuXrZvbPby5WdOz7JM12cnRcthB4GvOcWTyLLzs8qb7c9jJfOY+j3uu9Xfy3ymfFsqYh1nlKarK8vonMgROE3K7MbZyGnjZ9kR1GdZVnXEnGHg/uV2ZIPIbebahudU2x3mxqh9VB7+fnHRj5EE17XtDrKYPl2U4z6zXtBxyu0ILMcsjxeup+bFMqXM2T5rhnrUb6wbtF4ynloT3TAqh52G7XY/Hxg8B1n+0VhSubTvOfDgtNo/fI3HvOadc5LHwSjoyfKn+21uZqPHrxj7I/Qv/++m4eY7Kmww1VDnfTdZWGHmpMJkkEYDOJWIk4GVRU7UfG7NUcr8ONrg/OZnjTHPz05eVTxsXLJcbruRMeT8OJ9R+7q21vsjwwD0kZYqGjYI2q5scLktR7i42Pe1M6jcnpM8cXGxbuDyOXaYnEJ2ZWj5ej3rrk7MsTSpWNkI5rOubdw4cg6qtu0ovzTWbQeg9QZCHcp0gtSQqHFSWUbtmAFDjidtO3V61IhlOnVC+V6OOWaEgKVDm/XK626+acChbaplZL7qhB8Lyri+o2BuE4iLgcOf2Tk2NMvIdlcdyHqA5x7XJ9OPnLNjLMnoOW5blqtLchhP7ZHb85iI2KeNkZ4sXDluvqMyGqBqWDk9OwE54aZrwUyDGkdlAZyXnsZCvfZUBjrYWYGwPMqGQIyQMzqTQpiVjBozhjNoGvEqM8LyuPZlWdhZSzhGQ+EcBjZmWXY6DiozR6T5rIvMd22veFx7pGJl54fvadtzfRybMmIKGK5N+NmRUgcORoGNPSt9Nfz5eWSE87suR1A9mnNWnKORfQWaR1y/dLJGba0O3xq0vdaWDNjA5fjPua9tm3D5ZXoX4PBc4fqxc6H9lXmmjOLkt1ODAh7/zARz/XVphjAzLW6MaJtoQMQsMrOtjGxrzYuvqeOt8mc9de7yuHGMO48pmg9BtiA6Pe503PWxEjvEpf/dNNx8R4UdDZ3wjtXgiCXZD54soyhljcZUo6/IcnQCq3LS5SW+58pkg5rXt9vDmjOXoe20YGykLmvGYRBlWQWvUaFGQs4Z0m2FHLGlYs92ZIXE37mPtS6jiJ0jX8fIOJaEo0jNX8ty9xMjRlAdMW0TjT7dMoXm46DLGjlmUxZh+YLlZUdQr43KcQbEGaa1fLiNNC8nt8uTx0DOP2WgOD/gEAikHFqnNQdJ68Cs12jOkTMz76nJue8CtWzH0bKVLinlZ12yzvbhujnHxzkbQD82VccmtK23237piO8lNDgcsVMctGjwIGPALmXNaUjXzOWe2MeFS8HNd1SAXsGpYuKJx5ONFaVuFOOBvBaZOZpV88h8OEpwCi3lywnq0qlz4TZBMpzjo8bWLVONjIPS9HmNFb0yACMnYaRk94kOH9X5zDyU6tZ2UMWk/x0bwMpaoz1n3JRBYrixsWjXlejYtZ+yZ05Bq7FXFiVlU0Wf7ewcppxTeV03Jmv99L/uM9A88rqbZyMHkOXTenB+LLdzjrIMLmfEokyf2+3bXk519tYCjpEjqg5ElptOd47NkRPunBNlJFnHaB2n750zJvW3z2j9RtfVIVRHnpfNXFCT/3lpSfuX89FgZsDSzBvpLQO5z3e4LeAK0QDUHpV7wVEhIx63bi2Ncg5MpsbV+WAFnPSqG5Cq9FQxsTw8QUYyi7GNkEhoFH0eo7RHDpfKmvVJxZzK1ik/rZuyI05ZKDTS6qIWHGTQfDSyZ4z2DHGZynooLZz5JIWfebBDphs3nbPimA9Xt0Mmy+e4z1RBGyXbuE9S7mNMg1O4bAgnGRp/d3XPz12kSdf4LSrXFur8scwMrU/CzQ/ua577I0dI8wIOzrvrW5ZVx/qo/9NArjGyaViZAWDmhPPhsp0ToOl1jKzpkenZ1ihYaru9bspnWA5mLbRsV87I0LMDy+yophkFBlnOKGDNayqLsKrdkiazJ632qNxN3OjXkwF0Sqrdvt0P8LYDdqJEle5kTGnmtUqlSDtleuHzGCnmNA6aJ8nUtjQJ9VW/jL5d/s75ck5FTkrdGJpps1zeEKoOidaTXykF9u0y3Wu7hrig9HRv/q95brGvK8vv6ufe8un61ihJfYYZFI5QMy+u/84oTWUu+DluS1WeGn3r96xDysx5S1907Ts75OjSWJndOBJjPOdN6brXykfGXNvCgR3VtfS7lXHP9zmNY4GA8XUu4+Ki7+u1NuTn+Jns9930CjTEQZ3kiAvSWacwkGuOlpNLdZ0u2/D97XY5xvP+xcVBN+X1Eaur5bBucfpD67l2xAGnc46t6ha+7sDjdXomNJbQNPO162Ml6vXke4VRWZvkTOHnQHPrrIw1ViDzVcOZ+WeZLgpdW8rRiI2VTU6MjDR4iSjTbGJPTbbdfse6WwLgvB2rkEqC6VdlFDLC4/xSdjb6m2kfA0e7o7dTWMbYYFYCjppuu56CXYtwnBLj9hPl35hN4T7RtnDLCcAhslRqXmXUDYocRWbbJ6Oj500AB7bARfn5vGOAWOaRkzKKZKfnutfK1wyJ2+fhjM9adD96jsdVJnFtxWOUDWq+yaX58AZthrK0Wi81njQ+g8eMsJttuxsvL/L31DXc547l3Ewb6VV/KcPoghplMplN1OdV9zioDJq/zkNmSlYc4MbjyunY/J+M4Nq4prQzNN+Ro31de1SuYNmnln7uJoimnP+LYpgVPBsklwcvNfDE4MnHCiidIWeU1uRNaCSpRkgVMCsWqmNMMoSL0BNTuzReBmM5iHJuubGNy9bPwEEJsPO3FkE52RxtTssQrHDmM094bwErJck/LjZ93zgHMx2rxIIpkjJSpuwLVogDpm7+7Ix15s3OjjOc6fDlZzVezoDo2FVaPGXS+rJR0TzV6Rk5IENFL2U4KOPC8ssyQzjGgR2RU/YQrY1LbZvYLPdx5LKJa6fY7JemOU991jmXTk+4ZZ/p/vy2jlsm4jo6XaZlu2BOdZU6TuzcOKYl0+RY5/miDqlZOpzfynSOt/YPy+7a/Bg74/4X7gpu/tIPgyeRnijKEb3Sg/mZHZqcaC6/blIaGh84KBRn4NMBcmmoHjPNvhZtjqBlAN33uIBX7LiYI/kIc98tgegylVt6UaPjKOhMh6Wi37cF+vTOIeD2nL53tPXcNugNvtvwSeUPv3M78/MqC39Wp43ZHm5PLY+ZqwSP0eHyEfr+cQzFnN9mOR+UWeL68TKlKvxR2zmHaiTboP7tkduIJsxe5jMfPIbl/SxzZHjW+lsChnlcCUuxOOF4HsPULm7e2w3GoqvcnEk4plgdDS1X2137Q5dwNE8ae3Gx6dsk5dS88rnOwd704ybrrvXebgFIkKZLuipbwo1jTT8xMcwctuaeuR5WogE38nXiy8a9w6hw9K0TTCOVtSiOaU3NP8EnMPLZFZkuy1b6m+VjRc/3Ur6NLJ3Q9U4hKYXK8rJCVIPmlDWnGx1ApnAMQuatEQ1T49xPmc/cVsIoMduR+SrrlPeUIs/r6jwwi5Dl62cucwTHhqlMClLSTZkbZlem5xsr4rw/MrZ8LV+J53538u1afwCXU/jOeWBnwzE0ozbQ9CMnxRmSqf7z69E6XzkYWWxepvJYltE9NoTO2GYapy80YOH0/Iz+Zx3AjqsuSZxSp5RXnQUGB2eZz8jBdt/pencsgsqhujnbJu8LK9K0TM7PvUqcz+af0w+ZL7Wle3Gi24PVDge+pRMz3Vy2QeHKcGWOSkR8WET8XET8YkS8JSK+Ybr+nRHxGxHxpunvmdP1iIiXR8TbIuLNEfGZd16oGAwXDQDL6E/X3ZkxGdGHmcfoTRl2kFwUDvR7EPjUSnUs9oUvlFq3E583wbJSY6Og9KxGK/mZo0Gt0xqUGWFlx+2qJ3fOVSRD5ZggLYv7UFmKLFfbkWV0yl8NvbunDgw7ZVweOyGiIDNNaHtzG03pTnrbYM355jTahzxG2QnkOjvHL6+Nxnimm+9Ju/P4GjkL3L/cpwx21CEGbvTM1C9zWu5HJ4s64xyc8BzicaH5ZJupE6f1dawgcFjmZIdS+yrLkYBnbgvnzDinguXS+eKYMH3Ofed667xpu8XelHnM573tdvl6MDso2UZ5jecejY0g3dPS4WV53DhGzA5Nd37QNaH2qFzt0s8HAXxBa+0PI+I+AD8TEflLTl/bWvsBSf9XAXzy9PfZAL59+n8cOrGTNgR6Z4Wp2FSyO6G4edf5btPn7wbomvHmfDVK3wTmZSOOKHlphRmXBE3WtiUD7eqXSAWXVLhGr0zfcxtqdOuiXdcmI+WXsrvNsPq2Bafnt2ccg+OWxzLd1LbzG0g0VtquLX+UTlkXdZ6kjP2bG7u+rzkvlSnRdpiNNxsjjRrVsDkjpmXMDoQsf+oyArBkN3RssGyuDxwjZNuPjLhzRjm9ysn5sAzZHjRHugPRdHzr0i/Qv8XEabQ8lXMUnGQ+KYMLZFg2N+e5T3Rsc725DL0vyGWZtR8DXcUm9vpDl5d0CZu/Z7+4ZXjWW7p0zM9TfWKz65/P+rrAQMfY7rCckwxlt4eFIUFBaweHZu/c7K6NUGnAjXQsLhtX5hq2Pf5w+nrf9LfWvc8F8N3Tc28EcH9EPOmkwnLCumUS/g54o5D3UzFxusyf8+DPo8HO5bOiAw5RkVteccs3+0wOco+WJFyEq0sdXFeO8tRgqXF05YwiC0cxu2hF20ThFNZa3fmzOEsh39F2h/0/ypQwMzVyTqcy2lbSpGOlzuJIVo762AC4yJvlT3BEynlmWsdApAw6R5xDlnk7Kl7TOhmPOWs6VpyT7ObaSAZ2FhScblpOWRhtbQNuS9eemXUYJkqdanWgMn+d88oOZj+pQ7mJfj+dczqmdLnJdt6IzjJrnTjAyPvMEDP0Gr+wkHOB5XIMXNZZj0zQOe/Gko4DZTyUzZz6vDsin+eaztnY7H9hWvVI+HFQuBrEvEv8KjKPuADwMIBPAvDK1trXRcR3Avgc7BmXnwDw91prH4yIHwbw37bWfmZ69icAfF1r7eclzxcCeCEAPPEJT/ysb33ZK6c7DXtjnv8dsq4h19aeW8vvGI7Jcizfg7yPf9r9+L23v+cxyPJYoLIe+35qPnwd8719Xd8r192zfE379k7b/pTxsy73ev5L9PU8ZSykfAntA+D0sfxYx+YUaYaTQ8toePzTHid1fbRjaFTGsc+JQxl7+U9pj9Nx6FMudzRGXbl3Mpc0r8vE8fHR1/WUvEZ9kujL6/uHn1kbby7PZZrWJkfNzit06fdj9z1dfi980Yvwvt27r1wZ3/+nn9g+95//9UvP94f/wisebq0969IzviJc6Vs/rbUtgGdGxP0AXhcRnwbg7wP4HQAfAuBVAL4OwDdi3YJxnq+ansMznv6J7aEXv24sgImiO5ryVDDdqWu2a8sjneA7v0TBZbi9GBMeeMXz8dCLX99Tqi76dHmx/I4eZSZGl2X0bScnP9PQa/XXqEUp3CmvB17+XDz04GuXhz+t5e/aT8vUZ3WPgWMNXJ+4dtBlOtfGks8Dr3g+HnrwNb5OiyVKw1CN2mfUT2vtPoJ7RsfEWhtNMp1UV35Wx+Gp4+pYfaZ0c4ScS0XcZm4Zi+uknynfB175Ajz0ktfv30riZcVjY1fzHe390LSZZpS/m5vK4IzG/tpc3wQeePnz8NBLXr/UNSt6bFHHkWyuT9z8nT+2ZXsnVtgSu1Qu3x945Qv2+miNJS1cKa5s6YfRWnsvgJ8G8JzW2jun5Z0PAvgXAP7clOwdAJ5Kjz0FwG8/poJ1eYWXEpSmTawtH2XavO5oTwelI7UcYH9Imx4rbtIt1ruPUe882VnBuTyS3mVFrdT1SCagr79S1e6MCP6c6XdThMPLUacYU6doXR15GcEtGSiYXs76sCHhZZuYzspwyxa8xOOWLZTez3L1vJzMg/vGrMd3P7Lm2kOX7qS/mltK4nGSz7i9GtxGa2PVOUHUlovn3LKLOim6BDhAd/q01imXAnRcJZxTI8Z/sayoc4P/uzmWSzlrhnG03OOQY4MdauekAMff+NtEz3QcW6JJ8PzJcniM6FIgL8Hqm0+yR6U7xiHHwtqyI19zASflDbTlHLgmNNSBb8AVOioR8YSJSUFEfDiALwTwq7nvJPYj/XkAfnl65IcA/I3p7Z9nA/j91to7jxbkHIk1b3pt7ZMVE6d3a+56fRSVZFqWD+gP8tpMr9/mpj+zx6J7luVw9ebJr+vqbODUOKjhcYbBKemEO81SlZNbo8/16WOMx7FonBzR+TAubhOO4Nx+A213Xjt3jg0btek5+4N1LH9s/OFj7FTzGNFXjFkBqzOYzwCHg7FYfk6bb1FQfee3YDZy+F2Wpe3kxsEm+hN+Dw/1eblxoFCngw23BhTO4KgTyNdPiYzZuOuY0fLdPiqg31OWGDk/7r86k6NnnaGV9BEStDCzMdIRmY/os9UtA05vMNuX44eDEa0rf885ww5kXh85L4M859eR+Vkzt7pTbTPv6a+5PrhC7BCX/nfTcJVLP08C8F3TPpUNgO9vrf1wRPxkRDwBQAB4E4CvntL/CIAvAvA2AO8H8JUnlaKDRiesGrF8xhkqVXJHqE8XCbXtdvkmCacZvc7Mm+LcRl+FU8rOSRjVQ9um7fa7+vk1Z30Lh/PO51K+rBOzIBpVanqVXZUD14/e3JhfMxQGIKhtO4dBjUq+VZL14whM+1ZZBAYbJ06v9Ve6fidjdCf9kOC+YMyODLWdKnIeZ84RjE1/6N8m9r9Jk/JoBKlv2+ibNLNcF8vfAtoEwG/9cP5crexDdVDVUeM2c23PcmXf8xsowDQGHgH096dA40rfhHMOSb41uOb8jJZVdPyMdAu3m14bsQRc7tQm3YFzo3zdcoyT09XN6dSEvpnkAiMun+S2bxLNOmNyLPhtpryvLNvFxf6QwBHjkmUC/RhOhnf6vj8F2VezcDW4MkeltfZmAJ9hrn/BIH0D8OCjKsxNcKfsgH5inbqnIZ/XZ41DEfrKMec1UaZNt96kYmBnZSHzgGJXsEEcMbhqLIFeEbHjMHqeyxqxJVqvLGfk6Lk252uTbLFZOjPdeSRAv+dG85k+zydpcpn8GrfKoIbKjRUGt4+Wn3A/AaCGZuToKLMhbdJ9H0TZC2dWX9HN50dO6THnXh1Cdr5k7s2vj+6mV0A5kmZZHXuSxvgR+iFMYPn2CTtmuhyz2/RnG7HhzWd5XIza3QQwC3lU/inPuNgcfrm4e/XXzEl9nstUZ5v1Fcu/YGIu+vJGzyn4HrOXLnjSZTeWVdvHBXXA4ccep/xmB4TbRcemG0ujuctpIMHXdgtcFyvRgLuxVBMRDwH4YgC/21r7tEGazwPwT7F/o/ddrQ1xq1gAACAASURBVLW/eFXynGD5bgBS8VH0yTT2dGEZ2awZfrffROlRd12XGDjtri2Pc0/ZVMk7uj7TMtXtlm+msoZ7ZnjZieXPvF1UpIrQGaSEGuTRUodibtO23DCsMnTpcTBgKT8vmQychJl1UdkdS5L10Mh57bNrE1W8ubwzivJSwSZGbJmOB07HcvB1lkvv8z2XL+fB/9UJc/mnwudniCGbD+XSftf9U/r8jjZUaj9ptJ9LX1wvV8cdjUVndLUtGG6ZSJkhkgeb2I/JEZvn5kzOe/7L/LLICxlXqhsT6qCpDmEnhOvITIfmzzLxmHVOStZ5xCCTo9Exby7gZFCbz33Oz+cY0v5cCz7u/ZNpvxPAc0Y3p20d3wbgP22tfSqAL7lKYW6+o8JGmwZ5t1mOIyFVRqxM1LCP1pZ5suYEcstKfEYDK11+FlhOCBct5rHyGv1mvZhBSPCeBxfFO8OvCi/TOWeD6zEysu665q0Ol0YrXSSDpZJ3eY+YMZZHlSIbK5e/6yc2xvzfbVbl/xmpOXaGkX3LY0jrxPKxs6b33PM6NjgtUeaLuo+ML9/j9sx82HnlcePGRN7jPS9ujHWHNIrRUwNN7T87RNlmlD7cORmqM2L6YcJO9zCjaeaMohsPWNZv7Vmgb9MMNPL69Nxi3xQHU1o/dlJGAQW147zvheVQBpBlHejUpo7OSJfkZ667BiwJEzh05yml46LjJL/zHFgEhstmuQo07BmV695M21p7A4B3ryT5zwG8trX29in9715KhQe4+Y6KRpQ84HniAn7DG0crGklpFKZlJlJRsmNwSoShzlM+O4roGewgZZ5u0rrIgKn7bJcRuC7ZnhzFKTMlBrL7WXbO0xlYYHwku9lj0eWbSiQNhCoYrqc6I5xmzXHQz24PScrhjIC7fgw5rlh5j9g+HtP8zDEjyA5byq8GXhk4lmcTh0hVnQ6tixufCveKvGNv8v/aPEl5Oe/p+2LDJGHxuzVaj8yjtb79MqDIJRNmV9UZ0350LIOyF/lf54/Lj+9zHhpwqWM70gfGcek21Q6cvLjYLHWf1Gv+XTPnqOs1xxo6pCMyQpOj+tVBcU7PaIzdPHxcRPw8/b3wDp//FACPi4ifjoiHI+JvXIWQiXvr15NHmzcT7KTomqnbc5JgJ4CNQRppdRLU0chrmjcrfKZau8ksTALLznlmWi53E2h/PP3qsDIMXdQkE3LkELgzVZxBprxmBcRlXFzs9+rkJVbm/MuozpClI8JGW9vQtROn5Wd0KSPL5LRar4R7U8kpMjXsh8TLsl15qjBT93J/DPZ92H5n3Z333RhzDpzOnakNQ43yYhxLe4zshxt/bq5qWhoXbbvdjztmGefP8OPHMYi6yVn3avB4df3FbbE1dRudP6IBU/7X4Ir7QtvaMSJ5TRkvrhfXV/exjRxQ6d95j82U5+zM6LjgfB2r5sqjNpz7eeSIt12/D0k3f+szrGs63ROGYTHtcEW4oj0q73qMB77dAvBZAP4SgA8H8H9GxBtba//3pUgnuPnuYQ6ejFgWk22gLDP6dkaLo8v8rktJNBEXa8BK0/N//uwUkjIxzsCNWBJldXb0I1xMCbedp7YBzyTkdTZm3NaujvocszHb7UF5sczcB2n4mBHI/nTtkXkl3D4cp7xd9JTPj5wxpYrXor6Mrg0N3fHHbNx4f5LrB2AcPWt0qPe0/dgRYRl4+YVlWGOE2GFfjO3Wz0GVTZk5lk3L4CUbvp4RfR4Tn22ZY5CfBTAfCeDKUFnYwJpAYXFuTcqub6JkvUbGWvvc6a28ro6Hsokj3Zf3WP9x+pTVzSt+Pv+P9vBoud0bhTIHuVzNP2XJMTK1UbeXiVnakb5kh1fyWjjk3fe2zsxcIc74HJV3APix1toftdbeBeANAD79MjJ2uPmOSkah7EjkAFRFBhwmc15bY1D4OVbecn2OIJxHrt7+mkJeo2/ZqPFZK04ZsIFRdmFWrLs+MmT53XKO1oGVbcrcvdKHPg/3eiLf6+rRDptMXfnqBLBcXIYyYPnfKUats2NGWHlzHhmx071uWUH3eMxGNvoxosYt0zmHJceutrVzorJuujcpI1zu//ysb1+oDDq/SPnPZ9h07UhjcDKmjctQ9kuNtTpSI5Az1uWvTFWj8zB06UONlytT+qM7d4YdHV6C43Gcc53n8Wje6RjOfPMatyuPNVleWaR39dI5pONOl2ick599oDKmo6g6y5WT+XAaHiP6CnyW4+Z2plMHXtO6OT+lCW2Xwg8C+NyIuBURH4H9Dwi/9aoKu/lLP2xsUwE4ShUY73/QfC4uYM9psPQ9YbE0MkirUf1IAXPUxHAUMTBNKnbaNsuyHO2eeTnK1zERGl2oPCN6V41yvgas/cfnFrglMTY+rg1cGQx6bj73xt3X5RTneLIcs1M4nVHiIrmufMPUpMysiLmek4GdX8FVB2jkoAPjM0C0Hdfa1C2vcV7AfvOmm4v5/NQnh1+zlrmqTqbKoXO+GzsHh2R+A8i9Eh0bAPuyImh5Quetjifua77P8vJcGTEW6VTomzYdi2WWWnn5gsvJujvWkJkX9/r1mt7ZUb2cHlTdlf07ybM4jmHkZDoHTc854s88Tpxz4vqKn9c+FPZw/4p8jr/ox9k1o92d15O/F8DnYb+X5R0A/gH2ryGjtfbPWmtvjYgfA/BmADsA/0Nr7ZdH+T1W3HxHRaP6SSHNZ2TkvYxsNJrkPDitnThkcJwxmNmWFSfJwTEfzkFgI2FZE4riOKJL6ATViJPv6bIHGwadrPp9cfbC/n7cunUwYryfyEXLLJM6TyMnxcmi9eEyNtO5N3LNOlUsozMEet0xJSnP/Kxh12ZnJdtwsxifESLfmuF2DrEabWUz+DMbAu4H156MTKv1Y8eIHRHnVHZGeEXe2RHpHbpZVpozrBdy/9T8VozuQcky2IHSsaF1A7wjoW2jDqzqm92gLJ6jI+dy5ICMnmUHRtuc89PntE4cCKbTqs74iIFRhy4dK3U0eFxuYv+bSsqu5Hhl3atsi2NwMt+231s3HywJGW+jZ+8htNa+7IQ03wzgm69BnHtg6QfojepkULo9EBwB8nv0aogBv0EynZzEiJFJA8xLI6wY8k/Xs0eMSpa9L7TfuzCKaBRpYJ2jxE6KIie2UrxqXLIOmu/sYOzl2nzSn8TumZ+yNJZc9lxe6xV5ysnLHLosNKr77Dya9tG+1yUIXVbJ8jT6ZaWqz/CyhRp9rrd+Pha5OYOuUV+OdVWsvDwwUrpZPx6fWqYuTazS6+QcRvRtncsgPL502WXUz1O7t5xb2Rc8rvLZi4vuHKPGusE5T6PyeJnPzR19S4k/u+UdNcQaXLglHF4ukj5sOjd4zGb785jNcrj9gHF7OHlYD7k+5HHNcq3NzxHomeCyeJzyZ5ZJ54iyLfR8sHzZj3fBSakj9O8FRgUwEXzzrMik0MKxJsA4Uh9RpZk+o7lMo5Gt5jmKzBkuys3rznDq/RH9u2AsNr3BcOzSmkMykkMip93bfqufHry8woxQ2wGIpaxs5LlMZoX0jaFToH2lbUPKa/+Wwa0lw8NjyTm5eZ3HizNwuuxwLHrV+0m7J5R5m3GxbF8nu4v6mSV0pxtr5D3neVh6aJ3TJtGuLjuOljkT07iemTG6Nko7/883cS7kWfecsq9qcOfn2n65g9tS9c2I8WIGkuUfMbz5jOQVqq9Yxs20zHWMERw5KLuVZ3njMjsL2V4OrAs5T2V8tL6qWzX/0VxSJ8XN/6WQvazX6Kzsu+rmORaXjXuCUbE/EsWDiqK3eRK7QakKUZUFsHQ4cpJwlJ3lumiIjb4ado5mnHOQbI1OXM6D/yuUJXH0ryq2XEdPBcRpOJ1zUlwduGxlk1hZKGuhBoUVYiJlcwrStQlfG232JYU7R2/qlOgmYobKwuOFn2GGgfPRqDnZA46ac+xofzKzoBGmnjWj0LyYpdHNwZ2jMTIywmwCy31Hei//jyLZTKtvymVbunGuDjv3hc4/nQsuHXB4g24TAOLA2uT8YUcny2S5nMOTfTS12bxB+RjzoA6Gm+Ouf3T+q1O3VobWS/WeYsRk6thJbLf7X5dXpsnVL8cKpxWmZHE97yl7MqXtXq8u3BXcE45KaHTJk8R52glWgM5J4Amlk0+NCadTpZvQ6EdpS56oI+NBaRavzKkxGhlONTQ5sfk5fZ4pfVVo2g4aobhzL/L6oK9aOkVaJ1dfrpcz9pw2DZAuUYye0zz0VePp2dXXF3UZQg2vLsWoEyDReFxcHJxzdZT5ufxT45916ZgNahtuB3agOG9NM4pG52cpX5J9cSAg1yv/dD6pg6JjmR1ItyzixmyWxc5uftZxyml3rXdMOM+8pstYwMHxcE6K9lfb9T+9oUvH2i6b6I4f6I4iuLg4HMCmbeD60DmDWkctP+s5clZU5pHzQAjVWZqemT43HjSInDPe9I4JB0RTugj0Y/BUtvaS0Fpc+t9Nwz3hqHRgY8+etIuudNf9mpOQxpwntU5EnWTMwoxYEC5vMhSd8t5u+9c9E5s4HLI1omn5ddQ1FsaxDuw8cZ7A0iHgtl2L0jWfoUPFO+7RKxjnIDooVc5yORYKxvE7li89GzyWFBrxzw5S6w0iK0FVpvJ58YN6ZOjmU2LVmVRGTevF/aFMzOg5VvBqsI4xTFoPztPBRdtqMN28pP6Pi4t+fun4UzYt2RC374ON3EF4P7+lnM65GTEJeY33vSkL6dJz/puJ4ekCnN1BJzkd5QIs1iXKLjlwMMZjg+vMMq85Szy+nI7ifHR/0Kit+J467I65WTA1N8/Y32TcfEdFFYVT8M4LdoyA5ql5pVHJ53WyqZFxDIWJrpTa75an5g2AwsCwglGaM8sbnRfTdoeoiifraFksjasx5JuP+Ai8/4s/c9mGDF0qUVZiYZxjKQ87XiwXP8fGgBVbyj8y/lP6RdTmxpUqOGUenOLWsg83eodQFeQau6PjiPp3Pq3TOV6slMnxbLcfOaTRDc75nJbP17o3tFp/37GY2k4jx9/1gUbOziHL/8YxnR18HZcjhz/zyTx16ahrmxj3m47zkZEfLe8YVrFjS3TZRuvBjonKtLa8o6wT14FlznLZSeG2WytDWSuFzn0dU06fuzNbgLnPLCOtf/sb/fc26eNrwdke+HatuPmOCiMjQY4MmGrW6H8UoS2UD5Yev3My+Pksjw2so9ozrzSSI1YG0SsgjbKZ7XCTWliFOarS8tx3LZMm+O7978dH/K9vOqRf21OQsvAbHiMKmJVqKrxu4yyB66/0rBpTrZc6HWtMhhpnTmPaZshAZJ1G8q1Fly6vxGjsOscb6Ax63LqvdwR4bLA8jlbnvFzZuwboKbzOidI8NJp1joWL7nV+sV4YRdhZb8cmsNOrLMzCEJ5owJRxULDsozfcki3J/uJ2UIeKGQeuW8IFNTnn8o9lyNd2dSlNAySWh/Vwzm9mEvUtNdZbOv91OdltaB85/8Yhblr2yElm5+WaUEs/94KjospTJxobII7SgaWyYadGDacugbCT4dKlcnQK0RlbVtLOOUgFyG+M5DIRR/NcXublnDJnDB2dy1FcyqznFvA9aY/512XVaeTysl7aHs6oaL9wuaPIOtM5qpzHgI4PLnPEEHD+vByg95wS1WPlVS51uDOvzE/bQd/QYllGTo9zzNgpY1ZQWaWR4nf1RvQy6bjR/yyTq6tjX5wDseKcBKXpfgbDOXXK4mjAMaeP3nF2y2DZpo5x6BwBLOue6XJOO+dZ0zLLwaxHYiRDBhVuf8iu7euqzjW3Eacd1Y11k/a126em4PGkYz/vk2z8Gvu8DBibfglS5kz3w4tzP14Xo1IA7gVHZUQlM3jwqyHXa8BhUjulp8rFRbXAck13pIBVaeS9RXRHjgUpuaT542LTG+sET0Bev1Xjn//ZMeH76XgBy1duVVmSoujOs0nong2Vc6QEnNM0cgz4/6ie+TzL4RxLdXhGbxTos44Z6BP0eWmUqDI559K1v0OmUeZJGTCl1EeOjDrr/AzgGULu65EDpcyWm998BpK2CTtX6lhK+zd6fvGmjrbFyEi6Yw64rnxuU+bpdJVbunDsDv93LOSx8eu+O6ylYbn0TUH+0/w4qOK8RvPXBQ7sJDvHmvPn8Tl9np3Taa6Fls9OVD4T01jp5LweVqIBj2ppp5Z+zg2smABPozJUEWteqtQ08shrPJlcGqVjR4ZkmjBNHZMRG6PlTJT2fLqmvraqTIOj5t2r15nHqEwX2TvDxekznb7Oy23ddpgDGKZ+td+cA+aWDtiQsaJ342TtmrIMCReFa0TtjPLaOB1F9q7/1CHQMzRUXnUS0zDHpn8jRp0slomd9ZC1/pTFvYHhoO3LMqcjpU6gLikcQ0bm5i2gbukixxu/AZcypIyjQGDExGn7O3bTyaHG3LGdgsV+FWWXdSllY9I7rDk6ztFntqcT0ASMOY40iMhn3T4SdazZSXH6bRMLRyO/t6n8tt0iX/uf0055tgZ0v9JcuHbcGy2vUd8okmZj5pYQeLK6ScWGmKO10fKOyua+Twpx8Yq1i1L5c07WVAo52ZlOZQPuqHKWk643VtRaX8AzKurgcVupsuFXQFMhkKKeFS7XzS0NZTkq3zFndSS7tgUbKb2/poR5nDlFrAp1jV1IjN6OYaWafTZS8q4OlEeoIXfshnnVOpSB0Cif88z5YiJXAEv5ldlkWdYca2UolP2QNp9fhx8xEq5Nee7rfGUmVR0NbY/ReFXHWvWXYHEaNyMdMKrzsCxibIflOYdpem5+S1EZLacjtF11zOpbPDzWj839vL7dLjbK53ce8/M1cZYixNGJDdDMOLkKtH1Rl/1303BvOCocqTualZWVo1jzXg5GZSGAwwThe5m3Y2loCah7HXKkxFOh6fNz3hKhqBJIWZWWZUOgUX9eY4bk4mJpsFjefFapdpVLr7G8GiFrelcmv6I5YjQ4/7w2MmaOHUmooeRrXO6akVEw08Z94mRQZi2fV2aJZaFn5zNWHG2ujuSIOVHw+B85sCMjr2OVHSwtW/uH+3u7Rdy61c9xdXL48yY822Mwv16uAYyL6Ec6hMFOwWisu6CIZO8euXVrzMyonhstv6jMzLIkOC/HFAN+XuWzu3Zgd2WZpXOquS2c485tpGMz+/VUZ1/7XecBOyzT9SZO3eK4hJu3enKjcW84KmkwdAlDKUjHfqhjwBOEB6cqqNGSkKE250mg1DFPQj7BkqOfWSaSL2XOZ5wsVF7cutUfa631yv9OqY4McU5qZk5OeeNHI1K9Hxt0Thn35eitH1FszZWh+fGz3GYDRsGefqyGmp/jMhm6DKaOQ+bLFD0/6yJc7gsebyLzbOyUGWHw8gDL6TYb0md7Bo22JzNkwDiyd8Yls8y9JI4dMEuVXSSd9VZnlttamY9Rf3Ga/LwJACS/tNEq48OBiXEUZuOveWYenA87xZy363MtXxkVBulIe7ZTpnGOGOtX7SdlDkcMCTnLqyyem3c61tb6NVmVOf9Dn7Z5/F6fp1K/9XOFjkpEfFhE/FxE/GJEvCUivmG6/gkR8bMR8WsR8T9HxIdM1z90+v626f7TTy5sLbIZRVyzoDSp1Ghoev6u0TZPbFXQzlHiSGYjP9TGylwNFcusdKkqxCm/1gYGNeXWt0W4DBMxt1zvHxnptYPP0gBlW2j+bQe4XxVmWZQxE6PWnUPDylLzUkXlDMx0rVdcWH4eQdPwW1tofTsrFa4yqwPDynZUP8Js7GIz3gQ62qfC8wPoHZm2/7XZhQOsDocyiPy/E9Qwh3rNXXfsF5epjBC3hTI0XT+RXJle5RsdBKbsADsBzJCpQ555clDCSIMvesSyXW4pSKHsCjtKhmHsTsp1jo32q3O+HdPh5BwFPy49M3Fttzz5mOWRZxqPHxe4NVoevab1kwbU68m4WkblgwC+oLX26QCeCeA5EfFsAP8YwLe01j4ZwHsAfNWU/qsAvKe19kkAvmVKdxrSWDnjOTKcPAl1SWGN/s7/GgUodG8DK7ic1Dl5t9v9xF+LJPTES45cLqZjsUf7KZzD5YyKqytjeibuu3VQWEola3msTFO5rjE3xyKjzF8jYCPnWj5JHc+vd6uhYuXPyk/ry2PCLQGqge+Mviwd8fh1RhLoHQxtZ64Dt3eWy4Zh5Liutb9uHGVZdY+VczbUQRCjskjv5nL2x6kROhtsfs71ictjjQFaC2TWxnPOv9QJ2s7JWKTuGgU4PN8cO6nO9YghYUfDLQfxvHXOOTNAXDeFBibaFzx+uf34j5HL6m7sTJ/tvisNUtLZzvk3fe9YQmUOb56tv9G4Mkel7fGH09f7pr8G4AsA/MB0/bsAPG/6/NzpO6b7fym6bexH4KjKxBrdnwrWTSyNno3CWvx2COep4P0GLJtbb88yZgMksshrra215dIX18HQ4odKSGTHk1ijNY4GASyOQFcHMJXfiI5OuNeTRw6jljeKlthBSpmm/yn3rJx4KSENF/9PGdUZGbEO6jSPnmO5+PPIcCrSeGiUz2PBGZ2RE8jptMzcBK0KnFkAJ+8x9oSNx8gQctuzYyHjcVheOqNp2AzjBOBQzihfN566ctuyfzlvJ7M6AG2Hxe8HcXnH2BGXZhPdb/x0Szc8t485PLpUtFb2SrAzp+NxljLoMiMHk8KgDd/GUafcMaWZn2MKASxeXWZm9XoIFaBOpgUARLtCCisiLgA8DOCTALwSwDcDeOPEmiAingrgR1trnxYRvwzgOa21d0z3/h8An91ae5fk+UIALwSAJz7hiZ/1rS975REpGk53f9fSHrsHun+n+RyX8fFPux+/9/b3StrRZ8q5tf2PaiFOSn8cjyaPUTp//VDXRyvXIEVr8xtFh89anwTnlWkuayztsa/ne6Q8V5aOr1FZp6Z7tM/dSTv0euXxT3ucGb9rz7pyjo2jU+fdY+nP9Wce3dgdlfXoZDgtr8eO0+t6Sj/eyXiXJ2lej8vP/Nbmu5Mzx+57wHjhC1+E97V3X7nF/4hP/vj2Kf/0q44nvEP84hf/o4dba8+69IyvCLeuMvPW2hbAMyPifgCvA/BnXLLp/2hmap6vAvAqAHjG0z+xPfTga45H3iPqcw3pdbtnNSrQskblrN07IucDr3g+Hnrx67wM/ExezyUCjpZG8uZ6vPs/WhJixmVt+WWtLSj/uJiO9d8EvvJbn4t/8eLXekZirS6a/xrVrXJwnRwyIneRPEfYrr2UnZpkeOAVz8dDL/nBRT4tX6fkPBIazTOjop/X8nRtYpYgbF21noMyGfP45fGmewK0zZgFcSzGSJaUlQ8o5I3neXbRrh1+98fsWVhgbdlsyveBV74AD73k9XO5cxmZBhjPF5bPjTW3VHMs31E5Wi89f0fL4PE/lffAy5930EkkA8/lRV1GMjEjl+l1jDtZuA5rY57zGi3LuXttt+/TB0UfXSMpcRNfJ75sXNnSD6O19l4APw3g2QDuj4h0kJ4C4Lenz+8A8FQAmO5/DIB3H83cLVG4z8CBQtT0eS/vu+USoRyxM148T7i1JYkRkkJXmRhK/7p9Gryc5NJxvdIIuHNK3L4NtxygabQ8R60m7Ztrv3QGREQslQjXMc+8YGjf7lq/kS77xhlkzmMEt9yQ1znNCNxvuvQn7Rr3mfhB6evp+7z0ONoHMn80Y1Xl4WUsdgxGhpXz4H0MrpyEntGT5XF+LIcuFep+BXVgcv6wIXPlrdVvtI/CLYcldM5N3xdOCkPbcOQI8b215W0uI/PmP82L6zvlOy8JueXEYzpnwmLZiueN7hNiXZB/vDyXOoLzd+WzY+uWpWOz3FvFbUV52zf8APk9oOvzVGoz7RU6KhHxhIlJQUR8OIAvBPBWAD8F4K9Nyf4LAD84ff6h6Tum+z/Z7mRditfkR68ps+LTNLw3QaMAVkKEOWpIsMIWQ3x4aLAOD/SKPj+PdvsvhBkoh8xrjQXKfLP+bi8NsGQeeC+APsNryso4OOPuHI/Mxxlhhirh6f/8JoqLnPJzlquvsa7B7RtgORwDMpLfOczahiwXO69NDmk75mi5OrBDzQpb+8ONuWxvHXssBzvegD0wbp4vZvPiPAd002T2rRp3NqjOCVlzSrS+I4eUZV/kbZxZZjk1PTsY6gxwu436j9PqNdk/N//u1opD3b3Now4kkvk0r6KPHGHee5S6ZcR0crkr38ONWXZUWe/y+HRva/EYmXRGx8LEBpjezpv3wxxj8AuXjqtc+nkSgO+a9qlsAHx/a+2HI+JXAHxfRPwjAP8XgFdP6V8N4F9GxNuwZ1K+9OSSNgHsBpGt0vP6P8FpRueTOMrRGZ9BVAsAcevWnj1wxsw5GQcBD5PdUbdrkyfr4pwVdnxG5Y9oVlM/AL1ScgbPLbWokzByljRtKneWR2ncttuPjxHVu2BLNv1yhso+Gjt6Vo1TjM6gaD58T9tI+0rHPqdjAzaitgfOdWj0yfXO9tJlLVcXZTN0SZLvd3lt+vk2mnc8FihNe+Q2YnobrjO+XTOtRJajc1pIL8StW/tXvjt9Qf2j85XHCEODioFDHhFoG3QyzLLqGNgEkMMv2wStl1X/KzbLurTt7rBcpnVQxxpYzi92nG7dOvz6c7YPjwsGj1sex9y2zlEfBYsqI5fP8rAOGZVxhdifJHvzGJDLxpU5Kq21NwP4DHP91wH8OXP9AwC+5FEV1inttlTmbq16BFYUqoz12VRYEXvngyM5Rx9jELHwmQ0aHc3lxfKeKlO+p2uyO1LoaujX8mE4Z4+jYTVq2h76equLBBNrzpjmx3tqOrmIIVKjzW97ZX58nx2bWTldGCfAtCu3AT/P/eDg1uZdu+R4co6gKz+xiX0dnGGkOdQeaYj7oncquBjHjHUOCEXRo/NaeG455437L/NnuKib+jidkHm+mSBjv3/EtB33qxr0lA+T4XdGWPWPg9MRyrCIXusIZr7nWFZ1QEeOTQTD7AAAIABJREFUiDora+n0s37vghOZ6yzXVPe5PjqO9BqPk0zD8zaR15TpzfE4ydsekX6/uNg7tpvdfpxzPrEBdJmnGJVrx73T4kzhOdZBozKmDNlbZuPqqF2l2VWBAP2kyjxVCbGTkspu9EqpypDyq7FQJkdZBpWNHbBjGy3z+xozw8+wHJx3tkNS+cbxG+aTyPMTeH9G/s+lEDZss/NBjqu2lasL4JkB9xo4t6saD1Fs9uTczNf1q1suzPqMzl5xdeJ25zxkCSbYiROmZVHXRLa7lqdwrA7vJXI0faZVRzmfYbg+ZHko/eKQOo7Seey75Th5Zl5WUTkU2XZsDHncZN31+U2gPXJ7ORe5PJ1LLnBT3eLyMOyHY1e6NuD76rxlfbRvVNc6BzjTsx4d7TUBvGPE+eim8rym46ALMiT4aztc5w7Xej35XnFUNnE4/2BEzbFSBvpJ4wZ+Thg3aQBv2HnCHaMk05guvHcc5FMDNVLk7BQplI7VdnDOCO/jWVNkrry1vSbKFii1OjrMTMvatf2GU0cPp6LUaFXrz884pzTvqVF2ho3kmttA60s4KMrWt5dTvCk7OxiOpWBmTOXU+qjBV8PEMmdduA0zLY8hdmxYhtHbS/zZRcUjZ0SWHXjjo3UApR0aj3Ous8oxckKznoLuwMa1+cH3U/e4wIodken+vOTC7ItjN/i6siGUXyfPJvqzVfS+5qd94uRP/eXOieI0Dqz7RvPMjXEOWDiv/K/jKlkXoNf56kyrTrlGW18/SnivOCqAn+xAH3lmOqCfBMeMvio99u45T2A50FnB88TidDqxuHzNmyeVptGlBhfRU3QSFxuvtHhyjiJJYHxQnZaXZbCiGDEmI8Wlz7jIkJ0+F90qi5bl6uFsqqS4fZR25ry4vZm90ToeLizrp29RuaWdURuy/GusHOfPTrKyfVyXAfM1M1sJdqhGc1Jl0HrpWNCxTv3JGx9Dmbv8T/M3yFjPv4ir7ATPd2KarPyOXeI81r47xiPru9Z2+QzLPXDMbP58r3P0TFtonjqP1Ynheo2CDgY7B05vDFjJxVxxzswxBo4ZPceiMui50VtBhavDzXdUVImk4uAB7pYYeC3URdtkDNojt/tyXOQrz6Qc/ApzBJXrJmAqRo581wy3e9ZFvlk3KbP7ldMRo8B0tB5H7Tad8XP6t9bO+ZnbUBmlNeOr+ek4yDROeWkErPVU5cZOEcusTh3X0/ajKDzeq8QO6YjFUWPGsuX9UTR5jBnUZ/k/LX2FOnn5PdveGYZsM2YIXPvoabTAksVxjiLXI9tBjSfQOS0dc6Rt6gwTtXOEcXRGe3NGLIBzPFybcF3yzzElzgnStnZzLKudp9hqGUDfLzrHRnumSCd2dVFwf47Yz3zWzUF1wDXo0Hy4aF0WdXptpPuvEPV68r3gqKjhB5aTKwccG13HPrjoaEdr9loOP6+Y0s2b+TZxoId1ArLMKW9ibc1Vo0HeXKlRtW7U5LwdnT1RorOTlgqbjRDLxktvGm25aJyjXPdLrFnWpDzi1n7f92wUDPvQ5aMKRpWT6zdtdx0/+Zxu2s36jAwzf2ZWh69nu7EhUtlOcV45bx6rOgdG44DrpUuijs1Tw5JQo5n31dEYpQP8G2OZVgONkYM7YhO4XXh87+j8HZ1rIkeOt7aV+czzyTlLLBMzNqy3mAXmeqhD5L6PnAFm+UZMxbSfZN535xwdx/YYR7Crr7Tp4gj//M99uRYUOAeE4eaLjhVxPOLiAk3roPlN6VA/9nOtuNKTaa8Fjl7kyaQDnJ9h6pap4sRkrPvJdtEP8BG96eTRyayRSMrJExsXy3y4Hs6gKSXddpjfYsj77uRLzQfofoCwM6aKrB/L3zEom6UCnq630e+jbGKWOxVn9xaH1HXxRpX7nN+5ztrPU33atMluPl2UZVSFzfXnMkcRnX7WtsoyMm9O79qJ2ZhR3bXvuCwdM0rxsxxu/HMabtu5zLZ8+0rrxHMg+4TBb+1pP/AYY6faOQYqt8g0b7J1bBX1+eK1Z55vc1vKIXAuX37WtaHqj1FaHgfqoLg5rmM35XXO4ygvTufmRP4XndudQTU7MWZcJ/QNN3ZAuL78WcevYRVzjh8uSXASG3ROyTx3B47vJaPhZjIgDhHxOAAfD+DfA/jN1o5FXAfcfEYF6Ae0shU54JjOZmXFEbIgo/gu+pC0i8OPOD+NDJn9YTmZxmRnxpRnI1ilv5XR4KWMUTSnZWQaltkxTp0zZBSTpmO5NMrXOrFhGbFBjqHKiDH3T4jM7qff2yO3F3XOZY1OeSXc4WQc7SubwXVirDnR7u2PvJdjKPPMsaIGasQkaWTJrMragV7qrPF9dQC7Z6NvYwfnVKlxUtlGr7OO2J1MOzmg2Y7dKdPs0PG80Wtz3eDrnfLp2J2M+mLzqnMuXF0V6WBFLB3uqX6Ltu+ckwEMi9Tlkde5nm4uu7mQ+aR+0uVWvp9jPJcVlWHRdsuydUyYMuZD3HLMqN5yOrZwMiLiYyLi6yPilwC8EcB3APh+AL8VEf8qIj7/lHxuPqMCiPd/sVwf7gwinXKplLFEC+327aXylahz8VshXNYW/TMZMbAhV9mdQWbatGN4KH9tC4AM6MYv87gIe2Q4+TVqntAjo8PgtKoMNELmZ9rucKiWsmBr5XJfOHEuZIzE5nCugmWbBlSw+6zsAJe1YCHCszSZxozJ7jqXuzb2OW/+rnKt1XGWw1wDlmfnMNaYCh7HzETMzIAfFx3r0p3h0g7XmJnMulDfxmbvPMV9tw4RvjIUWT63Ky+jbrF0DhyraOa7/YVk025dWwwchrjYHM5y0jQ8vkcOh5bJMvN1ZaRU722xbCfVaZye51rHYkhalUH1Act2cXEYU9qH+gyzKi7P6X/bHc7mGc6XK8L1cDdXhh8A8N0APnf6KZ0ZEfFZAL4iIp7RWnv1Wib3hqOSyAmhh38B47MzgGmAk8MxTyCjpPg7U52ssNX4KsVuKPAIUlyat1LgbHSUIWEl6hTNiHbPcnVJhdPMZRkjobK4vtF2H4APgppP/sxy2fiM8lOD45w351yoE8TjAljfIKlt7hxDNV4qh45fdmy5bx0Dttss+3xtScCMYfvDhdN9e8Irl6v7XEZQOdj5ZoPknOIsM9Orw8nOkjsLhuXbbg/GZzakVAdeSnJzebSERJ/nU6i17pnWzRfHVtDBdxFxWCqlduz2lKizovnxfHZlry0tTW0yM1BT2r3+Qp9nN8Y2y3zVwcu6ukBN99hxUOX0tdbJjdFpXnROSoJ1AmjpN+9dFxpu9NJPa+0/Wbn3MICHT8nnel3Dq4CjLiclsfC0T3huprB5Aus7+ao40xCwgmUog8AyTXIsDo1LWXS5QA2VOl8jQ7HmRPD9RdSPw4TlsrOsVETcBpwnK0f+S/BO+ynfWQmycuH66psmLL+m5XsuWuP66T1WbOoYJrh/1Gjp8tCao8Ptr85NwlH/3EYq3zSG2iO3l2PWMGJx361lO0xlzm+IufIzHx6zeW/6a60dDItG2GysdHy46FqdHNcnzlhpPvl/Y5ZMuH14GYXT27dfDmXNm2xVN7Dx12VC7b9sK9UTqtukjt2mc577PLZYbuc4ad2pjHk8zE6uWQ5zTiLPCz5vKJdpNXDSQC3HEI/1BbNI4CUdLiPL17RUTqP5Oi8XrzGQhSFijy+PiJdO358WEYsT6ke48S2++AXjeWCJc6KDMidhKh+zl6FTAm5SsPJJY+eUjlvnTpnm6K0dJhUrl1kZGlaA5eBrHDGxIlqLBEQhLuAcAzU2cwRCdc92ZeWjSpaVTtZVlWumZ6U6YkG0rvqWTj7HRjHvaZ2UjeFx1MmMvt+0zVTBTZFaV45bB2cnyK3jqyyKXTv8GjPn5aJD54w5x5XL43rxc9yu7HzmPc2PZbtTQ6AGlWXU9tJ54lg3zUfZmExPf/bogfzMczHLzXnBgcuob5WBGo0xkrHTf+xAunbi7zqGub55f+TsOBZHvys7m22Wjp86kFo+y8o6m9tnxFiq7mGnB0CTuR6bmBwUOn9n7qNrZDnaFfxdP74NwOcA+LLp+x8AeOWpD994R8V68gx1MFhBr7ET/IybgJpXpneRnIt0dVK2Xc8C8cSbJsuijhqJu8+ZhyoiXs/lqCMp5ovNuD2T7r0lBjDLzmsuGpqw2ITMDptJ3zmF3B/KuLARVmT+zunkMlSZuwg/8+I+X9v86j7DODZquLivVAnnM7yR0ZUv19rtR/rnle1SJmjEIrm3cnbTQWpMyyfY+WaMAoS1z/mcGigdF9qfOk/U8KtTwvLxeBCD3p1M6xyWjOZTNmZXeD8TB1Cu7Y7pokyzieW4mPKfD3pksC5U1kfqctgEbFiY/My6kWXXJVHVFwxuR25vZkU4QHHOd9uhO42YHRR5rlveme5HBk6jIKNwKj67tfYggA8AQGvtPQA+5NSHb7yj0oEnOU8gPe8DWCpR3RQL9BGXQw7mW7eGNOTw4CTjFC1YIGYOTLmLfFTpsuHMdV6modlZYacsqfpRlOnoXmAZFabRM0p/9ZdrEeu0bCoq7ht1JtgA62u7xxT96Lo6XaLUFulTRncmi1ta4Od4mSTh2szl5Yw7RdRx675lpMlvVIzYDi1X65vzwSh8AAs2av59nFGAoHAOeMqgzgjPNznD46hBVPDznL8X0htfXq5QPZXtpY5CyqSfHXsxcuL5mel/a/TdOSyjuTldn5/neapBQM4VdUoVayzvyInJtlSGUeckOyCZj44hXUYe6dqFnNfHqNwjB749EhEXmDy8iHgCgJXO73FvOSo8+XjSjF4X1UF4TGEO6NFutz3fT2PuWBvOg5VW1mEkU95jxaDOWdZZnRHe3Mb10zJGysUptrkRJFLJ/LUNda1X5XHLQcD0k/DmbS0FG2pn7LmOIyck89GobzSO5iaQyCvzVGdt1CbA0onMfLhcp5yz3sfGMEejOl40Knff0/HjdtVlNHYOnSwTu9AdgKjyZJ06g7NZshVp6NecEG0DNTrKhKgsXJcRAzunFz3AOCHoseyDtsvaPFwLhtbKV2gd1IliB0z1Cuswx9RwGa7/nfOSebmlSgUHAy6I4ECHx/0xp6kr6/oYlXvkt35eDuB1AJ4YES8D8DMA/ptTH7433voZUJR7R2HbH1rG6d1aOadx+U/5dsqYWQugf0XPRYBrn9WJcDJ2yw9G/k42ckZyArtnWBZlKvSNqbV203poni4vlmdQt9bash/V+Lcd5jc3Rn3MS1xs5DXtyLnhdPl/en7xxgy/EeUYhlR2I2XLjvaa8k1joW/B5H2gH5Ozo2vGGKfnOrNR4P4cjQMeP7HZ13VN/jQaeU9fWwUOG3I5f36TBljOVX4d+YLeItvR66aJtTE9Gk8cHLUdAGIwXJpRO2Uafc3byaiyuPkogVMEMSlSr/lNIicXyzb6PnobjefLyNnLOuV1ZQPn+g70HAedI3Ylv2sQpcFc5mn+68Fw18mo3AtorX1PRDwM4C9h33jPa6299dTn7w1HJaGvsV1cINzJri6CH1Ggmacab6fU9PyNfMXURTKsbNjAcHTi3vJgOMYnjYdTlkA/4Y1ci9dQNS+N+NUhmtuTDC07ELqxdeQ0qVOgBngUHWpk7Ywiy9kZeclD+1nzZOdo5BBxO6kTqOnUOWXFvYm9fFoOy+Ich9j4scv5qqPI437k7LlTRDVtl3eMHbJsW9fWa2VyvVmGwTPspOxvt/35Ivzc3OYDw7rmzHC9ebyO5HNyqiOy2xzm5Mix4mcGAULniEh924auj+RNh2aDZR1kbHU6JMeAOjrbLbo25jrp8g072dxmOl/U6ZA859fRnSNvlozy+94/Dv/8FaMBN/r15Ij4WPr6uwC+l++11t59Sj73jqOiDkenLMV4qUJ1aVl55IRXYz+asJnO0d8aXaWi1bMk2FCow+GM9na7jJr1cC5OuxdwMeEbG0NWXNxmqXzcUgOzTMwoOMdh1/qDqrQtWYmoEci6Sj8OzwIBPHOTn7nt2eET1mQhz9qzXI4de9H3+2hZaxT9cXtwWla6PF7YcXBRrJMVWDKHTlHPRpHGX4qlBiXl5jxZTucYMdZYsq5d6HO2MZXR/Sihjm3nVDqMnGUOWth5Z3nmz8bRoLbsDqMDxq+55z2gn78cDI0cZi5/UO/u15XVmSHmdX6FWs/qSVl2m2V/sRwcn6kTNp+lZOrunH5qJ/6l7YVjk5/FkW/bLSIwOWA4pKnNtKfiYewbi72t/N4APOOUTO4NRyWV0CiSccjBOHIGnEJnJTKahLq00eW5Is/o3miSj+o/KY22a4j7DEWsxoOfk8ndHUKn8mhkns/xmw26tGDap7U2NsIjxkjl7x6JpcLS/h1BDQrnz/3DDJjWac2IOEdEo3UdJ4N6AuidFB13GUU+0g5t4g6F47zXHADXfjoWuO6juihblNfy9GR3uJfKxHt/cpwpc8X9o4ctTvf2y8LG8c+0+hwwZBsO95pJJ0EFt4ljQbjtXZvrwXTc9+7cITeGTnHENI1Lv5ODAjuHi5aEso7kPM76RYMBDcKIXQIwnya8z894LM7ZHTEyro3p2djsgOkE6e43v64LDcANZlRaa59wGfncG44KMKYI19ZXRwajm1ji+LjJlOVrFMVp3NrzSEEyCzErSROl6bP0mmNEW9ZTFf5o2SXpYv0BwDRGvEwiDtJqW2kU5RwvZSYYTjE7CnhW/GaT5Ug5ry1DKWuR4yyfUQOtcnHdlElQY8x5ubqxEd9tvGNMsgTbLZVp4eiYfnBsxSz3Rddu81LKrMhXqH12MNiJZsdo1B8uGOH2G43PTD8HNThtLLhgxo3NTQAIf4qvPrfGkLAh5PHCS3KJrr1an1YdKX6eHQgpvzv91vWhYPEzIiyDjh/qt8WPkbo5Pcso5TFzpM/wdYY6Jzr31Imd+3s/ZvZOy/XjLm1+vXRMP0r4yQA+LK+11t5wyrMDTXADkQNwE7h46sfj7X/3WT6dUzDAMmLMiayKfZSfi2gZuoOfJ+VatK/ROuevCm0UyXMajjzzuzvThGVjA5tKJ8t3lPUoH77PUWp+5/vaT07p6X2OejOq5jZq9ONsXCYvYbF8CVWKxxg7t1SRSNn2N8ZKc03xcl+vRcQMbv/sjzRa6YC6PhwZ0OwHej11PtmW7+tzfE8pem0L/Zz11jNS8s+ND+5jnjNuruZYHumI0Svzs+O4TzcvfeQ1nd88Z9i5zu/ZJyrPrq0vJ4/mIs+HZAouaPxwu+/aYdMttwvnyd+5HJWJ9/dl/pqWy9Brmg+ny/EyYt2Aw1uCNIaa6tDMg3UAgMXv+vA4AlArP3eGiPgvAbwBwI8D+Ibp/z889fkrc1Qi4qkR8VMR8daIeEtEfM10/R9GxL+NiDdNf19Ez/z9iHhbRPybiPgrj6rg7Ra73/4dPP07/s3+OysEwCsNjQZUUc7U+WB0OuOmytlF9voO/4IRYMQUIUuk5+TgeqnjwAbOvZXCcstO/aaG30VzDhmpOOaF8xotm6W8Wjd1ALIMNgDRt1e3Tu3O1BlRydkvrNhSFldfdTI43fx89ONAjeqoHZwTl3UfyZV9z/+1jmyQtY4jujvl5rzTOKUM+laOc8oU2g9sKDVy12hdnXZl9RwGOqAb82sMmXurhVmeUTkzu7M9OCJrTseUv/7WTlduftY+JhlnZ4T7iXUDl53fWYeNggV+xrFeOo+d7AwdryP2EDiM2dkZu1jogHnpxuk5pwOHfb8SXF422hX8XT++BsCfBfBbrbXPB/AZAP6/Ux++SkblNoC/01r7MwCeDeDBiPiPpnvf0lp75vT3IwAw3ftSAJ8K4DkAvm06IGYdOpFjT7vu3vv7y0njDKqbdGpk0qNnZ0WNpHtOFfCasgX6tXdOvy9wzwiwgkmjr3LNr0kPzoVw9cz6aYTBUQZHehwdaV00cmIl46jelE8dobyuysIZp/zsmDDOP9uInSzOxxk0jcKdwWLoeSsuslb2RyN+1196L//rgWb0+QNf+OnLfDIvZjbUAWXnjNpzEaU6Ji+Nrjqx2Q4uUme4KFuNZcIFGlkWy2batTsWXZ2CydmK+24t68f5jJwKZQjymo6NzMMFKMqUcPWaXBfdMh806dgP53Dw88y4ZfnKquyl8HUx9ZjlWRvfWneHHHsjdob7Wx0OZe8yjWNZOgcnlvOjKJU7xQdaax8AgIj40NbarwL4U6c+fGWOSmvtna21X5g+/wGAtwJ48sojzwXwfa21D7bWfgPA2wAc/9EijQIT6WAAltqzkQp71Dm5Mi+gjxQ1auR8p2v62xGLqCCNhMOCwYl+bZmNpjo4zBRoWSPjkOmTaeBNY0q/c5QzYhSmtLOC4jbkOrITwMrBOUGjCNAwSYsj+nkscFTlnEJVcGuHl7k2cIyF1mWf+TK/bAM27swQcT5Z9shB3gQ+7H/7xaUcygyNWAYua0o3v57pnE2gb3d2prmOmrdjnJihYePpHEBm0jJf3VfCzMX8OJXv5qdCA40c3+pMKCPBOMYqsD4Tp6ZjU93zhMVv/fBn57goy5P/3TwEDoyg6iMXhO1ov5sLNpwO5HHjmMbU7yMWW5eP1sa4PqNODtwYvy5G5fJPpb1Lrzu/IyLuB/B6AP86In4QwG+f+nAsfrX3ChART8d+ferTAPxtAH8TwPsA/Dz2rMt7IuIVAN7YWvsfp2deDeBHW2s/IHm9EMALAeCJT3jiZ33ry07+XaMVNMC+PfVYnzkln9Nke/zT7sfvvf29J+ab90f/LxOc56MpL8ffId2hrnzP5bmW/zLf03Gn7euuHy+779NRucfqeMq41TZLnNo2o/qs1bOXZVzXU2S+k3sjLNuqNSx/1PSkfDAov+HxT3uc1NOXfX2G7lTc+Xw5bfyOyjpVT4z0i8o6urY2Zo/N3z32ffqe+V5rwIte9CK8r737yjvxQ5/xlPbx3/Tgpef7m1/+9Q+31gYbOa8WEfEXAXwMgB9rrf3xKc9c+Vs/EfFRAF4D4G+11t4XEd8O4JuwHw3fBOC/B/AAxtqqv9DaqwC8CgCe8fRPbA+9+HX7ckY77ZUeVZZjjdZNyPkDEbE/POqYl75C3Q43gbFXT/ceeMXz8dCDr+nZE2YUtF7uvIRja8KuPVjOJq/ore0pcTJwhD1q913b1/XFrzutv0btqK+THoPmrbJmNK6nberZH5nO1Y/L2AQeePnz9vXUZZ/Rs4nRMqa2R352b0msPccYjV23tKmvFVPZD7zyBXjoJa/fX9MxwPm5+TDqm/y8dj4IpxmNHa0396XK6vKiMuexm/noHFnTR5wm22lKszgfaE23aB5aL2UJp6WixaFyrh3pelfXEQMK0JtYgzfaVDZdrqNlx1n3jMYpt4fr35VyR68fP/DK/wwPPfjaKfmU5jr9zKvnEq4cEfFsAG9prf1Ba+1/j4iPxn6fys+e8vyVLf1Mwt2HvZPyPa211wJAa+3ftda2rbUdgH+Ow/LOOwA8lR5/Ck6hhqZBNWSGRkohl2/4O6fjP1GC3S+lkgxH1105Pe8BSOhrh5p/0sZ8hguDl6Xckk9+nxRfV2dHj2r+Fxf7NXttO5WTZWW6nal2zl/3gCRG9Dk/65aLeK+K1sMsE2XdZll4rOgSx+gNIF4+0D0YWobWI/uyWxcf1JMN6Gi5yi0jad5rS3aaX6ZXZ8au59P1i4s9Y+HofjYIWS6/2eHGoy7h8jKk7sti+XMO83jH3uh0b9jkPV3WUzncWSWuL3ge8jiYPncbYnXpivPZxOHcEJK/S8t5SN/Oy6/czqzfNua8JF16PMUhUqdI9Se3M/cHsNR3rCMzyX0mruYxocvlozy7xhGHW5eXJK+Ds3hNnkrDvbL08+0A/pC+/9F07SRcmaMS+1n4agBvba39E7r+JEr2fAC/PH3+IQBfGhEfGhGfgP371j93tCCOnNnwqRF2RpCfGa0bjzx1N8kynVNaI4PFDoPdRIvlhIvN4Qfa1KCM3loRRRJrbEhCDVyum4uSm2UeReuq2NkxSQWqbbpWn7yudVdFOdr/k/JmXfJZdZi0Lyfja8vL+yoPtzv3L5fL5bPcrICdcRpFvK7ua0509h23ATte7BDovNL6skOTTr06pCybBgh6Tw0Ht/HodX0di2w0U06VmWXQOnG+apCdfnE6icudgo3hPhLncK847fM+mcxH8mq3bx/NA8Cynagu82v9x4IJDpZ0nuu4Nw7ZXG/Nr+38nhQeEzkGxCG1zjTnMaWZXxZw45SvtR3uCZrjehGN2ISJqDh5Recql37+PICvAPBLEfGm6drXA/iyiHgm9j39mwBeBACttbdExPcD+BXs3xh6sLU2sFIEVqQcrc0etqFoXRSQg95NRP6/CXS/XTHl2S098TOyBNFRrHoIXNKjeRCWW76Y6tZao/TUBnlttOziHC9VkiMHxk102z7CZKw5RDv64Uh+ZlZ+1Aa6tKIKTqMpx6TwuFAafPS7TJxHPn9saYmdT6a0s2w1fjmubN3NGFZ2w1HrnL7LF30eXC7POGWTWPbRvDJj3jp02Z+je1w/DRJcxMtpF+PfjFuua5bnxvcmsDhhdaQj3DjkNqD23/9uDOmcjfktHe2vwVib9T+XwW2gjKOb71xPU8fhz1JofiyHc9xHrIbqL+1Lt3TjGLdk16b/3SGErDPUueE8BK1hOa+uc+3n3vCJfj0iXoIDi/JfAfj1Ux++MkeltfYz8L35IyvPvAzAy+6oIDZcTqGNolfFiGHQ9WmeyKSwV0+ipGhi3tuik5GVN2CU+PRZT+XkOrIB2Un6WfkfMbBOUbm1dm2jGQPGYaRg2vSbK7ru78rn+qShaTt0v/uTcEaQ7wEHI+ZOOs2yGPw7I2vOnTopCjae87KYqTs7bbzOf3HROzv8jBqCtTHvDAk7VQnnFDnHdC040PLU6dO2UuOabcCfVUZ+243bdU0X5LMjo8fGVR1fdV64D0baRPeXAAAgAElEQVSBwvRs5O9sUV5tg+XJsQwtkx0P/awOUGt9OslrPs5egzluK3dPde58WvHAqePgwOltNxc1ABk5lSF9vUW/50SdFb02cF7ufMN1weCrAbwcwH+NvTH7CUwvxZyCe+MIfTVi6ZnrZB9Fy44OzYGrrzkChzxGG+VGxgLoJ4NzCDTd4UJv4Fg5bCn9gmWgclxkNXL0VCbem6H1W3Pk5kjMt1XcuiW/tCpKUZU+O3fAsg+0vyi/9sjtPjJci6S5XiyzW4rS9uOD9DQvdaBcGSnbaNyMxp8rTx3t0UZQUfBou33ftIbhUfaaR5bLZR5zCNRB1zzdfB05VJpv5qPHwKtxNY5Sx3gwE5bPjH5gkMtOWXVeMYPhZNJro7bQOTBgMLsf/Rw4GvOvK2s6Hhu7tnxpgdLFrVv9SwajoEcDFm57nd9urPK4V0eD81SwA7I2djjtxQVAR/3Pv6B8rTTHzXeUWmu/i/05aY8KRzTQDYKLyHW92x22xM+zF33r1jIC0+e5jFzfBZabdFUxsEJRLz/PMNnEeGlD66ATlZeE8jk1gFlfd5jdVM+42Cw3+ObkVRkyL1UyWV7KIOvW3e8JqTLnttS+iM2+j0aGmhV7KtJcXhrtZXBty0gDuUZdqxya97zGvVKGRsyanp1HTcPPaf3UIeC68vXcl9CkDUd7DpyhdnVkVkKdVp0nk1Hs0oSMR36WjaOWzWMwx9km9gZHl0emPLsf2dP2cY6IysT/p7pmfeY9Jc55cUyM1jWRukLz4D83nqa03Rkwmj//p/ne/YIyp8M0XpR5Uh2k/ZTX3FKlvoHD+gnw89jNL/eSQueIoNehnIc4PMFlXRfaFfxdMyLiv4uIPxER90XET0TEuyLiy099/uY7KmoccvDzNU4nineerByBpQFVBeyWP3JiKlvBnxdLCBQNJHIdlhWYrvXrBDTKYi7P0fr8nB4KlxOUlOvcBqqk2Qni68cmsJbDCty1Xz7jjOFG3lRI5anGWx0gVYzqDDLWjESC6zJycljxcYQ+wsiRdfVwY0vHusufjFhjxZ/PM3OTadXR0PzVaXTjdeRsp/OccgDeiVWjy3Iww+D6XuRqrg6MfGuJ5R3NuZSFZVJm4/btw7hdC5jSseZNspy/cwRGWEk7n26r93kccH1GDoj2DQcl/N/1BetvdVJ4zDm2OeeSnjitukh0WMsxn8/y/FRmxmBxmGThFPzl1tr7AHwx9m/4fgqArz314ZvvqABLBekGknMgQmhMdhScAXOKIidXTkbd3DqSxUW7CVUUukeAn8n6shHhye0Ua+bNr+Ry/dlp4KiH24nrwfVycmYZmZ8sf3R9oO3lDBr/5yifDayLfNQJVCPgWB0y6rPRUqXm3kDSyC5ZLu37tjsoPsc2KE2en7keU36LU2Hd56wjKfeZaVJnkR15bpPMh8fHRtpm1P6cRq/nuNVImt4Km99203Ga6biNlBVx807vpzzMILCMzjEYsCqLk2Rl3C/qT//jYtMfkz9ybBwbonkK27bYc8H6C/AsJpfj6jBi0Fw/baJ3jlWO/Mz94ZjAkb5Rx0P+x8XFnhlRvaqszLTUs1rH68AxduTR/F0/7pv+fxGA722tvftOHr43HBWgn6RuaUKVrTOI/AxTlKNogpHpeb9MKkW3JMH3R3mNvg8UYzfR87ntdq8UVOEQBb5wPLQdRhGEMh2urdbYKMYpDIMu5fFnVkgamY1k57LdmrU4jLPR0kOnso+57qnkmhg6oHdsYnP41WFuZ3U6uO7CfNn+ESdrfs45PtwGLGtMxtI5YWyEHMPm+poNizotypA4J2TX/HlJbn5yvfm/nrei6UeM0cgRIKM7OyZTXqvMibIQXM9N9A5SOhdTmgiaa5mPHhvAZcgcsBv/mT3KOmi9WW+NnD89M4nrS+3cbXJ1uozbRtNo/wJ+PuZnxWg8Mybmbb8fpdfjMerTwhr+l4j4VQDPAvATEfEEAB849eF7w1HRQeuYD2DMCjhjAiyVt7IU+gwrCS5L9w/wxND8VG6NhvM/G0GlUDl9TOcDZD66KVYVtlPgMok7haxpHSvB/7kdWAnxGjFMm4oc7ZHbS4OZ9dI6cNsx2HDq2wHOieSx4A4LlHp2v946UqRz4s2SFcu8uX6GkUrjNjs8bjzzerwaxsxfx46WzbJq+8k9S4/nmHU0vsqqDgMbQF5WYmfMnVPjDN3E2oQaYXFWOkZkpFOA+UwidS4W9WK4oGCEdNAmZ8SeIDtgjxasjnMg2LFSB23XekeUWWfNbxR4jcpnBz8xt+W21yVzsLDt+xc4zAmd4zpnuExNp8GKWwK6G4xKA9Di8v+uuxqt/T0AnwPgWa21RwC8H/vf9zsJ94aj4hgGnXCjaDwn+YglUXZG0lqjzXnz4FfKOj+zkc90KjNIQXNE75wcZ2BYFnZw3KRl464sDaaITKOhkVFjuVJ2jvxY6cz1GUwkquvsBIgM9ofbMu+uErvlq5DuMDdmc1x7clrOW2VWg8z9xuvk6ljx2HYKWR1D7lPuv+xXZok2MWbLFCyDyqpjkJeTNA/utxF4TnD76XdhvBZLRiTPwtndtcNmbHbKaDx24zzBdc60GmxonzgGIvPSdNO1bsktrzummMF9NOUz/FkRd03nMtDvH3PPKhPFeY0CrrVrWe7A6ekOqsy+4RN3tb84CEqo4+IcFE6bgdOxcXtFaO3y/+5OPdp78my01toftdZ+59Rn7w1HBbAGtTP+qejYwKqh0cHMeadST49+ur+gxjWC43J5wjgFyMtHbFzSePPkdZEo4J0cNZYafXGdNdplh4jTO4dmlCeX7yI6Jz+D257z1LK22+VvMI0cVDboGv2qoc9r3LfsMGr+TqExm6b11gOtlP1gmVWB5zVlwzjdlNfC6KTxY+eDn3WsRLZbGk3X3924JTjDrO3j2oidAs7XGdDcCyR1XJzeCsx7QOZNtTqO07FSI26WyBzDtYAyAeq0ELolLmVoVMdwvqlHuD1H7Addz2Uf/TXoxVs+6kBy3tqGo71b+ezafjTXt47xVNZF517KwKxJ5qH6WJ0VdVoKdw33Ri+wIwD0EZJTzDmpnHEY0f58Nobmyyfh8uRjhebYEJ606hjxJOKJyFGcawd1ZPj5LEfzy+u8TJHQyFWcmfbI7WVZatj42RGUelXw0siIfnYMEUONUH4eOVmaF7e/nr2h+aiRAMzbWCQ/t39s+qUOzkP7UuufY0qNddvtnTj3bL7myk6PgpdVcpxrOh5/HGlv4lDXUZ4jQ897LzItv9nl0hmmsas7t8uuza8ix609C2SPpOfvugndOMwa/Mz7SjhP98aWOgAjBoPai/evWAeCn3XOITC/ij489E3z5vrpfE99wfORx3hC94+xfmE9owGEXGvOIZobh2TQ5Z+2/yFCy6ZoQLlgoY0jelVoV/B3wzA88C0i/vYJz/9Ra+07LlGeRwc+zRHoae5FdG12tCdy0DrDsHYaJ4OXeciYzcfE88TgstzShPPqZ2MpbIC0w/xLo3yflfjC+eH8tK4SwZNyCndo1RxZifzOEKpDuYk+mnTG3rWXtl32F7/izYpWl0P4s5PV9YOrT44xNTQjp2b+LvXR+rGDOpcr5ec1F1mODsbj+rg5kY4Bj1VmLbQ/KI+23SLaxErMBxaacni8aOS+2xzegMmxxSf0jtpL8x85lCRPjrvFkfQuUHBtyG2b6edxaOo/bWBdbBDmMriebt5s5HXnNcfY1dt9H8HVNZ3q7vyXqc+S3dQ5rmXxmNaDIXXemTTzxlwX6ChzIoHY4u0f/pzPm+dupLW/y4iIJwP4kyC/o7X2hlOeXTuZ9muxP5d/bfR+NYC766jkQOTJ4gYsK3GdkDzJcnI7w8SfnVJ3ynKagGEm4HySo5Ob/+c6KRtULUfkDTXQo6gcWO7V6IyhpGUnwLESmia/Z12css000/3u7YNRf6iD1hkidjoo+mVDyAwXB7asoPI6p1FnRmXRJRN3Su3cdrFsA86X856fIUYwr3P9FCPH8FjEzuncWOL+5c/U7psPua8/NG5RDjMfVC9lQ9zJxWr09Dmtn6TrHASd+yOj7di3kZHn8tpu/4u1OiaBcftMeUfcOsg5ciQyaIjYnzDLbTpqD5VV00i9urxVXrORdz78Tdsi0+U1dtL5Wn5nPbTmULnAZcTQjljjISaZtpz2OhmVayzrihAR/xjAX8f+t/xSmzYAj9lR+ZettW88UvhHnlLIlSIHIhn7o0d/62Dnw3/UUei8fXhl5gzB9Hz3I4Rd2Rf7624JifOaZYpxlK3PrjkmIwerU/JL6twaKHewXOZH0ZWNpFUOjWAyjf4wH1PL7lkuTx2qlFlPI3Xtrr+9w85Sttd2C/APufEY2Wd85LXs5usx1x0Hg5oGbhRhq9OkjMNQBizTaN9rmenEZVssGIe9LAsDqwbxmGyjdCOnZOSUa/SOCy+bZS5XHPV8fuCkzD8yyGNkKzK5OvK9C3JwmEkybbA4Bp+h5bm6cTr5vDhc0eWz5vQ6GXhcsVPB152cHEw5BsQFNpzGXZNn2naLw2vIrV+miw2KUbljPA/An2qtffDRPDzkz1trf/fYw6ekuRbMRmOPxaRiw6aThQc2K/Zc3khaMaM9pZANO8FvAtmfch9EjvMEdBEFI2lOp2h070Aq0vxbOwyP5Rq9DSJngMxyOIWlZyqoEs6+YTnUuNIBenFB/bQWVfGyhDiOdmlvVNcsw+xbmvfmaJ9mWc75YewauqhMlXmWw6cDp/PFddRIUBkHTeei1jVDo/2V7eDGpcrh5oeWM5oHLm3W4xQ5+VnOj8eXmyucn7t3YRzTgcx2CYkZAs7HtcmGWB92qqmM7uTcY+2i13JOuWfzGbfnjtvDORE63/WMF8dIpi7hoNGNbcc6qrOjwSXrDJ3LvB8mn227AyPtAtdV9uXyEe3y/+4Cfh2HQ9/uGENHJRERXzOd0R8R8eqI+IWI+MuPtsBLhyqABE8WjZSU9sv/Lvpm46D38lr+TfkOf0lZN56xjG4C9g8fPuorniwXX2dnhvcSjJQSX3cMTU5wtzeAn08HwbWbOgnsdDijRgqsbSmqXDOAWcdUeNkW/z977x58W3KVh31r7/O7985II40YSZYATSSBQhkTbIwCOCY2AjsB2QlSXMY8DZKqBmwJsAVlnMQxNkYuKmVIpACpKNYggTGPinjIWDEkMtjGNoklnk4IRgVCKIiHhKSRNJr7O7+zV/7YvXp//e3V+5yZufcn3ZtZVafOOXv3Y3Xv7tXfenTvHnGfZMJe+wJY/OIi+Ju2cP/3rAYDbalW0KeLbtHSm/Hee546LzhdDygHPxr42ViQiDKAswU8Mm29p3Vr3ri3ZfVQ4MukwJ7Hnjyjpv09fjaeawUPek/nf2/cs2LEPCgIgIAhTtsDWrx7Dh1LCdfDYIKtatl4zhSRKIOfiyojkZavh4zLABb/53gptY6wXGWZkaRvjtVXcAIk42oDpN9I8pv0uXx6EMDPm9n/ZGavis+pmY8CFQAvLmf0/ycAngLgRQC+5ZHxehMoBl8MzN7gytC1ponysms68VXIZW6QrcnMfEd5wafeC+27p+nxZGdhyCBiy5TKlo8NEFN3Fxw5e6OeT8H1ZJpwlK0LCKfXtgDr3QLZAqiCNttmqnz0+OH/agLeOlxOLT/ZIjr5WmvmZ6lp9f03utArj0gWTllMqlYdB4qFq0ktB+TOXD1Prd+Jz/nHup96iyrznpyLswJSGcBW3hSoMRgQ8BDv5Gl4pbJqf2kbSr/X5xltD3C7WzztTRuYT2BttSXetN60HC1voGPzNV4qA+ZZfcD66H3Nr/wyXxmgZhkcz6I3Z/gMqihbz6Xi9FxvL34l7mNWPJrTcnuWE4tj9T88q/0tTG8A8HcA/CsAb6HPSbQVoxIUo+b5AL7L3X/B0hH7YSbW+no+ysFQAy35f/0tC0Zcb/InmlRMMP4GWnPiRO6AEJTjiFUgmYKhKkg9FwIMkHR3RvRHFvzKbdDJr0AAaIMPOb3y4xM8wzFN3IoAmMRisQowZkCmxG2LPsiAiCzqdSeW7hrjNqmG2Nudw/1XNUhdNDd2bzBl4EzTZqCYY2goTxOMqn0BLDFUGiBb0jY7OKYSC6ExMcyfzsXBAMhY1D7o9EPzvptCzbUsiDgbm6oAqFbPfZNZE+n/Kri3AAHXeSPlsPXD4Uv8mtJAwb7cvzpHgDb+Lfo3Gfs+LPnrLiptP5Wf7kbKeEjycjvq+NExGPwC7XhhecxAL4s3VDkErOUwrwP6W69FmQxQLjtwdkWGD0cwrZndj/kFgr/r7p+U3P8SAN9Q/n4AwF9y91/olefur3s0/JxiUXmLmf0EZqDy42Z2F4DLddKdQircdUBmixy7BWJQq0YReeM7s9JomaptsqasFhRfC71G8FRNrTNYeVHO2swTlrWQnvUk6mVeWDhz3Aen5/qychNtsGq6bEFQIKjCSC0t3HdRf+TnjywqswCVoFom5kMX1fjmWCEFEAnYa8rVsaUarD4f5UHHofR5tX7pmKdy0/NCEq13tV08vqXsJl5i8sWC0FMAMisbjzvmrQcclSflk3mNcuPcFNK3Gt2rLK61DI0by4CALvzKh4CdVb9K2X6YZp4Sa2dXT8xcM0k/bbqLCmUgJY23U/65/lJ3U1/IoJj7QaxwRawK0CpewSPLAlV6NC4uc+Mw8dZmsaAsZ6z48tvL+3+S5t9m9FoAn7tx/9cB/El3/2TMlpJXZ4nM7AfL9y+Z2S/q51RmTrGovATAHwHwa+7+oJndg9n985FFip6B9X/W8oDt3R8ZqLFh3lHEhyJVUBALKoESXmSDl2zHBvM/CfrPFlIV2JG3Lo7jujyesKolMrGmrNH3cV8XDt0llGlXmQbN7VRLSE/A89ZOPpsmqLcTiag536HUMWuQh1ybZuCowFAX7Kxve4KWKVvcmJiX8lxWWi+NrUbTprER2rSZ5dq8aMhVG1ZLCAc9dkDZyiKg1o1sEWIeFKwwjz7NW3eb8zt8lX+1Dbn0R53HwSv31yB9k8Wv9X5nlIFIJGAg+C28uDtWlj4vW525nVl9CSC2cSi7kOi/HvCmAPpYW4PnbOVO0sZzr3kUSMQcX8mYBHiFLMiOAAhqLLLiPg7QpApeuWcciqdj/Mgjv6H0YQBF7v7PzeyZG/f/Ff39GQAf20n6teX7zz4afrYOfPujcunZH4ken2YQ60BVkKILECNzYNlymWlP5fAyP0T6MnAV3OhEj+9E4MwCfsz5X7lDZOHQtmSBZ9k2Y+apJ2Djera1VvtOF5BMu93SiOvi2gEXvcVmsNX7ZOa+Sdqh/xMrjcez5zZGudZZNLTNWVsl/Uqok5Zc26hgi8FuuBCB5QyObIFvyh+XgwdDJvMCpfWwZu/yTOs9MrFH2S7gpaRtYmS0bztuiNT10fCZuBO031mbLwvWXF/uUkr7Iqm/AXnZ85O26G8FRQBqn6UuGZVxmZzZAnmFmjkUgIfa2bQhG9MdeRF56rPMeOMxbMNyfpSmC4vImChbzA9TT86rtTrrJ4zw83PY7mzJEzKkuoEsj1e5LLo5QOXJZvZm+v9qd0+tIifQSwD8r9kNd39n+f6NR1g2gG2Lyrdu3HMAn/1oKr5hlA1ApUaQJdp7nKTIWlSimVctrLfzICaaxkhki/mWSVMF7uRACaZdvcsGaOM8eGJvaXoZGEuEW227+pk7C3Y9O4L/97StDARFfSQ0WbBHcGV21LdeiwVl9WyzhTzaoEI5Frte7EvWdq5Dnmu6mAFLH2nMjvLZA46qDQ+tdl4tMNyXzC/l6wJvrSNIrXUIjXReuLoLWacfMVEMB/VXHRPMl55lo3zHfwZ32p4t6wGVxZYQ5S11jzHPqzEnlAQBN9avIXle/Bx77+ShPmjSFRlhZsBozXNq+q3XHqUhmWsZiNuK5dODJ4HcasntV+VPT9EG0nJtnAG/X1zArlxZy/sm2LbM0cnJsrIhW28Nepe7P/fRFmJmz8MMVD6zc//9yKGWAXB3f8Ip9XSBirs/75QCemRmzwDw3QCeBmDCjNheaWYfBeAHADwTwNsAfIG7v6cE6L4ScyzMgwC+wt1/9mhFLLA0aKon9HkAl5iK+i4QdbfE4h+DOsCKDv6YNGpSZBcORIPcAAZd8KAWn3JtEWa7VmPjZpPQ7Jr+uT3Mx9bvrJ7MQCKCtYKOWMjIYhcLEpure8eN8/VGqMcCMQwxK1J+Kt+9IEOgiWtoeCt9qCBgq550MQzqHBCnbe8tmmn7w7ogYG0FAiJgW8aeugwwWPvsji3MhZp+0+PqgcVSmWnzkwPjGgj3LDh1gZc+SInHkC7OJF+c5l597ny8f0Lpoh7tivITQIBpCYBtTptNANnROS3pVm0mWl2TPsvmKqdVi4yZrY7S10Mw6+m77PbOLNCqoGVB8JqeQFkL6gdYkenpWTFNXVascSXJkV2PN5w6Q+jDTWb2yQD+PoDPc/d3Z2nc/a4bUdfRYFozu9PM/oaZvbr8f46ZneJvugDwde7+BwF8BoCXmtknAvjrAN7k7s8B8KbyHwA+D8Bzyuc+zMf3H6fQgjVym60WPQGV+SmB9UJCsSwV0HAQlmqhwUOkY+088m8t+rrltbew+VSDJjPrQ+0OWy/mURZv/zRb/kca9s3yNd4WWf8Di2ZGwoPLzBayVOgVgcZpVgJ0kuP2uR+c7k1TKpBre7a2eAqPtdxSV3f7bNIurrO5XgI3bRzqM8jKre0WqgDA1u1vgmrVgpD0XyxgKyuQLKbutFV6WtcPUPAlj+cATJOv54zEAaiFzA9TY1GpbRsXCw4mr+Xzor3qT+kHfq6N8sO86TwcrM0XlFkbs+sdGdAE8nJ/9Cwzk8x9fs6ZdYnarHw1bmXlXdPxdf5Q31aXKfFc2xHbuS8u1kpBBuSUQr5nW4nVMrNqy4Tp+vX12sF5eWs9Bdxa8mz+/0Zmdi+AHwLwZe7+7zbSPf6Eso6mOQpUAHwXgHMA/1H5/w4A33wsk7u/Mywi7v5+AL8M4GMAfD6A15Vkr8N8tC7K9e/2mX4GwN1m9vQT+NucvKvI8MogXdeALk6vO2DYFJlsBVVNrAp9zsOTXjWlwZa3uBotHAggMS4L2m43awZlQYp7NW25hmE2c9puV8ocar7QLKIsDMMc+1Guw2w2jUYZ4whMU7k/LDs7ovwCWuxsl4IcThf1MS8YCv8RfzIokBqX7ytnNY0Cj9q2BCwAa01XAVpcYxDG902Eb00vIGVlJaJ2QMES0QyCWgBY28UgsD5nAZhqgRnbcaoAt6n74mIV/7Mah7Q4B7Ba8RhjO9lmnZ5FwmULn5l7Rq0HFThm1sAtUisJjdVTyli5o47VL4t5rTNbVFmmxPXJ2zyDrcpsAG/SdwwUWAY1IJkBD4NYbZvymPC6usbWZ7VeM/hgy5nWwdYPlsUMXHQnZ/nfADKy1rgAH892XJI76KaTA3C78Z8jZGbfB+BfA/gEM3uHmb3EzL7KzL6qJPmbAO4B8J1m9vPWxrsw/aiZfauZ/QmjV+6Y2bNLmT+O7d1Fc/quaXIp8M3u/lwz+zl3/5Ry7Rfc/Q8fbe1SxjMxv3zokwC83d3vpnvvcfcnmdmPAfgWd//pcv1NAL7B3d8sZd2H2eKCpz7lqZ/6yld8R6fWaJfJtY9ANKxatvvq2j3PeCLe/Zvvm9mPZuijiyyuvztt1vQu9zz5vdmOY+my/l9Xcs/HUltvJH8Pl5LncDQ9MOfRvFvPVPNHGVt88LUen8oPl92717umpPwdoXvuvRvvfvt7j5d5Qlk3lx6GjEj4Pamdtwltt/Xhylqe5Pz9cPOdwocKlOz3Yi1b2rmkue8r78MD0+/f9MXk6r3P8I/+a3/lhpf7tq/++rfciBiVU8jMng/gSwD8cQBPwuxt+RUA/xjAa9z9t4+Vccr25HMzuwPlKZnZxwE4+cVCxazzegB/xd0fSM38JWlybSW1SmTyqwHg2c/8OL//ZT/caic9U2F2PdFEKjPsexaNI3MjzOUN1dogCdp7lMbGobXSxPduB0wHYJg196/4lj+N133jTy31hH9WF53d2P6P9LGYucM5DfMIwA4TfLB2sS3fdpjacsYBNvm6LP3fHEpVytiNwPl+bqe3ZXz5Nz0Pr/umfwFcXDSxBmpdaOIQWDuqbUpilg4TMA7zd1BPG+R8EQsR2h27M8INGFoinzWjZZPJ/UXf+mfw2q9/46y1yZixcZjfJyQWpWg/piO7EE4BMnwv4aFU2o6DjKaptjssQX44LFayacKLXvUCfNfX/ugy/gFgGOZ0EehajnevLxUF2mfPeSn/0mfjuuytMUPlL82lPu7814BcvvbiV70A93/NjyxpI8BU6u25pFcuTuKB+WBZFPX0ymvyda6xqzXlUVy57j63tcjftG2ZTGa3Wu8YgZ4M19jDrYMa2doi7vJ6Xed3VheAF3/7C3H/y35YXlT4GJ1K7v5GAG98NGWcAlS+EcA/AfAMM/tezKjoK04p3MzOMIOU73X3HyqXf8fMnu7u7yyund8t198B4BmU/WMB/NbRSvTskWyba1zPgEnEOkhQnAaFVT/5ymUQO0amReiSsCyFyZtCWyFYabAZmOyKiXU3zgs5ME+aK2ezAB6HGVDQN6yAi3FYTsgcS/lm8N0AHHy+FoLKML+gyh3T2ZhCRR+spoEXILMb5t8RGzH5nK4KA0ccCWixqAZ/7jMfAEwX2wAP4wB/3B1Lv9YyfSnTfWY3gnIZnF0c5u8AhAyEpgBKKEIuTMRrwbhenM6WcbPbtYIO9KzHs+U3j7fCZ+0nM+BsNwu/cQT2FwsQ8mlxv0QdsTBOAM52VDeaerws9tGGAD3srqrjOBb6M3pfGI/feHYBjhMAOwO1GaRZaTfPi9oXGUhRt9qVK/NvBvORp3zX5zJN7Rzi8SRjq+eCq+2iNPX+OM5gEWjdHtTfPW/69F0AACAASURBVMWrgiJyuTVgScBLgDvl1w/TEhxNoEfjsZSXNFg57snOLwDLtvUMjAp4zLZXH93uDsDOdksbyZXTKBs95XEwNGdCscuoUUSwXK/zJolf1M0OzVxGW3aJUTGam5ca4HqZdX2E0lGg4u7/m5n9LOaAWAPwte7+rmP5bJ4BrwHwy+7+bXTrDQC+HPP7gr4cwI/S9ZeZ2fcD+HQA7/OyB3u7Io7oJrStcSFAG0zF30gmX6YNqIYx2CoCvPnPgngYgP1+/q5C6ADDCOBQUMMATBfzQh0T6vx8XnRC0LvPlo0oo2yzwzjAhwF+NsLPZgAzXTubrSPuOFwb4bt594ZNwOGawYeyg8KBw9UFvPg4X59GAMMsxALUTKNhODim0ea12YFpB/g4l2tx2O9uzmcXqABouADsooCaAnxg83UfSl4H9o/f4V1/7ClznRMwHApImuYPDLCDz28CrWceAOND01zXNPNqk8NqXp/zXRSQU0BXPMsAY74bYNdpwfB547CPBtsf5vKCpuU5MJCqwIieGQOpapkaR9gT7prLScYWJAajgq/4HSCQFlvY3Ld1sY2sYwG9cVhc9cUnWnAIcp5Hh8MCzhqehpUFyQ/lQDU+K4PjPsp8aOJ81KJTYqJq+8Zxnj/jOI+dYyQgpsb8sMVzkpgUAlJW+no+UHABSBFDo7vaKuiJvp6mBXxk1goI+IjAUpJDCkAya25Tv+Sf2ygKl+Q5tosHQHO+S227xtNwfIzubKzpZOyEUtjb1RT5uQ3Zbkq2qihIUQuMghzdktyz8tB1L7LkMbo8OgpUzOwl7v4azP4kmNloZt/o7n/7SNY/DuDLAPySmf18ufZfYQYoP2hmLwHwdgB/vtx7I+atyW/FvD35RSe3ggczR4IHcInrkRboI3+eDBlg0f+JaZ9pOR9j0WDNbIl0HxdzeTXBswB3h5fr/h7yB/NELJr6cHbWuINGYNa8gVmDPdvBz3awacJ09Ww+PyGE4tkI383/p7MBU/1tMxAZDDDABy/3HG7AxR1FiBbAEi/yPlyZwQsKyPHB5/9W2jQCPhZBtSu/BwATcLgT+L0/dgGMDjub4IcBONhspXEDdhOwH+ayrh7m3w5gsgJKZl5xAHznsMlg+8K/FXBTQJBdzIJ3uFiA0gxa5jYO+2JRKuAnANVwMacdAmMWxcsmYNh7BW0WACvqPDiGw5zmcOcZHvgjT5sfz95h7rADKnhksGXTPA4q+MICtIb94pKz84vW2jFN8HGcQRYvcuf7FkSpe4/HrMu4v1hAEQCgbu03+DRhSKwJMINdvbpYhjhYN0AQm+3DwsRz4drV+TsAUXGNLYs0gR2x6FiAEC6vWh5bV6jRHAIDEG5LDUQVd68s+Ga2WDbLNnm2Ks3TobW0IK6RlcWFP3VrLXnWW9VrnwGIQOa6ayvcNslvbYcTAG4sMqNYe7Cus27vDlL52ZOrqiRWiwjWabTsyvyw7UrKrkUw7VS0KQLoNhg+Al8ic1vTKa6fzzGzP4f5UJd7MO8C+mfHMpWg2B7u/JwkvQN46Qn8rEl8kvNL1MKNkBwGdawsGxoTawpQEqtMqgmopjDRuQgD+d/LFloLsAK0pnIAfr4nQTutTfThOggaR+A8NFjaBYRyxNlQQI7ZHLdS/jtptn51hJ/NfejjMLt9MFsYpitDtcocrg4wny0tbJGZzqxaZMDXdgDcMF0BDmeYZcEO8wL9TGB8YIfpjgnYObA32MUwA48rPgMSABjLbwPs2gHD6BiGCRf7EWbzc7lydV5E3Q3TYcDVa3uMw4Tz/Q6Hg+Hq1Qvs9+PshTm7gLvhcBhg5jgcZjA0jBOGYcJ+v8M4Tpgmw/UL1rAGTJPNOPP6OAuxyYDBgYsBdjC4FcB0HsDOcPE44Lc/Y8BwPpeze7C0K4w0Boz7uU+G+C5garhwDPsATTP4mQFRAUnT/F2HwnUCNSj97A7bzzFJw/kBFlh/f1gW6eKqswABYf0BEG40O+yqG9IC8IS1aX9RFnJb3JgAbFfiUqZp3lXmtK095nIAm/kBFiA/AVeKZTHGeNXkw7VKPMY5SQcCE2gtCM7KAQMNtgLpXGNwEzvYyKql4GdlLSIKa0y19hRrDFuFGrdd4jKryk4Su2TjCEfr3pqvD83vACIrsCNWF40Xm9uUn3G0VDCsr2vsSHachFq0gVaZU0DCCqq6hjLriSq5wq8NoYF0LC2XQObH03ykU4ltfYe7XzezzwLwyZh3+Z4UeX6K6+eLzewvAPglzJaOL3L3f/koeL6xVP3/SxBj+m6SEIDZSYd8L454dpkcWUBY5kvl+8e0hkJ8gNXqbag1kddgQ4CEEwGbRqNkYVoWHI+Fp5pBZ+BSNbmIjQCWsynU3M++5d0urQdnu/rfd2MbRzMzXzRVq7/dDH5tB9sfcPXjJ3zc6z+I/ROuYDobMOwd44fm1dx3Je2A+d4BmM4AH3bwETiczUAJXiw6fhUX18IaBEy7OzCdGa6W/zBgd2X+vb8KTGeztedwpWipZw4/c9gdFwW0OMbdAbvdhDuunuNsnDC54a6r17GzCRMMj9ud40lXH8TBDY/fnWNnBzx+vI47x3M8afdBXJ/O8OTdA/gDv/fVeMUL/yFGOK4N5/jN83vwUbsP4J7xA3icze09swPObMI1O+DBaYeHfIcP+hVcsz1+7/AEnNkF3n3xeLz9/Mn47etPxIcOZ3jc7joufMT1ww6DOd63v4bJDQ9eXMF+GvGB8yu4vt/hYhpwfr6DGXD+0A7T+89gbhgeKlamc6vWIzsY7GIGSuNDc78FwBr2BTRNwLj32ZVnwO76hOG64+zBC+BsB/+Yp2C6MrsgYyzMlh7URd0uFusQLqYW8MT1MoYs4kcmzlPmDLudDjPwsmGA13iXZe7OVg4CGZl7pVlQrQ3mrEHWi+UEwPpAQI6TinQMjCjWp34DK36a+B+29sSxAXFuUIAndoMFEBLQ0QsuZgDlInvid1Bj2dHyQbKSZOICllrXWONiWlm2OxYSjmNp3P8JyNAt0XJ2Sj2F1oqQ2HILPUan0OsBPNfMPh5zSMgbAPxDzF6Uo3SK6+c5mF8s9HoAfxDAl5Wtyg8+YpZvJDEQYUTOUeUMZibP75kM8CAGDVuHCGVBYL2TcbP/g60nZ9ZWDV4DqiZad4oEhfn44mI5hbG0pTGXA7N7RXcl0W6OlWk7gE9yVkn0h+/n8zhcAJ4fpvkMlMMBOLsCTAcYirA1A67vMf76b2O326G6w3om9liglIfd2PI6Ur64vhvrjiQfx9lEf/DZglTcUNgNs4XICtgZB/i4gx0c05Wrs2VpNBwATJPDd4b3mOE9BhyuFGvTldmNNlw4DldnV9p0Bnzdn7obf+/7vwQXd86LvBtwuAocrjlQfk9XHBhmsIQrxSpy5YA77jzH1bM93A1XdgdMbnhov8MTrl3H3dc+hI+6+kHcMe7x+PE6nnXHu3A2zM/+o8/ei4Mbnrp7Px7yMzxz92789uEJuHO4jredPxmjOZ4yPgAAeNwwb+47lEXk7uEhTG5493Qn7h4+hPdOd+AhP8MHp6t4aDrD+w6PwwGGBw9X8YHDVfze+V149/U78fO/di/OnzjirV/4RGAADk+7jt2VC4yj43Ax4GI/wg82u/Amw/jBAT4Cw0M2u8nODcN5AUwTMO2Asw+gusB2HyrD62IGSbvrE4a9AxHfNHm1KMFnN5pdTDWo2S6m4labFutRzLfDoabzwWAcqK0xSdMEjAOGx91ZF9xwg1VAxKA/5nAWD1Tqb1xo6lameVnBw+EAnJ3VAGS7cqUFcmytBeZ0FARd3VrVera4y1aBz+EWIytOZtWplmmgcW3NMlksM5xn7sDmeuqy13usKG4Ry/7qRo/DAyVtFmh7WXTCuSe3AE3ufmFmLwTw37v7/2BmP3dq5lNcP/8IwEvd/U0lQPblAP4NgD/0yPi9JNKYFKA1B2euGya1hChI0XLVLMnAidG45qu7NoYlnkVBD088jp85HJq3xzZ+5tBu9he01bUd8I02FeAlAgdDe6pCsw0orPEN+30blC5mbT/ft/0a8TYhzM73Legodfn7P9AAoWUbZiKc6Te/C8iq1SYRLPRGYZgtgnooQjvx0a92CfFOmbi2I+tSgMHYxl3S+B1XgcOEs0//eDz9p5aTp8OtFhYmjFZcKz5bIppdXjv42ZV5gb2YtfwnugN2DQ/t7sY7xrnt0y4sEICbYbpSFoyD13vTzsDuJgCYzqz+n3ZY3HZXIuEMtoAZUJmjBGLPn+nMZyvMAXjiu4Hhs4C73gZcPM5wfX8V+yeeYb9bwJcNDlw7YHd2wHTXgGvXZnPNOE4Yi+17KsyNAIbxgP1hjFAkXBwGXNkdcHDDfr/Dfj8CbpguDL4f5lwHQ0SF2/kc1zRbjayJPRr2M99W3GnjQ8XlBmA4n61H476Mu2n+DBdzfNHhcVfxwU+9dw7aLv08XHiND7ILr7FFdnDY9X39PbvZpmYeDKFYTd5uq7+4qG62cJsNwwDf71vrgL7pvbOTrM6XudPneVUOkFze3TMsczCI4nwsABFZggxYdqERAIr/HKBc5wFZZOr/3knNY35oYZdYpquVJu715HXd8TMB3aiGx6hDezP7IswbaP6zcu1sI31DpwCVT3P3BwBEHMm3mtkbHjabN4vUekKUvoyOTY9sus22silIYNCRHbvPVpsGbEiZwBqdczuinmMmS51MbGEhatxJIZiKRqO7F3ibob6ToyE5lp4tNNluC06/isMJbZS3cwOLJSjKKvVGmggyroLV5mDO6nYCir/nYmUpms3nh+WsktjhoQGcYQqOXSfsGoj/Nsyuht0O+FA5+0YAaQQt2zDAzvczL4cJ9oEHy/MuGndYgjQoc7A2QJTcZx6LxNy5c9+EC2A3zGb7AD7RrN0Au5gwXRln68Jhmi1JmAHNXBYKaCIgcjaXNZTzdqbQiHdDY3mo2vnk2H1gj91nTHjyLz6Iw7UdDlcHHK4NxRq1q4AndoEdrhhsurZsmR2KG6/sNPMB2BfJNZUAbRuA6+PMpw3AleAfC2g6XC3BymdYxtRumQPTFYefARd3+hKvU1xescNtCbie+2Us7rGIHzpcA971SWcF8MxlDOEOG2Z3WbjIIgAbAHYPTTNQ2hdrkBUgczHNIGaIXWcT6tb/fcwhwK7PZw5VF1oAnv1FO5amqVpWedcR+F1nAGxawIhJnJ/FuUFW5nLEEsmY9TKv60nbV65UAIRpmi0/MZ7JJR1WnpALutW9iccJ15RQA3YUzBxTTo8pspdpUXEAHXZvMXoRgK8C8Ap3/3UzexaAf3Bq5i5QMbPPdvd/CuBPdc4K+NWHy+lNJV3ogfa9PIcDAFqAOK5Ft6ppAFcGOjRQK0jBj8bGVItLMtizbXZZMFnGn/7m9BklZWZHkjfpxdVUeUErGJr4nkE0MDX3xi4otuoAjWVn5e8mV5bFwlzcTCuzc6QJba747B0AzmMvdRkvD5VzDCN2oAFQAlKA5X9YmM7PC+i5vnahkSuNY4um339vaw2yob78cmlEaROPDxpTxrxU1ubV24rlyHihoViNkWOdeDswz3m2eLEbooLzYbVI1fRhpTvf4+w3fm9WocorGoDZ2oSIpwgahznWJFxzwUNcz7Tr4CPG5mDkvlj49mGAhSVymMFAADMr4NfPZuDnw1AtIdOVcYmlMcO0I+sWyYezT3Y87f94CHHA6bSzZn7OZxDNLsLZKmV1R93cH4b9tWH5P9iyq4ysXuP1ZRfdtCsWoGq1KZac/TS7vAbUM5RsP2GO37Jl95gvO8maMbQ/VEBbgWdsUriYXUx4+lMXS0+4yQJAAIs1CJjHqliMPOJlQslQmaVb6KMbOq9G0W35KzDD44yDn6MOHuvs0iquai9WvcfsKQ+b/rS7f038KWDlQ6dm3rKo/EkA/xSLmYbJMb+Q6MNPbMXQqO4sTVAIjzRP0RiygFy14KxOlR3WYIXTcBwNLzrx2vVsi1/wFXk06j3z00Z6BkxZELDG0WQR+VpW5gNm60wGqCj9GsgsVpzVW5enZZcUHwzlCHO4VbeWM+iZkrMrGAiRRSfyV8CQHCwWICc1SydAqAo6tr5QmU58VO2eAF11jZF5f1btieQ8kKqVMljTk5DNMB0Oc+zQ/mKuuwCXGeh5t40VTGmshPsCrCKwlJ5f8Ogf/GA7DhnssxUr8kWAao1XGJeFq/bftACXqpCgVQzoXmjnAdwC6NbdNViTu2MMC2PhZcxO8XWHXf9EXP2V30r7vgmOD3Cr1sVJ2hfXs51JnE6tklFuM35s3c+RNkCeAtQCNH0XuwepTQ7UHV2HA3DlrGxkKGBsHJd4lwCY7BblubCfz49q4n6Yj6xf3Ffb6U35L5ZLztMcZKgbEJxeZhnjdBxh167OQC14uEie/82iDX3zFqIvB/BKufYVybWUukDF3b+xfL/okXJ2KaRxHMACCIrWOW9XvsjdMurS4fw9i8TWmSy8zS5zzWQmRT5M6DCtrTTcrkjP/CswYkDDAjt73TnGvP+22s3pKEiuCYDLQGH5XcGEupQoX7vzwBrAwvmaLeRAe3hUQurKsmlq41r05Xo133rHQ1NuATh6/kXdpaU7NWIRSQ4gq6DosPDWuMjifxwgqFtnyYy+BGYW8BX8npOFKAQ0BWL73Ki6MFSApWb2UqeHNQkA9oe6m2wBUaXvp6mcgTEAscU+zhORtx37+dTEJ81bvGSMDQa/Xqxm2FfgW+OTgs7ne+A39U7zYgqfltOcGeisnvGwBF/rTbMaX+L7/eIKjLJ051yVE4cFQOwlnquZA+NcpgIPBStM0c5wZwYPcYCkpstAYcJ7dQkfDsADH2ifEVDBsgVPDLCY3wASZ7vlNOn9Hrh6hdpdxj1byri/w5qXgfMARBGXw31W2uvXyknIAXjCBRv9spvduHbnna2FcEgA302iW3l7colL+WIAz5KQkbsAvDvPtaZTdv3cg/kY/c/ELL9+GsA3ufvJldxUylw0wGLdANrtyr38WbxJthe/Zy2IsnoAI0sv15Zj/Ic2vqZ3KBFbbFhbi7LZ1aXnybCFhI+eZnAnlo8VURnOonuwxkqk4HAVN6TAUevM+k8BJ/NT2s2WlFSTjDShXVOb0xM+hxakBCDhPHHK6GrbJp+Hw5YTseBEsOJ85s2wysNWn+abLTRU5uqoetW4YyGIfqI0+r6eNJ6Ixx2BoqbNvbRZn8RW2ALCKrDKTPdmwAUBqHGcx7HTaOR4h+xauIen6+sxwtYYYFmoYjxlYGFy+PXzOQ0HiteGEohUqwkvtmX3TmpJ6OXh/tHy2XJwOC/dZ8tzirJqveK+pHKcx8SHHsJUynBgDVCVT7X6ZW34YCZDp7Zszcdn5MguqTo/znaLzAvLn4XVVax6DNomryCxyq4kLuYxSulfAXgngCcD+Fa6/n4Av3hqIacE034/5jcf/7ny/0sA/ACAP3VqJTeVeID1LAFq0cisGlwex6Gwy4apBz6A5Z0/bHrOrBlqQr+4oInjrbWEgQBrZLVM4i/M1FReav3h8vh3BiZ6YMVaAVFfn947hZLdXQAaMMUutcy9lPGvQccsbDIQyteljuwdJqu2sfVmWt4Do0BGz5nQwOPVuRUJEFIXVri6+B5GsvxIgLO710MAGxBEW9VXbi4qS7ewN0GLUlfDZ7kf5dbdIAxMqpVkaII7mwUoWwyygEqglqPxdF7ASBPnxC4iXoz1WlC2PZ7dgAz23FvLiFq8AujoYns4rNrk5+eLJW6liAxrCwy3Ies7LoPPlNH6g79oN1nuGldn4ZEtgp71ofDOLloTsKYgf+7SFkhXPqNOHkvFlarbpCd32Pl5U1494ZeC/evzBJp70/seaMH9ZQKVW9ii4u6/AeA3APyxR1POKUDlo9z979D/bzazFzyaSm8o6a4dntirAFZaJHXxygCJuCwAbFtHyn1j4BT1xsIclotswVXXFEDWElmw1UIk+f0wtUBLgUYGCiZaPHtbpeOa/oe4rdI4BeKXF4taRrTJ27RJXbW8rK4eyNHy1Gqj+SkuoXmRG4GW6uZRMBdgJoYT3VuBCSmzXheN0Ic2bwNsyGrUuKeYn9j1E0GLCQj0AetFUcsEVouJxlatFiL631igIGCuLrQUE0LxJI1bbppaK9Y4NouglpMugIdlW34TkwS0C2dYemSRzWKamgUvAXcrAMh9NcnuOKAeMdCUfQKI0/eQ9VyZTZ/odbHccTtRn+P6OH8k5ecuVXK9Eqie6+6M9cLXdL6vL+6soDzSUtuX/p6a+RCn9TYuTx7/k8/KCLtFiyvN9Z1Xj1FKZvbT7v6ZZvZ+tJDLALi7P+GUck6JCPpJM/tCMxvK5wtQ3vvzEUEMLhhkKGDJYkLU0qKDjyd6xHxsWES24jKqiyb4ivu8TTkDBLUtwp+6QbiN3BYui9vDfCjguLhYLbg1r0+rSP42SJC0/4ksAgnom0+29XU/yrs1ar9wm6KN+szk+cxCfeFlZSkxSp+4nnQnlJLvL9bPQtq5Im3z5IsFTe/5EqfRuAm1XWRJ4tNQF5fP2toTv5vgQQKrXH4PhDSLgLQn0nnEGFDdEUMS9xVINFYkAm+8INbgXuQLIlt5VmCgxLEoqOGyIQCkcT8Qra1RywJey6K+YR5XebTsOAcpAbfZtfqfwEN9ltw24pf7X6/pOUY9a4cfphUPWh+PozpGC0BfjX9VipgmLwBnFIsM9SUDJU7HsmvFbG+uU/oExN908pvwuSzW3T+zfN/l7k+gz12nghTgNIvKV2I+5O17yv8RwAfN7OV4GIjophIPUB2EuqOFA085hoLLiv8a16Hbm4N8au9xGVFfXGNLBtBaPbTcSGI2y3ndspxZEtgSo9akzJKTga4szibbwh35OV5mWIRjaDCrKPoqNA8tsGHS56b1KJ9ZfwCLAOQ6iNfu22bjd7iW2L2j4GXLNZZZbTLAyfca0JpYFS4ulrdrR16pv/a/8rhFdL/pN2mLLjZ838Y5XkmtDk35qh1znfxfA58Tl1n0zbwbqXUtZfWwpWnteugAy4Yn0raHtUUiK7sBAhwHVd1xU8NrY50QgKntXp2DJOCl9tnQ6Tv+z8Hb0Ua07eX0cV3BhFrfuF+4XXN/JgqJEo/9SF8syCs+aj1Ffow273Cru9HEap2BE5XRTPX68bFyI8gct3QwLZOZjQD+AAh3uPvbT8l7yrt+7nrkrF0SZQI4Ful4QZUu1llU/+Qw8zZ9lK+LzZxh/u5tOY7gvmMgIPiNiRNpCshoBCq/dGvaADm6uGscD0f0azmaTt1rwOLC4noo7yq4Ntt1pCCNifuz6f+NWB8Wmlmbt+rlvPq8tniM7wTQpG0BVm67RmM+YG19onocngeGi4BfATR1fzJfCY8p0FBrFe2Wij53bxcttQT1qFuf3K/l8g6tXuB3xiuBvmP8cD8xIAg3XHdB1vrQgo/G/SWAcBVLI+CL82eWFnW59QBhr7/5dOvmoDRWQOKauv+y2CuqU/toZcHk60ALGGLs8xyOeceKYCiNoagcJviHHuoqMjOz9HBjc0DEpzgBI037GJ1MZvbVmDfl/A5Q3z3tmF9OeJS2Dnx7mrv/9pHKj6a5FNKYkxiscU0PdiukAac1ADbOQtnQ2GeTJZBqxxki701ItgJF3fH7gPUE0/Nbor2ZBYLL5EndLNYEVrK8wQOn7y3cW+ApianxyWE9S1T0o1q/OA4phCfvkGKLEoMVBYJZ/2fpM0CjB7Bl/RhpFaQlxFaBuk22UBMvpONcn/cWaD1gnZbvM7/Mm1qc1LI02NL/ZLFrFhXNO63BRT2FVt0aYsVRPpsFl4OdV3O1DZSu6SM4mYDPqt2DuEQSC4haZ7oWo8OhbltexZGQlUbjVWpbFOTIc98EUFJP1p9RlgIzbsOiNLX9vOIr8uvZUFGP/s9k3ZbcjDQKOlQ2TfMLXQ1jW37vXWwArOHP2pi6y45PuT3e9fO1AD7BH+Fu4S14+MYT8p+S5uZSNmgYbWdEZkfnQcqnHQZo6cSF1IkXAYwch5G5MybPhTZTpvl3TmAEsD7zobf4BCmY48ne40F30aiGwb+53XxIHRMt8iaLckPMfwiswVZ92yxQnDfSsmAbbN0e1uqyc3b0mUUZGmvEvHF65b8H8oBlxxTxV8cZa469/uJnp/04dgBhjEv537MUZGO4Scvt5P/CqwKR1IXC/CcaN8dFdHdsBX9Rx5S7Q2oZ0Uap1w9TE1fR3BNw1dyvz2RRmhaeJeA02lXAUD0PhspZLG+xdbwFZPOivMTfrPpVAfowpM+n8jUtMUS1PzvxKNwnUU6zE5DKrLEiCqyzbwUwOn80Vi3+kyLXbHBQSzjIpac7Km1YAGaUPf/I2/8Y9eg3AbzvkWbecv38YTN7YOO+Adi6fzkUAys0VzbV88my6soB5ok00N56XvDjWm/rs5RVBWWpu05Q3vXTO8tF6+yACz8cZqTPVhUV4L13BCnfUacCEwD1XBUANfZGTa5bW7eB/FRfDfDtvX4gS8P/saRxP6wBBrdP284uL41BygRi/D+U81m0fNk9VYFT9px77Uar9c8BlARKwmKj5ahFiK/1AE1GvX7T+dJLr9cywMREz6ruqspcMrx4RN8O6zJSMJTw5QPW1plem/U63a8nJas7qVDzv+br7LTKiMGYuPCqdYIBO6ctdTYuHC630AKmFr7S3TE0pqP/MmLwt3quREvZSayItomfxaEzz7msyswgeUQ+xX0CLI3SxC5uK2+Hl2uXFaMy83l5Vd1E+jUAP2Vm/xjA9bjo7t92Suatk2kv7+i9R0NFiJvZHGAYCxmh6c3D3lT7jHQ9K4Nu680WeiSmX15se/l4AiVWksU1JQseC9le/EKvDVEOqOzMsrAlKLKFKRX4YytsMwFTz2GgxXnDCpHvdjriBsvyRTq1UsU9BUsh2AQAr7Z1Z/2hjglBhwAAIABJREFUwO5wmMdu3D6T3VAKgFVyJRpit7+CMmDBlC2q+uxlcVmdTrxVbylr2V48rfMIkFwBAB2jGe88fnVx3OKx1wdEK0uSgL0sUDZo5cLJ6icewgWYgZE0b/RZxx2mgbZ8Ler1gb6zscB9IeBGg16b8awbDAYjxUj6kpWhw/wWZo6J2lQeNPg+K58VSU1X3T2i4PiEy0QPt0kw7dvL50r5PCw6ZdfPRzaFwKtofsgFqQ5EFpjqquGBq4uwghQ9JTbq0h1FPY0z0x7Y/FgX30LZxOP29gJjNSgWFP+QWRaiLqBtiwbzZoHH2l4Bg82Cw2Cr8iYLUrZzidMfA3tKHaA1L7QJKNLFTZ+tWmlCgPYoe969NPzt0xwXFdni+R3Lz7z2rCFRXmYNyvo5gCeVXV9TkQJWb8ehgJVVfeRSXQXkHgEFzWLNC5LyRG1JY1wysMMWP1YiSvAp0ypQltrSvOpBAZEuyFLWFq+pKzT6Iu6Tu4zPmKkWkGPKB/dNxj/X2Xv5KpcH5O5rJaOYwp5SFjJClT1WQDiPWtMjH1uOgyKubjBcqkXlNiB3/9uPJv+tD1RUg87uZ5p5D2lnLp+eO4UnwzG3Dn+roMzyNZaSYX1dJ1Hc69U9ycQbbHm7dLZNW8vT4FsGDtmOEqbUgoPWLNvLq+AkrvW2EG5pftzfbEEpvIcG2ZSVCUItQ0FUObeh2X6dlNFo0lmQr37zs9cFPuOV+Yw0mWUsdjoMSzkNQBBgkY5bVhIycBSCXevWMgUMNO930gVR+6K7WAqfOl4FOOhBc5WyOB+1XAhVYKBt4Xv8rEo9CnKaugIQ1r5F+8x6YAugQ/8WsNIoD1k/c5szUsBF/d0EuqO4r93WFuvMxaugQoHPlsxnUiWGiQFKyCMGNpzOJwqy7dR9M+gSq7pZZGY/iaQl7v7Zp+Tf2vXzRgB/2d3f9oi5uwzaCsjkgRmLB5vxgLVvVIVylJMFjG4FT/K17EA0rZspdVeRNtqjbHKHECh90CwymYVJ+cp4ZHAyF9xf0Fm4NFYTtAKqrWDN0+p3Ys0B1hoStyETwtpfmjZtz8aCXYBzjU/KrBFRdRMMSSbobPu5PttjgCq7p1ooWxsOh8X8brS4bFhgVn2hYEsXyfjdA5MZKM0WXSZ19WZ9w9/RXuGjcdOE1p7lzdow+WpBboADtyPqck/vrXjKtnfrIl/6ZnOnD1tmEkBS43+yeUxpahkJrVx4k7iNJl/cmtzumM/6P+G/sV6eYj3ltCwvsjxx/SD5Qh5pvY/Rw6Gvp9/XML+S56KTdkVbPf5aAD9hZv+1mZ09XK7M7H4z+10z+7d07W+Z2f9rZj9fPs+ne/+lmb3VzH7FzP7TkyuakomcCbWJTuBUS4G3kytvEC1+Wr7uzMmE5jiuB/jWgF8JdFuEOIMPJja78/1s4VY+64FIWIR0bztspNG+jzzqqlKi/rbdbn0vvnvPgjUk7Qs++4DLwyJomzJ0nGhsCi9WwdMWb2puVreijh22JAQNts6nGnTGe0/j5XuHQ/v8eZHUMc71a/lb4IUtNVl+VQQ4n9arp0PzmFPFgsvNLC9cjrSlsWAwsFRQ1wGIca5J0OpsF+0/peCZj6MPN5wAheZ3yeP75X1GuhuI27k64K60scan6DOgcupunwzAB7/ab5xG581W3wZ/nC+eN7C2hMRvdt2wghZziuUFf29ZWzgtl3sZ5KiHvt3Iz2WTu7+FPv/S3V8O4NNPzb8VTPuDJUL3bwJ4s5l9D1APajklWve1AL4dwHfL9f/O3f8eXzCzTwTwhQD+EICPBvC/m9m/7+7JKicUCwJrr5kWzmkzwBCTsrEUSPm9CZVp67oA8GQ9uvsnuZaV2eMv00iY78h7rN+2zmbJLCN8CFxc15ge6fsmMI7z6iFz08YCugX44lkeDkt8h/Les9wwcR7VyHtn7iTCND3jIvqla+7uCHAejz0A09PGVwu5WH10vGo9ak2JsjlNBnqyedLrF6DtN3jetoyXnkWjZx3JeAPW7hTtOy6bYlSaM1YGstgA6Rkmy7ku49rtVH63LhRSrsYRNi51ZrEnfHjkyooiPDdgr9MvqeVF+4N36AFr2cB9yfXo+OAzgDJSC4nKRA2QZ7CxsrYk9yIO7DIBym1GZvZR9HcA8KkAnnZq/mMxKnsAHwRwFcBdIKByjNz9n5vZM09M/vkAvt/drwP4dTN7K4BPA/Cvj+YMIa+LYLb4nJLGhvao5sHW7pZj1pethSXcJj23EdBfRGNCKtDpAYotisWpp/ECa7cF96PywIvyFkgKITJJegUkUaZqO8f6LvpYhR5fU/CkQC8DDL1YEwUkWVoqa2Vez+Kc1P3EIDBbbNlNpH2tYKaUZ7ZrXRW68yvLq2UrOM0Wq2HjjBQqNz0HheqvLlsGrD1wVv6vTkllHlUhiXSDlLHBV92BFUAiORsm4klWrjRZ9FfghflKXCpdwCV9oec9cVq2gDSuK6qnAWpcD/cB79yivuu6hNXdrm2IOanzQsc1l6Pyh+Vstlsxky29MvndY3ztsugEcX4L0Fswt8Qwu3x+HcBLTs28FaPyuQC+DcAbAPxRd3/w0fFZ6WVm9hcBvBnA17n7ewB8DICfoTTvKNeOEwt1IBfMvYVbTz4tg9EVwfMCBixpswVRBSDf44VStRPVZJVHyITW37S46k6JRohwG4IUjFTeOludtyjzG/figLRu7RcuL+rugSBdKJXvIsCavmHgx4KxB4R0PKl1gfNuxKY0mlomRHVXRAZa2BU0Sb9xWSxg6xhN4gyyhSN4yeZQ78wbHvuFV9fFIFlQu4swP6NsJxX3nYIXBYfN8yIgWjTudMeXWnzofu8dVsFP3ZGlC6y0VbcJ6xxYgaySN90OHv21260VLm6T9FvP8rQZ9xJ9INae1fzga8C2RTkD6pkyBfSVTr7P8yVTcthVpGVWC4ovZVVryyWih9sAqLj7sx5NfusGRpn9CwBf5e7/1yMufLao/Ji7f1L5/wcAvAtz1/8dAE939xeb2XcA+Nfu/g9KutcAeKO7vz4p8z4A9wHAU5/y1E995Su+Y4ODaFu2uDpd30rHaV3S6P+tPFnarfwt3XPv3Xj32997JBXXxXQj0f8pbT6Wdzvd0lZ+Lg+nH099to+mLVk9yqfy3lL/mfbaCKzrO4W3h3NvncYffwfsAx86MV9e/mnj97Lo9Hn3cOkjq503lx5ZWx9N3z/aMb1VLpL88/V77n0S3v329zRp7vvK+/DA9Ps33axy7WOe4ff+pZff8HJ/9b95+Vvc/bk3vOCbRFsxKv/xja7M3X8nfpvZ/wzgx8rfdwB4BiX9WAC/1Snj1QBeDQDPfubH+f1f8yPzDdVUtmJBMi2aSbX6zDUA5OWzNpBZV9TdFNe1fkn74m9/Ie7/mh/Jzev6O1g5HDBcOVu2IfdOcGW+t35nPPZ4kVNFG8qeT+SxAS/+9hfg/pf+UJu3e5YH2ufSe+aZSyO7zxaIrC7mX11I1F925Qx+vs/dOCXfi7/9hbj/ZT/cf45qgtfzRjrtqyfbSr+uyue83Lbknn3Cs4C3vh2+v0jbm7aB+K9t1fucLts6nY2z3nb4Y/Op12bN07F8rKw9nLfcb9opdeuLClf5O2Ueu9fE9xzru606tM2cJ7F0VZlUKN2lpDJZXS4qKzhNXON0avEo/1cvEdQxmZWrdegGhPL/xd/xXyzy6MOw6+c2OfDtUdGl9riZPZ3+vhBA7Ah6A4AvNLOrZvYsAM8B8H+eVGjsLODI8OreoMk12Hpg9nZSRDlqiq8NGfLBOth6gvA7LSjqnV8XX/NmgpGpZxZnIUM7OmykbbJsgs6ENrdHf2dBZGpqF7N07aMQMFq3xoBk9Wb39PkycYwHsOY7W2TiOvMVFDuhemZlThf1lbHi5/uFp+B1sHx7Ofel9mOAj8O0POst/qeyBZSJd4PpLqxsvCf8+S//WvsCPS47eNX2bJXJlL2zSndBFeKTU5t7PZCi1Buz0bc9kMLUAUJ1189g7bu/SrndXTORv7drJ1MqQMCHACzz0IyrTnlmVt8RFKDn2O6fHjXvpdL6WDZmsjPu8a6eGLc+tafZxjVSZIzzqazQuJMsroX/MyDpAKPH6HLppvW6mX0f5mDYTzCzd5jZSwD8t2b2S2b2iwCeB+CvAkBxL/0ggP8bwD8B8NKTdvwAy/ZWXeR4keTrQSxES5o6YYH1wsHbd7cmMKfhLcnxv5R70gv5tOwCdJoFQ3eg9OIiIj9PdNV2esJITxsNCgCS8ctl65bhrI1NX9K9TEjrc9RyFYhGOl04dfFWbSwC8hhk8hH/2ieRPljVhV37i9uULeoKyBhYEyBttEalKFctXFw2l8XjQMvbWrA2FjLettu0p6cIxJihMr1sq65vaY46dfsy86IKS88awjwobz0AlID+5gWHxYqp24FXgcX0/OqunbCAMlDmetWaxP2UvWYg47vcb06jBZqXL0b6/CWLtr4WlMV4kWLWjIdQauJ3th1dy4trpPgtHSAxOQQ2Ygw1aTNrCt/3CShHQ7jW9RidTDbTl5rZ3yz/7zWzTzs1/007mdbdvyi5/JqN9K8A8IqHXU/2Tok66MZ2EqQFsPmQ0HdmIcgsEluCoBn8BCjChMlHZUfe2H2xIWxMF2DVArX+Gnwp7q6oLyazmt6r0Eh2xDDp9mbdvcP9p/3bWEjEelMBQkfDif6JtFvPItJy+/W1BxkAUnNvZkHg/LSIGI/H6P+Gz04dXBYDjCzgV5+L9n3QFrjjfBrorONZy+ZnxHzQs57HtzdzdHU0Pn/zeOa+BHJwqNeqyzUBH2ppmLx1WYSGbrbtatvglftOd/PU04p5vnIQcgEiZgbPdvM14C2xXET1utOJ60gA2yq9grtTQCrnUZlAClRz3gq3jYnd62x9blzrWM9bnQPES3UNsSzp5U/mpPHzuky6PfDRdwKYAHw2gG8C8H4ArwfwH56S+faxY7E2WwaXmfUHFSNuYG3+42ucnn+zdQJYJqrP2/XqZNCFmepY+ZZZiPUAyDHisrj+qJutDjpJWSgo75o+uxZl99wvWwtOVn4PmMRvPVQsKCwDzIdaHjJzca8ufsZboDezuGSnHc8VL2n1OcSzZ96077hv+VArvaft4UUrqzNr91bZNizWo1LOyooCyj/Q2R7RZzyX1C3KvPeUhGyMZvf5OywZ+n6jwyHdLcMukuaefvMYUJCUbIlexWoRT2zNaPqU5YP205C8sylk4jis+2VyrLYWq5VGrXvJHGgsL52yUuI+ZeAZsoetGfpseUzFOOK5FKC1J9+35JmO68jzGD0S+nR3fymAhwCg7PY9+eWEtw9Q0QXShnxrXU9DOLIAV9CTCVI+GTEmVu/dI0yhLVTLx2Gdh4Ud+2ijPuZDhF13UmWWBgVuej8oAyDRL7zQqb+316ZI2xNocV0FVJTRc6GFkIv7IawUlGwJHu73HmBiMKJWi3ie2cLVq5f7UevTRU/LUYG/1Z5srAXpPeVHXYE+zXExNI5rbFTkz9oQViPVvHmxygBK8Khl84fr21osOQ/N31V+iFKR9VnWP0esEH5xQVYpb4HH0J7j0myrV/7jt/aL/F5ZiRRU9oC4WoG4fAY7DMg6PABYx0pFH/C8ZpB4tpv55PEubkxj64uWDbRgha0mfC+oyDS1ovjkBTQ9TOXxkZLjtjiZFsDezOo5G2b2FOD0c9lufaASgzsGqLpFdKHsHenO31k1B1rkWJDGgsR1q3DtWWNiQoYWutu1ZmQVGnTNi9soXbB6O24yoanxESr4ot5MI2EwomCNrRnaXyw4VMPN4iJ6AaBbQFBB3DEBpr5tbf8WOGSNmMcfaYR1jCqQ0LaoBYvTxG/uVwVwMuaaoE5ut9ajc4iBQ9bXDAC4nZFfQYn2I/FYKXvOTNz3ATx786RXroIWzr8VN6blKm/cZ/RdY1Kycc19pmBdx0XW/1w+tyF+67jh7wQUHQV1hZqj/McO39pOBu6ZMga0rvvkmaauOHIxue5uY4tJz2qqoIVdQ8FTpANggxXw8uFZ7W9hehWAHwbwVDN7BYCfBvB3T8186789WYUkT25ePFjwMhCIaz0zIJC/ap7pmHDI8pUJabZDHL3dfRtuIjhs0MOcyMetria1iPTcDMRXd+t19aUPbXkhJPg5HNsqnMV7ZJYLjYvIYmJM+FF3VBa3EfVx/t6Cp6dc9kzJ3C/cPt1S27NYZGMm6uOxzmON/fYyBo/GWXDdukOJgQvzvwUKOuO2a43QZx/5ddEB0Bzznx0tUMqqW7k5NihLo27XqIvHV/acku/lVFvpf30DdW+RnnwdJ9JTeDKg3is3GRN6vVpthmWrM7+kUfM4LdJHD5TjNpQ+tXGYDwGMvo4YumwsqyzKLLQlTxO71zvcLWjDjcllNjLmw0W3ASZy9+81s7cA+BzM5qgXuPsvn5r/1gcqQTrAg47957wgIUcTrHEhZQNYA0d7ACVbSPiV7T1+szKE7826mDeThZQFd7w1Vts3jksbucws6IyJBU/Gv/Bcz0LQMmqCqV28al/Sc8/40HMaAFl8hb/Ik1mPsjYpSBtsFr76nDSQGUmaohmu+mHLlaO8Hdbp03NY9FnoIs3lZpaeDbDQlDnJy/Cq0B/X41PbG/OLn4s+M6E6X3tWI3XN6hzTvov3DCnRXFgUGQFqhd9VGZFvf1G3k/fOV2kUJQEgNViX5/HQ8tbUqWXQdQZvKWDqlZEpadFviYLXjEO1+q4CiDsKSabkqPKg7h0FORlIyZQeTXPZdBsAlfKun98F8H107czd96fkv/VdP0rZ+QveAo9KOrAHW7YGqrDRBSpzazxcGseNQEssfPSAVW8HigKirAwbmmDjVPNWYKDUi9vg372FLNFQrPqlEw2Sy1KwwnWq9QhY+jnyRp/3tFxepE9ptwIx5Uf5ZlcT8xnFsX/+WCxLtsgqPy5bTntxMEC+lZzbwm1UH3+2AOr3UFycARQVsKkmrpZSXciUL9bEgfZcEd3lBeQ8KBhwGWPaH5yX0wD1+ITVEfllTnZ3M1G5qdVCgUHhZ/VOIc032MpdFOem1Dcoa3uyupgGSwONa/wN95e2gcca13E4tPE2GUhR0rFP49NZfvesMpnFZb7ZlucTcJnv+rk96GcB/B6AfwfgV8vvXzeznzWzTz2W+fYDKipoe9pgLCC8IPDpp5E3ytzKy5MxyskEVyZAmbJFvE5sEgLRRj3/I9JHgK7WJ0K2xt1kCxZrIwzUgDUYjIU1O9Oit9DqgsGLjAoBbidr1kwKyBgg9HYG8QIVAigLRgza0sbiWvCgAJTT18DbRFvlscJtUAoLTSbsdTHIQFeMER4TUV7PepNZwjQmLMrmPJPPbS3X62KqgIrb3nteuoAqX2RlWlmRsvghjqfRvtdzNzLQn40t+l8DTPWj/a6UAUO9n1gxMkDRWLMYeCVjJQVF3CedZ6Bu67qbKVMQFYgqSGVFLOrcsihyuUykTJqeacWgRwFOUAU0c7lNDMwlmTkMuF2Caf8JgOe7+5Pd/R4An4f57LS/jHnr8ibd+kBFtdZs8MZHhQ4HflJQayWf2kl+SrAdTzC+HlTN+1O7mCuaV6EJW7SMqEc1dSa+59PadJxRFqnPlhue3CqAdEHsacRMuhDrost8xXem6WXBsFyfPlfW2rXfewd/cVt6rq4MvMbvtJ0ihBVoRV3xXxeWzO2mCyGXoWM9wE7Mg63tz9mz40Uxc5M1+WwdcKrApAeYEW7BYT0+uX84GHKw3JWiNHkb5MwLcm8By9q9Na8UcCgw6o057SPdbRhARJUeAS/NbqFELq22Mgugqv3O84Z54I+WmZWbWb05zSlyVhUKtuwdo5h/Mf45n1pbQqEAyknfkf54NY9RQ8919x+PP+7+EwD+hLv/DICrxzLf+kAFWA/aTHBn/nQbVpO6mYDj2E5i1QpUE8osDkJ1rz8vHhkvK568XUjTwqdc++Bt0FuLgrS9AXNxXQV68MwLRgAqFdBaJwuJjJ+4zwI6A0Bszs2eJRPzzPd1p8oW9awcugBlGnE2RuM/C93gTy0WCuYYXGRAnNvG7VbAk5ECV22LkoKp7HlkgHGr3NIvpnMx8nO/xTjYCvrl+uJD6W0cFuWkB87iN5e5NZ+y/1J2uF+6x+gDzWF5TJvHMCjvwtPquPwEEDdKTjZ+pG0r3vUZqxUltaqidf8ArULC1tIglicxFjI3T9MBCdhfJ6rplqP6N5LfaPKb8Ll8+n0z+wYz+/fK568BeE/ZsnwUXd4eQEU1EloYqzbQi6foCZhsMdeFugjyKjgyzV809/oeFhWw7HZg/iolloI0HfL7rB1uLTbads4T1hzV9Lg9DByOLfrsplNhws9MgWeWnnnI/M8saLfavcXPlsDTOhjIHgNPGWgNykAvC1+uUy0ivfggtQhkc0HL1zJ4HIRmb9K/PXN9Nv561zMQm4Gy3nPNwEUAArVcFMtjc1I0l8P1ZH2ZgK7mPTrZgWjlfw1iLUG+DQ89QLcxv1bPQttRfqc7n/j/FtjjesSa0gAgHVdcT4AE6VcbhyW2LIklXBhIXDhbMWR8TceR0VrRjEXfnvuP0Sn0xZhfNvwjAH4UwL3l2gjgC45lvvV3/egkkEHZ3Vasgka3Q+p/FYascfCR0Nnk5kWXhGJzNDyDm7h3SptZwByS+xpAyAGk2QLA9zh9AJCMh6wP+VlsgQMFdVkbtB7mK+rRxZepWluO8JNpVvzss36saUjDC5My85WaluOtyMjBwmBotp0rfxU8SruyZ8OkvGkf8DMYbNmZkvUPjb+66G1txWb+jllTgPV4ZTDcy9vT/qmtKRjZAte9/ufxmBDvnml2/agio7yUPHU3HsuD8Yg6P827gXQHY7P9OSieFfMwLNaduquo8wx7O8m6Ry3wDqiYN8kz7MrtrP9rJnk+bFFUizqP8wb4D8s9vh6/69y9JJOK47Z4e7K7vwvAV3duv/VY/lsfqDBlwjcGKC9owFqDUKsMl7UlvIA1sOiYEuu2U130uayou8l4TJMnTWDLjJloLiswwvcYDGh8CPenHjDH2j2Xl/W9gq5M4LPWFcKNfwPtttrgt25FpVfAZ2Ok8pKAFF3Uuf5II8/ODwdY1daS9tTnI+dmaHm6OEab4reCJ76ummpzf2jHjY7vxu03zCBF6vLJ2y3UHaDohwPMO0Jd6rVxaBfzDFyGdULfz6Njk5+lAifmWamCftlKrovqUNxR8yEgfeUhA43Eb9oOBVSyO23rTKcKLg6H+V1BMQYDKDEA4tODpf2Vr6xNW/211fZyrfKhfcL/t+ShAlcmlX+9s5zSWBT6rcoqpZ1Ppr1E9HAbAJVyEu1fA/CHAFyL6+7+2afkvz1cP5nJMkgDQYE29iETEJlmyqTmaDZPqiWGhZIKdra0hEl0ywXCZtP4rVqCmv972x954eK6em1UUm1DrQfsJgpiDVe13S2tmvnVuBZtJ9dV+ma4ctam0XZlYFS164i5yfIyjwO9GZvLyEzSXAYLfOUjnnW0SReEwdqt7gzIQgtUd1zPoqICm9sY9ZkcrsXPUhap1W4LpcgzJNp+Zt2KxVq34XLd2Rk02VgufJtZ2+8BmLnMJK9nrlCg767iMRRtpmPnm9gOlQXKR8/CEeCCt+ADq4DYxgqsgDF7IeNA25p77kjtL7XcZNe47dSOOuZ7z6ACaV/tVmvezxOxeVvKH1tK4nfTRkO8a2h5g/IlWVRuH/peAP8PgGcB+NsA3gbg35ya+fYAKjFogbXAyIg11GyhzCYIX1MfJmubISQ5IJLrUG2DhH9TzpC82C3TLDiWQHdV8De3I8piawinzbQSpeiHaB8LZwYuUV6Wn4GNEj9PPQeFv3ULKfNbhE59qVqmgXXAw+/8L8/GcMe13JqRtSXK6oG7HlDsAQUGpQxAsr6Kccb9z8K2J6QzXrmfeLzqdV1Eebz3KCuX+c8oW6g61odUg99a7KPJBxrvPT7UUtAbT0ABcomLTl3J0r7V1mAtJ+rOeNT+lGvNluTNWLjEnVPqbEBQp34ziv8hq1EzNwbZvhxlM5hhpSJpb33pK9D2qw1LHGDcW8WcoJ0T+ps/EVsY7RvH+vvSyG/C5/LpHnd/DYC9u/8zd38xgM84NfOtD1TUMsADWw/0Uk1n63ciSFZpMu2BF4sgPVeCqB66JpYS31/kJl5uG9eztejXSZaYZjPtXM2dobVk7Yz2qe+Y+WHBxgsa91UGrLh+fY7xzRq7ttGGNsA56ZOmLLJAPO0vvA3Thx5a0vbOutj6z8AiWTyaenU8ZX2iQrcHNKLtPStO9qyi7bxgc7+rK1THd89alFGvL/hMEl14O9r/qkwFTJmmH+m47T1LQGj8ARjCKsLPIXl+zdyN/op0bFnJFAvqg9T9ovVKH6RnNFHZ9R1hOq+Yyn0Niq1ApCMTV7Ep0RdMh0O7fTl4YeWDzwjiOcr9m/BbeVI5mF3Tc3W4jibtMpa8p6w8RscoTqB9p5n9GTP7FMzBtSfRrQ9UAvXyQGThz5SdupkAkubV6tlJjT2hposfa9r8nwVaTGyaAGblxVenaqek3cVJmA0fJX0TQNjTCnpbrrcos/SwyZXbsbWgyUJdX9K4RXE/DhPb2sVA6Wp9rJVNLJA2hFqPhyAGzwoKYpxm/cCLLZfFQFYXRR5rbOXS59azLOhiqqQLQFam+vvjXjbG1IXG848XC7ZaMC+ZNSgDWpkVRhfFXruS9m9aEzS/ygSfGvAQc3R1CGNGk7x+IP73wB6QBwpHWgY/GYDjMgUoxRH76SnWNObSQNooM1Nq9JvnDYNzdmNnClymbAVlACTGgcaqpGAlbl+yNQW4XQ58+2YzeyKArwPw9QD+PoC/emrm2yOYlgf1YKjBbaQ11OAx0myaF5MBdfCz/7b7xk611jBwiKA7DcRknnjAszXIFj67L0NUQU+Tsnl3EAdNZqQ4/j3iAAAgAElEQVRaUQh6XoC4j1VAcBv5f7QpW9g0pobLl/T1xXJqlmd3TO1TaisDJOY50nFZStpOBRfKTyY0rT0Vtf5eWR7Ks1u5Bbg/0eaJscf8Zu1hHjhmhdPq2NUF5dgOMUj/a16A+svbtkW9+qyApVxLnqXujsv6IlMehhI7NI7w8/OWB00bxZVYjeaE26iT+yuzbPD1cWzAQfM+He6vDmhogEWApmML5pYyIpQFzmYvbVy9pDDoML/J3V3GU9KWNLg88tD3SjZHH23JM6rXD4clCDyTOyrbdH6X79mCYut7jwXTPixy9x8rP98H4HkPN/+tb1HJYlOCSHg0gCMACb+LIsvLZbKGyFora69stg1Bq0JTNUU2VbM52qdlcdtoV0MceR/EICasHFk8AQOenssgs1JoG8PdkgXPxSRXSxOTav4lT8N7pJOD4GqgmyWLYaTfEt5ZDEjkZ1ebamXBKz0rXtial+Q12l6x4BUN+6E//YfbPiiLHLexPt8jcQaVh8yywL95vCqQ0f5i644CuWyxjjZTW5t7W1pyzAPdOqt545pao2JM7C+o3uTZMqDgviAlpfbjliUs65Nev2TzLrHuqDVX39GzKkv7rqRNz1Rh2ehtu+NaY8mJcvm7/G6suDx2svGQXVNZMVCQMcdZsYwSOVFdMsVtZAxo9ZnFHM4sJ2JRmeNdvL33cNycjxEAwMyeZWbfZmY/ZGZviM+p+W95i4rtdk3kfKVM8OlkzU6wZGJBI8Fg832x5Ch6j8VLTz2N9LrYTKRd0/bT5sVqyhew1KnxKvK9eiPvsUVby4u6NZ1akHrndKi1IBMkGciwATZiLVCkT1bt4zaUb99ftFuVlTd+jrwFWBdCLj97Fkz8LJpn5wXIzG2486d/ZT6iUfsgiC0vmobHmi6YwVf0/bFnG5YctYppW7OyeTHRtmaLZSyqur1Vn4Fa79SyVNvSLvpVqw5Nm60pGbjg3zp+sy33mje6KntbdbZIS/7Ip/kbq4cCyh4f1brQAWhBKqPCctN7YzTzUEitPqvdhFnfBvW2EMc4ZLnKso6sbZZZ1tQ1mcmZcFdNDhtEXqhC2Shwp1mrHjWVqXMb0I8AeA2AfwQcP4lW6ZYHKlvb7BpiIa4mY548vMgyqSUh/rNpOlu4MtN+lJEtNolpdBV34dOcjkEUE/PXE7rH0skiYGc72G63BJhGW6v1ZGwX9i2g2AgtBQsyMxuXRQIK1DXCZdXD0hZBVc83OdpnQzsmghdgfYZJT3PjtOki1S44tW+ZErClY7NuJ+25I1d9LIK7N25r+iMLbE/DbMBFMp/isDq2MikPGUCOZ6tgXMqe3RGy8PYW+QbQD+1BZ6HZq3UryRv/a37lm/nK8o+2WBSojrBwOLwBFs05LMxvBn542/FE7h0aN3a2m61QVHfNl1lUoq0rJU7anT0nTacyePJ2rq0AtoxrAI3SRACoASKqVPq0BjqJtaU5jyl7bcFjtEUPufurHmnmWx6obPosmdRnrgc68XcAASBPF791svQOTgP6E7hbbmdxSEDESmPhcuj+yu/c4yfhw6eLNuLdEoGQgZ4oKwORWd658FaYZM+39L2NA6bz/SxAtuqrAqpjVeATXpV0Qc8OuFvxJkK3R8kC3WjTGfhgKovbbDmYgNHaeAo9iJA9iT3tV/OyZYPTbI256M+V1YrGFfefKhtZ36mlhuepjiETiwaP5ThpVy1QpYxm4WdNemuhzZ6LUunrzGICJFYYnYNVmV/6pMakZTIjAJpTu7g8PmiuWl8OCwDi4/zjGqS9ChAVPE5SR3ZCbAaSjymfej1zEdHzNQbDLMeyIHC2aM+FAuMIw+x+9skvzaAC4LY4mRbAK83sGwH8BIDrcdHdf/aUzDcNqJjZ/QD+LIDfdfdPKtc+CsAPAHgm5gNfvsDd32OzM/SVAJ4P4EEAX3FqA1aLAC/KEUi4tWMDWJsVWfCyxUDzkCCvLihmjQN4VfBlGoYIzBY4tfXWo7V1IcjcLlUITdt+dl28mXoWGdV6OaA15EH04Za1SQWYavbRdnFJzEJfDnLrWXP4mvYB86gBsyuzL/GTubKyxYvN0JGe+eNikwDvLnAdDBiKYDWDn++XewqCeoCJ26jjhvOpFUT54bw9cz7zvdUm1qZ7c0XvZ2kTsNucDk28r06JBbCy4jF/tMBzG2ogJ1FzHH24+9QyQRaf7MTapoyg3oGNmdLAQFjdSMznxQWc5GDd7ePSB0xb8kLlKfVV47rP8jbM9RQWX+ZtZoHsuY0ijeZbKUfezAMbBPDfbLo9gMp/AODLAHw2UF0/Xv4fpRNMEY+YXgvgc+XaXwfwJnd/DoA3lf8A8HkAnlM+9wH4H0+uJQt+ZNNpCKOJBhtrjcD6rA1e1FRQK5U6/OJidT19Dwb7PuO7aofEEwvLRKvsHlKlC2wsLlG2+m+ZerERwBJYyX2X9Qe7R+K/au3aH5FOA2mZemBBifs0ytlaMDmwOHP5cZuUZ6be+Qrcvl6MAxPzzeOC72kw7zTNZ1NcXPTTZKTjJgORURZfj7KZR7aA8ZjL6ov+5nKVb54jcZ/nsZaX1aUaOqflscz88tjZOo2YeRcealwM8VFBBwOsuE9By93AV5/624KVhvak1ybGLRvfRO5rQLs6syTjL+OrB2ZI5q0CvrOyOPCVy+IxwvKB5w3L70w5yeTK6hiLdi7OFpVLNKncHvRCAM929z/p7s8rn5NACnATgYq7/3MAvy+XPx/A68rv1wF4AV3/bp/pZwDcbWZPP6miLRARxAIJWEyCK239kOcL2hLsvHthqwzmmd0VMTl0MVMtKSYlT142q2o9rG1klAEPFgJxT91arI1q/uB9C/hk1xQocJlc1tahSwwEuY4MWKl1KTNN8z0uL4AHa2Y6zpR44c0W4EijCzKnS8gP0xxXwG1lTTGjjFetLxun0dZIrzvNGJhqHQxquJxsHkV+3Y6c8a9gKZszagFRkFFcMqt2BWndwefW7qvM0pQBaLIM1Z1G6pYxOaU24iWy58fAKMoCKnjpAg8dc1maQs2OIB3DTAwY9DuzLGdWIWA9vzi/Ag2VPRlPmfzKrsft/UWdU5d9lsptco7KLwC4+5FmttWgvYFkZs8E8GPk+nmvu99N99/j7k8ysx8D8C3u/tPl+psAfIO7vzkp8z7MVhc89SlP/dRXvuI7bhr/D58cuEnOy3vuvRvvfvt7H2GdN5qvY+XFmHo4dS7j8J57n9Rp6/G8j4yvrfYcawvnjd/6ndPyTI+l1+tbdfbyHKMs/WntOIX64/fR0M0e+w8/781pZ49unrw5hS63rUyntvvYvO7NNYDH/dzO9zTX7vvK+/DA9Ps3vfPveNoz/OO/9OU3vNx/+60vf4u7P/eGF9whM/spAJ+M+f0+HKPyn5+S/yMlmHZrxLQX3V8N4NUA8Oxnfpzf/7Ifnm/0NE7VZjRNz5faS8PpgPwFXlt5gdZCcazecv3F3/5C3P81P7Kky2JNVLvK+D5WZ0Ycg8OWm14wqfKkvPTylH558ateMLe1U256EB5bQ7R/ufwtTYstbtE2DbjMrDDA+n7Wbqnrxa96Ae5/6evzWIyod2vLca9t2XPuWYqyfFtl6e/efemnOn57czT6MOMdMs/U8rXBVxOgqjyfKht6z1KtATFPX/bDeeC6tjNrs7R7laZ3L6HuG5A38qS8Yd3/ZoYXvfLzF5mkZWRt6fVDNmayZ9w71VbnCJelsWEam7JlbS7zeJ6nP7SKr7k0+vBYQG40feOjyXzZQOV3zOzp7v7O4tr53XL9HQCeQek+FsBvnVSiLhwaOMWDKhv4vL1VhXQ1WyaxC9WsuhHFHkG42QKgZYWJWlwcPvkqMG8uj3hkt0wveJiDXLPYliw9TeLGLM5uBT1vQ9vApl5+Jiqc9Xmxm0T6191akzsH43Lf1L7ytpyei4fS+eEAw5g/L85/zFSeCVc2k/PheHwWiW6B5rGYtU3jHrQ/VTBr+U2ZyfzR58V18cIT+cZxvXX22EKVgIVm2yiPwQyIJsAiBSnchmMKzhaA6bVLwWuAJgYO07INugmSjXK5/kT2VADWAXYA8qDsDkUQbS84N3YMRRvSV1WUOrJTbSvPWUAuz6fM3RN9wnI1czcCx5WRSK//Ve7HvJwGVKTAp24/Rg+L3P2fPZr8Ny1GpUNvAPDl5feXA/hRuv4XbabPAPA+d3/nyaVmwiQLjNQFtBypXf3bg7WDMO5H+vjmyakxMkng6+ocDs7Dgoiux9tBTQVrfHMeFmi6eCoAyvzCSlFOfOtCG/3EgCfKUr85ayu9gFrma860XNsKZM3ikw6H9sWEDAKDdwYPnbiH1XbnUsbq/UNcN/eb8qh1BcU47IGmiK/QvoiYqt4z1PIYwGb3ok4FdcpP9KXm43pLv1eQou3WRT6eC9dR2uWHA2CGGryodfbaH6SgoQCGNGhdedyyOjAvWkcENkv6BjRFIOnka+sgsLz4L5vzA2015naqUjatT6U1k7eyE2/1hNkAHBowejisd+gwxTNTMMLtn9bvLmoAc/zPgpvj/1YMmY5xnVtqQQmeY5x62X7MChno1OvSD5fmcvOb9LkkMrP3m9kDyef9ZvbAqeXczO3J3wfgswA82czegdn08y0AftDMXgLg7QD+fEn+Rsxbk9+KeXvyi06vSMy/PXfEQGcDqGafWRjCAkH5WwHVWXRVy2IeOY0udqJ9LVsVRXPMyldS10e2oHPazITO1hIgN69q25RHvZ9p+lxvvSYCOHvvDAMvsUCsXsrW4x1or/e2SMdY4LJLunq2BFvNsi3L2hfN7paO4OV2qtap22Z7Wj/VXc8PUa1d8xyzIkSf6S65RPNvLFwZ6Nb/2Rg9HOgMEAKCsaAlp6o29Ut79JCzruVC+KyWj2rRkP6pCYXHjKcsaJ768GjsoAAXlRHhqlVAs9plw+AnOWSu6YNMTvR4q4VMq74++v6yeM4qKzLrec+6EXWVk6jrlnHdARmgjALj16fc+qIwbrmKbgIZLg0S3RRy97tuRDk3Dai4+xd1bn1OktYBvPQRV9bzV7MA4MX/gFTTat02UocIfRZazf1efITylkz21UvkssnM7VL+I80Bbduz+mKB5PND+LqCt+Cn50fO2pvFc7DLCsgXab6vB+9pPdxXPbOv5mNTb3YsvfbZKDzQvZX5Xd2OalHKgF6P7x4QycCEjruE1+b9JwyQ1DK2Va7ywml67rQMoPRAUpJ+mbd05g7vktM2bc2NLWDWix0rv7OdNKu2cj4q++iR+sof8xTu4yytgpVyrQEoWXsyYJkBHj6lN8ublNG6uBK5nCkefC3SHYsJibEQvzltGStxEnVzdg6wuK4jb/Y7o1NcS4/RDadbv8d7MRHAeuIH9UAAD/Yjg7Exa2vZTBmo4O2S1I7m7BcWBDxxIl8x7TZt05gOXii1X2JCcluzo/6z9jFPUU58mCfVfhQs9LZ08/3gT+uNPLpFmEm15Ow5rc5MoHxsftbyte+5LtXIwvzMmnvmwuK2scAOys5hydqu5WeCPnP/lDY3527oybjsQgseeUsxj5eehYV/a1vjvo5vHqc0LqqLJGuTWkuyucgygtuq6bnMpI6Vm0TSbJ5FomOU+y9brAmQNC8q5LyHQ73XuHqG5Vq9z9/x/KYkpiTrs6TtWXxKw58CaiA/oVrHhbqVgdYlGuWrmzNz8+r1XhqgPS3/ki0qMwM34XOL0a0PVHRRB9aLsw7+3kBjlC0gok4CFmJRf896Iv9rUKzGiYSwVwEQsRbjCPBL3TTwTOq3cWiFQgZ2tO/iv7ZBTa+clrXQmPjat/F/KwCNy9dnqLSl/etimi2Amk6tB8yP8tTLH5/DIQehHEuSAZCsbRll4CgDL9nZHizEFcAxn1YWp4iB4XvBY2Y5iO9j7oHoG40RyfjRcpI0qRuB+VHwvNX/vTZpuZp2SGJGhJ8GUEVelUtZGzj9FihQKs9R3+8T5XJAbPMtpz5nPKRtz4CLtlf7nuWTHq7HspZ57833SJNZXkOuZ/KJZJ4rGA5XEHf5ZYOUxwjA7QBUdMEH+nETqn2yIGbNPf4HafpMiPAA7pzK6efn64WPBSIvcINue060BUkfQqYGvPGnZ73QMrIFtaexAtsApMdrlKlCR60MW8KbhZQKoExQsYbO+Xix10WWxwPXG0JVd0hw+swXzv3MMSr6TDLAzABDx63mV82TFgnn8cbls4VLQQk/GwXqDAq5vABt2ndRN5vtud06hxVk6LhJQEdjQWClgPlXCutEBmTiHj2/Jq3mUWAy2BJcy4CjB6iydkY5PZeTztvS981R+Tp+ekAS0ofCw0oxYotMBixUvmTzWi2OKn+yOZLxr/JIFaXMkliuGafhuUL5PKvzJtOH68A3M/tcM/sVM3urmf315P69ZvaTZvZzZvaLZvb8G932oFsfqPS0HP6dWRAYzWs+LY+tHjrxonydINmAjoUskH8QL0xdYezthM4o440XDk5zDFj1rAh6PfIqmOHFiNumC9sxDYUtAby4R90iXFIAEBYfXSijDG2/Ckju715grtYd9bHLip9tWMm0j7gPmZce+OoJ7LgWAK30Rw2mzQBH/ObdbkyxyHE71FU4eXudeeE+ino4jboss7GsZcR1GifxpuCVLFCwyryhs6iXMhT8r94mTH2ZxqOoa47zRV/02qs0EDCI4gP4RJkKokVp0f4xVmQKIAqw0riXmD/hqbHMcP9lwDLGW2b903oYtMS40LgSKtNZJingVRnC5fC4irgWG4AIZ7WhDbS9LPKb8DlCZjYC+A7Mr7f5RABfZGafKMn+BoAfdPdPAfCFAL7zkTdym259oBLEwpMXQ17gIh3/7gkCjblAMmFV26sJaVFUV0BMXhbwujBkwhiUv9Oe6iri/mCeIj//B9aaNJXflBnlMn/qipH8TfmxgGeCJMsXPOnCZ8P6GWhdulCyRs6ULSDBCy9sGWDQujOLUy9+ZnJUKxlZYuLttd0YqQA58dHnCqz7l606DFiZ/8yFFPwnmuWqfT1gzosxxwJk5TM4YQ1b+ztbLHicDLYAi8ivu4OivGzRLX3TWD0CHIzSJl5MGdQwMEoUgdXONK2TrREBgMwacMLH7Fd3HZepNFiNTVHLjCcgbnPnEfFU0wXoV2BP7WvknwKqSJfJN87H4yAB+Ksj7hmMaDwVW2TjeyWHaHzWMXzCan9r06cBeKu7/5q7nwP4fsyvumFyAE8ov5+IU88+ewR06wMVHdQslIG1MNfFKK6DzJ0h8EQraTQFReEqvHQy6WLP6VVjAPIFSLVYTs9aXhajwWVlVpXgNRZCFoAZzxz7wtp78M4LTmj+7P/taVrZ4s916r1oFwNL5St4y8AK85WBHpc+zRa2KEd5jmeVtXPOtCqjeaEdl6t1Z1pn8KjauT6P3uKs5fFCon1H49v38kJOLmfVZmoXAYvqJtTno3l7/Z/FxmgfbJVFeUIOsFVk9Z6cAkDYktHEZjAPvXgybesgB9QJn807ewTAAOi6dyN9xKvotmMNutW3kaeARXiaMw5rwKtjMVMOe8qDppuKlSfGuVpze0pBXOO4q4hlYZkU6VYuX1HufLpcnOI34TMfG/Jm+twntX4MgN+k/+8o15j+FoAvLcePvBHAVz/6xuZ06wOVDFWzZpYM9mYRIY0rPQqftRReTDONQH2/Wg8Le9WaIv2WVs6LEbdX2xfggCew9gcDHgYaLABYG2TNlNu7OnNAKPqIJ7n20crK01msepoiA0sFQCy8FFDFde5/Ni0z0MgWugycKM/RvmThAYhXXqg5HQtY7Yds51eMKRbIq3o7beD0uqhkgLdcN12MSjnVGqfaLP9WQKfPL6mve4/b1JljaRyFzI2V64KvheVjnMcbywxd0FeHAyqgydoTedV1laUr/EXQbM0n5YTlZQU4pK9rujIGGtePBLuudjnxs+s9Q5V1WZs5fWVsUUDqW+NjzKhSyvnUksUARK0nNE6d8tXfOk86ePkWone5+3Pp82q5n7VQB+EXAXitu38s5nPQvsesZwp+dHTrAxUFAqwh62TIhG78Zs2uDEozawWo5tUy2cTY4/VYGUyrBRxr3zOwBi+RJ+NbBUCmdWb1cT/F/168TAbI4vkci+VR/jJeOR33gS48HCui6TOB1jurJbOkBLDgsrI+5sWSr7GlpGeyj0Vht1u3IyO1nMR3z6LH6YIXjt05hYJ/XaCM4jSOnIfx/7X37cHXXWV5z3t+X7gUIgkJMJSEizWDMLaESzEOrQqxTLAOQQdGqLUoaHQKKg5q6WVsa3UKvSGO1JpC2lSRS6lIShmEAZlax0KCgtxLQEjSUCISQESF73dW/zj73edZz3rXPr/vy++yz/neZ+bMOWfvvS7v2mu961nvetda1XLo6Jmo/Ij4j526h48In5MQ3jGW3xuH53Q0H04O2PLB+aDnqoEPlfno/xG9y4W1y4IprzqYCk9EZvIxPF+VMT3jaUXLq6uTnNmvheJvrEjcvja1C/8e2kOz9wvrDE43aoseZqi3FcFQ63fk2wKM9bQ9HXk9mDh2Z9qCk3KmPcixNs8F8DoAKKX8LoB7ALj4rgvdYvuJCrC2AriS0tEgj5T9v39HDcr9BbTxq/k/Gj1Ec/1R4z3oNzd+/z9FuBRMPLwhq5VBZYjKRKbJQihJY/l5lK/xcNn69tQRYWLlpc7BPj+9t2jNumqNsEU9XeEdvE6p6YhLOuIumIhouUQ+U42pmcqnLGvHTSUZTBS0LDWvOjqM3pcocR5dNmWhDon8fnqyBzJuPNRT65wQ1srRleXU9sZE2ctHLaacx0iPsPz+28Xrna0TTMU2RIfia5ZcTwxwSinVnilaPtU0lspCaTVnIlE8VdyDZaUiMVQmXWtRRP65vrgu0jDedlkP6WAk2AtpdISNrCjU1qolydpefCpWcTRGgz7KEXw240YAl5nZw8zsblg5y94gz9yCYQNXM3sEVkTlj85OyGnsBlEBamWsCrm3cy3DFW9vDt/T0FF7pJwVvVG1f/PcaWSJUERWm6CDCEdtPA3jcfU871nJ9+aNPQ4lHlGZcPkpAbLF2oIVycN587iCdzAerMbPqhVnQXvaRGl4h8YyR8/xu+LOnztET587dVae2jE6VGkqQWXZtczUSuLfrLB7kHuVouZ7U6ufmMj4NKSXg5Zj1IEBTR1ffM292zT8t5IRzqd28lr/1FIVWWOUsLj8QHuuFIfhurQsiDZea/IV3XfCoKSDwo8rbpj07e9XpMf1QUMmpK3pap9mnxXOn+RxTG+TvAzVBTwomtLHQL0jMj/POonjFWv76I8TtcOx7q7iLctSbbW/yyilnAbwfAC/CeDDWK3u+aCZ/YyZPXV47IUAftDM3gfg1QC+r2w8++HscNynJx8NKsVNfifqHMoVOlIMXumXnU45IjmRwomu99L0jiaa2uimJQpguWgb+94e7B53R/mzP2/LSsHKmZRaONINRlzNVuzciZclmm3z/VnP+6BAxuMDorwu5cRYLR9Pj6duFjYoGiINnB9OQzu+qJx6W8Sz7Dp15OmxRYjvM2Hh7ca1rir02ia5HB6fEw32M4rS0XCcb61zCn7HHr/XGfVv0vi9vAYSuPzil6bbBMvde87vUdrVqpWo842I2MLgx1QUOEkNSJgXw3Dchh63oNvTj1M+TCz2rCYhLMe6sNZ54zSFVIzxRGQ+yjNZ8ricolVDmv5odVEnaRmE1SdHDz8iAgzUcek0LcvCdYtJD89m+uCCrSz+XekPwE0Qvh3/ceOg+54cNkopb8bKSZav/TT9/hCAJxxHXnbDoqIWCK3kPKID6kbTc04V60QVLprz7+WHn1ErAY861DzfxF/aOPl5xhDX8kt/Ot2ZRKMcdygLTn+t5NB4ep0pl2fPP6XxrQjkBI0WWaboHUbpO6IRYW/KKswbWnl1NKaErBd3L19R3VKrAbBeyqzQKUrOm8fHncHUPjqbCByXTWQRijp6f36KGLHckZP01Cib44jIP6Xd1HPtUDW8gzv6aNqCZCinT9ckQlcVkVWEfT54hY5uIBcSbLrnckVTMXxKsi559nx1DyjkfEf5WlhtZQoGQVU+eUoqGoBwOC9nmb6pyp+teMtS6/zI0ujhFWppVr+WxLFiN0o9IgGqlP05vqesXFc8ONg8HHV+UX44HzqSAMbOpHG4UwXe6xi44bCiYH8Bbczq1R5ZCHiZnpKAXvn2Rp3q4+F5isrPlcwq8ZpITsnu3/4+e1MpDCWabNVQX5yFrf1ZpjpHD+vb0Ouqq6hO8OomroOqiJUAjCPuvbqORx0nlyHngZeST5GG6B1wW4ssI/qJ7lG9aqYIOqSzWprKdY9JFH9HpE/qMnfafJ1RbVug7yuSVctSLRvsD+L1xO+VtaXB888rd9Rq0t1Bdkizsnw4OWDSUdrVQGM5M7zOyWqk5oRlTZPkbuLjMuOyi+qr6rgxMcmntwPXd2yZ1LYQTb86qinaiUHNcaAcwWfLsP1ERRWpjgB7IzHtDLjTjhqRjpio8YWKVpU5h/GGNDViayCyRBvE9QjSGMUw9+x+B27+5k2sPC7t9KLOMhp18jPqD7NJTvUt4BGRyhFZnpQEaV0AWnKmo2QmtUOZmlrimGxyurZYlynvAKtWurEuBaPHnvKUDq3Ktyp2rXtKRFTZK7gDZYXu+Wb5uQ7JM9VuqRqe6lXjhMpyUNsZpyyibQD8W9+RysV1Qrck0PvUsVdt3O/1VkZFekPrvP+nKaiws1+snYUrn7OysrZMTc+qNSX0TendH1b56Lk9Tpia5dARgfP/qk918MLPLqxu8xFhisqy5xStdTcalOj0T4Mt7Nl3DNtPVFjpaYNQpcdheptiRWw+Gj3RvWqO20f2nHbkAxA1bFWuUyM1llVXVqjTqjZsHr0vglUTkSm7V44qj6bTU9B6LVIQ7AQn6VfLBDXs1KinNx5O6hYAACAASURBVEWhRE/zyx2YX5/q7CPy6On08ufv00mPjv7cUVzLkDt93RnU6znXlch5mjsRIRJdMk2dQOXgOTw3uZqH09Iy8Huefy4DT7dHdpU8a5uM8s/PAc1UCBBYOjw81YveCcpKcipSN3xPHmo4vINmc7WoTlIY9XcJZViWxkrSyO1J0sZwld+M6tmoHZH8VZ3k6w4mouyn5fVXBiflq6fbOtGz3LKuie6HAwWr7/G1Y8BJnfUzJ2w/UYk6YWqclaWAoYqLR4/aiIK4x45IGxuPCDr5ibbmDmXRNPUZv+eWAJaFf/c6JrJMNOZezVdZtnnxTlevK6I8e3hHpQQGJcjycfiF1WeTaIejoybtvA6K3tx1QJyq/OlITeMclWpp73M+efdfDtsrQ6DZVbSpsx5Pj4CpovZOnvPHcjpxUrLs3wup61w3lYxxvEq2o7bmcfag5FvzEoRv9jCR/EVTMOM9ncbtEPXxOS6/KO+9a0x2FrbWc6xrnDT5dG8wRaP5aU5T9jOThnDVfU/nvFOx9aSXd9ZHMmAar0V10BH4EJpaQfXd6gA0IjH0v7gVchxUUFuzBY51L5VyRJ8tw/YTFW0YVDmbUZ4/D7SKS5/hRqcdv1+PTOoTGBWCKjSgnR7ya0qaoj0iOM/akelUhyqH4d6442PPehNtNNezKPSIiRKp7jvwkZtMuVCc4dy8xhVNBTnJ0M41ctj0MECfVEUWAb4/ta8Ox6XvmAmgKm4ux4DEjfciws1yehmoFYPfjecxiouJU7TrrG8SxvnT9sLyT6Xn05Ymcg1x6tRJlUbvv3awIAuBl3/k5Fx1ktMqtFoho23KpwpJhvHTq9/DN09HqR+Kr9gxi+uHWkn8/J9mOqcsa2vxEAcfzFd0D5cozwuSJ1qto6t8yrC1AhNZJR89sqBTg2o9YRKt1s3hd3WKcuCjYj7ISBwbtp+oAI0pszEPioJplEBwIFfvfnOuSTSijkZJbglQL3kHL8dkhT2mXfodk6bHnRQrfe6YWFlssjyopSUa4bA80bbTTBBYTnaAHdMNOlx5R13lz2E4D1wekbOxll00ncbyRh0e52HKIXCUZZ1O+erpuFxZDp5v17g1fSWk/F7ZQsKdhJrZPf2e1UwJg+YBqFfVDHKE26/3yomvLQOfjCEPzYowjkdJD9fhqM4oUfPntO5yuhGRW1jt07FoV9j4cyvLxAI47zzYPe9Zk7zOe+5ZSXyKZ1xFNGHpYCtJM4AKiOZqi4Ba31Q77UZlCyKAumw4Iu98NAEPVvzjuqpnAdZ9i6LBht8bM7isyEy10SGofUxN9x4VNllHzuazZdgJolKdlAq0SoaV7SKYO+fntWPz+/6o7lQYKWie3/dGRSOdsKPp/V6n3F6f6nA1PidQagUC1k6vUb7YDK/+DfyMyu/fTBD8Ge3c/N6oAK0mnGpV6JEElV07Gr+uy6Q5jJeTrqJRTDlS9nxQXCaObyij6vh4C5R+NK8fyaoy6zJk3Z9F5dA6oNaSKJ0eIWBZiGgrqWg2JtR3rtYM/a2dcE82jr9nWZkq305nX+VDrw2/q2kTHjiMlpx9YLkElkuUv/iL7iaMzZb1mifJR5UeEFq4RkIzPMP+MhXZWXSsQ0D9TrWOMFHw+/xuo4FiCeJj8jFlKY50YtTu/Jsdad2qEr1nv38SZOUcx/aXOHdcvdG1KlsPF20pHjF4bnhuASBF0ni+sxIiAqB7E4QQZT8un/T8TREyhXeMbEXRtCBWIlUy2mFPOaBN5UWVTRR27FSJwGjHX1mZ0CF1WN+LnEL5vzrsuiKKnC+jfHMe1JeETcthPB3lHHV8np9oilBHsXxPpw+ZFEbgTlTj5vfA7YOtNpw3tkJAOiRKp3HIVPn4+ciy4Wkp2ErJ+eZvzWu0Qq9HBjW/fJ3T2VRXXT+UYf+T5dqaYGzVWNQOsk3+KB88jcPTOs25PkpIArjFJApXnbwsda95XgmvDrS4DKNVjd6mVJdxXYl0ooed0IGN1VT9y07ImmJAOtPihIiKmX3SzN5vZu81s5uGa/c1s7eZ2ceG7wsPFpk0kJ7THf/3CqvkpedzEikYalzjDoyqRNlE2VOQ6vylI6J9aSweB48gWIFHZIZH1cGo11TJKqIy0Xh0xMkdC4fv7TpZpTPx/lThaV4iZ7qeXDwqi74PQrwYupSalzuHz1AZeZoRgeZwPUUbKWclXdGIsrcJn/7ulbvHEVlitE6oVSh6J35/qNfVCpkeueJwB2n7PQQDmvC0ZY6LLQJRXdU2wvnqWHDq5drLyooRTh0rWVnSGT7DPil6ynPlB0NEaZR5WS9BHuNY0jMUpuwv12SFwnTLXOujy8BHoDC4XfZIJuscHRBFDvBMlHQaSMHtqWcxPSqUI/hsGU7SovLEUsrlpZTHDf9fBODtpZTLALx9+H/mUHauJkRWnlM7cupISjt+foaVOIdxBT7FxHlKozdyi6ajNA1P2zvYaKWG5s/hcdA0VSUfX2dipGXK8euItwdRNiUwedspWlkQmYn5v1pcNA1Gb/SlMnE8U74n0ei9sipQuP19INqBl5WmWm204+b3oO/Cp/OmRp+RjCoHt5VeZxx1FJpHlj0qlw7BqPYQ6U3Zaflru1U5O9e4o63S13D+vFsM1KI4PKfTNM2+MkOeww3lgMq/xwmK7mPCaKwawbt268q46+2ydUzXpdIjgaEpuvFUZrM6b0M6PB3f9cvRvWm8LCMyorIE5Kxq90wolIjwZoeV4PW0TrW6x2i1T079HDvmVOJXA7h++H09gKcdNGCjYFhhqRJhBcmKXFl4xNr13pSy1TCixJr4qNNs9jXQ6ShV6tqYo9GKhok6fC+H6DrHS/ebpdbRCJK/p3ZsXZb6sEAf6fFKjJ6SULIC1Ktnoue5k+V8akcdlQXL6+loXYn+O9nZ2wPImbZCRO4GOZqTlOV+RYSiUWUPaolU6H4s0XvWPPl/ndJSJ0h+D0z8qdz8lOAxTs5DVP+iPAlpqlaiLEvV0U6S4eF/syJGBj46TVMRAJaNHXL9WVkhqCt7Gl8RJgq9fC+IoLiuicgC50HzT3E11waoz1FlESJdHZ6xJPHXxD6Qi3UJD/qAMyMUOj1UlrXfGCAHEm4YgB0irJRD/2wb7IgOO5xO1OwPAdyJlRHql0sp15rZ50spF9Azd5ZSmukfM7sGwDUAcP/73f+xL/u5l3dSKTjcysTxHVbcWvbWjfuiB1+AP77l8weMM8rbdJ7rOeozlU+fv2vls5L1zrOM8yDPbcqv/z+buA6O/js90/TRea4NP+WLcOY4yHtfXTt4/T1pHEbd3QY57zoOJuth6Mq72g57bSRqZ3qt4KIHXyj6qOCaH/ohfHH5uSNnK/e636XlEVf/+KHH+55XvvA9NJsxe5zU6clPKKXcbmb3B/A2M/vIQQOWUq4FcC0AfO1D/0q57kd/Y3VDrRc9awf/j7ZT75mio5GKjsijPCgiM/SmsAvDc37habju+W/ox8sy+V4Ctuifgjwlc1R2Ku9wb4xfrB1VuhqvrjwRPOcXvxPXPe/X1+bbyC9jysLSu96rF15mvXKNykrT2GRZcysKpfGcX/xOXPejv1HnqSxhp05NO0326q6nFcnKZaayHvBdH7hd6TMuq9dfoK0D0beW4VSbnGqPWv88/d4ZYIwozsgCsL8PO3UK3/+yq2s5KUxz6nAkw5CmPqs+IU34TeXDCOrp5InIbn3hE5WXZV1/g3tj/L33cdB65NhkMYnaY3SWGT+rPmD67of7z3n5d9X66DhRsJU+JYeNE5n6KaXcPnzfAeANAB4P4DNm9kAAGL7vOHCEvQa/LH3T5rLEx8yrD0JvCkDMyF3FrxU7Mil7/ntOXJuusfnc4xwaaGRWrqB7sKi8HC+bX4epglE59Q5e83CsmCoTqsihSmhqu+3oHCA33UZxKtTJWX10SM4mXE8BelxL2YRMHbVZFo7fFtMbFfbqVuBvZXuLdhdQ3hBL602Un4lOfDTja356PlUcZ0RUdZpOpyf5XXHHxp2p5snzStOpZtZ/H57nXnvxPOtnby/u6Icw4dYEJMPo3Mrth/LHJylr+Ea2SHbNT+SXQnFXq3n4Gc8zpzfci3x8xrxSmK5OdZkisspL9t3nhN8V+5tNkRSPywm7x0VTpZWfnC1QWWLGODv14wiQq35OgKiY2b3M7Hz/DeDJAD4A4AYAzx4eezaAN55RxJ3RbLUiJ4Iq66jz4/9KSPSjedEGpOG4I4x2Yo1G7bpslxUzN2DNOy+XdfRWcngc3KlFvirqG0HxFHVaC4hUQw729jAOIYb0x83QeqSPFRz7i3B58fMOXeHDzw3h7dSpWk5+jsuV0xnlD8q7Wq4cKOxNIzZ+z3qMAJOt5eDPwqSwYwnoEkGtY4wFjcCVXKqvk5aTEkEHbwYWvbeoA5N8lyKE0zt+8pNoNjaTcmn2KvHnIpn497KgGf4Oz1cDBh1ADXWFHVTDNHqDoQAef+VnQQSEyyA6rFCtsBunC5drH59mXxyP1/M1pTMjYurgAQ8TRvZF81VzPQdy/+/kBGjqb+WLwveqtrmFvf0W4ySmfh4A4A1DxT8F4NdKKW8xsxsBvM7MngvgFgDPOFBsPVZODaMUW1finmMqj5J7CkI7Rg7PpmRuRAtRemUJLCkdJSecXqexj9BRqebVZWLZo9Eoh9U8qHkeZObl8uT4Bhmtty09Px9NQ/Cy3b09GIjwsNNblPdNW9ZP5YXrAlbxVDtkRuXFiOpKs7JoLzazD51XOb1s42b5IkVedbbBcmMlYCxLj6h6+/FpKI6vR/j8L5+Xw8/q1GBQBisR9uJ3u2kErvLyM1PlKe+sLIK4eySJ2znXXX6Gnx1+67RO0SEjERr3KyqLeorGp1c5LG8st2qn8cZxnMfKQTuSU8CkpVqC7Pkd4hvlorLvTl1xur0pea7HrK9Zh7rFUOpE2d9fExA1PioJmZpamnLoPyokJzp+olJK+QSARwXX/xjAlXcpcu289vfXJAWIzb18z/9vGK2MHRk3Lo5bO0ja6dSM/A96ytPjdyWzaSdVTosVTNVpB1Ng3Oii+CKCBqB4y+nuzyK7ofZ8OTzOXifk30wgl8FoLQrn5chEjVcDRUsT99H4LYwKTt9VtAdLz9ysdXIMU8tRTp8Ozz0Z312vTnI9Y4uavkuvVxHBjkhPMLKu0tS6N9TpArmuYfiZyOKocnG+em1G/0ck0uWFDA44jeh6p76Z2ShHc6bPpjrKRKHjG1KdUsynFQ/yFT5qgp8frm2civL6xgMQvyZ547jYIbsiI4vaT6UiX/RuvKxWxPx0SyynrCFjXNLOOrpqlLcMbWJiK55RR/B2Db3njnHqJ4FZLU8+O0wpKTfv8TPVSGI/jiuqpDoy1J1LgwY1jjyoIwidJP1ZsiKM6UQdqqapipn9EnjE5+FZDpWd5e0pCc2DdFRVPtXHRN9HL33+H8kc5Yt/u8LztHWLeo7X7yvxWFh9ZALLKdaBkawqdGlub2pR0t0oo//ndx8RWs5HdMCeE7mpDrtX/vre1TfF37UuR47C87fmw+NQghsdPufpuszcvlxeBdXb6iRifUbKn5fXVp33Xkssqw3WKB7eNbaKd0EHC3ZI5Di9I3usaN45jsqSM+x6XfmZnDrVHFCo+Rstqmh94BoZl+S7IgRqnJpUmbSeR0uTIxKrlpBe/dJ2ro66PpU06t9gYHeMZo70UdkFouIIOn8ALVtn5aFOnVMjIVWwE/E6wq3Bo1FxWTZz2BWUJEWjBxqtVtvuO9RfRIlGaBlp8zl20i5XbyMwnl7o5V9l5HzwPiDRsQbeOTEB8mus2Hr5i+L13wzdOC8gfBX57PkARUQXiAmWp+P1jPxOqjD8rHbc+/vrw+Oid8Z5miKBfD4U+5iwPPyenChwmlEZ9KDEmsuMoffV/M9tdFka59SqnvvvhTUdbzc/HI+QgNHXRBxRdbO2ccdXmSartsyfOHZD0+N8NychL6ybrlrNqnvDjrTVdI9OFTmi9+sESkmD5MnLuTq3jf1NOmVQkUJb1INPbXNRHDpw8w8TKDk9OXH82H6iEikR7ngiBb8pPqDu0KdG/pp+1NFvCt/rMKfyq3FSAx0Vyah8ybyvxKRHitiZjEcqmm5vFN9RWg3U4uBgz36NL5pD5vljDtd7jx5nMPoO86NyKFHlfPjIkbcD13KfchRVwhJZPSJwnoZzYqo4lfipnJG8utpCiT2nq4ceRm2H5VDZD9oJaLoMJuy8CoU7VibDQGMxaMqjo1+iA/4YvZU0zSZuMpBprnfIUpM+XauIhvurBNM4umJILb6VtcbTWcRWFiwMy698tZXJ78u7b3y1uM440WUE5Kix6OhAYkq/MLT9s24A5WV0Yj9AX3JYKEfw2TJsP1EB6umEaKTKz+kqE1W+2hh09BkdrKZp8v3IZB2B86Qj6OC5RrlGZ7a48uLpi8i6EHWCuv2/lkeUL41POyq1ggB9CwuHcShhilakRMRG4+J88TRb1ImqQlP5te7QezOeTgrzKXmM6qzWHa2fSsQ5/2oVUHIULXNXWTx+b2Pql8RwJc4rwbS+aR3XusDXtA305OPy4boX5TFA2Fl6h7wXk6Fmf6IgncqqsbB6AOH5DcLytvScnhKoamfXzmDooJv78XN+AGGPjFRpD1g7+O6FaeqJ2WN5RLqI62fk7D1FPnUFX7Tij3UH0Fr8GsIsfcXyGHv7klM/wK4QFe7sdEUI0HZKQK3Qos7Ev1Uxc8eth72ponRrSaREpjol9iXQRuXbfetW6hNKr0mb7/OcPJMRLr8p34do9KnkhNNnQjBF4LSjBFqLjpIIflfRUuypfHua0e8oLBPdKN5eetV/qQu9Dp2/HVMnFkdpRvJIvTezmiT7h1eMMSmP3pnXef8fEUp+ht8XxylyhdaR4Xe4f8eyNNaBJg89Eklp9JyJG5LS872K8iEWEl2OXO2ZwvngsqBwTCqqgwXREgqGWjTY8uJ5iA4znMRiYqrH5enVSyWflRP9xLucglqG1S8v2uhNVhONS96rtngwApg4HOwGUXFE5nugVU49v4MIrBxV2bD/QJQeP8ujzCiu3lkWvOwZ6E+HKEEAVr4vriSZfJA5NFwuGK3S8XtOvHp7YrBC6ZVd1MkpNhEJLh+Nk733+R4TMSWAjuh8IB796xJJv8954ToxZbVgWbiO8LM8MuTyNem4o7ObNA1Nn8vF60JPcffqRkQo1QqpHY6+h4g0CFma9NWIyAR36r1ReI+YLktNHrQu8mDE/1O5jQf/lVI7l2raS5n+WJbQEVfbWbMSSP1cliX0O4kQTRW5429l1VnWaVa+Jf4/qn+BzE2ZcnlG1mnd70ThbSeysHL7iVY4bmozZbneILCK8wAk6bBQjuCzZdgtosIOg45opG+L2hM92vRqyjLgye0txjS7uzJy3jguTUvN3v5cNDUSEZRIiU5sCz0+OzXq1o6Fw6ifAxDvYaLQ/QpU+Ux17JFiUYsV58Pfq3acfk8tNC6XxtlzBo3MzFNWHCZ3ukJGSVAka+QjxJadaESv/5WsqlzcXvRdcd1SQhp1Du4MyZ2Ox8NLuSOSrXmnjt3/h9ZC6eC6xziwvEE76G4h0MsjxcsnE3e3pfeOX1b2hAf1HZDYO7FwcjbG2wmrFpPJ60N8xlaGKJ8uX5S3SEdpffJ6zDpZLByNXqpW6Ah0INXTN1xn+Z5vQJlOtCeK3SAqkQLRxq2KiOdMewQnGoUReGfO5uRSPenVw/dG1DzK1G3tuUGqBYfzGXTI4wiNfTF6S2R59MJp6DQD51k7Ph05cn545OwKSH1ggqmUaFnnCF7VEylKJlUUflwZpURW6kGzJXtUZi6/y8ROrNGyaCDeKI8VNyOSu0c09D1F1gTNi3biTDz1vUzFrfn098thPE5xIO86tEo6PI2iW9Lrbq9jWhvecVhP+bq3gf39ZpVKVW5RuGiQIZ1047syfFdEY7EmCU35SN2vLC5TJFBQybagJddU9r6qpvJpEetKU8aDjNHSZc3/2N5YJ/emI4HWj6Wne9TRnp3vHUpGxPpeIpJ/xDCkjwqwK0SFoaO3aDSpnYuH63UQqmw0jcgc3lsOF40q+J52dDpy5LR4CkMb7NCgGyc2zmek5NV64B191NlFo2hV4BpGp4e48+igMmtHy395vwzurDhPnIYt2qkEJ4ge1/5+vXsqm5Wj9+pKLSqfqB5qR7mwVuErvMP09KLRMperWjSivEQj915HPoQtXz3ddsw9whL9DvJd7XCqhE3LXKcdvcNXK8jUwCN4h1VHOjw7OpaeOtX63minyHFF2+BzhyzWoJ6/CU9djUdJAC0pW9bWm54vSeXgK+SOd7z1/I7b4otzbXUkga8sCqzK7Bjc+K4E+rax1LgujXQJL53XMJwP19HeJsbM0dT9JJmzwQpPg73jRCmH/9ky7AZR6XWIWolVaerZIhOdZU/hdOc9y7JVmJpP/h+t/1eyETmP+nVb1MoxYv1OaAI5m5NPWU69pmlEHYPf9/Be/lO77Ho4/ebw0XQNjXy6KzECYljNwfP0jY7YnQRG/kgLiSOqi5x+7x6/56ij9vd2EMdmLzO2aDhp6TkoLkvfP8CfGbYnN+2wI0LA95SgLKzx3RgdeTVPXAf9e2p5dTS4oPJsOvDFusNuVv9g3SGP36dPx1Mqkna4hxK9dyVV6y3v14601XJhqROTW9FTfD3wpnKOxiE3IDHhgMfz6lYTesd8hlH3PfUGKq4Xe0vi1Rrigw0lKXyf/a1Yf3F78efHQWhZXzPZqyVxLNh+ouIVSke8U6w3MvFF13sjssiRNOpQ+R5/Rx2/ToFES6Y1jJCwimzs7a2UBk/J8LSPgvO/yW8EWDuYBaOikKTpb06z9z+SmZ/VUZfmWUkqd8ZAOw/P8jTOc+hPEWp+lKwqme1tSsXXuJMG2mkMlzEaDUakqHcmE7/3aMVcb6VVROwjx+aofoCmJaijDn0QRI7ecuFGZiWkTgZ1NDmEK6dPt+UTvee9vbojX5aa8IqcTVryzOi0irUFpSIMy9rq0WzkRmmF90BWjWW96Zy5jpCw7AzM6FpslgVYLGodxM8H5L4Nb22dB+rpGtW3rCsjHxWv03S9sLO8bh8Q6d5VJqgQlvUU3DEgp352gah4RYy2B/f/QK14ok6NR/s8eumNnCNF5OlwunxNO7WIFDimHFM57h67d6Wk0x+E0azMZIZJDo/MJf3mXBMuZ90ZVMugp3BUzh5pCWRt4uwtG2ZCSGU/dgZ6iJsqyLKsTdyad1WyOi0VkViuY7pyyGWLVvV0pn+iPTfG5zm9yFdJ6mgUV5csqCNk1OFH4ZxA9tot5S104lSnaYqDt3sPO8jhu/JZkvfeWzEzWiX0PqfT64CxtphES4pHwkCHEnJeOEx3zxPKJ5Og0Xq0XA/uxuXImp8lERuL95VZWU7oSJElhaf3yFObo0xcx3RAoZYXJfh8FtoUYSeH2WZvo6juD8+GzvFj2I7+TxwJtp6odM/mYCijB1riEo2g+BorG1Y+Ov3Bqxo07WjUrc6GPBJHp1NgvwPeql461EZ+Vfr7Yg7tlWGpHeHMpEPVUT7nh0mQfnOakZIJ8jx+85b52hn0CI8SAh5p+QjflZObioH6Xe7txXvYREsjmfwisOBE8kUb0Hk9UTI2RlzH253+0jCadkC+o+mocJ8Mjis6xFHTl/vjuTPsvBy1vaiOepmRf1VlQaDOMCTYi9Y3Ipwiorxru1QCNLWcupG/g2YKKMoXUBEMJj9T0z8VSSK91JAeLx8iMiuCsaji0Q3qKjIyXNPpqsn2EA2wIsd71SPRtGS0ko/bd4RNq/eOC+WIPluGrScqze6GkYLUe0U6mohEaBxTI3+GOlz1yA9PWallpTJVBg6/1ImF+z1wHDwqj6CNH4FZ2Z1Ph86tcTAF4rOEvIN12dUyoJ09IxghjVNZbJUY/CYqxRS9s175aGfo99i/Q88t0s5fCElYLvqOI0T+Q0qOo5EjW0o0bz2ipxY7JbbL0oyIm48/S98bNwSL4gVZJ3wKRuWJ6m9EZjrtf6y/kYw+KDB53q/xfc4vpV3pIc2r6I7GMjHke1UGi8byEFlU+P4oB2rflNFvhKZy1CKjiCwrLkO9xHhZpRctZw7ToTrsZRD6v3h7cZ2h+tf/6/L3aCPESL+o/5ZCVwXxb/ZbOQbY8vA/24atJyoAWgKhIze1bkRWDP7meHkkF3VU0db1UWfiym6PKrszff/fW4W0v4+xYUgeQ0c1zrvmS6c2gNrq0SN33hl7HGpClVNQG1LIo5tRJpZDRjfBVEDZX8bvTi1C+s5YDv/dk3lQoKOlTpWelkvUcbP1Q3d0pXSquJh88TM9pauj+qijjt6/lofHo+ValjEhjeoIMHYQVQfekVOtGhW54ToWxNFYGJXIDPkLrQnBduzckY5tiTo/Xs3ClqTGgkDlEk7DSPvnvUrq97gmAA1RVx8USl+XbY9WmIW1pAOt5YRX51TTSUqChmmjqtw6pEetTGOZMTHjuqx1i4/x0Dbm/7XNqCVSwyys1jVKRqJ26Gf9VCvmNhDyxKFiN4gK0O9ko85lwKgghpFs2FiAeATUG8FLOhpn1ySso/LmOqUVrT7R3/6fw3DD1rzLHizh9AFbHBzs5BkRvZ5TMysUYO2gRvPJIzzv0dLa3uhV332UfqTM9vdRTp9eT4uxUos2jqOR4cYRfrMBHxGBKL9KNOSZ3ig2vLYQ6xsRtdAEzxanaKWVdtg6789TcipTVFci8qn32HKh4VlW3e/E7y1L00FXZInJJYVtnEiVCOnggYjYaG0g4qPTTDrFo/4nmocqL/Qc+3poHjQulcktWfWU0CKeegYakhO+a3muIr5ju180hHFSpw0ybXxWl+VznnrOsG6d9bh6/igLw7HOn5Qj+GwZtp+oTDDnEdw5kxVBl/02SwaH/SLK/nLVrr1WCQAAFnFJREFUkFVZ6/keOvLWBhjlG6itB1HnxHCrhHeiutJisR4VVdeHxhn69Mj0TGMm13zwiDfqMDicpxVtGqcjZ6B18OQRj97T9651wb+j6bUo795Bss8DO+r5EmUJM45+1UqjdbCxdkgnr7IA04dsahoqr5R3s8mh/5Z20ZQfxyPvr7GgcPydMJrnhrzzM05Q+V4UD8FOnar9LyS/jZ8Kj+79uuiQZpoCNO0cDFCq8uG8BVNj67a6qK71Vt3wd0NkFuJcK2Soko/StrvdrbW8sHWnk4cobb5ekTK3qhBhDw8mpHyOJIjfYzS16r/92WiAxOF4QBT5l/nqoOFecZ+2UedODIISh47tJyrqCa7KsbdkUuf1+f7gPGrnnYqtCBzHJoIRjSD9f7R8NehgVr/lP/tRCDmzvT3gvPPCkUM5fbouB8+HrZ3jKtnEkXbMe2SZ6TnwSnxVuNADv9Q+LxwXrwbQTjqySgDtSdC8twKnrR0Opwe05y4pmYj8kvRZ/Vaipkoz2oAvyqvKq/fU3M154HijFRRKwBn87vUd6PLpHhlhRKSdN0Cc6NQA6eADAlX5WWj6kr/GGiDhR9IfhB+XGffqpOZ3YcBy2V3dM8arTrvk19I7QLAhNgva48TvUf1Qy0u0dLmZhtI8UtmrQy1bYJqBk7yzylfIy7G3szbrYx8EcTtjnRVtP8C/5dt4JWPPSnxEyOXJu0BUdMrAocyaFR0rD90SegjTmCIXYh726xw3p+vXe+ix/mhUvTBA1vJX6SvMYHc7D3b3u6/zrEv5OC66Nk550L3RmsTy6L41TAR0RU6Vt8Ci08giZRNZf3qH8EWdkI7KbbH2y+B3pWHZmqPkjOOPVrk4yXGEFqiAqEXnM0VQ8qv1TusRE3Oerovehcbt8QSd2ZimlqVfU5n1txLzqaX/nJ7GNWCTc33k+1GB2nKzTFfCs4VKO+fRB0XKZIyzczaYEoPoPmNFUPbrfNHqn9WU0F4z5RU9r8TGw63JzNrCwr+5DJz8qHyhk/Wi74TrO0N73Dpdto44Lsexvarei+r2WCjLth/xW6xvyhJbOX+yxdh+ogLUHQrQr5Be+b0yEstufDLU6oDaxNl0BkxWlLhwvBq//486ms4oI5TVMXSQ5U+/jOWXv7xW3EQQqrn1aGmyrgghZTCOgJjwaKeoS2y1PHrlEyiQZqtwho/kOW1NgztSiqMx/3P82mn6R3eydALUU3wcXuNaFjTkM7IKHYS06HNR2fJzWrciYq31VohaY7Vgcsf/tW5GHUGUlygP8rvaCM03X+MNzJQEQTpMKu/Id2XKP6R6LjqLKpKFiQyRmF46SgIYOmhix1cbp3n32rjoeQ6jfjGre8tmwFYRLaAhP5UVetGuNhpl13qjZTdsrNd1GNdwqkMjAt0Dt22eChr1bIFpHMfFUwqAUg7/s2WYHVExs6vM7KNmdrOZvWhjAO6E+RoQVtqyv1yPWnWlClBPLSyH8zWiPSc4jF539BpINPqOOimNp7e8VRSyb1tdKetFrVDGcDy1w/lz8kdh3VzcdNSMaG8Czr92SlFZECYdRrnz5PLjNJREcZ65XNihla/zoYeRBUzKaExX86oktBJyGSvUnjLWfHLcLEePlEzlV8uH7/fk4G+x2IUHBfYIvg4ApAxDq4AMIsaVLpGDMIUxs7XFbxlsdKZkTMuCyjJaVRORiPG33K+ukywcV+P8GpAaPQZgnM6hKSUO71veN9YR+s2EJkq/cQz+6ukqH40P0zIgHwrWVb5cvTeg0PDR4K5HwHWalad7qulh0hHeVjdwn8NETv3MjKiY2R6AlwN4CoBHAniWmT1yMhBXWq7IkVOgQxUPd3Lig1DtZNgb3fJ1dhrVTrtHZKYYP3e8uleHyiedV0MqOD4aJVebenncwaqY0GzOnbeepcFycyfG74dHM1Plo++55ywXkQDPG4flcvG88XOaDq9iiQiqXlfrSw+eRkDSGjA59PqlaXNcPetFT3E7eN8YfmaKSCk5XBJhEMtBSOA8bEQSB4xTDpSWEqFJvxB6rpRS+zpwnoUUdPPLMk38Hi0DQQcbkYQo/nDqBDWhGK/xMREl3jvFVwl5m46mfry8Pf+9PFRyB5YWLb+qTtAxBOEqKp0C5roWEe6JdxW2FX9uk/OtP99bCZQ4UsyKqAB4PICbSymfKKV8BcBrAFw9GSJizjz61coadIrjdNBQkRuTcqD0mjlmbzQ8YowcL6O89zro6J7fZ18Nf25qFMHKOHJ6ZagPg390W2uNQ5RKeKy7khZ/V70yUPLRU0Re9nqNVwz1iIbnTcFEU52Ho7xyebEDqMYfkbMeAWLSoeXM1hxNKyJN0UaHPXIUdQAR6VISw/VF4mmsHDpI0LJip+Blu1EcWwPGNIrI1ZNTiSpf1/iAtiON3lUQzsMqIRk7/sV6UzZ+3j/qH+JxVFM9HV+W0EqzWO+DoiQncp4dyR/FOTUVNsbNe9JoGQVtYnTs1Q3cHD3iqe9Vt/Jn0tuDx8GbcAJCTFC3n1yefKywyfnXY4aZPR3AVaWUHxj+fy+AbyylPJ+euQbANQBw//vd/7Ev+7mXn0he7xoK1ozcf/t7iBvkRQ++AH98y+ePMH3Ny5mOGM4mTBQHcNGDLyRZDxJvT56ThXYWdAeAy3kn6vweVjkeNI6jLK913P36O5/3dRg43HY6b2yXrJvqmd6P6u762jXXXIMvls8decW994WXlsuf+GOHHu/vvOEn31NKedyhR3xEOHXSGRD0tbr/KeVaANcCgJn9ybOuecZHjyNjM8DFAD570pk4Jpwrsp4rcgLnjqznipzAuSNrJOdDjiNhw3b6lBw25kZUbgNwKf2/BMDtE89/dJtY4V2Bmd2Usu4WzhU5gXNH1nNFTuDckfVE5dzSVTqHjbn5qNwI4DIze5iZ3Q3AMwHccMJ5SiQSiUQicUKYlUWllHLazJ4P4DcB7AG4rpTywRPOViKRSCQSJ4Kc+pkZUQGAUsqbAbz5gI9fe5R5mRlS1t3DuSIncO7Ieq7ICZw7sp4rcs4Ws1r1k0gkEolEYoXzL7ikPPqbD3/Vz2//95/KVT+JRCKRSCTuOnLqZ37OtIlEIpFIJBIjtpaonPGZQDOHmV1nZneY2Qfo2n3N7G1m9rHh+8LhupnZLwyy/4GZPebkcn5mMLNLzey3zOzDZvZBM/ux4fouynoPM3u3mb1vkPWfD9cfZmbvGmR97bDCDWZ29+H/zcP9h55k/s8UZrZnZr9vZm8a/u+qnJ80s/eb2XvN7Kbh2i7W3wvM7PVm9pGhvX7Tjsr58OFd+ueLZvaCWcha0O6ifBifLcNWEhU7mzOB5o//DOAqufYiAG8vpVwG4O3Df2Al92XD5xoAv3RMeTwMnAbwwlLKIwBcAeB5w7vbRVn/AsCTSimPAnA5gKvM7AoALwHw0kHWOwE8d3j+uQDuLKV8HYCXDs9tE34MwIfp/67KCQBPLKVcTvP8u1h/XwbgLaWUrwfwKKze7c7JWUr56PAuLwfwWABfBvAG7KCs24qtJCo4mzOBZo5Syv8E8Dm5fDWA64ff1wN4Gl3/L2WF/w3gAjN74PHk9K6hlPLpUsrvDb//BCvl9yDspqyllPKl4e95w6cAeBKA1w/XVVYvg9cDuNKscxLczGBmlwD42wBeMfw37KCcE9ip+mtmXwPgmwG8EgBKKV8ppXweOyZngCsBfLyU8inMRdY862dricqDANxK/28bru0aHlBK+TSw6uAB3H+4vhPyDyb/RwN4F3ZU1mE65L0A7gDwNgAfB/D5Uspwfn0lzyjrcP8LAC463hyfNX4ewE8B8NPzLsJuygmsVP1bzew9tjp7DNi9+vu1AP4IwH8apvNeYWb3wu7JqXgmgFcPv3dd1q3BthKVjWcC7Ti2Xn4zuzeA/wbgBaWUL049GlzbGllLKfuDSfkSrCyBj4geG763UlYz+w4Ad5RS3sOXg0e3Wk7CE0opj8FqCuB5ZvbNE89uq6ynADwGwC+VUh4N4E+xnvqIsK1yjhh8qJ4K4L9uejS4dmSyWjn8z7ZhW4nKmZ4JtK34jJsUh+87hutbLb+ZnYcVSXlVKeXXh8s7KatjMJu/Eyu/nAvMzLcGYHlGWYf790E7HThHPAHAU83sk1hNwz4JKwvLrskJACil3D5834GVL8PjsXv19zYAt5VS3jX8fz1WxGXX5GQ8BcDvlVI+M/yfh6x+3s9hfrYM20pUzpUzgW4A8Ozh97MBvJGu/73B+/wKAF9wE+XcMfgivBLAh0sp/45u7aKs9zOzC4bf9wTwbVj55PwWgKcPj6msXgZPB/COsgU7MpZS/mEp5ZJSykOxaovvKKV8D3ZMTgAws3uZ2fn+G8CTAXwAO1Z/Syn/D8CtZvbw4dKVAD6EHZNT8Cysp32A3ZZ1q7CVG77t4plAZvZqAN8K4GIzuw3APwXwYgCvM7PnArgFwDOGx98M4NsB3IyVh/r3H3uGzx5PAPC9AN4/+G4AwD/Cbsr6QADXD6vUFgBeV0p5k5l9CMBrzOxnAfw+BofF4ftXzOxmrCwMzzyJTB8i/gF2T84HAHjD4Pt7CsCvlVLeYmY3Yvfq748AeNUwGPwEVnlfYPfkhJn9JQB/C8AP0eVZ6KRtnKo5bOQW+olEIpFIzBDn3+eS8rgrfuTQ433nW1+UW+gnEolEIpG4i9jS5cSHjSQqiUQikUjMEAbActZja51pE4lEIpFInANIi0oikUgkEnPFcvMju460qCQSiUQikZgtkqgkEjOFrU6a/kMzu+/w/8Lh/0PkuYea2Z/Rcu+pOF9xtgd42urU4Isn7r/KzD5nZk/vPZNIJM4MVsqhf7YNSVQSiZmilHIrViezvni49GIA1w4Hpik+PmzVvynOHyilfOgQs8lxfw92c+PFROJkcBQHEm4fT0mikkjMHC8FcIWZvQDA3wDwbzcFGCwsHzGz683sD8zs9cOGVjCzd5rZ48zsIWb2MTO72MwWZvbbZvbk4Zm/a2bvNrP3mtkvDxvWcfz3MrP/YWbvM7MPmNl3H4HciUTiBGFmV5nZR83sZjPrnvNkZk83s2JmR7YvSxKVRGLGKKV8FcBPYkVYXlBK+coBgz4cK+vLXwPwRQB/X+L9FICXAPgPAF4I4EOllLea2SMAfDdWB+9dDmAfwPdI3FcBuL2U8qhSyjcAeMvZSZdIJKZxBOf8HGDqZxicvByr848eCeBZ0ZTxcJzEjwJ4l947TCRRSSTmj6cA+DSAbziDMLeWUn5n+P2rWFljKpRSXgHgfAA/DOAnhstXAngsgBsHn5crAXytBH0/gG8zs5eY2d8spXzhDPKVSCTmj8cDuLmU8olhcPQaAFcHz/0LAP8KwJ8fZWaSqCQSM4aZXY7VGSRXAPhxP831ANBhUzOMGqaDLhn+3tsvA7i+lHL58Hl4KeWfVRGV8n+wIjPvB/AvzeynD5inRCJxhrBy+B+szpS7iT7XSLIPAnAr/b9tuLbOl9mjAVxaSnnTUcoP5D4qicRsMZw0/UtYTfncYmb/GsC/QTsVE+HBZvZNpZTfxepU2P8VPPMSAK8C8CkA/xHAdwB4O4A3mtlLSyl3DCuOzmcHXjP7ywA+V0r5VTP7EoDvO3spE4nEJI5mlc5nN5z1Y1FOxptmC6ymo7/vkPMVIi0qicR88YMAbimlvG34/+8BfL2ZfcsBwn4YwLPN7A8A3BcrwjNiiOOvA3hJKeVVAL5iZt8/rAj6JwDeOoR9G1anQDP+KoB3D1ND/xjAz56deIlEYqa4DcCl9P8SALfT//Oxmop+p5l9EiuL7w1H5VCbFpVEYqYopVwL4Fr6v4/VlMtBsCyl/HAQ57fS3yvo+nfR79cCeG0Q9qHDz98cPolE4ihRADuZnWlvBHCZmT0MwP8F8EwAf2fM1sovbdxTyczeCeAnSik3HUVm0qKSSGw/9gHc5yAbvh0lzOxVAL4FR+xYl0gkjhallNMAno/VgOTDAF5XSvmgmf2MmT31uPOTFpVEYssxbAx3Kf3/JM5shdBh5eMgvjOJROJMcEI7yZZS3gzgzXItdJwXS+2hIy0qiUQikUgkZou0qCQSiUQiMVds4Zb3h40kKolEIpFIzBTbeIjgYSOnfhKJRCKRSMwWaVFJJBKJRGKuSItKWlQSiUQikUjMF2lRSSQSiURijigATmbDt1khiUoikUgkEjOEoaQzLXLqJ5FIJBKJxIyRFpVEIpFIJOaKtKikRSWRSCQSicR8kRaVRCKRSCTmirSoJFFJJBKJRGKWyFU/AHLqJ5FIJBKJxIyRFpVEIpFIJGaKXJ6cFpVEIpFIJBIzRlpUEolEIpGYK9KikhaVRCKRSCQS80VaVBKJRCKRmCVKWlSQRCWRSCQSiXmiIIkKcuonkUgkEonEjJEWlUQikUgk5orc8C0tKolEIpFIJOaLtKgkEolEIjFT5IZvSVQSiUQikZgvkqjk1E8ikUgkEon5Ii0qiUQikUjMEQXAMi0qaVFJJBKJRCIxW6RFJZFIJBKJWSJ3pgWSqCQSiUQiMV8kUcmpn0QikUgkEvNFWlQSiUQikZgr0qKSFpVEIpFIJBLzRVpUEolEIpGYI3J5MoC0qCQSiUQikZgx0qKSSCQSicQsUYCSxycnUUkkEolEYq5IZ9qc+kkkEolEIjFfpEUlkUgkEok5Ip1pAaRFJZFIJBKJxIyRFpVEIpFIJOaK9FFJopJIJBKJxGyRRCWnfhKJRCKRSMwXaVFJJBKJRGKWKGlRQVpUEolEIpFIzBhpUUkkEolEYo4oAJa5M20SlUQikUgk5oqc+smpn0QikUgkEvNFWlQSiUQikZgr0qKSFpVEIpFIJBLzRVpUEolEIpGYJUqe9YO0qCQSiUQikZgx0qKSSCQSicQcUYBScnlyEpVEIpFIJOaKnPrJqZ9EIpFIJBLzRVpUEolEIpGYK3J5clpUEolEIpFIzBdpUUkkEolEYo4oJc/6QRKVRCKRSCTmi5z6yamfRCKRSCQS80VaVBKJRCKRmClKTv2kRSWRSCQSicR8kRaVRCKRSCRmiZI+KkiikkgkEonEPFGQO9Mip34SiUQikUjMGGlRSSQSiURirshDCdOikkgkEolEooaZXWVmHzWzm83sRcH9u5vZa4f77zKzhx5VXpKoJBKJRCIxQxQAZVkO/bMJZrYH4OUAngLgkQCeZWaPlMeeC+DOUsrXAXgpgJccrvRrJFFJJBKJRCLBeDyAm0spnyilfAXAawBcLc9cDeD64ffrAVxpZnYUmUkflUQikUgk5ohSjspH5WIzu4n+X1tKuZb+PwjArfT/NgDfKHGMz5RSTpvZFwBcBOCzh53ZJCqJRCKRSMwUB5mqOQt8tpTyuIn7kWVEM3KQZw4FOfWTSCQSiUSCcRuAS+n/JQBu7z1jZqcA3AfA544iM0lUEolEIpGYK8ry8D+bcSOAy8zsYWZ2NwDPBHCDPHMDgGcPv58O4B2lHM02unZE8SYSiUQikbgLMLO3ALj4CKL+bCnlqg1pfzuAnwewB+C6UsrPmdnPALiplHKDmd0DwK8AeDRWlpRnllI+cQR5TaKSSCQSiURivsipn0QikUgkErNFEpVEIpFIJBKzRRKVRCKRSCQSs0USlUQikUgkErNFEpVEIpFIJBKzRRKVRCKRSCQSs0USlUQikUgkErPF/wfwcBrP2gfCEAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi4AAAHNCAYAAAA5cvBuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAC18ElEQVR4nO39fdh1V1Ueit9jP+/7JkgSQl6QRpIUbNEKfqAgaLEtggiiR8hVP0IrotFf4AgFPfRXob9WtJbz07Z+cQJoKqkoSOSgfJQiiBSlVDlAEIEQkBQwRpCYLxI+krzv3uP8sdfaz9zjGWPOMedae+9n72fc17Wvvfda83Ot+XHPe4y5FjEzAoFAIBAIBLYBk00XIBAIBAKBQMCLIC6BQCAQCAS2BkFcAoFAIBAIbA2CuAQCgUAgENgaBHEJBAKBQCCwNQjiEggEAoFAYGsQxCUQCAQCgS0EEV1JRDcS0YccYf8xEb2PiE4T0feso3yrQhCXQCAQCAS2E78B4AnOsNcD+CEAv72qwqwLQVwCgUAgENhCMPM7ANySHiOiv0dEbyaiq4nofxDRP+jCfpKZPwBgtomyjoljmy5AIBAIBAKB0XAFgGcw88eI6JEAXgLgMRsu06gI4hIIBAKBwA6AiM4C8A8B/N9E1B8+Y3MlWg2CuAQCgUAgsBuYALiNmR+66YKsEuHjEggEAoHADoCZbwfwCSL6XgCgOb5uw8UaHRRvhw4EAoFAYPtARK8C8GgA9wHwGQAvAPDfAbwUwPkAjgO4ipn/HRF9I4DXArg3gDsB/A0zP2QT5R6KIC6BQCAQCAS2BmEqCgQCgUAgsDUI59xAIBAIBLYAj//We/LNt0xHT/fqD9z1Fmb2Pshu4wjiEggEAoHAFuDmW6Z491suGj3dvfM/dp/RE10hgrgEAoFAILAFYACz7X/w7WCEj0sgEAgEAoGtQSgugUAgEAhsBRhTDsUliEsgEAgEAluAuakoHmESpqJAIBAIBAJbg1BcAoFAIBDYEoRzbigugUAgEAgEtgihuAQCgUAgsAVgMKbxmp4gLoFAIBAIbAvCOTdMRYFAIBAIBLYIobgEAoFAILAFYADTUFxCcQkEAoFAILA9CMUlEAgEAoEtQfi4hOISCAQCgUBgixCKSyAQCAQCWwAGYjs0grgEAoFAILA1iOfmhqkoEAgEAoHAFiEUl0AgEAgEtgAMju3QCMUlEAgEAoHAFiEUl0AgEAgEtgEMTENwCeISCAQCgcA2gBHOuUCYigKBQCAQCGwRQnEJBAKBQGArQJiCNl2IjSMUl0AgEAgEAluDUFwCgUAgENgCMIBZOOcGcQkEAoFAYFsQpqIwFQUCgUAgENgihOISCAQCgcAWgBGKCxCKSyAQCAQCgS1CKC6BQCAQCGwJZhyKSygugUAgEAgEtgahuAQCgUAgsAUIH5c5grgEAoFAILAFYBCmYSiJKxAIBAKBQGB7EIpLIBAIBAJbgnDODcUlEAgEAoHAFiEUl0AgEAgEtgDhnDtHEJdAIBAIBLYChCmHoSSuQCAQCAQCga1BKC6BQCAQCGwBGMAs9Ia4AoFAIBAIBLYHobgEAoFAILAlCOfcIC6BQCAQCGwFmMM5FwhTUSAQCAQCgS1CKC6BQCAQCGwJZmEqCsUlEAgEAoHA9iAUl0AgEAgEtgDzJ+eG3hBXIBAIBAKBwNYgFJdAIBAIBLYCsasICOISCAQCgcBWIJ6cO0dcgUAgEAgEAluDIC6BQCAQCGwJpkyjf0ogoguJ6O1EdC0RXUNEz1HCEBG9iIiuI6IPENE3rOQCIExFgUAgEAgE8jgN4LnM/D4iOhvA1UT0Vmb+cBLmOwA8qPs8EsBLu+/REcQlEAgEAoEtAIM2sh2amT8N4NPd7zuI6FoA9weQEpcnAfhNZmYA7yKic4no/C7uqAjiEggEAoHAlmC2ml1F9yGi9yb/r2DmK7SARPQAAF8P4P8Rp+4P4K+S/zd0x4K4BAKBQCAQGBU3MfPDS4GI6CwAvwvgx5n5dnlaicJjFE4iiEsgEAgEAluATT45l4iOY05aXsnMv6cEuQHAhcn/CwB8ahVliV1FgUAgEAgETBARAXgZgGuZ+ReNYG8A8IPd7qJvAvDZVfi3AKG4BAKBQCCwFWD4ti+vAI8C8FQAHySi93fH/jWAiwCAmX8VwJsAPBHAdQC+AOCHV1WYIC6BQCAQCGwJNvHkXGZ+J3QfljQMA3jmOsoTpqJAIBAIBAJbg1BcAoFAIBDYAjAjXrKIUFwCgUAgEAhsEUJxCQQCgUBgK0CY5V1NjgRCcQkEAoFAILA1CMUlEAgEAoEtACN8XIAgLoFAIBAIbA029eTcw4S4AoFAIBAIBLYGobgEAoFAILAFYBBmm3ly7qFCKC6BQCAQCAS2BqG4BAKBQCCwJQgflyAugUAgEAhsBRjALHYVBXULBAKBQCCwPQjFJRAIBAKBrQBhGk/ODcUlEAgEAoHA9iAUl0AgEAgEtgDh4zJHEJdAIBAIBLYEYSoKU1EgEAgEAoEtQigugUAgEAhsAZgpTEUIxSUQCAQCgcAWIRSXQCAQCAS2BNNQXIK4BAKBQCCwDWAAs3DODVNRIBAIBAKB7UEoLoFAIBAIbAUoTEUIxSUQCAQCgcAWIRSXQCAQCAS2APMn54aPy04RlxN0Jn/ZBV+GW/76s5suytpx3v3v1VhvBkZ39qpNs70M/np78uDuex0DQ1qe/rf/OrTf71qson3U5I2l/Nvqvc77uhqs734fBuy3ufp6p30J0O85J79J+S/DlHEnfx53813b28C2DDtFXM6ke+Lnfuo/4MpnvXZzhZgQMKtr9GPg0p+6WK83zwBqtAgOiduSdkN+l/7Uxbjy2a/LX3NPui33rU9Xpj9S3XJQ73cuj75+uTAtZdTiTAiYTlfSdsx2ngFPp6AJra4tj4H+/hjt0F1vLX4h7WxawHLc9NjQ9C0kbSrbzkvt1TrPs/l3qT2k8eVvgXedfks+rRExDQ+P3SIuhwIbIC1ZrHqwbh08rGPaoFIiAqVr7rkGLffNGjxz9V0lGcyl25OW1vg1cWZcP2Gs8rp4MTapq8FYE38fP01LfvfIkRHtf+lYLSlKw6fX1zue5MaIUltPw2QIySLddGzaIBgUpiKEc+4+DkGjzGLS2Fh5Vl+3Pq/cIN6jNJh7VjUyvEYEtHCrQOlapedbBstNTs7atQX0ttXXZULtbc+bf39u08iVoT/XX4uxrkmKoaQlLZMnrZRwpARm1dDy8d5/i2T0Y4S18Ek/pfTlJ1fOw9BujyB2X3FJmX1uRZNrgC0rodo4pRWdJs160mlZ6cu0rTSHoqZMQ/KszScXvkZeHuuc5/wQaG3Jq2Z5sE41RcmLxpyQW9QFC0MVFhk/p554oMXp88ilV1sPjSSV+gaQ75taGEvBsRYcloJzyBa1s9AbjsAVkB17aBqrilMzsOfSXsWK1iuTSjWi1jTRh68aKBT5eyi8KpHXBDb0nOd8LeQ1Tu9Xy0Cdi5ObaMZGrcJXe35s5NprqS2nCzJ5jGfD+4K3bFo5SkjLCQxv39ZiTX5LQmKRFnlenkv+82FzDzgC2H3FJcUqVn4lp8cWhzivmrIqaJ3Zk28pvMfEVFNHngFy14ClHngcZnP/PeUa4rthDeBWuYcgdW7s8yypdKV6lJSqVal2tRiDIA51Pi6pGLUqh3Se7X2MWh1xU1hpeP1fSqhVXHN+MBb5SNumHIPkYss6J/NJztGEgDXxXWZgGj4uR4y40KRdnrUG5T4tqwN68tIc6TRYefSDjmeSbJ2Ax8Cm8tXS9jjVWhOtd2JvMVHJuLWqjjcvTzqyzh7yAtSRsDWBZwzaGykxy/m4Jv6Q8zKMpX54HH5zJKnGYXgMx2Jp7hmSjkVW5HmZt/Xfe24NCOfcDZiKiGiPiP6MiN7Y/T+PiN5KRB/rvu+dhH0+EV1HRB8losePUgBP59IaZu1ApTnxWQ2+VCavZOxZmY85cVhS7Koxhrw89nXQBsiSzT5XpmL5NiBP15AwjQSu089F/K72c1mXo6rMS/vdYk6SaoyWppa+dTyXlyQtNdcuDWv5pdS2mxLJTvOw2mn6scK2lC0wCjZx1Z8D4Nrk//MAvI2ZHwTgbd1/ENGDAVwC4CEAngDgJUSjrZmWITta7YSjQVNQ+nRrB8VWj/+h9v7a9GsnJy3/mp056c6Xmrqk8azzNeXwKhijYotWXUPbWe39VSa9Kj+EdT+LyfIR8aiwvVpSMjvl8pUqjeUX6L0mtY66FizTa03fTH/nFJZ07Orz8Kgwa1Zf5tuhJ6N/tg1rLTERXQDgOwH8enL4SQBe3v1+OYAnJ8evYua7mPkTAK4D8IiVFCznU5KidmKyJsga1af/XsVAWivJOm2+VfnL9FsmfyndW2VJlRprQM+ZaErpe8Nv2yotHcRryF5OGZNhpTKZnh9qmqnFmH3Nq1r0+bYqwla+/aInR4osxadlJ2X6e4hqVVIlxxpvpFpcGjsChwLr9nH5ZQD/CsDZybH7MfOnAYCZP01EX9odvz+AdyXhbuiOLYGILgNwGQCcPPckTl50Li69/OIVFP1wY5x6M+pW8rXhtfgYlIZdb61sNfnlwsq0h16HXBn0dOvvd66MY5Tfm0Yfrq2ttbXz4e1s08i3c2Cb62aDu3o/GfX1s9qX1f7S4z3kfxvvevo6n5y7i/e6DmsjLkT0XQBuZOariejRnijKsQOtiJmvAHAFAJwzOck3X3/bZh/5vyFcenn9o9BXinU4YvIMl774n9Y9+n4TqN2d5ED1/V71NVnTNW9q52P4RK0aBfNUtt4eB1zAfnKuFi736oBcPtoOJy+kUy36er/On4ZMr4fV/3I7iaqU5PWQCUY45wLrNRU9CsB3E9EnAVwF4DFE9AoAnyGi8wGg+76xC38DgAuT+BcA+NRaSpru0pHHcuElSvJ6TVnGhrdu3jQkxjS1WPFKznc1+a5SCh7iaNjjgH2e2/0+VoEWM6o0h24bSuVuea5JbTxvXO9OpZw/Xa2PS+uzrIaYg3qkBEWSFmkSsvpnFRnfgLP8EcbaiAszP5+ZL2DmB2DudPvfmfkHALwBwNO6YE8D8Pru9xsAXEJEZxDRAwE8CMC7V17QdJWQNtqSg5yGPr7XhyaXdskGWwtP3UoDaOtkuIp4peuSW2m1lGms+6CR5BJoAoAOp4Lg9RGwdpCspEgjTSqS7JfKPeSBl9aOHwu5J+bmnHNb/Ftad0fm4N0BWdO+5LnSVn5rfN2I872FcM4FDseTc38OwOOI6GMAHtf9BzNfA+DVAD4M4M0AnsnM05WVInWCXdcKsKYjyO1560BpIFqFI1uNsjVEcSiRoFLaY90H72DvyW+sdushgRas1bJnq76GIU+WXWQ9kmppkX1r+/CQ++Ex/aT/WxYfmsNubstzj1JbHLIDsnWxZJEcbbeQbKMpsakhS7nyBFaKjTyAjpn/CMAfdb9vBvBYI9wLAbywOoPa93VMCJiNIOePAY9duEbCHPLukhJqTTUa0vrybPk+1ORfIiJ7e+ORBO36D/XxyJm3vOm2lFs7XkonPW+115o0cnVsUTotrMoPR3uCLaDn5enf1gMpJVnybpcu+bLI81Y+XrT4t2h5eyD9YnL3OGcSSr9l+mn4kX3VWjAL59xDobiMj5aO5sGqH0rFM59ZqbbDjPVEy7HjyPquSnqnSVvcmu3fQ316arYSt6KVaObKPwYhHqOOnms89kSjjQdjPxXXOq+F8TywTsaXfi0yXctsBdjX3Oss3AJNJdHKo/mzaH1M84Xx5JvGD6wdu/vI/7EVhpLkKh/i5IW347QOupuaWDxy8qxh9VKrNvWmv7HrsKrVlpS3a+LUntsUasvk6VPpartGZRzysDnPLp3aMrSWR1NgtAfKedNK07HqtIkxKTdWlhYUmrk4JSTSrCTjaKRpzcQl3lU0x+4SF2DcQduSVbVwNfnWmDDGwCpNR1Z+JYfBWl8fL7wD7Konfk/8dECuVVtyZhdL2i79t9IfA6tSDPtrJ8yNPGPbz6WmH3j6fkvalpmmBpYpqCW+HOvSbwutpC1FztyTngMOtmtJaKy2bZl+LN8sqXRLxWUD2EZn2rGx21dgqHwvYa1e5LEa57VVEQirg9WuwGqvkwy/TlLWipzj6DrVipKToAfW4FpyTrYcFtN0tlQWH80519uWtevUUobWcqd9XD7B1vMkX0txqRk7tHBeh/ecciJVkZwiItus5cOitXmNDOVMx4G1YrcVlxxqG9sY7y/RpFvvQ51qUeNsmQ4AMr9aJ1QrnU1gDLXEk8ZYzrpjDYAeB1zrnNc8tgofHBdEm6p1LF4HtDK0qBG1vneeRVVp95H0efGiZDarRYvpWKo1milIi2elmyvbhpSX+buKwlR0CHr5hlD7Lo0xJmHPwOI573X29K6S0w6cK0/NZCzTKZWlxvEvdz6Fp6xaucYgHIdhAgV8q0YvMbNWpGuFaCerLkNa59KDJjXkHHjXqcJYaaSmoBqTVU65sZQZTzvTflthZBvUxiet/VsOvl6/mU0psoEFjtZVT8lKrcmkZsCQDX3s3Uh7jpdk95067Vjecljhhjij9WWx4nvNbUMdA2sxRj6la7ZOE0zOLJYe0+T4sa55TX03bZ7ykPrcddGUiFpopmXtGSzp8ZIJqMZc3TpuWIuR3PiS/rZMnjkzZomYWyan/luOm5qzvKY8rnGL8gw0+mfbsPumIu/zDnJQHP7U9Bf/RdicjNr6nIRa5OpQk75lX/aiJo7MY4jD3xjlac1Tu2aairFKWNehdKwkp1vOlDmsKuw2oMURt6TUamNJbRz5nZ7zmIFqfP9qnK2134CuekgCUnL21fLzhO3+Lzt9r8cszkCYinAUFJd1bwf2rF5Kg9cqJrOxJwDLj8ILa6Wfy2Oor4+nTB6JupSGJCT94Gat/GrK4clfQ+11yB2Tq99WX4FSGXJxa+4H5pPMoUGt6pJTT1LUKsjabqHc2OTZrVSq29CxTaoimmnIS6bTNPr2JklQJo3RnL4D1dh9xWWVkCTE01nkqkbDtq4yh66kh9R7DEdcS02qHWxl/FIb8VyLVifhlvilvD2KjJWWF2a8SlMhTcDT6X6Z+rhjtJdWtCqsHvXY8l/JlcG72KpxKG59ojKQVyO9im8a3+pvJYIu28mmzZYdYjv0UVBchsBi1NYKSHYQy+arOa6OWb7WcDVYp4nD47Q3dBIq7SIYy7zhScdF6honhUV0h5OuNvB77/vKSEF9W6YJzVfH6X0cq3xeJ//azQAaPP4y2hZmqzwe1IyBWjlaULpHObNnyXlXi2Pll5qeSuNDYK04eopLzfZjK5x2fshWxJqG3+JcvAqZfIivypB8VjVIWD4p8lxNXYaqJNlwiuNjTTo0AZ15BjCdgk+dttPJqS3eOOvAmHlqCwxLXc0RgxZ/ltbypZCOupryYvm15NLy1rV03IPc/cyREasdekydmtriLeu6wLEdGjiKxKVl+/FhwhCn3k2hNKkNmvhGdtZN0WLO8krZ3vS8aZWun7Kq5DvvyqfTep02sQIdK0/NiV3ra2l+XmdVD7S0tB1EOSXEIipaWq3PlFkVKetR2/Ysh1zNsTb1aZFppSqLdW6DYGArdwGNjdC4emjOlIcZMx7mxLkKlK5bL9eXnHCrJiHn819k2mM5f5by8cBb5pq8N9UuPM7NHsfsVaHlWltqQgtKppdaFdXaFl1yrO0VWy1cbltzactzbjt2CUPagCTm6bck41JZyYVPyxYmoUODo6e4pEhXGzQpO6EdNpXjsHWkWjWrv565QUG75l4ZOYcaBaOEoYNabVzPAL+JtuH1A9Ck/nWVdxX51IwJJZOMRGnMaTFVWVuhtXMWrLGyZGbPofXeWG0o7ZcaebF8WmQYqcJsWH0JU9FRU1w8DmW5MOsgLdug9gxdMfcDRkoaLUi/glL4TSBXHkt6XlV+Ml/rv3XMk1YOHp8eT5xWNWxd/Uf6v2hlGGPbcyty5dPCyHA5gmUpMGM4IHuRKqaaj0p/3NOO+rR6tSUlO+5+swXj9g7haCkuJTt07YPh1IfPGc9l8U62fXyerf/N0V7U+H6UtowP9TkZE6uQg60dC160lCnn49Kfz5WplSBaK9mWPHJpeYnuutCqOnjGmKH1GSMPr3+Lxym4FZ7tz540+rBW/yiphub59bQ7RiguwFFTXEqodTjzOOS1Toa5HQurxpjqQM6pUfuf5u/xl6hFTonwKCfpf4+q4Ukrd34M0lJzXsvTcmb0xLXOex2Xa66pJ2xL21mVimD5qdSgpHJ4yJPnWGt4zxgm43tUOW9flc67OQfcPnyJ0KvhgkysE0dLcbFQ6xhXg9aV9tj+NDXptSoiKTzxSivqkh9LyyQ0htpTKncu3TF2COXSqyEO2s4LK29P3WrgvXeee+1QiHjGIMcrvlSsegHRQi68cfv4JX+VGpSU6V5pad2xtHTPM/FrFL5cPK0PeM1M+wfqyjAAobjsKnGpnfTH6PxDULOdsjRoeJ834SVrrZOUd0Ut0UqwWuCVl1sGxppzQ5yNPStPTxoaARqqvOXyb76mSttwkKrF49m9Jk0PtL7oeaaJ52m2nuNa+pqfSm6MKI0fVnm818trTgcMEk76uRxKiwr5X4a3FJtDAEY8xwXYVVNRbtIfO80xYJmYtM4izVkyTMk0k4ZbRZ3GeDpozkS0DvNRijEm3ZKZqZRe6ZpaJitN9q7JV6ovtdc4J7uXYOaVuRYFxSWLoX3B46ybyyt16LUcXvvfWnvImbllvJRASUfinMNuDVlJy6LlraHFh0UjFn1blccslBTSVfi+BQZhNxUXC6skH2MrMtqKN+1AfX5j+0DUxNcGo6HXwKs+yOs91K9jbEgpWm69r4G2HTyHFjNVSQmS54e0d0uJ0eR777XahGnVq5pYuxU9SmvO+VVLS1NSJFFJw2gkq+R8myuvdm7scTdtFzlH9NSXxVIT5e80nhb+ECAeQLdGxYWIziSidxPRnxPRNUT0M93xnyaivyai93efJyZxnk9E1xHRR4no8YMKkHuI0hgYOohr/60OOWSQtiaomvh9+E3ueMrJzek3sDwgaasx65qMqe6MtbMCsNtFCV7TWC58f75/cWErPEpWDcErlKf6Tb6l+5VrAxNaPu8xDVmKjabASAKTM0/J/LzmJA2e7dJpPjJezT3wqqDeNuJRDK0wh4i0BOZYp+JyF4DHMPPniOg4gHcS0e93536Jmf9TGpiIHgzgEgAPAfBlAP6QiL6CmdtGzKGqgMd2raFn+1a4msHaeuhTLfp0Uk97K0wJNWUpbY0GxlNGWmRny2FPW4G15O+pf22aQyBXrmkeJQfkXFrpMS3NsZx7x3YY7uFp+7n8pBLaMm5YfV0bxyw/Fa/PjZV+zTkLOX+aHIaYGKVKmFP2tg28GedcIroSwHcBuJGZv9oI82gAvwzgOICbmPmfrKo8a7t7PMfnur/Hu0+uJT8JwFXMfBczfwLAdQAesbICtm4rHFt1GLqDwAOPySJnnpC+Dx5oA2XOUVKDZ8U0ZECySFQ/2Q6ddOVK2ZroW1Z4fZxWNVHWrdYp2JocWlbHEtr1aE3Xo7yuQ0mUBLaHRlhK9zS3RTnns5JLp3bb8yph+avU+Gul0MYvSXgs0rNhMObEZeyPA78B4AnWSSI6F8BLAHw3Mz8EwPeOUF0TxLw+uZ+I9gBcDeDvA3gxM/8kEf00gB8CcDuA9wJ4LjPfSkSXA3gXM7+ii/syAL/PzK8RaV4G4DIAOHnuyYe96qqrcPP1tw0sKSPrBLg2+Mtx8qJzcfP1t7rDj4e+jJ6yjn9d5/W+zRFy7Lxb6jteGfz1LuGwtHUf2urdj3HbU0+J8e73YYXeDof17/RYOk4BB/sllOPa+T7McnqXPf3puH12y8ob2DlfeT9+5K/9s9HT/cNv/eWrmfnhuTBE9AAAb9QUFyL6MQBfxsz/ZvTCKVirc25n5nlox85eS0RfDeClAH4W8xbwswB+AcCl8LUgMPMVAK4AgHMmJ/nm62/Dlc96rV2IVWxrtlb6nrxGckC89PKLceWzXudLpxGTs+4J3Pc88PV/DZ4ajm8ljCzTzuudud9joC8zz/afZmyZRta0QltLvQ8bJoRLX/Tk/Xp7+7J3W3hlWbKmmJp0elgmn77ez35du7lGSz8Xvmar89Ct5IDZdy69/GJc+czfrfNlkSZEy99NOoDL8JpT7iFw1F2Rqeg+RPTe5P8V3dzqxVcAOE5EfwTgbAC/wsy/OWYBU2xkVxEz39ZV8AmpbwsR/WcAb+z+3gDgwiTaBQA+NWpBxiAxEwJmRqfq067dzWFhSFlzvjbe67A3AW69fZ+0APbk7fWRqJnsxyAG1kBV8t3o73POzCYl6LEmyiEE+DDa81snulwa3km0NInnnjuSxpU7c2Teuetu+X1IEiPTTB1r0zJZeaZhNVO4lp5WTpmOdg1q4TUbl87lkDMnar5s2g6j9PghIC0rxE0lxaWAYwAeBuCxAO4B4E+J6F3M/BejlE5gbSMaEd23U1pARPcA8G0APkJE5yfBLgbwoe73GwBcQkRnENEDATwIwLtdmeXss/3uA8teq3nx5+DptIdh4ujLUOuQByw66+yzd2B222cPHFfz8dR5Qu22aQ2eQUUbzDxlyPn8WPnUDnLWDrMhbayl7Xl8GYYM4K0TXc7B3iIC1s6aNEwaNucMK9PNbS/ur7t2LVMioaWTxrPKoxG5nmBrdU2/c6SjtFMpF2eV8La3dFFS2ubcHyv5rmlKzIbQP4BuAz4uJdwA4M3M/HlmvgnAOwB83RgJa1in4nI+gJd3fi4TAK9m5jcS0W8R0UMxNwN9EsDTAYCZryGiVwP4MIDTAJ7p3lGUm5y1CTxdqWgDxWFctdZiSB3GnBRz1/qwwbslsya9mpXlOkxwWrxVk/FVmGs11OyK0xSM9H9J0dGIRJ+uppLkyppTg9I05TZjSTpyCksufS0/LWwuvbHvsXfRoikp6Xkt3RZCskH1hQ/nk3NfD+ByIjoG4ASARwL4pVVltjbiwswfAPD1yvGnZuK8EMALRy2I1hllg5Wdbp2mjFp48xzTxFI6njPBrOL6WKsmz7WxtuyOcS/lSs+7qsuZrax0SqauIfUZei1kGcac0FK/o6HpaGXTFAsNmjnJc660XVlTdEqkQatDbtekTMtDtrQyeevmPV+DUp/ImXGtca0/16s36W8r3o6CiF4F4NGY+8LcAOAFmO8MBjP/KjNfS0RvBvABADMAv87MH7LSG4qj9eRcoG4VVovWhryuFaiR3+ScszD73OfzZahVXcaa7DzwlC333I9W85GFFsLmybelTCXSUiJ7Hv+fUthc3VraSTpxjEWExpqEvL4zpfCa+UmG9/ryaL+1tFq3QEuClfOj6795BtM3sIRW4iAXON4FhQyjqi3rU0E28eRcZn6KI8x/BPAf11CcHX1XkRerts16fWVaBl5pS5fIyZhiVURn3RNEhWshn6VQguYkWIOcXdqC9zkopdVWbb659HN51OSr1a3l2tSG1YiNdU6SGA9aydg6V7uWCaUGOTORFq41Hyst6eOSpq/59ZV8Y9KwkqjkCJo02bfA45OSfqfx+uNyISOVFPmR49+Btn7Izd47hqOnuKRoIQw1K8RWQjK2KlRwtJt+6jPlNGrtv568a9PyhvWaUlp3e63SJFgqT4tN3qs8edL0Xhdv2datNlrI3VOPw64XNXE9SoYnH8s3x2v+ypl/DsO9A+pNopYvTJqeFkcSnDX7uTBjLGfarcbRVlzWiTFXUh6knXfo4DKkvIdlYEtRUqtyGJO0DFVB5ErRA4/a1IqW9DbRPrT23KLwjVWWGjXW0xe1HUsyr9xuIvlbMy/V7r60ylmEs33U+H1pCoo8V0prA6QlsI+jSVz6Bqd17PRbg2zAQ2RjLY3DONG3KlOeY7njOYxJpmom/zEn+5J6kTPL9Mc8ZpOae5ELU/pfk39LGA+8PhkWVqWk5Rxja1QUy+Rk7VRK4+QWT5ZZKf2WxCfnIzN0cbZoD2OlI/6nJiDN76UP038n/ZF7H50NgZlG/2wbdsxU5HSM6xtkrXSqYQyiMdTzfl2daFUmEq8zaIr0mgwtV4vT6Kqdj1uuSS4taV7KmYtkGbTB3etnsm5CuGri32ra0uIMua/WziHtnLVjSMLaCm7lWVO+2jA15k0ZT5ITCc2pXEPqK5OkSxNSFJd1Tf6jPXdlq7Fjiotze2AJqyACtWnmnqEg0eIU2YKafDzSrUeS9dRnbDLlmVBqyjn0nqh5iVWftrIc49qVdhV50i/J6q2KUCtqzWspxiBGQ0yVlmmpJxnWbp4cAbG2PucUmhz5qYHnXkg1xKPcWqY/2R49plOt/R4owyFUyncYO6a4JBiymukb6hjPh0jTrMG6t2SvK590FVfjRLdOeJUEa9BrIT41oAkAKvtleP1Zap2Uax1wS2Fr/BPGwCbalIWcgpNzqJUoOeDK9NLw0vlXS6tVQfEoVC1O5oDeB62dRFqcMU2da8Q2mnbGxiHqwSNj6OBEk/qdO2Nh1R1lkx2xlZC1lHmdKoj3nAe1ZdMk8aHqmLdMqYPwIRvg3ZB9d8x6WL4n6W/vg+Ry6WpmHvnbMi+VytinMYY/n4THZzDnp1JKzzpvfXviBDaO3VVcWlCr0mjPOxgDY3UQa7VzWDtg6/ZkCy1xWpS6Gn8VTxqruD8ePwFhy3etTMcs66p8qEqQfWTMMrQoFZ7rkKoiNcpMipqn3XrTH7q93TNepU61KTTflZzJKD2eU1C1/xsCI7ZDA0FcluFpnKsgK6t6lsVh3KGUQ+vgkE64rbLzkDKMMah500jrWGo3OSda7VpZxGlI/ca4Jzlsw3NgvOjr4k0nt1tIMwXJfLxmpRxB0tJdxz0pkZY0jLU7r1ZpPAzkhQE+BM190zgEd2KDqHkmQo/aDpnLo+8Uq+jkfdpjmLAOuwnAq1Ss8vk50lG2dutwy+6bIX5Qh90XygvnNeCcQjAGWklXihqVJJeGVGM0s5H16Ic+fBrXs1CrCeeFxwm3h6Ymyt1FJSfzUp897OPgEcLRVlyGbtkbmsc6HBDHIEW7YA4A7GuRs5lbKEnLEkPPt2zP1gbw2nS9qElnA22APH4kNUqBV33IHWvdVt2ad5qnJCVaGrky5tSVXLo1dW5RRS1Tp8fnK41bYy5dMzbxrqLDhqOhuNSuqmofpFS7NXBsb/ZVKAmt27dL0Dz/N40WBaI0eNZM4qXzQyf6XHnW7Ugs81yFI2xObcz17THVVC1szhG3D1N6CKZMp+SPkqogORLirYvMV357yNA6YI0zmgrjUWhKqk1grTgaikvtqqp2AKtdXViN33pQXmv+NahVELQyeFesu9T5h9rzPdfCo7TUOACPqXjkzHQ1W2E9zpYlyG323X+e8b7iMlTx8MTlGYC9+W/pT5LbMlyjALcoQ5biU+PYWyIonrilcnrgceQvnU+JinRM1/LwPHZgxWDEdmjgqBCXFGORmFU4oI2ZXm35hphJeox9PVoms7HNEKX0Nu0YWlNXry9QK+S18lybHPEaqZymmWhVoEmeYLRcpxJKREISGO2Y5oybpmP5seTMRZ7+yDNg5jSVloh67YPl0jhaOt7yrw3x5FzgqJiKLGje+CnWNeCVGn7LMxS8g6Hn+Rulhzp5UVuHlsksd77mGRHe/DzIDYylY5sw5bSmWUt+jyo812ks1RfQzUtS4fEopjXKslS/LOS25ms7ejRVRP62VBJNVbHKJPM9BGpLYB9HT3FJUfKEzzlzllYINSg1/qErstyANNRUUYMh9RhDSVFXhQ1p1pbFS8CsJzUPqftQ84snzSFprGrgH1MRtfxJtIe+ja3AWbuIvDuQNHIi/2ukpeSLM1Y9rTafcyS31JRa36mSA6509JWEZsn/bH0qSGyHPmqKy9hbH71OueuWqiU2ac4Ya2U9tlMvz/IDZm1eq1IQxjZ9eX1hPGEOs2oyndaFzznGav4nmunFIp0tyKmsKQHxqrFWGTXSIn/3YdI0tGuV23Ytf2t5lVDTN1NnWku9yf1O88mR7MWxYBPrxNFSXCwntNYVhFc63bQfxCbRKhVr59c5gZd2DfVoIRY1PkKtdR5TpWkNs0m0lC9VX2vUlFz/Thc5Wno1hEKqJem35qOipW/5r2h10tQZK3+rLKmfS8mh2XvPvOFqHgOgqSlSVdHMUhsg7+GcexQUF48qUiIWLduaD8MW5VI5LFtxLYbEHUIgxsIQ9UCSKu9q0CrHWJCD8mFWR1JY5Wwpf02c0mJj6GIkF79mAZQLq6kvFlmSx4eMk1qe6bExiHDrtvuSY26adslZ15NWYC04Gld86KDd4h9SWl20oMWM4VkNyt9e9IOTJbG2YNUTlIZNDjyWhD1WmtIvYEwTWIn4tk42NcdTyAk0iWM+OXdTqPFVkXEsWMRGqiOWeiLNOt6yafHHNJsB7e03l3+qpkh/Fiu8Wab1qCDMc8Vl7M+2YW0jNhGdSUTvJqI/J6JriOhnuuPnEdFbiehj3fe9kzjPJ6LriOijRPR4d2ZpA5tx/YRQstWW8iyhZRD2xl/VylqWx/IRAcYlMsXyGPc3zdOjftU69ll51frijE2aSpJ7bX65+qRmkJz9v2VXXAsyEy1NyH9fSmWtrUtf//SjldVDTKzwcouz9IHJ+ZpIM5M09ci4WpoerHOBIEl12i/k/zT8FqgqM6bRP9uGdd6NuwA8hpm/DsBDATyBiL4JwPMAvI2ZHwTgbd1/ENGDAVwC4CEAngDgJUS058qpZbuhdD6T4Uqrj1bFwhoA5IDhRa2JwDuYy/rX7qrp8ykRQZro53ISuFaHvb3lsDXXstaUU+PzUkuoapHmbRGK2rxL9Sn1jZyJowWt161EcHt46lODtP7S96QlXY1I9L9L5qWc0pOGzY2H6aeUZq4OreObx79Eqsklh9ycWclKeyn/Q6bo7TjWRlx4js91f493HwbwJAAv746/HMCTu99PAnAVM9/FzJ8AcB2AR6y0kOuQk6UaVLJbD4GnM65rJdHn4yGCObn7YMI+R9feSXAMf5YhYdLzq25vtde4BS2OyUORK3s/GebuczrRl3YItiC3G0j7XZuW5nQrx5EanxyL7GgkRvtvHcthCJn1+pVJgpN+p463nnHB2ha9AczNReN+tg3Eayx1p5hcDeDvA3gxM/8kEd3GzOcmYW5l5nsT0eUA3sXMr+iOvwzA7zPza0SalwG4DABO3vvkw171qqtw8/W3VZaMsS4b5apw8qJzG+q9/Th89S61Je18ffvbr/dha7ve8rSVu+1+92PcYbpOdWhv54etfdRh/P5tXY+0jVh91MZlT386bp/dsvILfY+//2X8wP902ejpXnvxz1zNzA8fPeEVYa3boZl5CuChRHQugNcS0VdngudaV5rmFQCuAIBzJif55utvw5XPeu1yoNxWxHS7nkTrNukcVpEmgEsvv/hgvQ8TVlnvZ/6u32/osDlpNqL5frdukx6yvXrE695U73S1XFuWFjNITdqWr4vYWmzWOy1fqW7almmZhpbuBuG+31IRSdUYzecuF05zwj1Eu/K20Zl2bGzE44iZbwPwR5j7rnyGiM4HgO77xi7YDQAuTKJdAOBTTRlasmn/XTMg55zccmGtstRgqJy9Djm8h+zonnoPNeGkZfL4LhyiwWgJY21T19L0ErzMDp2lcB7UtvlV3hdtB0wpfIkMaH5bJdNKWhaZXimMVb6SL5fnPkjfFlk3zdG41mHXE6a2DaRm8RxpSc9LopKai+ROPJnOgXTXQyYY4+8o2kYitM5dRfftlBYQ0T0AfBuAjwB4A4CndcGeBuD13e83ALiEiM4gogcCeBCAd6+rvCZq7NQeW3xr3i3I7UqQKDnRrsJZ2XLMzcK4H9v8ELWabeqrmOS9/gerWo2v476Uyl7qG+nkrvltaYslT9v2XPtWopSe1xxu03JbvmjSp0b7yLxqyVjJN8kLT9+RhN5y5C3uQtoNJXedIKJ7E9FDiOjLieo6/TpNRecDeHnn5zIB8GpmfiMR/SmAVxPRjwC4HsD3AgAzX0NErwbwYQCnATyzMzX50CpPy62A2nGPbF4yQ8ldMWMO1t70tOvTx/U40a4C1fklzphS/l0lxshnjDRqd0KsA9561dR/oLmJZwznnsQ5tAm4ZNbRkE62ljmntm4eolRKNzWXy7Q1c1JLWXmGqneB9Wlbu7+0tEqEIh0XeqTjhBZfntfObRDbTJGI6F4AngngKQBOAPhbAGcCuB8RvQvAS5j57aV01kZcmPkDAL5eOX4zgMcacV4I4IVNGXpWLTW7VzyreY30tK78pY25OMgn5bNeXObBYVUhJOT1kPLvKvJIMUY+Y/ialOz53nQ85zzp15Shhtx4fTfMrJRdMKVJPYVFEjyqqyQvWhirHLnjmk+Klqfmz+Ipg1bPGiKTmnCHKHgTOkha0gfHaXn2YdLjadvUyIlmOtKOBYbgNQB+E8A/6lxGFiCihwF4KhF9OTO/LJfIbr6ryNNRvPZeb1hPuJpBXaZVjFcYHDVY12kVK+axkXt2ylgr+bHrVuNnYiE3UNcoTrkwtWRNTgjAMIVES8+Cx89M02lzZbOU1la0xtcUkZwKohEkzZxkkTLLYVfGkwu00jVaxfVr7e8thL3PT9sSvW4iw9vtnMvMj8ucuxrzXcdFbMnyuhJDO4pmv9bO12IM00ILav1U1mV+GKvTy1WRLFfO5p9rK7J8Yzg35wbNMVB7T7z5eh/21WNIH0zTK13zkk/IukmH12/MQ7i8Ziiphsj0vdenJyEepcdKX4tbs6GhBTmy0ZMMTaGR5FhTZXrkdh2tG7yCz5pBc/wAEf1U9/8iInI/p203icvQzpHriLUrMM8Dz7ze+B706cgH3Wlh5O9SmkOhbTMcE1Z6cnLzDjwyvdZJsL9+ORPjKpQrrS30aNm1UYOa9HNhV+VjtarJRzPTpOf6b01NkenkzDPa8TRemr61U0gro5au5XjriZsea1KvjPCeh8WV7nH64DmpomgmJ9fuooATLwHwzZj7ugDAHQBe7I28m6aiMZGzdXvQ6iQ7NK1c2BobvTfMEKzK5FTaDjk0zSFO0KXzXvNXrgy5tlBaVWp5jOG/so7BX5o8NFORVHWGkNKSP0xqyvH0PVl+7xikKTAyLbkjqUSiZNn77xpTkZaOG0a5asyhqeqixdXMQJp/DHCQDG1AfdlmU1GCRzLzNxDRnwEAM99KRCe8kYMuWliFpNmK0gppW2CZAFa1aqmxe3vDaFJzC0oDoDW5e1Sr1sG05NuSq69HWSyloaXZglURc63feeJOp3X5tJCW/lyJRMlPzoRacsS1lJ/cdSopTRqsdmD1IWs3kNaHtLApQlFZFU51O4wZAIjovgDcHX4378qqFYJ1Q3OYA/wd+jBijHs0FoHzOIDKAU5DbgAs5TmmX9FQMtNyXaX/QL+6H3KPhjrmeuvsLaPm8OqBdl1aUfIhkcdK35bpyDqf272UHrfAs9Wo1mn6pTjWziNvnhsmMzvyrqIXAXgtgC8lohcCeCeA/9MbebdNRc3yJNrjpfm2wCP996jZ/THG7ggLq0w7h3Xl6TG/yfNjmSJyWJWJbYyyruPeSL+lVjLoKWua/qYcfi1/O6mCaP4xOcVDI2Q5c5fMh2flRzD04TXH+dbr6bnf0sxpmU2t57do7WobFoaHHMz8SiK6GvNHoRCAJzPztd74u01cLOe2HORWPwnPZFEaUDX04YY8g2VTaKmvB2laY0/+69zKvar7WSp/zbZiD8badjpW/LRNjHUvrXaWWwx4fTxKeVhp98iZgSwSY4XLoWSOkmGG+HkN7RveRwzk/Lw0kqKRmDTehsgLY7t9XIjovOTvjQBelZ5j5ls86ew2cWlBqSOtyrGzNt3aiXzMyVPLu+YZJS2TmkUirbStnQFjTuRW3qvCUvqF+1lLmK3jNY65YxKlMZ3aLVg+JJ5tyKmPiMfvQ/qtyHCW465UObS0Zbj+f8n3pIZAyfw9u4lq8mmFh7CUxgItHemMm47bFqFZBxjAFhMXzJ/Twlj2uu7/M4Av9yRytIhLyVt/FXGXFIMRTQk1DoWpT8wYE6t3RWrBuztmyCqq1WzQOsi2XNvaOEthCbQ3AU8bbPSecPI61vrWrFPRckB95L/sF/13zSRc4zybnq+JV+vYmlM3LLOTDGOZmLTy58o01GzuDVfrk2ItIK18vY7AgSyY+YFjpHO0iMsQ1m8NVt6O6RmYSuFq85TpHaKJ5ACayzYyyVjnynHI/dibYHLvczG9yaWsjgsPKVlFW2tRDBbFyW33nYjvQl/VwpTMRjXmJCucptZo25U1Nceqi8w7VyZZv5r+kLtmFlrId+kxAtauoS0iHxtyph0dRHRvzF+efGZ/jJnf4Yl7dIiL7Mwl8lEaRIDOQ37EAXqs54Lk4KnXViEZcL3Xr3VSXec169ukVqcJAdMZprfcur7y9NjkAD8VD2SpuB8HFJeSE6sFa7ItxfdM9tqYJFWOVrLQ4tei+eVY5qw0fC5MKc8DqOxzmtLa9yGpei+yyJAdS1k5QHi22nyzdhDRjwJ4DoALALwfwDcB+FMAj/HEP8RL8JGh2XzTczXhe4y9qrRMKGPCU69a1JZxyHbQHDw+GK3wbG8es179PcrtwlgHkdJWqJtS7sbM15qoS/ewpMhZ/y1HWct0Y5l1rAWXRyWSx7zhNeWmdhu0FsfVXyr6VKmPpuXTSEh6XPNtyZqU1rio4RV81o/nAPhGAH/JzN+K+QuY/9Yb+WgoLkPk21WXoQSPL0w/AJS2JcrOWCrTqhSMTak9uXK22Mkl5MCYG/Rq8rby2DQsNWhsc+cIME1FKYaYPdL40nnXSlsqEyX/GS1+qSzW/5yjrRW/J1q1i0BvmQCbIKyLLEtlpfR77T4utNW7ihLcycx3EhGI6Axm/ggRfaU38tFQXFo6WSty9mRPA88NsKV6ePwO0jDrVpR6HEZ7cq+YrEINKilprdd5HddxKJnrUVrx97s1VgQumUJqUPINkeQj57OSfnvKmFNmrPxyDrle03GJsJQcdEvow+QcaUuw/FV6cqFte5YKS+khkh5H3oAHNxDRuQBeB+CtRPR6AJ/yRj4aiksKuULRHN20cLk0Ugx1NhtKpg7TitzCkN03Y67U5UquNV1rR1SurGOQwlIaLddqaB/QCEm/U2fV18OLWp82bczQ/Du0MaQP41VerPKl6WnhJHnJESqLRHr9XNLj0v9GS8eKU3Jo9qDkjNvD2vqc7pqzHulw2MjJFgzxJTDzxd3PnyaitwO4F4A3e+PvpuJSo1pocq1Mq8Y+XFu+Vfl7tKCmLGP7i+TSW9WkNjTd0rNrNk0iW/L3ximZI3uMQQzHhjZRp2qC1d9TU0kKy9dE/taci1M1JJe+LKNVn5QIeOqUg8y3pCTllKhax90cUvWk6DSL5f+1ioqWd2AwiOibiOhsAGDmPwbwdsz9XFzYTeJS0xEmtDygyM6Uk0dbG7E1uK2axIyZ/pBJf4gcXHNv+/sj620NarVYl0ogZe7DhvT6aj4vpTJvsk41CxNtLOCZrXBIlBy4Zfqa0mMtrLQxRSM8ubqWzD0144dWj7GIqzR5p+SlRGg0yDiHub8xwEyjfzaAlwL4XPL/890xF3aTuPRIVzE535PWCSg1X4yBtGO3dpicPbs0cMgVYS1WuWunJZ3+/sh6tz6cTqa/TuQeBLeqMnknmr7dWG1uE898SbDwb0mvk7VTpxalsudUidJxS5GoUU+0sCUy1B8v+bRoCwKPKWwVqFkMWeQmNTON5du1CvAKPusHMe8/kYaZZ6hwXdld4iLl27E6T9pZ+0a/io459FkjLWUa2iFb4pfMLesow2FKv5SnNslYZRrqMOmFJIhD0tbIxUCndprQwV1FLf1ETtbeekpzkBa39B+wTTa5ePKeaPlbZq4cudPG1FI7rcUYhNzazi+dwT2kRdsluAh7iEz+24GPE9Gzieh493kOgI97I+8ucZGdcYxOICXZTTNvCzw7XL4zObReQ89Av4uomWhzYVuIrfcaj6Vg9JOn1kYkiSjkqe4qqoU0uZRIgxU/JQ+a+mE53cpw2vH02ypfqZwlgqWp2PK4x3xWOt+ihHpNRD2BsRRMbZebRnQWx9YpW9AKPmvHMwD8QwB/DeAGAI8EcJk38m7vKkoHgDF3pYytEoyNfhcHoNd36UmSGf+dTdavlL9Xgs+hpi2McT3GaHtjpl0bpxR2FfUbk3yVnjlTKr/lhFuKlzOfyDQ9ZiCPspWSB6/inIbNOdOm4VuviZaeB7ldQ7V9dIiv24HntxyRhdNIYOYbAVzSGn9tMxMRXUhEbyeia4nomk4aAhH9NBH9NRG9v/s8MYnzfCK6jog+SkSPr85U6+BDBlYtbu1Kv+Qo6olTA63Muc7d5zU2aamtwxCz01hlSGHtVqhJt7XtedrIOvwIUtQ4tbambx1rJUjyOtaQX83Ukk7uJV86Kz3LOVZLK2emStPTlB2rHtpxK3wu/3W1v1X4nmg+b9W7i9bY/3bAx4WI/gMRndOZid5GRDcR0Q94469zSX0awHOZ+aswfy/BM4nowd25X2Lmh3afNwFAd+4SAA8B8AQALyE68H5XG95BTsqiuQGzR9qwcwOPlk7JUTRFL1e2Dgoe6dpzbAzknPzGQo5caGWocWrMYdWD9qqUr6EkfmyikltgWCv7GtT4YGgTs6f9WOOBFsYy7Vhp5NQPiVLeufy19HP1t/xxLDPT2Mhtwc/B87wXzaTkITaBEr6dmW8H8F2Ym4q+AsD/1xt5bVefmT/NzO/rft8B4FoA989EeRKAq5j5Lmb+BIDrADzCnWEqk5bClQZEa/WihdN+tzrxljpIzbs5DiuG7mTSMMagYvlGbWLAstpc7fExIa/L0DzHJkJeSN8MqaJY8JB+jaDIPGRZZNxSGKm05JQw7bhGmixTkYQ0Q+XSl2XJoUWVbkHqp5Jz2tVcAza5TXoHFBcAx7vvJwJ4FTPfUhOZeAPvyCaiBwB4B4CvBvB/APghALcDeC/mqsytRHQ5gHcx8yu6OC8D8PvM/BqR1mXonHpOnnvyYa+66ircfP1tA0vI2Dab5cmLzh2h3tuHw1vvvl+tph0d3nqvFlHvo4Xx622N7ek8aPVZ2af341z29Gfg9tnNK580znjABXz+C549erp/eelPXs3MDx89YQNE9HMAngzgi5gLEucCeCMzP9ITf+3OuUR0FoDfBfDjzHw7Eb0UwM9i3gp+FsAvALgU5dY1P8B8BYArAOCcyUm++frbcOWzXrscaJVOkTUYqxzKaujSyy/er3et0+FYaMl3YNmW6l2LTV2nEfI7UO+hZfessGvj1JTJmf+ll1+MK5/9uro8cwqHVAW8Sm0pfXnMMqc4013cb6kIaeXVlJtc/qVzuXoVyr10TObnuMaXXv5kXPms1xXDHYD2KgBgWWGRSor1jiNtG/SB8IdgftkiMPPziOjnAdzOzFMi+gLmVhYX1kpciOg45qTllcz8ewDAzJ9Jzv9nAG/s/t4A4MIk+gWoeAnTErwD2Sox5qQo05Edbjo9uK10LOQ892t8SGrCrAot5V1l/mOk1drOSqaRXJ6157UJt4bg5sJ6/bZkGSyfOM9YUdvONd8Pb57yPlnkJY2fM9dY5N1DhizUmNGKaBQxtPcXSaKiERbtmPb7wDuO1qfQb8BIshIw863J789j/vRcF9a5q4gAvAzAtcz8i8nx85NgFwP4UPf7DQAuIaIziOiBAB4E4N2jFCZnTx/LP0A+br5lYrDSlBjyJNjafL1pj+0DcdigTT6HAUPIUK3KMNTOn5vM02NjkH5r8pa+HR4CUSprS9uQxMBybu3PawqGjJ/+1357FEeL9FmOtpovoNfPxbpONe1Me/5Kf1zzYQGWfQm9z4M58EqAHWETW4Ki4kJE5znSmTHzbYUwjwLwVAAfJKL3d8f+NYCnENFDMb/znwTwdABg5muI6NUAPoz5jqRnMnOdJ2eLPDnEtJGe03YdtQ6+qfOYla8HY5tCcunJstasvlvyGxOefEoDfEtZrThq22V/m5bpSOQUifS3LJ/1YLjc/bTISI4ceK6t1dc99bDKmDsnlRrrt1XmHDHJHfOULUVJPfGQo5KZK41jXXOZR0mV0cZSD1Jyoj0J13rMvyQ2BxSVQ4TgSC5T0ae6T2523ANwUS4RZn6nkcabMnFeCOCFjjLq0AbGmglS68QNdtoiSmXydtzSCqo0WHtJiCc9Lzzyv7z2NWi5T6VVaG0aVrm88rk6eTjqZd3/WmKWu0dWHrm69PFyafV1tq5TqW3nlJMcobLK6ZmAZZnl+KHloRE0r0oriVgt8SkpXt6yyHp7iKtWD61eLSiRDc+zYHIPp1PTbyxrCzbzUsTRQUT3B/B3kfAQZn6HJ66HuFzLzF9fKMCfeTI7FCitBNIw3oExd8xCyuo9Ck4OcrD3TDBWGi355+BVqHIYUoYhcYfWP7fCH5P0yfxyeWiTgkXGc/UvtbkSia5FDQnvw3vLp5FbOQmn4XJ5ad9a2laeaZm1uPKcpQBZ+Vr1seJa7aREBkvtJnes/z/kUQnak3Q1R1tNWbG2RmcxQn8+Qugcc78fc4tKf6MZ893GRXiIyzePFOZwoaZjtcCjopRIRo6IWEjj1Az0Wrlr8vXIv55zYypZcuBquZYavKpdmk7LxF17LyyikCMrteUo5etJ3yI1uXRqSJBWVw8JS9OXeeWIhszTMreUFgcaKbGISlqW3LGc4pI7rt2jNA+rfdUQ9FJft5QR76P9rfcQWWQm59dy4N1EmwPtBkd6MoCvZOa7WiIX7z4z3wkARPS9RHR29/vfEtHvEdE3pGEOHWqlxpw82ZJWDt6BtGUCtwZi7yDWcj5HQjxppenkJpKa9Cw/m1y5WuXpUhrWhJJbzfftcUibLE3yffo5BULrF9r/tKwtE7BVPivPXNgScS8RnxxhzCkTJYUjJWlpPuk5Te3R6qQhd408ixlZLiuPEln13DdPfTQlY4zXgaQkxHroXM7RNzAUH8f+Q+iqUbMd+t8y8/9NRN8C4NsB/CcAL8X8rY6HE2NM+qXj3pW0NSjVrtxbIAfP3KDsGYTHvK4aSjK0Fl4jO7UqRf9fW03KslllzeWrra6tOuZUCKvsVhnT8BahyKkBOSIm/2sTcFqmnHJRul+W+tIfyykc3mtSqq/sR1bcHOksqThWGXKEwSKNuXqVCKWGnMqjpVHqL2k5VIywkADsx/tLBSansuTIz7rA2BWr1BcAvJ+I3gZgobows+vpejXEpbdDfSeAlzLz64nopyvirw+lgbB18tXietPJDThjlbOk4ngnj9zKqTTBea9NqW5WGbTJS5KGnEIjV7la+FzaNfm1KAkeslarwNTWXWsfkhR4ymgRiVw5a9JPy5aDRi60fCyioS04tPKmYWV8WQ6NHGt1yqWtkTar7Ba0+5SDJGbWMasPyXPa/zGQewBdCunzovm5aA+t0+KsBbQrzrlv6D5NqCEuf01Evwbg2wD8PBGdAaz1JY1+1AyoQ9POpafZYms6bW5VouXrXelbeWmrZZlnbpK1ro1WfmvQlpOrVWYt7bQcpQE4DecttzX5lkipHNit61YiM/K4Vl6tHBZyE4nW3jxhtHprSkCJnJTavqyHh0CU4mjlkW1eq5tWNm0yl/nkSGOuXcq0c8TM0w+0+wOAiLD0ShhPmWWa1liySniemiuRO2cpLtaxHQQRXYn5CxFvZOavVs7/cwA/2f39HID/nZn/3EqPmV8+pDw1xOP7ALwFwBO6Z7ach4q3OW4ccqCsXdG2rJBrbbH9QFMa4EtERBuwSkTNGpBkmSSxsAat9LgxMB64jtoEatUv/ZaDdC4fa6C34qTXWRIvK9/SpGwhVxZ5DzxpabDSsK5LGlZrc7JsFhEt3UuNJGvhtLBavbR61pD3XB8qjQ+e47IcVvu1+kUJFqHSroeBA++x08Yl6z5rZFwro+dYLXIP5JTnrHZmPWVXS2Pd4BV8yvgNAE/InP8EgH/CzF+L+at7rtACdc9mAxF9kIg+ID+ukqBCcWHmLwD4veT/pwF82ht/rShN0lp4ID+wVXR4tSxWmbTzcpKyyItWHmt1l4ujhUsnZgvaxF26NtZKMpeHjCfLpa0wPZNT/z83GVmDv3ZOu38aLOKVSzutU26Fq4VLj2vKhFa23H/rPsgwGhnSUGpnsiy5dla67poilIPW1uT5UhwtLyvvUl+20tCut0YiS2XQ+pvWNnP1K7UPLZ5nQdmKwmtKaG8yJ2mzyTz/nLJSeqLujoKZ39G9HNk6/yfJ33dh/ooeDc/pvr9rSHk8T869A8ucjLr/BICZ+ZwhBVgp5CArz/XHWztLbvLqkcvfIkNph64d0NP4cvApDaDaAJUbuLWJVxvYtXLlIAfIHHnQyiXrq5VPm9y9K0APOdQG5aGTs9ZmSpOXPJebvKyJRiNMpUmpRGi8bdw78VnHcvXxoCb9mj5bys9LzDL3nIjA6bwqwhwwBckw1lhRQ24tpOOLdc7bX/o0cmYgA7Q3AY4fB81m4NOn52lZ4XO+Lmt9AN1KUr0PEb03+X9F9wLjFvwIgN/XTnSCB5j5LxvTBuAgLsx89pAMNoK+IfcvG7QIhWd1Zp2zwmoTgTappf+9A50Rbv4aKJGniFMaxGQ+B8IrefaDHu3NAy7+pwNiaRIx8re+F2m3EDrtXIJF2t5VuXGdARy81rmB3MpDm2hK9zCnguTySsvpuV6lCb2EmklJm8yd1yx7PkdCStehhYx6kVMsKsaOA6Sk5rznflrEWY57FgHPkXwtnlWGHi2m+R59v09hvWrFej3AduMmZn740ESI6FsxJy7fYpyXQsjiFCqEELepqHtJ4j8H8EBm/lkiuhDA+cw8zosPV4HSk2lLxMSz2rc6dy5MYUCQK6ElYiJwINzePO4izmQCzGZqOkvhjHKUymn9X0zgRh4qyTHKqIWzyiLT6vNPy5EeS+9TSrZ6kqDVI1cO81xKuhphxa0icyVkFJxs+UsTrBVOwqNoyLA1pKlG6cmlO8a1zuWtwZrstXB9Oto18lwvrf4lgqEtODTTk0ZovITFo+Z4MeN5Hz91at6u5Q4iueMIWCIsPGPQ3l6nuKxGBlGxxqxqQERfC+DXAXwHM9+shRlLCKnZVfQSADMAj8Hc+eZzAF4M4BvHKMjosDqNdt6TTkk5ECtu7MkBe59AHPg/SRj7bAZMJsvCY5+mMmks8iMC9vbmP/uTzEvHl44x63mk+Vj5dvEPoCv7UtCDofaP93VN482W7cspAevjLJEy5ElS/18jVT3Rs6DFkb890MiTdq5PO0f2ciQwLVstyZPnABxQ3KpI1yondplHi9Ljnbx71CpKq4BXvSwtsLxkzyKdlpIsYREomaaXiNSSFs9uohmDeyagmoDE8SQNmtCGnuOy4XaogIguwtwH9qnM/BeZcGcx8+cKaRXD1BCXRzLzN/TvJWLmW4noREX89SFHNhwrrgOTgzW5TQyJUJvYJpNlApGGm0z2J6+9vYP5WwPN0oqAQMePHTzXw9vBcs8lsExeBqyJkVNi1F+Xnrykde/JXUry9vb2yVefhkXY0nAlMuZBWhbr3itxqKsnyXiz2XzFBiydIy2flLChr4rRzpKwQ1Q1Kw2PGphTh9I0ZbjeUVKqZWOhWZ2qCO8tsyvcjBem2Nr03WaxWuTGT0sFK6k/HpKTG280YtJiwvGYgCSROQJboonoVQAejbkvzA0AXoDuybfM/KsAfgrASQAv6fr4acP09Hoiej+A1wO4mpk/36X/5QC+FfPdy/8ZwGty5akhLqeIaA+dUEVE98VcgTmcyEi8xRWznJSMCWI+IYmO2Df2CS3Hy3WirkyqAtKXRZYhnYCJgL0J6KyzDionuYk6PZdO7MzLk+Z0qisySA8pJEWzGUNRYVKikUKTqmV6RPPJXwun+SMkaWjmo2ydUqKlQVPU0rAynnWu/50e09qkbBt9eXtyB3GtJRFKCWOmPi7CJFAyb1oKVnrOIi8W+dHCpeZAGbZP40B4R91ypNyrgLnMoJORiNu61KKcWSrXR/t4tY7TffjSe40sPxUviu8tWp8Ksol3FTHzUwrnfxTAjzrSeSwRPRHA0wE8iojuDeA0gI8C+G8AnsbMf1NKp4a4vAjAawF8KRG9EMD3APg3FfEPBbKDrkVYUj+RfjKZ0Lzx9quhzgmYiPYnlf43MA+XqgD9gNb7Vxw/Nu+EexPwZILFE3YmE7BifuIJgbhTDScEPn4Mpy68T1cWHAg3JycAMS/S639TPzB2g8Ai/CIRBk3n/5lorggs4iSXKyVAIs2l4/2APeP96zGbHSQvqcOcJDcLf5QJ6J5fgiU4fVAorbMSltQdBAqZkWVNB9TSAFlarVl+BQTQMb37LuooTXDHj+//3tvbb6PSjNlDI2hZh07D5CeOHSAtGT8szdSXnsuRoEWYiR5fpnNA/dEUISMdWU7LJ0ojWrXEpJXImMROQ4v/kAWvo+/QOD2kT4o8lh7PxbXOp+EW4TfAJrYUzPwmAG8akkbNc1xeSURXA3gs5uP8k5n52iGZrxxK48/a9VOfE2MQPrAyXygV2Hf2Ss91akhPVrgnOulqeW8CPjYBH59PJrxHc0JD8+/Z8cnc32BCYAJ4jwACZsdpTkIImJ2Y4PMXnAmedDtPCJh14ZZMogTQbO6/wDQnKbM9ABOApl1Ymv8GzcNNTndhZ/PwNGX0m+IX7J/3z8/D8uJ/f35yOiEsvdLK/f/5ucl0n2BhNr+G87SS+zbjfXJ1fA/Tv3NynzQdUG0wJ1ryHnfpLIVXJu8lcsXJb22iT8uolWUp7GxZEUvjQTGlzHiZ5NAEOHF8P05C6lJCpkruaTo9+emPFXwQDqgEGkFJzHfLaSXn5bXpSZRU+ySEKXFeV4P8CbNZX+7l5GxilB4vEaQULO6hphyVTGGWaW4IZDrZdKUSYjlGa79rUEuMPH4uQ9UVK67sf7kn6q4SwZGqdhU9mJk/DOAjybFHM/MfraJgo0Fr5CUyM50ufS8NUtPpvN2k/hiTCYBT+4Ncr8b0eU0SlaZPb6HcdErNZAI+trdPdCZzMgOiOamZHPyenJoTG96bk4a9U4zZMWCa1G+2hzkB2dsnJUwAHyPM9ubHZ8exYFvLYZLjE94PkPI2wkIdWvYZowW5mZOujthMsaTSTE53K+LZ/LPwk+uIE033z/VEaxGOgVNn7eEz33yveRzmpfA9saI+v54QJSQLLEhWEmZympPydGSpV2hm++H68+DlMJPT/cAmiUNC3FL1CtgnWty5DC52YIhwexPQOWfvn1tKO1ktH1CwjDItgiwTxPnBfZJFSVySYdL/QN5fwcoT2O8b0r9Jnk//S1Nn/zvni+TxVUqUIGbeN6+lEGX0+hRJk5gW1zKdpefG9AFSkdmMkP2d/rcIiha+ddeQtSHDQ1pSk1KJiFjPcwmsDTWmolcT0W8B+A8Azuy+Hw7gm1dRsEEoNXzHYApgEYZxsNNROnh1BGeRWjoYSl+VJNySj0zvp9GTmhlj0qszewmh6c1MRHOiAwDH9jC5e4p7fuKOTtWhfeVmbwI+tq/McKfazI5354/NlZnZsf58/yHMjnW/93qFhrrfBEywID4Lhec4wHvdarOLNzuDMb3HDDjOwCkCTWl+ASbzsDSjeZzUcHtsX9HBrGcrAB3rJ91uID82w/SejM8+8s75sQkDMwLPCLS3HHZx7XuRgxg8nXSSE80/PWZdPO7KO6UFIZora93/LixN+zZBmJzufk/nn8npZdLVN4D+fE+aelVr0seb8uL8PA1O8mHMzjyGL3zFfQHmBcGiGc/JVEKyiBmUEKil31Ne/F4y7Qn1ijQCNO2JygyYzcCz2YH+JJ/vs399l9WjlAwdQB92MVkIJ/QaQtSXt4flq5QiCbMwqWpkR9kZmELdOZcou2SoRpZCJAmNPFbyDdL+a3l7w7qQPlcrhWNxWQwr/WNqyU/NI/21t0QH1oqqXUUAfh7AnwA4G8ArATxqFYUaHdrWPU0S7+HYsscTLAjQgVVPr9ggGXiSY4s0gP3B7HQ/4+0TnSWCI8uZDgBEwKlToE/dBPDc6XLha9Pn0a9EO4UnXY1y+n+SHKc5QVn42UywT5wwJz9zAjUnRnM1qDu3N/89PYNw1zl7mJ4Ajn9+3xTEe8Bsb25Xm3XKDk+wIFCzvbni02/J7QnS7Nj8N6gzy51LmPztiTlR6gnPHs/J23EG7c1AewyaMI4dm2KvIzRnnjgFZsIZx09jQowTe1OcsXcaJ/amOD2b4MRkimOTKWYd8TmxN8UxmuGMyenu+AST7v/+rdlvA3uY4YuzE/ji9DhOzfZwz2N34YzJaRzv2Mcp3sNds2M4TjN8fjoPBwB3nj6OO6fHcGq2h1PTPdxx5xn4/BdPYHp6D9SpXjwj3H0e8MnvY2BKwOkJaEbAFJh05HCfGAGTuwmTU8De3R3J4p5UcUeSejVsTngmp9ERoq55zXgRtidKNGPQqRkmp2egU1NMvnhqX+3pCPZsj/YVpEWj78Ikyg+lZAmYk6IlPyHeV4smBLrHPRZhTVMaEqKRQpvQ5ETknPSWfIlSaITIcrRO/YyWyiCIjvC3I/EfsNUciXS88jg452CRmwNj4oQA7CUKYrJ4tFQaCWuxmbtfQxQcYL9t5J7rsmZswjl3bBDR3wNwAzPfRUSPBvC1AH6T5+9BLKJqVxGALwK4B+aKyyeYt0QnSztJjRqTdjINvSKTkBiJ4gpFITREBD59euG4yHKVmKa58N1g8J13HjyudVxpylrOfHGOkvOTPr1Eit/rB9wlkpQoQr3J68Rx4NgEdPfpZRm/+5bOxwvn5EU6y4rRQlUi4MQDGRf9wemFkoSO/PDepDOTHev8gjoytbdPfvgY4c6OJGEyV4wW57q0eMIJWQJmJxizE7N5+Y7NQMdnmBxjTPam2NtjTCYznHH8NI7tzbA3mYGZcM8Td+PeZ3wBX3Lsbpxz7C7c89hduPfeF3DG5BTOntyJ4zTFcTqNEzTF2XtfxF5HWe/mPdwxuwf+9vTZmPEE9zv+WRyn0ziTTuHeN94fv/5P/su8CfEEp7CHU3wME8zwhdkZS/G/MDuBv7nrXrj99D1wfDLFqdke7prt4QunT+Du2TGcnk0wnU0wA+GLp47j9GyCu0/PidPddx/DbDrBbEbg0xPwlIC790BTwuSLE+zdDZy4jXDmTYwTn2dMjwOnzyRMz+xMgNwRogU56lWlTmnqCdSMQQtliffjzTo16fRs7j914jhOX3jf+fEpz0nR4jv1X0qVJWFmm+6fW3wn4ZfIUA+5/ZV531SmmcQqyNCyea6Ll9tlli5E0j4oiZTlq5dszSdF8fGaujzhD0DuMMopKzKMZoaUv+X5FtIiHW/T7dHyvi5ITMU1CADA7wJ4OBH9fQAvA/AGAL8N4ImeyDXE5T2Y773+Rsz3a/8aEX0PM39PXXk3hBpW7jQhHQgvyYvVmQqObguVgRmYTpdXLz2hAZZXOsxA9wRI2tvbJzvWg+56KCu3pbDdwCbVnyVnxcXTI/tAy6SIJnvZlU9KkOY/E5Iky52SJAB012nc4y9uXDq25ASdxlk4PHfEqEs7JU6cDJZM6e/5+X2VqCdZex1ZOt6RqrkyND1Oi7p97hjhjo4wzUkQ7ROkxNw2OzZXjfZNc/MEaNYRr540HWP8zEX3wU//r6dh79gMNJlhMmGcOHEax/emOL43AxHjS46fWlyCU9M9TIjxJcfvxpccu3uuMk2mOHPvNI5Pprjn3t04Y3IKE2LMmDAhxhmT0zjFezhOU5zi+aS5hxmm3cX7/OkzcNPd98Q1N/4d3PLJc3Dsc4TTZzNm97ob5573eZxz5l0449hpnJruLZSrO08fw6npBMyEU9M9nDq1h9l0gunpCfjUBDhNwLRTkGadgnR6riBNThHuPmeCG77t7IUZbnIKmJzi+fdpALyv6s1NcD1B6shTd27+vydJHQnqf886sjMDqPdzmyaK0OmpbUrr+1B6rCdGCUFJyREBy/1H8zNKTWTKhH1gF1NPWFKfHKn6pL52/bdw9C5CEqOUDKXXw4Bl0lJfNyLHEOlbI8mjNc6WFHWppuTMSJswEx3CB9A1YMbMp4noYgC/zMz/F3XPiPOghrj8CDP3L2H6GwBPIqKn1pR042iVDWuIjdY5NAVHWzFM6CDxmRx0viv+T01VS7toMoOIVH4M0xcnA9UiRGrm0tQgIC+FJyAi22leW51Np+DP3nFw4NozBpjJ3MFUXSX2g3e6mk3rkahJErz08L/kPvbXai9Romi+BX3hi9Qn15Olnih1adGMOxJDix1nJ34U+LuvnAC0t+9Qvbc/4POEcFe/EOSOTBHhNgJuTfyYlv2a5qrTok57tHDSXuSRhAXmZOH4HYz7fH5OEk6fSbj7nDNw11ln4Atf0qtVvIg7LyfvfwPAXtpXAEw6vzJiTAlY+DkB4BOML/y9u7Hwf5rSwkwGpoWD9X4lCJPT/aIAiQM25oSod+TuvidTzJUf7r6ny0RoYX6b7vscLRSkhUq0T5CIgcmp2b5yNO0VIICms2XlqPc76klR6kd0bA903r2X1aGEHFHa55nBqfrEy6RJHaNS4pRTMiDGm9SRut9un/aP9IGRCiki8Z0ze83T2/8td3otyE7O1CR/59R0eV67ZusmLrJ9by9OEdFTADwNwP/WHTueCb+Emu3Q71WO/ZY3Ps3fbfSbAP4OgBnmb5/8FSI6D8DvAHgAgE8C+D5mvrWL83zMX9g0BfBsZn6LNz+VGFiNVCMQNeYlmacnX0uxyZWvTzM9LlZdMmzzMx+6ASRdES1WRsluK+3BbSqm04OqTn8swYHSaqu/ND9m8N132/m2kqMZ7ytJqYKk3YsFwemk5MVgzoswE1mOdGuwvH4yXWB/0O+OTe46jXv8r5uXyZU0D/bkTSNhwLLfkuJ4ujgvjs/P9SRg7vBLp6YLMjo7cQx8PNkV16lVAPafW9SrA5P9+jIhUbzmBzi5FrNjhOPfT7j/m/YWcfut/X29OCVIk+V8+g9x/7tXM7C0wucJLRoiMS/8rpbqjf0wi7g0JzapiWweAEu723pi1O9cW5AndP/7vBMH7d4Ze25S22+Dk+ls/r9TiYixuBek7WrrzWapb1F6/xf+RKKHJH5GBCyZr5ce9CdNKqnZTSNCfNCpe2nM6lUh5dEUtBzpoLHGWqilT0Lv3+2WLHQO+uZA/z+bHDwf8OKHATwDwAuZ+RNE9EAAr/BGLhIXInonM38L7b/VMb1TzM63OWL+dLznMvP7iOhsAFcT0VsB/BCAtzHzzxHR8wA8D8BPEtGDAVwC4CEAvgzAHxLRVzDzQacQDZZCokmK6fE0fCth0fL1wlJirHJJ01Ma1iOZGh0v7byaI5/nORTmNvPkvEWQ0mNpGQ6QpNRxEzg4wKWyeXecS1tg+zwU/yMVmfQW5V8KT/q90Wzo8u3mk6Rst372IOmx3suS5NNf5wMmOWZ7p02OnHbXmDun0YXvU+oIrqUj0kxJikVW9777FM75wN8u5z2Z7LeDPq72MEnpXwUsK3ML8tMRtv5WpOROEriEnKUPhFzUJxkxF/WTrxCZzfNYKHG0T9h6B2OazZWbtCHxBJjRZD6K8zzs3Gl6sk9agEX7WTxjqSOcB+5pes0XhAOLa3HQybr72ZezV4ksMtRf5oQ8aWPkIp/ZDNibYHL2WfvZHnDcVsjZ4rqmhG1qKkiEZLybzUDaq0YkmIG+qyiv41gp2taihw2PY+Zn93868vJFb+QicWHmb+m+B73VkZk/DeDT3e87iOhaAPcH8CTM34EAAC8H8EcAfrI7fhUz3wXgE0R0HYBHAPjTIeUwSYlGMrymJWs1YSEX1kNUcuXo09fySc1RJbNVWtYk7SX/m+RbQt0Cm0yeWvx+UNJIk5kuAO78gPrfwDIxOkCQCnb3BTRCor1HKENwlkq7IERYHmg9g57cbjtj8J132YqSuE5LkrpWNmD5XmvKniRW/f+kvbAkYlr6Bwss/if5yN/TGXDbHQfT1dqvyM+rEC7OahO7poIBB9tEj/SYZUrV+lBPxrowdNcpnPkXnxFhlPuV+tYsVYqW46THD1z/feJFM14mlDI9GS8lKykxZp6TxBnbCwdWyj6ZgM/afzI2TWcHr1saT977dHzTiFmfrvTv6x9xoY1jmqp0KpSXSjwNwK+IYz+kHFNBXlMCEZ0J4McAfAvmY97/APCrzHxnNqKe1gMAvAPAVwO4npnPTc7dysz3JqLLAbyLmV/RHX8ZgN9n5teItC4DcBkAnDz35MNeddVVuPn622qLtPU4edG5Ue/DBo+To7T9a5OZMkmcvPBe83qvc6V3CHDywnvh5r/6LBbP+amBdqlYO0fJSUq+N4eTF9wLN9/w2cpYsnIj1GPwZfAksF/Okxecg5v/+vbV5HPg1so4nus1D/P0p1+Gz971mZU3kjMuvJAv+ImfGD3djz/3uVez/lLEUdH5tfwzzHnE/0hOnQ1gyszf5kmnxjn3NwHcAeD/6v4/BcBvAfjeijRARGdhvhXqx5n59szqJzfM7B9gvgLAFQBwzuQk33z9bbjyWa+tKdIyWh14x4rfmPall1+8XG/LX6clTyBvbtNW0lre2ipIyyvNTzNzJViqt6c8mWOep5B6Huplmbs0aOetOOnxH/6VJ+G/POf1eqLaTrLcY/H789YONC0tLV5pB1uanoxTMt91+OFf+t/wX37iv7rCZmGRSs2klFMwUuTMLx6CqcXv4Kp3zrThQSb/A/n00O57bRmsOJMJfvgXvnO53rn0HSbbeThlTDygRE2Wj6djhaYQrmrM17DdpqI/wdzych8Av5AcvwPAB7yJ1BCXr2Tmr0v+v52I/rwiPojoOOak5ZXM/Hvd4c8Q0fnM/GkiOh/Ajd3xGwBcmES/AMCnavKrguUhXvI+l2FT26vH49yawPunTKZoMUVZJqGa8lj/c+am9Hh6LE3DMol54mjlssJpaSnwqI/eHV45c5cnX+uJpTlStPATSkxnSE1k2qRk7TrrTGwpFmY3Ij2edwebFscI32/vr0o7hTapJqaAqvjpsfTaGJPuAXNizaQuyQHzsjO7lo7055LhNDOWVe4cZN0T/xC1nqU0rXsxne7XW4Rdas99+l6TbQ458m4RI9kfAiaY+S8B/CUGPnG/Zi/XnxHRN/V/iOiRAP6nNzLNW9nLAFzLzL+YnHoD5vYudN+vT45fQkRndB7HDwLw7ory1kE6QfaQTre9j0gK6TfSp6ehoCDss/qaW5NJvxaWw3IuP4topOlJkuMti5Z/rkzpvbDip2FLaZbyL+XRgtRnhA++PViSojRM+q2ds45bcXrIp61K5NKS4bRzVhlSkmSFz5apI1v9bwAqKTMhJiRmnvtRzWb7n0y8Rdj0mFHWpeNW+sqx1LE0DcPT6XK6aZpJWQ7kq5Rt6XeX9tL1TAgFS/8QJa/a9rn0mS6nx6dOq3G9eSx90rSm0/2P/J9+Tp/2t6cxwCv4rAlE9M7u+w4iuj353EFEbptg7SP/f5CIru/+XwTgWiL6IABm5q8txH8UgKcC+CARvb879q8B/Bzm70H6EQDXozM9MfM1RPRqAB/GfEfSM9m7o6gVXkfclnjesJ6J1uOgmztnqTw5pcWzC6uUTsl0ZRGanFOxjCtVHs2xWahD8+3RmXQ9eVmSs1Ufb9gVQyo51gCcKkApqciRifR4aReazKP/nx7TTGq59EvmttxkI5UsLb00vmVC1NKQilmOmKZpWeW1duFZ1zznpKzVwTJ15sqt1q3rLzniuwgH6P0sd9wah7o+jr297hk3U3sMkvmv0wR0BMAjbfapIS5PGJIRM78TtqfTY404LwTwwiH5bhzyOSBAXWewJt8h5dA6Zs6HRcZJUTIrpbDy88T1Er4SAeMZMJssnVsiLVq6HiVJy8vyD8oRFm1AzRG63HktXfk7gTmRJ/loRAUo+weZpKbf3mqUIyVKOWjpe4iJp8xpOay05UTd/9fiaepVrp6e1Xyu/hahKl2rEsH0lmmBGqJe8lPT+mrJn2/JDGSESXcMzRTVW3MBWOObb4ixE+8qAgAi2gNwPyQ8hJmvt2Pso+YBdH9ZX7RDjJyCMCZoeZKszi/tiEPKV2N6aiEXufqk5bcGnhb/m5bVUmoSrFGerDil+nhJimZ+LMXPqT2yrNqK1VGmhRpVmHS0yczj7NySbpZgZfyiLPLkybclTssxjzK1hBlDPh4/R8qGmDTcZfLC6lctC4WCssrMQPqgSmussUiJ9Z6i/T96egEVRPQvALwAwGeAxROTGPOXLRbheQDd+5j5G4aG2ThKk95hlATHICw51BIFDR4n5BLZsEw7Q+AhWLWqT25A9QzAHsKQSzPXhluvnSXDd+mp74yxJPqMclIkYd7y5cJo4Qoqk4UxJmnN5NOiHGVRo5xpcFwXr+pVhZxioqGlfWtqsdcMJF+ymB4HlgnNurEb7yp6DuYbfm5uiexRXL6KiHLblAjAvVoyXxlqGnmL+WYMeNWWVtReA88krnX8vT19Aq25rjl5dwi0Mmh1kse1OqT1zp3XSFHOvGZNHB4yJ0lY7pprBMia7LXrZcXX6jcmPGlb6pRVRsdkvQpny6JpzavQtULEJzJeZiiQ9T9pyNfsj2MuJi3ltJR2SkisBy6mZGWNZqL9PNef5QrwVwA+2xrZQ1z+gSPMap1ma1HT4DettAydsK1VRM3KxZN/KR/tOx2sSu/8aVVIcvDkoYXJyc4eEiTP51QmKy2L+FjXTlN6LLXGIiPWMa3cOSVDm9ysiW7oZJzmZ6lHEiMSrVZlRo1TKpc4X513ThErpLc4lyOHuXxriK5nESXTlr89Y0VJLZaqSqrAaKajQA0+DuCPiOi/AbirP8jLO45NeB75/5ftZdswahuytSqQ58ckO0PVBs8qouY65AaCdPL2XIv0nObrUzKF5QY465rlCIq26vaW34Nc+BJxsohHrqxSNfEQylx5LIKT6xdjKATyGrSYd7S26cm3VP40feVcUbEYg5gZYB63vl5H5SXU3P/SmKptZLDgWUiUIAlJekw7n4bRzEdrwo44517ffU50nyrU7CraHqSDr8cHozSB9igRg9rJ1ErXIg+taFVfvOdW9Xr3FlKRGyxz9WnNrxYWifQO8nLlmlMZrHakER0rTAqrnWokVqZtER6Zj1Z+rxJRUnVKioxXsVHOmWqFtw5WGUqYJDuXMqTPaxZaijuEdJUIhSSaEwKwp/eNUvo1kKoJoBMYGT7938dZvKsolJdaMPPPDIm/m8TFWul7wvfIEQbZmLXOpm0/LkEjUNoTdEvxW8/nwuTitpKWoWpTKV2JVoI1xnWtUUC0yTxHZK1z2nXwkrrccTk5lghfPzF5FCdZ19wEqh3XVCtvG7MImANZk82YiotS50XeXtJVgiSCrQSmZkE39hhQgjYOSMdbiaxD7mpUNb0c68tqVSCit0OpCTM/xhPfTVyI6A8BPJeZ/9xfvA1jSGfIrYA9k590WvXmmWJCUJ8lUJoEvOnXpNGiJHmQW6W3IKeeDSFYadra+RZyk1NftPzTvLR8tWupTeQ5lFQfq/yWopGuqkvpaMpJWjdZby1Nj1JUgnWtaifwHAHyqkCl/C2iJqA9L6cZLSpYToEbqp60QlNfcuTEctZdJ3hnTEX/Mvl9JoB/ivmDZl2oUVz+FYBfIqK/BPCvmfnTFXG3E0OJj4aaybmGRGwCLeXQ6t8PHJ70+rC15G2VJrfSOev8WCTNk9+YeeXqIifkHJHUyiYJSpq/9lvGSePlTEiauiNRMj2VkFOLSuYtTz5a2WuJlbceuf9pWtr908islkftIqaFtJRMQWkYjcRYfi+7IIOsEcx8tTj0P4noj73x3Xeemd/XyThvBPBmInoBEd3DG//Qo2bgGoLSqnzX0aqE9NdmDNXEg1XfC89kUIpTW6c0ndykrKVdQ3ysiSn9aGRGU67SsqZlk2pSekzWTxIjjVxp6XoVshw892amPH7fuobK/9zbx11tRNYpdw1K8WR8ea8ttUy7F63wqiBLxENJIyUpqT9LqtSk59YFXsFnzSCi85LPfYjo8QD+jjd+lY9L96LEjwJ4KYB/D+D/Q0TPZ+bfqir1tkAOcKtSOrSBfB35bRrecmgmidbyt6pdOVPPWNfTm45HTcmZfErkOadaaWmUTGgtpEymUxs/XflrZMhKwzLheMqpQVODFAJywLm2gmA3P3NGM+fIvHPlkOG1ump9RktnSJ8G7J1BLXGlCpOSlPR/ej5Qi6sxp0yEuYnoEwB+xBu5xsflnQC+HMA1AN4F4IcAfATAc4joHzHzZf4yH0K0SP0SrROYnJS9+fXoO1HrxFeDMUlPC4nITaradZRotYvnzCMlaOWx/nvMPx7/gtayWSqIzN+7MpbxNbNB6fpoSoNcwWv1stKy4lh5WuE1aPXV1KsWRa8lXqty6M0rF87T7uWx1vFlTPJgbZO2nt+yCcVly8HMDxwSv0ZxeQaAa/ggvf8XRHTtkEKsDZ5OocnS3rRaJ3Tp41Fj750QFg68NfkPJVmHDR5yA4zjzJfLG7AnZM8119qATK/lHlhEI6cYeUw61svoPMTGqxTVkj5NMZBpacSndB20NHOkqkXByCk+HlXKImRamUuk0pOOpXTlrk1OvRy6MPHAs3ixtkEfgofP7Yhz7iDU+Lh8SCEtPb5zpPKsFnLwsTpnrvNoaQ2F7CA1hKi1HKsmIK0rvTR+hVy+DtAJ53OSrPvnueb9gKgRMU+77MOVJp4+6j3OxN759wPtTfR0SshNAFq5tQlWntcmtRz6tpLml360sFoZ5KSqjRceEiLLk4M13pQUIa3cHuXDKr9GNK37kGuHnjFSa59eQu8JW4LlfJv6rOS2RkszUZiK1o5Rrjgzf3yMdFYCqzO3rFxbO0zNxJp2GO9KbVUYsqoYeq1q7k9u4E/rIOtTc00nhMm9zqmL4yUaKTyPIPfkoykEStjZXXeBP/d5TO59brls6eSdmyw9E2KJnEgSopVDSy+ngKTpSlVAIz8WidHylb+9yC2gcvnK+JqSZLUBLV15/TzEuVTPXJ7ua1Q5juTGrNxYkO4SkqSl9ELFeADd2rH7VHHVysKqyiC3B6+yHtZktaqVhEfyHoo+HW0rY0teM8b0llvzcUqTvpVvzS4IK5/SNc2YQGZ3fA6zW2/bD1tL9odMUB7yU8pDKige9UGaPUqwyqjlaSk6HtSYniTJkmFq2qOWb64+ubpZ5fKQ/gPhCu1AIjdmpSYeTSlJFRdJVizH31U9NXzHQXP8ABH9VPf/IiJ6hDf+bl9xb0fpv70dvTXPMZj5KpQXr1SdwxhKRJrWJhSmEmrkbHmvc3G1ga+W3NWu8kUcns7ypEXLK6d0WHl6woqyHfifUwe0PHOTcknNkWpGq/ogw1okMNcXLZWqpa9oxE+rk2U2K+WrXUNvWxlj8WKNtZZzbUpMLPOPRmY29BC6bd8ODeAlAL4ZwFO6/3cAeLE38m4Tl5bBxJOW7Hhpw9XSKEmNNViXgtRiRit1YG8HbzHjDc1zbAwd0MY2S3pWyP3vWhOXNQlqeWrKiVRA0nAaidXysExHnraUTqxe84c0QVnQJv/aBdJYymtuDLPKUjKX9eEkMckRQu8423K+zyPX/6xx2HoQHXDw2S39sTATteKRzPxMAHcCADPfioqXLe4ucZGDoLVKaJFw5SBbeqNpjrCsUlkopb3qTic7trWKqVHGvOfGJIutWGfeuUlhDLXQSjsXxlIUrAnUO0HLcHLilOE0UpNTE1qVEA/py5EXS/GoNbeUyuIJI4lIrn1ZdSoR11Wrqp7+V3pRovSLyb3jaB3g+a6isT8bwCki2kOn9xDRfQG4J6TdJS4pchJvTRq5/7kVWE5aHVtByZERmX9rh7MGKG3F4iF1tROih3weJbtzafXvVbDGWs174FGG+nRLJqz0vId0eIlyjQKrkYq+XDXEw3sdcyqZdj20a2iVWZ5L74G8LjXXSCtnLTzXr2ZBZvm61CBMRS14EYDXAvhSInohgHcC+D+9kXfz7dBAWdYcijQd7yBXm2+L41f6Hp8S2ZKokb+t/zUr1tp8PWltAmO1qVaMnXepPiWSnqogEvKZRXKStfqUh7x4yimPaWla5pFatUAjU1Yasn45014pH22h1ELWpNqjpWWpKtYYNHTx5gmrPf1Wg/WslvSctsOo9BbpQBHM/EoiuhrAYzH3wH4yM7ufB7e7xEUSC8C38vRMQtLObXXO1gmlT9fqeDWrwRqMMQG2pJGb6CS892edROKwESkL3nZZe17rX1YaXiJeIr8lUqCRoBpikCPgGvmR6oplPsmV2Xs+dzyXtySJXhXLCmddC/lbU1lW2Uc9Zh+ptFg+MYdx19CWDDc5ENF5AG4E8Krk2HFmPuWJv7Y7QkRXEtGNRPSh5NhPE9FfE9H7u88Tk3PPJ6LriOij3QuY/PDImTXPxKgN45Xmvel7TCM1qLUtlwawljQlWiTyFCUH6RZs44qqZJbMXZuW+lrkvRRHK1tNG9LUhVw5PEpHavKRk7EkPxpJkWnKPL39xzI9lSDLlpJIj/Ih05DIkVLNNOVJM1emmvrLtqupIrktzXKbtHzUf5qGfEhdoAXvA/C3AP4CwMe6358govcR0cNKkdd55X8DwBOU47/EzA/tPm8CACJ6MIBLADyki/OSzpHHB4+porbRyc4nV3SrRG6gGJKe550breYjLyypPlceDZovzdD7so0DU6tZEhinvrn72cNSJ3LkRZvYrQnZ6v/WpCoXORoR0X6nZdHKoCm+Wn20cuaUJPlbXr8+vhyzPP0hzd+6Flq66T2VhEm77h6iWjO+ev1UNGWl9HJGi8T0x2iCA8+bWREIO+Oc+2YAT2Tm+zDzSQDfAeDVAH4M863SWaxtZGbmdwC4xRn8SQCuYua7mPkTAK4D4H44zUqIhOx8Jal5LNSsgmtXzLntfz1KypUF7z3IkUzPe4Fy51dxX1alwpQm7FY1RPs/Vv+wTCYSJSJhhbUmXjkxp/EkKfKUSVNU0uNaOK+CoSF3H7S6pmXWiEka15rsLXVIy19+0vys62mRNat+ADCd5svSo7YfS8UkhbZYy708sfS0Xe34qsEr+KwfD2fmt/R/mPkPAPxjZn4XgDNKkQ+Dj8uziOgHAbwXwHO7/dz3x/wN1D1u6I4dABFdBuAyADh57kmcvOhcXPqiJ49UNMZwJj1GGmWcvOhcXPrif7ryfA4bTl50Li69/OIRUlrPfRoL49V7uxD1PloYXu++X+f6t6fvp+lA/Abe9fS3KHECGdxCRD8J4Kru//cDuLWzrBSZ4KaJy0sB/CzmLeBnAfwCgEuhtyKVFzLzFQCuAIBzJif55utvw5XPeu38ZLqKyrF2b7gDmc+Wd/HUxBkZl15+8X69Pait67rhLF91vXcEg+qtXVtNPQHyPiPp6jpnFqktSwbFeg/N37o2PVKlw3ttUlgmEu14kv6ll1+MK5/9unI6FnLlScvtTb9Uv5axRYlXvN+l8VSqKd53gaU+Mpa/zCZ84DZn2hkb/wzACwC8DvP5/p3dsT0A31eKvFHiwsyf6X8T0X8G8Mbu7w0ALkyCXgDgU9UZeGTsNFyLJFnbSVNfjLGIg7cDaf45aRqHyafjsJCq9LqUZPIx8/KiZaLuv0tmNYvclOLWXCPP5G9BC2P1ea+fiSQmMp6HpEmTTho2R2pkHXLXoIZk5NLymHSsfEqmLuuajdm3S/2l5L9i9TltTD1M4+OWg5lvAvAvjNPXleJvlLgQ0fnM/Onu78UA+h1HbwDw20T0iwC+DMCDALy7OSNrBZUOMGMMlEPK5M1Pg/Zo6tq0WkhYTRlr017lYFeD9FqWiG8L0rq13Lfa/L1hc5NzjQojfSQ8ymefRym8FUbzAykoGktxc3XU8tfi59LSyid9bEoEwcqzJZxXXdH+W31UEisrrRxqFKUa5F60WPN29g2qLtuO7km5/wrzDThn9seZ+TGe+GsjLkT0KgCPBnAfIroBc5no0UT0UMxvxScBPB0AmPkaIno1gA8DOA3gmczs9OQqwFotelaJ65o85WqtVK6l44LE7O3l00pRWz+eLec3ZtqbuO610B5glRLA0orZc1/GJC2ynNZ/K/2asljqSoloWOn14TywytFCyktl9Jaj/68RE5lfjmzV5F2K24epIUbWPSwpWTK91ns7FrT2L01CORPTJtWXQzocVuKVAH4HwHcBeAaAp2G+JdqFtREXZn6KcvhlmfAvBPDC0QpQK6m3pN+adqu6ICccGa8nLUPLZGGbpNMhpjDvO0rk/5JaMDT/VrQMwq3tewhhrjFnldSNGjOftpjpJ3grbC7/XNktlUr7r+VnpSnT18iHxxyUK29aRvlbg0b+NPVJ1rWUXumY7D+lJ99aYdPfB+KumXhtP04y88uI6DnM/McA/piI/tgbedPOuetBjTKQokZKHkKIrMHZGgj6Y6UJZ6wyaViF+abGXFeb/xASV0saxroufR1r8q8xx9TAG8fjS5GbzFtNt9aEK0mINpFbZg1P+nIylulrREMSB42g5RQIzzmv2lKbdunepml7iEWJiOWQGxulOUhTTqSpJ3Xk3ZQZyIEdcc7tn5D7aSL6Tsx9WC/wRt6iJXMl0o5QejtzTaexVgelNK3wuYGmtVOXOpyWXm0ntcrWMgB51TCe6avhUvLnnYs7H/O1w+TomofhjYVVEwwvWu+pZvrov6WyoKkEtfnUqDtDyWU6Mfe/LSKi/dfSk+nKMltxtXBa2n2YljEvTSsXPy2/pkblrpeWTw6589oj/S3V1Hq3UerYmz4xV8VusIk14t8T0b0APBfAvwTw6wB+wht5NxUXiwxog2KOhOQG0NLAV1JktJfN5crgXYlOqKwuaem07nbK1dM7oXgnqxYH4m6gmd5jIEdveRjeqqENtqXr0zJxl9qmlX6OjHvzk4TGCqv1D6vPaBOlRE5dkBOwNkGXFiReAlJSXdM8PGREIzHeMmnjaS7NXL7p8VL9cmVqRctLGHts+iWLO8CRmLnfQfxZAN9aG383iUtp8tQGN62RtnaMUsf0kAuL2GgydE2ZS4P2mJNxSV7P5TtkQJNRbrkN9/yvf1Ydby3wEDErzGEkUylKhNQiUSnh0M7L+FYashwavBN3ei6tk0aSZBlz6oE2+XtUTCs/D7QyeeueSzMXz3MPa5U275ghkVNXtLCl+Nvk63dIQEQPxHw79AOQ8BBm/m5P/N0kLj00gmKGcza+kgxcygvwrfRynWHI5LSqiU3WWRKv2jKMVU7p21Kr2KTxxiyXVpYRyVo2vbHitqgnrUqPRxXtwtDeBJjM+w9jqpc1R+BriJRFaKy48lgL8bDgVXIsctWSj3ZtckqOpVCl3yVYPotafK9ju/RvyUH6waxTeWHshOKC+YPnXgbgvwLlJ+VK7DZx0UiLttL3rDZy8a185e+aycBLiIZMTmOmI+O2yrCrQO7+O0HHjgGTCfjOu/Lpy1P3vAf4zrvAU6VvelQn7XgOI9T1QNyS2WQslNSZEklYnJvMCSuw/z4cqx97J2xNnchN0DKuVv4WpCqWpsx41CXv8Vz+aTytnWrjmCQ7Mo63veeed+RRQ7xPws29kDEXZsXYEefcO5n5Ra2Rd5u4eJEblFsnjf5/mn5JOtfipB0yXWXUTmppvh6z2KqJxbpIS6t0LIPcfco+mcmD7nGPOWnhu9sm+VKc0pb4MTAkzZxZpRQuV45c2Nls+VvG0UwYOXKmhZOERcaXfd0aG2R4q5wyTcsUJsulEZkc4Sr95xnmT2VX4CWynvvbqs7VjCvyWS7pb4vwWLuTArX4FSJ6AYA/ALBYDTLz+zyRd5+4pJ3XQxx6eAYxLY4cgLVBIy2Xpxy9KatlNd3lP3nAhcBNt2B2++eWO5pVjtbtw62r8HUqMGu0UU9v8r4QvQCr7bWWvURkZRgNHhXGUpHk/9oFgixHki9PcPDNw5p5QiMwMh8rXKm8WUVIUTg0ZcIqu3UNtWMW0ZL5TghENL92aZ4SvflXy7N0TSXJy10f61zNwxO1uH0drPgWmZH/N7lVejcUl68B8FQAjwEWpiLu/hex+8RFDjRDJuPaFUFJ+ragdXjtuMd01A8Wt92+b+bISbVDrpOM53mxWZ/nOlct2kOlWuFNo6a9WJOYhyh4kcYZ69p7TaGayUD+t5QOmZZVBosQaZO4dyFSMsWUyl2a7EuqTwsyREWmz5xRhLS05PEcOUrDyuOe+9qj5FSbu59av5fflq+L9QLGQCsuBvDlzHx3S+Td1Lg8A0tNOjlyYK2OrPRK+des0korsSTc7JbbwKdP6/Fy+dUOmml469kJomzD4Ihv1cFSGTxxrTSs8NOp/94nK2A6dgzU+2vk2oBEbhXuRU3aufC59PvBX+tHJXJfMnFYak+OHFgTrpa2/Fhtx4qrlSn9P6Rv5Pp4iQxr6WjHNXKmEbEcwezDj0UCptOyw2xuTJJERouzbodcAeLxPxvAnwM4tzXybioutfJ2ipzqoHXEWuXEGvRzqy3PIF4qS648WvxW5aUmfGmF7jIjFCZj71OT+4FIhh2r/tYOqxImk4NmD285atSYnPqhpd0COVnNWH+XlnbfS4sHLY0acqDF1fK3FBWZn0YOLCKjkbbSvfMqP6WwVt7Weeu4Z2Gl5dNfZ2m+TuPXwLszyPtWaO1Juzlz0jqwGaIxNu4H4CNE9B4s+7jEdujB5pwU6QTYKs/nYA1WNRN7S7n68K1mk1Vcix6ee1eCt04yXHo9VlnHDJgZdOrUsoRfA09bsuo2tL6ltpwjxi0EPM3Xysv6L8vqUQg0EpbG14igLF9KcLRyW+mm4WW9NHNNi6nJSksLUyJRKTx9aWjby/X59IWKpee5pMrKpsnK7uEFQyLvNnGpWbmUFIYhOzc8Kk5LujJOieTkzo/15Fxvfrm4LfFX+SLCUjlW4Vjc5cn98mpV5MmadEoKYK480lSQCzNYcTPC5pQRz3F5TioEaR5aOaz/fR4eJcOrfmjnW8iKp3waISq1FS3NoW2jFR6nfOkDc5iICmMnFJfuxYrN2G3i4kVLBxnDTjwkbylll1BSZXIPjKspk8yvFbWkZEyH21oMya90P3p4SHgralSPHMn2TJYaUc/1JavdetqbdUwjB9qCQssnPaeRmvR4iSTJc154iYU3nFY37ViOhJWIWFr3GqJcOjcElsOtpq7k3iR9mIjNIQcR3QGdehEAZuZzPOnsJnGxBjnPatGLXDqt6XtXGtZAWkrbo7i0YpX1bX02w5gD3phtp5QHoNfDo3QMIZ7AsLq19AlLoZDKhkU40v+yLLlyWuWzVAKLwGgKhFY+K46M5ylvLrw33VpCk5Yjl0fpGllp5NpGqU328bVFi3zTs6a4aCYhjYxY6cwP5Ms4EmhtOa0GzHz2GOns5q4iuRKTK7ySRNmST+m4J+1aFaVUDi2MFXYTq4bW+tak3yOtn0fOt9Lyltf7NumSalCjZI2pcmnlkP+11bOlIGSIBRGB9vbmO6jIYVqR5Canlngmby2N3JhhtVu5WNJ+W+e0/HNKR6ksWply8Cg/XoKVtg25YNSuRY4sefLtkXtKburX0iMlIen51A8mPZ/C8n9ZB3gFny3DbhIXDZ7JaohqkEu3dN7bMYeupnLYxNMfvUqRN2wOls+Kps6NAe16roqUjoEalS9VgGrLJye3Ge87H08m809pQVBaeFhkQ4bT4pfS1lQVbXHU/5aqUa78WllLx3MEsSIf2nM+tsBzjXJpWCRFI25Dr5eGGpNz7gF06TGeYStn/y3GbpqKPNBkaKtz5jqrV6KuXbGXkBtIcgNLKznzyrWA38+kVikqmWta6rcuYqBhqElxjLxKykgpX8sMqxGF3D2jGTjd9q2lVyLrUjXQ4skwVtlySoDHJJS71qU0a8pkqVFWPmmc5Ly5c02rX8mUpKk3mnJYumdj9E2ZjvaAOe3puZvwlXNiR95VNAiH886sCt4BxksEhuYt0y+pC56y5lAKa5mLcvEWzz9J6rCqDl8if95r0V9frb7rJDKtebUqN1b7t9QTjdTIcJJYavG1tMW9XLyEUt7jnIJQMldZZZR1tiZRLa0ccqpO7jrLuFo5WuEhq7l4uTHJcz80EpYjLWmYMczXGmkBdKIi0aspuQfOHVJyswoQ0ROI6KNEdB0RPU85fy8i+q9E9OdEdA0R/fCqyrL7V90ahGpWmjK9WjNNabUrO8UqJs/SYNW6wsi9rLFm4G0xsbWiL6PnybnrKM+YaeXSlPcmZzKR4XP5JGafA/G1iU+Gt8pbA2uVb63603KVlJDcBGuF1cqilSmXj1UHC0PHjRwJ1cJ6xkFNfdPUF63sY5MCzxNz0/+l8JvaUcQr+BRARHsAXgzgOwA8GMBTiOjBItgzAXyYmb8OwKMB/AIRnWiuZwa7S1y0DpLCI4lbq7lc3BpVpD/eP9JdG/TGmtRKg1rrw+eG5OkNW5LW5X9P+JZytITL5T+U2A2ZxHLmlxozh1QRNEVGm6is8nggCUROHbDKJdPJ5a+ZMeQ56788V1NPDTlVTLs3LW3ME6eW4Fukr7QQ3ASk461FYo7WNuhHALiOmT/evV/oKgBPEmEYwNk097A/C8AtAE6vojC7S1zkIFMzMUpJWQs3RufOTUYls4gWp3UQSONY747RsC6zSs7UoP2vIY9DUNMehpYpnZytNi0HUqtM6T2uvS45k5DV/moJSelczpQiiYosm7x+2kSapm+RIw9K449G8EqoaWct98Iz7njuZ3ptLdWrJj2ZTgtyRKO0SyjdaSSVlt3YVXQfInpv8rlM5Hp/AH+V/L+hO5bicgBfBeBTAD4I4DnMq2F3a7viRHQlEd1IRB9Kjp1HRG8loo913/dOzj2/s6V9lIge35yxZ8CxBhWN0OTieNKtycOLXLlK23J5thyn74SecpTa5BgrKe9kPKHhK6Da8ta2h1w6NYqQlZdltpP3W95jL+HNmYSsslnmEu18DtqErJXfImNaGbVyaMSn/y4puN66p2lq+deqMjmykitTh6Ut6GMqvZpS1Upa0rCtZfPuKGqJuy5w3csTK16yeBMzPzz5XCFy1i66vHmPB/B+AF8G4KEALici1wPlarHOu/EbAJ4gjj0PwNuY+UEA3tb9R2c7uwTAQ7o4L+lsbD5YknHLxLRqGXNMJUAOYBOad7gxyFGPmpXGGHXL+dDI42M/RG+dUnCftyfPIQTLukYekq2ZgfryWOqhRe60lb2l5pQWHfIjz/fppOlpk72lymiKQU6NleWqQZr/UNVDK5cC17uwtHuvXesSuZDXUru/OSW6zyd3vkdpO3NOZbG2RW/4zdAbxA0ALkz+X4C5spLihwH8Hs9xHYBPAPgHqyjM2ogLM78Dc5tXiicBeHn3++UAnpwcv4qZ72LmTwC4DnMbmx9emTS3Um+R0ltgrb608tSk2cfJpZ++o8gDLzkYc8W2KeTq2qIalNLqiaaW5lh5aGhp43Ii0YhXjmSWrp9mEtPMLrm41hgglZQcycj1ReucNFGlxy3U5L2OBZUGjeBp0FQr7d5Zdc4pZha087kXKPb/W1QY7WF06wSv4FPGewA8iIge2DncXgLgDSLM9QAeCwBEdD8AXwng422VzGPTz3G5HzN/GgCY+dNE9KXd8fsDeFcSTrOnAQA6W9xlAHDy3idx8qJzcemLnry6Eh9SnLzoXFx6+cWbLkYBjOEPrF5OYzvqPT6i3kcLMa6tA3J86md0Ms7vh3vX09+yyoJtHMx8moieBeAtAPYAXMnM1xDRM7rzvwrgZwH8BhF9EPML9ZPMfNMqyrNp4mLBY0+bH5zb4q4AgHMmJ/nm62/Dlc9+3fykVB363ym0MCnkykwL611VafFyq0mZvhUXwKWXX4wrn/VaO++asnjjW+WtzbsFXf6XvujJ83q3lH8datpQGOU8cL81dWIMJcUqh9UvUnjiy7QK8Rb1zuVv9ddc+pppKJduLp68BrnjWlpK3Etf9OT9ca2EQlrVaI0r4zW0zepxTYPnUQ+WCVx7UN2mHvXfYVMPoGPmNwF4kzj2q8nvTwH49nWUZdPE5TNEdH6ntpwP4MbuuMeeZqOlw5SO5yRO7wSRs7/XyshDJ93WOuTCt0yWrRPs0PL3eQ+JO+Qe5IhwiiFtZAhkvtb1luaWFLXmqVIdUlNFaTEhf+cWCWl60oSl1dMiLR4yotUl/ZZhWkiDlVYrWk1WXtPeKmG97VkzG5UIjvWuo3VjC9Zbq8amXaXfAOBp3e+nAXh9cvwSIjqDiB4I4EEA3l2VsjaIWitDDWMMFl6MbbMempZn4LNWkZ60PcqVlYcGbedRKW4/0ZbK7H2acO0gVrL1l/IbO7wVt4aMtJana/905hn6eTkBym8PiZR1qiVZkkTk1KU0zZGURTWvmrTHILa1bcHq2ylJ1PrqmGNhzq/F6rM1GxAOy26jI4Z1bod+FYA/BfCVRHQDEf0IgJ8D8Dgi+hiAx3X/wczXAHg1gA8DeDOAZzLzVE/ZAc8gIyE7XU0n1fKsyQ/dS89WQUA84Veh8GjpWFJ8rRKyJzaceePlVrs9vAPTtg1gnjadmzQtclsitEaeRAQ6/0tBJ463qRRyEpTnrDKmJCbXNrX69HGtvD0LEg95lmggRLQ3Wd72PEShTJFTCjVCohFISyFfNSznXasvy7dGp8fWiBVth94qrM1UxMxPMU491gj/QgAvbMpMyrU59cWblvd4j5KUXciT7nUO6It3YvbFO31xZLk85bbCaC8ik1iVmcRjLvCYiWrI6boGyk3Be83kca+CZoX3mBK6ODydAdf/tb01t5SPDGeZh9Lwnom1JySa2uMlflZYbcKuIQcVC5PFddVMYkNglV/r4+m1lOdKY1Ju/PSSByvcUJ+Vo7k9eqPYsmWiE7nBpUW+bZUyPaTFGKhmt9x2kLRYq0gtz9pBMD3XKxiyI4812JUmx5JsPxTegdtbX49pDVjNAOfJO3fNcmpEjcmttk/I3xPyPU+kL5fnt0VwSkqSpcR5+1OqJMh48pwkXdZxqw5yYVYi8WOaYSQ0EiPrZNVXK6vnOFDneOuNb/mylJ6wu2rwij5bht0kLilqVkbydx9f61w1q1FZhlZZdMb7naZGUbDKVktuWuXlWuLnUV3k/9zgJMNPp+3lKE16ubirGOha1SZAXwnLdLzkv9RmtPZf6mvpalxO9pqaYq3wZb5D1cIcubHqJ8sq05Fxc/lr5cnFryUrxvVZMjV54njGydZFYQ1KJqD0nEZKrN+bdM4N4nIEkA6+Q4lMKbzM1/rdmq6mgpQGq9xk2zqI16ywS6usofnPOD8oyfzSR96PNKgXzwHlgW6MSaembWsrYYuEWZNwTTvOEQdrhS4neqtMMq30t0Z+tHzGUmq16zXGmDKk33gXW1beEOamDgsyYxEq7zjUn68p4xgkR/bJ3BufPTuPAmvBbt+B3MrO+1+TWUvpeTqUZzDzTKzWgDR0VVlCS/ryvUjp8VK8HukqfAi8xG0omUjDaq9fAA7WL/3dtwErjDxWUolKKpwVLmf2kPE9/UNOUrn7qk1o1iRnkQ6N+Mhya2W18sz1Oc91rIGVRg2JNib6rIpipZu0NWanqiIVspwq5S1HGr7mUfylXUO5J+N61JsVghDOucCuExdtRQnkBzaLhLR2MG86M97vIEPzkqhNY4w8NViPs68ZBGpX+7UoTbrWMQueiStVgDTSLBWl2jLVKAUaPO0xJVlaX9NUkFzeaX8slb9EdqTSkiubpvpItaZGqdNUh9r6WIRwhPbv9ivS8syR2BT9ufR6W+SrRjFMUXp8f46sWO806smQ9vyWcMjdKHaXuNSuSkvKRWkATQeX0sRidf6aNzOvGtYAMQZZKKkCcrBPBxpt8BsTh+HaD0HrwJ9DifSnv0vkJ3efh0K2jXRBYhEoLb6nvBrJtFTTjFpEREufA3nm6jkwTJ+fqrp4yVVab2t8tRaFJYLbw/P+qxIsB1zrAXWpr8thMw/xCj5bhkN0N0ZGzapUW41JyM7plcW1vOTqYxXKgYQ2iOeQu1Yt5S3lm040pfy1tK08N4lNrMpa1IkU2kTtuW8lImlNUiWTjVUGKz2rX8o4KeSk6lmkaEqKlod1/SYdUZlM5rv4jh+f/94AVNXFS54sgpcip3jl+nt/blUvdrXMROmnhyQ0adjA2rHpR/6vHqmE3SMdbKUsbEndaVwtrGdC8EzGWv6bMBetIi2PpJ87bx0rTTKbUlE8g1qJqHnMNDJ87fWw7oFXxtf6TUs4qz9qZUnLI8lTjgB5lM/SBJgj7znCJM4x8/ylbJP5w+EYc/XDbb4pLSIKC7JqM1FrOfoypOXR7pW816sYB3tYD5MD8g+gOwSgse7bFmP3iYvsBLnOIf+XOot3wJb55yTSXHlaUJoYa9IZkkaNglI67y3HJghL7TMexiZdteFribLVjr2kvFQOa1FRgrU40fKRYXIKaG5x41GB5O803ITA0yloNgP3astkAgLAU/1B4UQ0f1ifRzkdSXEskilvPrm2Zl3THmP3ZUttkX4tcit0em7p/JrUXcZWmnbGxtHTuSyW75F9LQwxVZRk6ZY0S+mXTAA1MvvYkHmv2tyTMy20wCsfe1ZvY5BN7+TqgUVUaq5hieDkyIqWj7Yg0fp42g9kGI/a4plYc/0qo14x85yozGZAYZcP8xomd5FOUZkpjWGe8mrXdkj7HEMdkTuINHPRgrwEm1gndpO4WINHbkDpv60tu1YaJQm7lF8JcjAsTTw1nd+SknN1ssqYC+OJax1rGYxrBrzS/Ujr5lnlestU2tkwBtIJ2moXHlOKdX+te2dds1y7kopHafLX2qxGYrzjQC6vNJ5GjGSeGixyJMP3BKYFY5HvinTmfjqZe2yZfTzXI0P2VHhfjpjra9bCQ/q+pB+eYW2KC2I7NLCrxKWHNrjlBt8JHXxhX3+8VoWR6ZdUHgv9QGmRIKuO2sQkw2m/NZTKaU3+cjK0JiMPcarBmOqQvE6taZfije3kJycDbUJJ24pVt1xblfdd+9bUDasPyrKUJq6cyqGZf7S2qPWDHEEq9QXPosVIj5kXn1H7wArV0gNqjGx36b3VlLAcicuNC9o9r30hqkZgSm+MllulD4nfy1HDbhKX0sBXkqut9HL5pXmU7LalDmjBE85SZrwDmTVBtRA2a/Wlpe8pWy6vMZCbVIfmY6WzqoHPqzbk7m3u/pVUEYtIWCqQRRYsUpKml6afpqWFy9XLIjY1E6qlyGjxchirTVtlWRVy7cmrrJSOl86VUOOHZj3L5WDA9vLUglfw2TLspnOuNmlq8rG1EtXi1OQl02rpmN58POQgt8r05NGCUt3XgVqVbMYHHfLGvh7y9yq2U3rapBXPCuM5lhJ1SRgkGbHS8xB/LXytMiLje8iMBU/esozadRqTYNSouhZay2TVqzQ25dpMGkbGrUXtO4vk73SM2IDiso2mnbGxu4oLcFCmTM97Gr1n9ZQb8NLvErTwmsnHC49yIvP0TGpeqXydaFXKNFhP983lI2Fdg7GvTWlVX7qfFpnwqIAlItOnl74UVFNH0m/5W5Jfq1+XFJpcPlqc/r82mebqn6ZZOq6RmJFhPs5/xtWP+idykgZvv7FISI4wrmoRlHtGi/YUXRlvHmE1ZQuo2E3i0kMb+FomFe8KVJs0vB1cC98y8ebKNyTsGINGaUJcN+mpyc9aBWpp5ojUGHUsrWA97dwKp5EPD6HVygHoTz2W6afhNRVHazdeglaD0mJkzPxLJHFI3y9h4nxWTFKuA7uZut8mAbLIo3chNqTuNX0sJSOe9xbJc4vza5RBeAWfLcNuExelo5nwKiWe1V0uTprf0EksN5h7yr9OM06/WyuX59gTUOlelcwQnuO5iX8oasumhZH1lu3cIsze8mmEzmuOsghC7pxV5lzY0mKgP5YLZykA3mMSJfIpVacGDH3AnEVK0uNLeXgJnkVGZbzW8bHPR5pxtPRS808fx1JgZBwtj8BasJs+Lj1yg4I2AaWrUCucDC9l6/53ml9pINfOS1lShitJqaVBxFsOidaVUs1ju0v1LMGrkOWO56CZKEphtfxKq0/ZBkvXRvtvlUVLOy1LrTrpnZw919tDBmX55KRoXTMt/fS47P+5eJaq4DlmnZP5jqhCVj2VF/ukRMYz02hRsy0MHQNKaaaQpET7nf6XD6hbJ3nh8HEBjpLiUho801WOTMNjAtJWa6XJLQ0j89nby69iW+Xp0gTeOlB6BnUPrAmpNn9v3JZBR1MGrHRKqk7uupcmcM//NI/cZN+isqRltFbRFqGRYUtxcyvwGpJukUWp0o1IGNT8LDTkW1JG3P4sRhklUalONwfv9dbaSwmlxZK371sEZlMvYOQVfLYMu0tccistzyCbKjDWKqi08s6tgNP8vZLzquCRbEsDhZzAW5WMVrReK23QsQbTXPlyg1eOFMsw6XFJbFrldYsIpvlobTmnXGmkSJbVgiRSmtqjlcXqn1qeXqLvbTfWgsWb3thEKMGCWIi8++Pyu8ovJZNf9fNmNPVRtnutncu21h9rhbZjyBtPPr9lAw+gC+y6qQiwyYMlRWpkR+s0uThpOOt/Omhb8n2uHmPCGhC0a1eScEurj1w9vJODB2NcL+/kZ5Fkz/3W0s8RBiCv7sgy5KDd99L91WARrVxcmV/NxJ6SLOsallbnkqhZCwx5bIUEZDCSsuXMQmO9XJGIwEOWvi3Kai4t2UessahGIdGcd613Ga0BhDAVAbusuPSwVm5DO01OadHglblzk3pp1T4WLDm9dN08ZVmXilQjzXvMGz00h78S0agtU5q29j+3U2dInnKyz03mUnW0+oOmqIyBtHw5AqP915QirV1rK31PuSRyfVorZ22eCorqikCL2UclQKVyWwvB/lz/XVIOLYVN6yM5mNublfPpsQNhg02sE4dCcSGiTwK4A8AUwGlmfjgRnQfgdwA8AMAnAXwfM9/qTjQnK7auxrVVtDyvHU+PWStu76rdSrcVHhUlPe5ZRY+FVahMnmuagxzIrFW7zLM2P2/dtXZVaku589Z9tuop09SUDksdsa6bVQaZXnrMIlZWW5aQE19uYaIRnRyBtM5ppG+EhUiqtjDvP7PFq7TUhnfBqqPWfnLtoTQODRkvvE/STbdBb8THJUjSYVJcvpWZH8rMD+/+Pw/A25j5QQDe1v0fhpwUr9lWrfhpHAulFUMufm5loYXzDHZetUaSGM9Ansszl1cJlnmkdJ9yeebuvfe4lqbWNmoUsjRsjYqjncupDaW0SwO/FU5TKUpETobpr4FUFz0rcJmGpy5aXElgSuGGYgWKaUo4ehJjOdhqcbTwbrSorh5ir40lQ69d624g9T1F49/HgI3DRFwkngTg5d3vlwN48qipW+YBbeWlhbek9NIEkFutWuFzg6m381qr6Jo4NcRNhs8RH0+95GP4PUQqVz/PYOmV7Pu00oHMmryte5mTzrUya8cs+Tw9r7VZGdfKR66atfjymLaKzpXLS8AkUdLCeYizhyCW2kdNH9RQs1iqhEVYckTGYzaqNi1p6pt1D3MLDhlvDKT9Vnueizynvtl9fSpIvB0aoFHlwNZCEH0CwK2Y3/1fY+YriOg2Zj43CXMrM99biXsZgMsA4OS9Tz7sVa+6Cjdff9t6Cn6IcPKic6PeKhibXQ2tJv+430cLUe+xUNsf0/lRxuvTYlz29Kfj9tktKx9ozjrvQv6ax//46Om+66p/eXVi7Tj0OBQ+LgAexcyfIqIvBfBWIvqINyIzXwHgCgA4Z3KSb77+Nlz5rNfOT3ps+Ro0tUXGkSvQMaXjUvkUXHr5xfv1bs1T/h4aVsbxXvuKNNV6W2nU3rMWk0BLe9DiWG2tO3bp5Rfjyme/rqyqpOn3qG3/ubRzdbLKkTuutZWk3Ev326qX/G+lJ+PKslvl0vKyyqCl3YBLX/Tk+f0+JJC7lpb+5xRi61qmSI5X9e+xofmvmA68YSpaJw4FcWHmT3XfNxLRawE8AsBniOh8Zv40EZ0P4MbqhEsycG5y0CR3S8b2TsK5CbVPZx0dUsJTl9qwmvyfk3hT+biGWJTKqIXzXuOaiVvK3544ufJYZpFc3rkwNe0ql4bWL3JkVutPOZNhbuJPzVSamUYzZ2nHtTxy/zUT2hCzpwLvU22LjrNK3ay0c3lmiYmS/9JTdnMOCJY5MneNcuOBZf4cQrB75LY8r/uJuWnW8ZaBzfu4ENE9iejs/jeAbwfwIQBvAPC0LtjTALy+KmFpcy+tjrTJVbPb59KQ+ecmmtJkWhNXC6P9Lw3OtavB3PVJJxvPgC8n6tx1rR2cPBN/TTq5+tamOQTaJJ3+zk3UrQRZI2feFXYuPY9C5kFpcaCVc4zFQm0aInzro/gPwHOturxzeebyyPm3NLke1CooucVT7eIvF1Z7G7R8a/QmXrIYOBSKy/0AvLbrDMcA/DYzv5mI3gPg1UT0IwCuB/C9Valaq6qxGnUpnLYCld9yld66Oi+F0SZumVfNdfGs8NN0e7KREpLShGaV14pXIjMe9cajIHjSSsN4V4meNLU6ehUeb/qltqi1WZlPSRmxyq2lJ89r/72KjgXPwqREoKyV/5A8FXjeGVR8t1DF9TnwlNwu7qhbpnNKXvpfonY871HawqxteQb0R/9vQnUJjrR54sLMHwfwdcrxmwE8dlDimjxsTdgeJSBFqdNoErY3bU8+rZ22NT9gv0N7V8E1xKQ2bk1apfQ1IlmTf2tZJQmw0u7jeK67RWo09aWmnjn1RiuDRVRKBMWbhzdszXlrsePNfyyVbUA6HpNTH6ZkDjpwfLJMVpreVWSRFI18eslxmo6Mq/0vPXfFejdRPpIjzDjYxl1AY2PjpqKVwSIpHsk6/ZTySPPS0vSW1Qrv6bxaeqWVq1cJSH9bW5JLpM8aRErXzypvabVeu9rN5dF/a8+R0Sa8XF1yZbDOa+qGd2KzyIMkTtr10NqdjK99a2nJNHL9y7q3VjivkmPl5VVqPEpQ40JiyMsKiag5vuWnUgpXOq5i1j0Iz2ofOaKSpKG2uZJCM8YCT1NWNvHwuQCAQ6C4rAy51aY2aMpBvCRvy7Cecsj8+vNyIvGmY5CPhYw7gZ52iwJUMyHk4stryDNgpnR+Lby3bCUlQRsgtfDpsX6AKl07DyHUwllKYC6NEnLp9cfSdq9dN43sWHGtMmhkzrpnXmVHK7c8LsNraVjlHQONaXkddQE/+UhVlly+fRpaGSylxoVJZRxrrJVh0rZnjW+edlqC5ai7bvLCiCfn4igoLoDO1CUkg/espFoIS182Txg5sXpXh7ny1HRcGVZ7wFqtuiGPjdnpSxN1afIsoWbgk+3PKoP3PpbybVVhZPq5VW/u+lltM0faxiIINWpnhnSqioAV11KMSuWCrrCkysmYL0EskZEU6RNztXC5c26UrlnaNmrbR0lxGaK8yIfU9T4w4Zy7EewucUknVu9qy5LFrdW4hZJcnqZfsxIsYbI/SC0Gl9a0NGgkwzsQjZF/C+RKXCuLNQlpBLbFxFNbtiETujQnaYSitALNEWarjBbZ746rK30vobOuZc584zHtiHKXFIniden+Z9OY8YF8+v5q+ZfUQHuUvyQvuXSl6WmIGUtNozRu1hJwbbEyBiGWpqGUpKROudoTdleMeHLurhKXvgN4lQ0rfg8pRcu4JVKSG6BL5hstbG2Y0kDuqZOM4w3rhZfA1cQHgOl0/l1DlnJkx3uP+sHMmij7tLVJWbYX7yRsSeRW2a12qZWpRFQkYRN5L3al1E4uucWHV1Wp6P/NaoKsayG/GlOQRSQ0UiF3E1k7jDQzkEy7ZFZayasBNHjv/VgKHuDfMbQgNCPmXQKv4LNl2E3ikk4IOXt3OrjKY5YNPg2rSZAeKd4aSK1VnLbSyykZsv65CUOeK6kKad65VbsH2gpdK2PpfxpfnqNJGymqqZeWVr86y5EDb5oWibBIb9qGNRJeUy+NXFl5ldpYuqCQbadWmcu105r2UsrHC+ekuTSRzwoKjwJtR0+qouQUF3ks/dS+WNEbPhuu9rqXrvEYJqEeuafm9ufS/4G1YjeJi4QkHd6GrZGXEumoXQmIiYWOHQOdOAHa28uXoVWNKE0G3jCe9HLlyMUtTWo15WtBbRqt7UlDrh2V0i1dr1ybySksGlFK46WERBJ/re3lyiuPechJLemR8WvUnErk3sLsMi3JOMqx0rNdNLKTM09p57yqT9UD68ZWamvUyRLkg+fMR/333+uRLQhhKgJ2lbhIU1F6vCSdl2RlzfyT/s+tKtN0zDwmoDNOzAkMGXlZxyx4VBRtZa6V17q23nKsAt6VWBpeU9BycYbAS9j6c15ybN0Xi6Tn0pXp9OHltbLSk+W2yqq1K6uvepBTgmrCGxhq6vCqEmOlbZl7Sk+7lY7BUr3xbokukawFSmNa2p5yip73fg7pz5pvX09mNuDjEtjV7dCliaoFnlVwSbpPw1kD+XQK/uKdgCWxtppmvGXT8pPpeNIoTVpaPtZ1KZXVk64Gj8LkqZtFTNP0S9eZZ8Denm/yLZEI7ZimkvS/tfJpxE4SHBmvVXG0/nsIaU34mvTHUAMcsLYca/9zW5Tlsdx/ecz7wLo0vLUDyvtQO/X6WvfGswjMkfJS+/TAeijdukkLc2yHxq4qLoCtIuRWgi1KgrVal7J5btWdlIGn0zl56Z1Kcyvo1jKWZHZZzhpTTZ9+bjWeK0dOcRiyavLUuXaVrw20sj31x0plt55IXEPUSgpS7j6kE4N2L+RvWRat/rIsJbXOQyStOCtCdlJX8s6ShIayes1A/W9p5rFMPvJ4TmmRpqbR3lVUcz0s8myFtca8oYRU7iaKB9BtBDuouIjBT5s0StK3FSeFHOS1c6XJ0jjGcKzQZX7WcSmxetKsJUgelaAUz4uhilMuTUt58OSfm9Q9q0Etv1rC6CElpXw0M5GWh0ZMtIVBelyLV1J2cijlY6lMtbDiKsey5CIJbykRLWYjTZXxPiyu5pH/3ue4pOl4dlgVobVPbcEpFc6cUlODlKAcAqKyjT4pY2Pzd2F0OOTlFJKdj6FqpJ3FM+Bpg7c1mdRAqkjaZFNCKaxWF0vOHSNP7wRUS6CsCU9T7dLfQ+o6llqQW4XmiEb/X6qDOcKVttOckpdTNWV5asibVZ7cb+2/J+1c3FqIvCzH1xI01cPaAp11DDby9uxMKikvg7eUW2O0kzwW0/PETVEyC62bzPAKPluGHSQusFeB6XlLLaldmY0le2urhZysbpXFY2rwlsU7ULQM7FYda1bfVtiS0iXjy3A1E6eEV33ySN79udzk7E1HS9Miyem5lIDLY2lcjdDVEhsrnAWrD8vyaP9LaQ+AOqELtSWFRjJKpMB6mJxl5tEUEIuAlHYm5Z4Fs0CtYptTRrT7nLa7EtkGbOKaawOx3fnQYjeJi0RJatRQYvi1xMQqT5pmel5+vCuLWjLmWa3njll5ytcDaOnIQScNK4mcVoZcWM99qSWVKTzXMxfPk7dGsC3FJ0fGrTLnzCy5a5ybRLS8rPZeuhY1aouMo5GhsRQuDUnaJcXBIgbWY/9zqohGOhZxRX29D6+z0h57q/MirlTkPApxSqj7/9ZiR4bVjmt5SPOQtkV6A6QmtkPvKnGRDd4iBto5GU5bnWqdZcxB0Vr1yvKWFBktfl/WnHyfopbY9Rginw65lqXJu0eLUpGGrc2j/+8lljVlssiNvEc5QiLjSmgTRU6J0eqSq3upHLWE3KrDqpBJWxIBzRyjPQQu9+4i6zksSw+W2zvYB6VzruZ869n6rG2fHgzZDryLNTmWaYQ+jaOllZ6TZES+p0g9v8K2FTiAHXTOVaBN2vIbKEvgMj1tJelZJXoHZU9d+jRzYTVyonXsoV7ylukh9782fe/1rc3XIofavcqlbbW19JzMK6dieOqhpZcjEVY5tPil/LR8LeQUzBbitkoiUoGcA2xpezNg+55YzrW57cgeU5A8VrOlWTtecuq1oD2Mzw2tvdWmYY0HUlnRzqVPz13326FXqRxuCXZTcZGrwJw6kCMrmvJhHSuVJ/2Wx628emirkNzkqkGbHOWkZHVASzmwVvaelZIWrxTHW08tbG4lpykW/ccqozbR58pjHSupLR7SoqVtkVorPw8Rk0RHtsUhRKKklHnTHkKMnZAmFw9p0cw00gel5Hir5W8da9lVlAuT2ybtfTidC7lxukdpwZaeG9oWlt4ALY6n3+sEr+CzZdhN4gLkJWsrjEZytAktPa4d804m1mSZG8RLeaXHSmTC26lLCpGn3Fa6uUm/9rj3fE05c2qI/O3JW4bJKXA1g7gWJiVVabuuIUvpsVw8z/0fg5h40i2RF+e995g/vKTAeoCbRlJ6UmCZmDTzjlVeSV7kt1XHlPiU8hgdHlW1D6eNv+nvFiUvRcmHJRx3N4LdJS6ATSo0eVsO3Jpknp7voakwpUHTWv3nSEguPQ88q5Qx4bkWfaf3kLAUucm6lKeVZm04i2zUqEKlfDSim7seUgXSyHVOPasldBostSZ3fbSyecpS22485xKMqiRAqBTT2VJaliIj87NMQ5a/iwyT24lUIjXyIXUyjWpSU+rHpfDamFxaZHmQkhHPW6J5hnXKFuGcu6vExbtCTicCObhrykouLxm/JKNbZiFLrakhHB5VRpYld9wqay5/jZzJbymzWkqOF3Ji18w8taaEIcRSU/A8edXca40wa+1QHu//ayTcKpNFDC2CkjNtecjlGMraCuCZoIsTuSi7pW5YZiH5rJYlp9yCk22OkMjzGiHyECoXvH2xRpkdo03IN8rnzEELU9KaFoQBALvqnCsHx3RVKVevqeKShpGdyksorPStVaU1GdasHHJpyLRKq1SrvBqBsyYmreySDNYSCK0sGqy65vLMlcUivaXylSZtqYqk6VvX2FP/0nWtJW2a2mi1eSsNGSY3CVmoiSP78GR5oi85o8pzQP0kbT3JNk2zJo30v+WcW/MsmFo/HUmStLLl/HF4OgPtTQ6G8dxTjwKTG4uG9vsUplPuGmWL1gf87RB2k7jkVvvpeatR1xIWSYj6897VhDUhWeSpJPtrdbCIVK6OpTLlZH8Z3jvZtgwyaRhZhlx5Wyd57fqVVoUyvRw5KQ2mWtuzSJP3fmvXTiP68r/MIzfJ5PqiVU+Zr0xLg7ICLzmS9siZaUrxvGE9u4g0vxRJEjzbl6Uyk6Yj85flk2XxbIc2HYJriWoOubbcH0vHnFL4GhyCR/9vo2lnbBx6UxERPYGIPkpE1xHR89wReXZQEveuNuUArXUAecxSGeQgqpUlHajTT27i1OplTQKlslpl1iaImmuopZFLu3RcplEKVypv64CmKSAlZcqChzx5JmlL3ZHlLRHJ9Nrmrq9FErWy9Oe0tqjlkx6zJqY+DW+/zoSTaoqc6FuQU0QsJ1orHSst6XPi2emjwfKNSfPxOAjLvCdn3ROTk+c1lSkLbUyy+okVttRuPH4tG3wI3VHHoSYuRLQH4MUAvgPAgwE8hYgeXIw4IWBv7+Agm1MoSun139aEkP6XyE26Hhk0PeaZdGohSVROGahJUxIwiwRpE2tpwirVw4I1GWtEswR5rbR76lV1LDWtpAim/7XvUp1ycWU6Wjmt9DSUSLCXFKfpee9ZaTEg4PUPsfxQLJLRn5NEIA0nCY5lprJMQ5pikkNOgbHKoxGqA6rO/e4DGGUcvDtJWxT2sMavGpTeT3QwQls+teAVfbYMh5q4AHgEgOuY+ePMfDeAqwA8yRVTDsAluVxOFNqEYsXPTcyaiqF9W/mWfpdk91Ia3vMyfWuVnJucctdQntcmXc9E553EtP851aKUlqV8pfXQSGtOuaiFppZpq1GNJJXIuZaXFr5EJHKKTmu9NYxN7jt4HFUBXSnRyIvlG2Llp52XZEYz2+S2Zudg+QSVygEAX3jgvcC333EgnNusVqvuases++1tB5ZJKDUZ0QRbOftvMWg0+W4FIKLvAfAEZv7R7v9TATySmZ+VhLkMwGUAcPLckw971VVX4ebrb1tTCRmHxZv85EXnrrHehwdR76OFqPcW4cwzgLvuHuRMerjq3dfj4Jh/2dOfjttnN698MjjnnAv44Y98VjlgJd7+h8+/mpkfPnrCK8Jhd87VGsJSL2DmKwBcAQBE9Lff/oTHfR7ATWso22HDfRD1PkqIeh8tRL0PN/7upgtwlHDYicsNAC5M/l8A4FNWYGa+LxG9d5uY41iIeh8tRL2PFqLegQXCF/jQE5f3AHgQET0QwF8DuATAP9tskQKBQCAQ2AzoELt3rAuHmrgw82kiehaAtwDYA3AlM1+z4WIFAoFAIBDYEA41cQEAZn4TgDdVRLliVWU55Ih6Hy1EvY8Wot6Brd2+PDYO+3boanTOukcOUe+jhaj30ULUO7BpeB8GS0TfSETTblfwSnDoFZdAIBAIBAIAwBt5V1HyMNjHYb5p5j1E9AZm/rAS7ucxd+9YGXZOcQkEAoFAYFdBPP7HAe/DYP8FgN8FcONoFVawM8Sl+Z1GWwAiupKIbiSiDyXHziOitxLRx7rveyfnnt9dh48S0eM3U+rhIKILiejtRHQtEV1DRM/pju903YnoTCJ6NxH9eVfvn+mO73S9exDRHhH9GRG9sfu/8/Umok8S0QeJ6P1E9N7u2FGo97lE9Boi+kjXz7/5KNT7EOI+RPTe5HOZOH9/AH+V/L+hO7YAEd0fwMUAfnW1Rd0R4kKt7zTaHvwGgCeIY88D8DZmfhCAt3X/0dX7EgAP6eK8pLs+24jTAJ7LzF8F4JsAPLOr367X/S4Aj2HmrwPwUABPIKJvwu7Xu8dzAFyb/D8q9f5WZn5o8tySo1DvXwHwZmb+BwC+DvP7fhTq3Q7m8T/ATcz88OQjfYuKD4MF8MsAfpKZpyuo9RJ2grhgyDuNtgDM/A4At4jDTwLw8u73ywE8OTl+FTPfxcyfAHAd5tdn68DMn2bm93W/78B8ULs/drzuPMfnur/Huw9jx+sNAER0AYDvBPDryeGdr7eBna43EZ0D4B8DeBkAMPPdzHwbdrzeWwrPw2AfDuAqIvokgO/BnFg+eRWF2RXiUpSxdhD3Y+ZPA/MJHsCXdsd38loQ0QMAfD2A/wdHoO6dueT9mNuK38rMR6LemK/a/hWWnw96FOrNAP6AiK5OZPpdr/eXA/hbAP+lMw3+OhHdE7tf73YwQLPxPw4sHgZLRCcwV77esFQ05gcy8wOY+QEAXgPgx5j5deNegDl2hbh4ZKyjgp27FkR0FuYOXz/OzLfngirHtrLuzDxl5odivrJ5BBF9dSb4TtSbiL4LwI3MfLU3inJs6+rd4VHM/A2Ym7ufSUT/OBN2V+p9DMA3AHgpM389gM+jMwsZ2JV6D8NqTEWFLPk0gP5hsNcCeDUzX0NEzyCiZ6y4xgewK9uhq95ptCP4DBGdz8yfJqLzse/FvVPXgoiOY05aXsnMv9cdPhJ1BwBmvo2I/ghzm/6u1/tRAL6biJ4I4EwA5xDRK7D79QYzf6r7vpGIXou5CWTX630DgBs6NRGYr9Kfh92v91ZCexgsM6uOuMz8Q6ssy64oLkUZawfxBgBP634/DcDrk+OXENEZNH/H04MAvHsD5RsMIiLM7d/XMvMvJqd2uu5EdF8iOrf7fQ8A3wbgI9jxejPz85n5gk5qvgTAf2fmH8CO15uI7klEZ/e/AXw7gA9hx+vNzH8D4K+I6Cu7Q48F8GHseL0Hg1fw2TLshOKy6+80IqJXAXg05lvWbgDwAgA/B+DVRPQjAK4H8L0A0Ml3r8Z8ADgN4Jnr8PJeER4F4KkAPtj5ewDAv8bu1/18AC/vdkxMMJdl30hEf4rdrreFXb/f9wPw2jlPxzEAv83Mbyai92C36w3Mn/vxym7B+XEAP4yuze94vQMDQBxvmgwEAoFA4NDjnLPuz9/0NeO7lLz1XT91dbIN/9BjJxSXQCAQCASOBEJs2Bkfl0AgEAgEAkcAobgEAoFAILANYCw/4eiIIhSXQCAQCAQCW4NQXAKBQCAQ2AIQGBQ+LqG4BAKBQCAQ2B6E4hIIBAKBwLYgFJdQXAKBXQMRPYCIvpg8tC8X9k8G5PO5zLl7ENH7iehuIrpPax6BQEBgA+8qOmwI4hII7Cb+V/eSxiyY+R+uInNm/mKXf7xLJhAIjIogLoHAloGI3k5Ej+t+/3sielEh/AOI6CNE9HIi+gARvYaIvqQ797nu+xu7c2d27865pn8jNRH9ABG9u1NQfq17FUGa/j2J6L8R0Z8T0YeI6PtXU/NA4Iij3w499mfLEMQlENg+vADA/4+I/jmArwfwE444XwngCmb+WgC3A/ix9CQzvwfzl9j9ewD/AcArmPlDRPRVAL4fwKM6BWUK4J+LtJ8A4FPM/HXM/NUA3txcs0AgECggiEsgsGVg5ncAIAD/B4BLnC+a+ytm/p/d71cA+BYlzL8D8DgAD8ecvADzN/Y+DMB7Op+ZxwL4chHvgwC+jYh+noj+ETN/tqY+gUDAD2Ie/bNtiF1FgcCWgYi+BvM3SN/EzHc4o8nRSRutzgNwFoDjAM4E8HnMCdLLmfn5ZsLMf0FEDwPwRAD/fyL6A2b+d85yBQKBGmwh0RgbobgEAlsEIjofwCsBPAnA54no8c6oFxHRN3e/nwLgnUqYKwD82y79n++OvQ3A9xDRl3b5n0dEf1eU6csAfIGZXwHgPwH4hooqBQKBQBVCcQkEtgSdQ+3vAXguM19LRD+LOcF4iyP6tQCeRkS/BuBjAF4q0v5BAKeZ+bc759s/IaLHMPN/J6J/A+APiGgC4BSAZwL4yyT61wD4j0Q0687/78NqGggEdGzn9uWxEcQlENgSMPMXAHxz8v8d6f8CZsz8DCXNs7rv3wTwm93vKYBHJmF+B8DvZOK+BT7yFAgEAoMRpqJAYPcwBXAvzwPoVoX+AXSY+8ts4YbLQOAQghEPoEMoLoHAzoGZ/wrAhcn/TwL46jWX4YsAHrrOPAOBI4FYBoTiEggEAoFAYHsQiksgEAgEAluCbXzuytgIxSUQCAQCgcDWIBSXQCAQCAS2BaG4hOISCAQCgUBgexCKSyAQCAQC2wAGMAvFJYhLIBAIBAJbge187srYCFNRIBAIBAKBrUEoLoFAIBAIbAtCcQnFJRAIBAKBwPYgFJdAIBAIBLYFobgEcQkEAoFAYCsQu4oAhKkoEAgEAoHAFiEUl0AgEAgEtgIMcLweOhSXQCAQCAQCW4NQXAKBQCAQ2BaEc24Ql0AgEAgEtgLhnAsgTEWBQCAQCAS2CKG4BAKBQCCwLQhTUSgugUAgEAgEtgehuAQCgUAgsC0IxSUUl0AgEAgEAtuDUFwCgUAgENgKcCguCOISCAQCgcB2gAHM4sm5YSoKBAKBQCCwNQjFJRAIBAKBbUGYikJxCQQCgUAgsD0IxSUQCAQCgW1BKC5BXAKBQCAQ2A5wvKsIYSoKBAKBQCCwRQjFJRAIBAKBbQADzLEdOhSXQCAQCAQCW4NQXAKBQCAQ2BaEj0sQl0AgEAgEtgaxqyhMRYFAIBAIBLYHobgEAoFAILANYI53FSEUl0AgEAgEAluEUFwCgUAgENgWhI9LKC6BQCAQCAS2B6G4BAKBQCCwJeDwcQniEggEAoHAdoDDVIQwFQUCgUAgENgihOISCAQCgcA2gBFPzkUoLoFAIBAIBLYIobgEAoFAILAtiLdDh+ISCAQCgcA2gAHwjEf/eEBETyCijxLRdUT0POU8EdGLuvMfIKJvGLv+PYK4BAKBQCAQMEFEewBeDOA7ADwYwFOI6MEi2HcAeFD3uQzAS1dVniAugUAgEAhsA5jnpqKxP2U8AsB1zPxxZr4bwFUAniTCPAnAb/Ic7wJwLhGdP+4FmCOISyAQCAQCRxv3IaL3Jp/LxPn7A/ir5P8N3bHaMKMgnHMDgUAgENgSeH1SKnETMz88c560ojSEGQVBXAKBQCAQ2BZsZlfRDQAuTP5fAOBTDWFGQZiKAoFAIBAI5PAeAA8iogcS0QkAlwB4gwjzBgA/2O0u+iYAn2XmT6+iMKG4BAKBQCCwBbgDt77lD/k191lB0jflTjLzaSJ6FoC3ANgDcCUzX0NEz+jO/yqANwF4IoDrAHwBwA+voJwAAOJ4YVMgEAgEAoEtQZiKAoFAIBAIbA2CuAQCgUAgENgaBHEJBAKBQCCwNQjiEggEAoFAYGsQxCUQCAQCgcDWIIhLIBAIBAKBrUEQl0AgEAgEAluD/xeBJ9q6DyvKWAAAAABJRU5ErkJggg==\n" }, "metadata": { "needs_background": "light" @@ -649,15 +633,6 @@ "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" - }, - "pycharm": { - "stem_cell": { - "cell_type": "raw", - "source": [], - "metadata": { - "collapsed": false - } - } } }, "nbformat": 4, From b5946546e0030350cda710112c5e1d11be02a0b7 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?J=C3=A9r=C3=A9my=20Neveu?= Date: Tue, 29 Mar 2022 17:03:09 +0200 Subject: [PATCH 11/11] typo --- spectractor/parameters.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/spectractor/parameters.py b/spectractor/parameters.py index a08c906f9..52efa55d2 100644 --- a/spectractor/parameters.py +++ b/spectractor/parameters.py @@ -103,7 +103,7 @@ def __getattr__(name): ROT_PREFILTER = True # must be set to true, otherwise create residuals and correlated noise ROT_ORDER = 5 # must be above 3 ROT_ANGLE_MIN = -10 -ROT_ANGL_MAX = 10 # in the Hessian analysis to compute rotation angle, cut all angles outside this range [degrees] +ROT_ANGLE_MAX = 10 # in the Hessian analysis to compute rotation angle, cut all angles outside this range [degrees] # Range for spectrum LAMBDA_MIN = 300 # minimum wavelength for spectrum extraction (in nm)