From bccc11acb51dad732c6dbd47593ec30fc43feede Mon Sep 17 00:00:00 2001 From: Xiangchong Li Date: Fri, 21 Jul 2023 15:18:41 -0700 Subject: [PATCH 01/30] prepare the test for the implementation of shear from cluster --- descwl_shear_sims/tests/test_nfw_shear.py | 47 +++++++++++++++++++++++ 1 file changed, 47 insertions(+) create mode 100644 descwl_shear_sims/tests/test_nfw_shear.py diff --git a/descwl_shear_sims/tests/test_nfw_shear.py b/descwl_shear_sims/tests/test_nfw_shear.py new file mode 100644 index 00000000..d9dc04c6 --- /dev/null +++ b/descwl_shear_sims/tests/test_nfw_shear.py @@ -0,0 +1,47 @@ +import os +import pytest +import numpy as np +import lsst.afw.image as afw_image +import lsst.afw.geom as afw_geom + +from descwl_shear_sims.galaxies import make_galaxy_catalog, DEFAULT_FIXED_GAL_CONFIG +from descwl_shear_sims.stars import StarCatalog, make_star_catalog +from descwl_shear_sims.psfs import make_fixed_psf, make_ps_psf + +from descwl_shear_sims.sim import make_sim, get_se_dim + +def test_sim_se_dim(): + """ + test sim can run + """ + seed = 74321 + rng = np.random.RandomState(seed) + + coadd_dim = 351 + se_dim = 351 + psf_dim = 51 + bands = ["i"] + galaxy_catalog = make_galaxy_catalog( + rng=rng, + gal_type="fixed", + coadd_dim=coadd_dim, + buff=30, + layout="grid", + ) + + psf = make_fixed_psf(psf_type="gauss") + data = make_sim( + rng=rng, + galaxy_catalog=galaxy_catalog, + coadd_dim=coadd_dim, + se_dim=se_dim, + psf_dim=psf_dim, + bands=bands, + g1=0.02, + g2=0.00, + psf=psf, + ) + return data['band_data']['i'][0] + +a = test_sim_se_dim() +data = a.getImage().getArray() From 21680ade9a9f5b14c65d1be176e3696fdc2bb67c Mon Sep 17 00:00:00 2001 From: Xiangchong Li Date: Mon, 24 Jul 2023 12:44:14 -0700 Subject: [PATCH 02/30] try implementing the (g1, g2) from NFW halo --- descwl_shear_sims/shear.py | 104 +++++++++++++++++++++++++++++++++++++ descwl_shear_sims/sim.py | 11 ++-- 2 files changed, 112 insertions(+), 3 deletions(-) create mode 100644 descwl_shear_sims/shear.py diff --git a/descwl_shear_sims/shear.py b/descwl_shear_sims/shear.py new file mode 100644 index 00000000..fff0f21e --- /dev/null +++ b/descwl_shear_sims/shear.py @@ -0,0 +1,104 @@ +import clmm +import galsim +import numpy as np +from astropy.coordinates import SkyCoord + +# maximum kappa allowed +# values greater than it will be clipped +kappa_max = 0.6 + +# factor from arcsec to radians +arcsec2rad = 1./3600./180.*np.pi + + +def get_shear( + *, + shear_type="constant", + z_gals=None, + shifts=None, + **kwargs, + ): + """ + A shear wrapper to return g1 and g2 with different shear type + + Parameters + ---------- + cluster_obj: cluster object + """ + if shear_type == "constant": + shear_obj = ShearConstant(**kwargs) + elif shear_type == "NFW": + shear_obj = ShearNFW(**kwargs) + else: + raise ValueError("Do not support the shear type: %s" % shear_type) + return shear_obj.get_shear(z_gals, shifts) + + +class ShearNFW(object): + """ + Shear object from NFW + + Parameters + ---------- + cluster_obj (object): cluster object from clmm + z_cl (float): redshift of the cluster + x_cl (float): ra of the cluster [arcsec] + y_cl (float): dec of the cluster [arcsec] + + """ + def __init__(self, cluster_obj, z_cl, ra_cl=0., dec_cl=0.): + self.z_cl = z_cl + self.ra_cl = ra_cl + self.dec_cl = dec_cl + self.cobj = cluster_obj + self.cosmo = cluster_obj.cosmo + return + + + def get_shear(self, z_gals, shifts): + + z_cl = self.z_cl + # Create the SkyCoord objects + coord_cl = SkyCoord(self.ra_cl, self.dec_cl, unit="arcsec") + coord_gals = SkyCoord(shifts["dx"], shifts["dy"], unit="arcsec") + # Calculate the separation + sep = coord_cl.separation(coord_gals).rads + r3d = self.cosmo.rad2mpc(sep, self.z_cl) + phi = coord_cl.position_angle(coord_gals).rads + + # TODO: confirm whether the units is Mpc/h or Mpc? + + DeltaSigma = self.cobj.eval_excess_surface_density(r3d, z_cl) + gammat = self.cobj.eval_tangential_shear(r3d, z_cl, z_gals) + kappa = self.cobj.eval_convergence(r3d, z_cl, z_gals) + gamma1 = gammat * -np.cos(2. * phi) + gamma2 = gammat * -np.sin(2. * phi) + return gamma1/(1-kappa), gamma2/(1-kappa) + + +class ShearConstant(object): + """ + Constant shear along every redshift slice + """ + def __init__(self, mode="0000", g_dist="g1"): + # note that there are three options in each redshift bin + # 0: g=0.00; 1: g=-0.02; 2: g=0.02 + # "0000" means that we divide into 4 redshift bins, and every bin + # is distorted by -0.02 + nz_bins = len(mode) + self.nz_bins = nz_bins + # number of possible modes + self.n_modes = 3 ** nz_bins + self.mode = mode + self.z_bounds = np.linspace(0, 4, nz_bins+1) + self.dz_bin = self.z_bounds[1]-self.z_bounds[0] + self.g_dist = g_dist + return + + def get_shear(self, z_gals=None, shifts=None): + if z_gals is None: + assert self.mode == "0" * self.nz_bins + z_gal_bins = z_gals // self.dz_bin + gamma1, gamma2 = (None, None) + # TODO: Finish implementing the z-dependent shear + return gamma1, gamma2 diff --git a/descwl_shear_sims/sim.py b/descwl_shear_sims/sim.py index b8d4aae2..6867e6f9 100644 --- a/descwl_shear_sims/sim.py +++ b/descwl_shear_sims/sim.py @@ -70,6 +70,7 @@ def make_sim( sky_n_sigma=None, draw_method='auto', theta0=0., + shear_obj=None, ): """ Make simulation data @@ -201,6 +202,7 @@ def make_sim( sky_n_sigma=sky_n_sigma, draw_method=draw_method, theta0=theta0, + shear_obj=None, ) if epoch == 0: bright_info += this_bright_info @@ -264,7 +266,8 @@ def make_exp( star_bleeds=False, sky_n_sigma=None, draw_method='auto', - theta0=0. + theta0=0., + shear_obj=None, ): """ Make an SEObs @@ -335,8 +338,10 @@ def make_exp( radius_pixels: radius of mask in pixels has_bleed: bool, True if there is a bleed trail """ - - shear = galsim.Shear(g1=g1, g2=g2) + if shear_obj is None: + shear = galsim.Shear(g1=g1, g2=g2) + else: + shear = shear_obj dims = [dim]*2 # I think Galsim uses 1 offset. An array with length=dim=5 # The center is at 3=(5+1)/2 From 79572b478e70b12cc2b242c6a025f2840ebf61d2 Mon Sep 17 00:00:00 2001 From: Xiangchong Li Date: Mon, 24 Jul 2023 14:59:32 -0700 Subject: [PATCH 03/30] test for the shear direction, prepare to test the shear amplitude by comparing with Galsim --- .virtual_documents/Untitled.ipynb | 1 + .../examples/example_NFWShear.ipynb | 72 ++++++ descwl_shear_sims/__init__.py | 1 + descwl_shear_sims/shear.py | 10 +- examples/example_NFWShear.ipynb | 214 ++++++++++++++++++ 5 files changed, 292 insertions(+), 6 deletions(-) create mode 100644 .virtual_documents/Untitled.ipynb create mode 100644 .virtual_documents/examples/example_NFWShear.ipynb create mode 100644 examples/example_NFWShear.ipynb diff --git a/.virtual_documents/Untitled.ipynb b/.virtual_documents/Untitled.ipynb new file mode 100644 index 00000000..8b137891 --- /dev/null +++ b/.virtual_documents/Untitled.ipynb @@ -0,0 +1 @@ + diff --git a/.virtual_documents/examples/example_NFWShear.ipynb b/.virtual_documents/examples/example_NFWShear.ipynb new file mode 100644 index 00000000..2fda6254 --- /dev/null +++ b/.virtual_documents/examples/example_NFWShear.ipynb @@ -0,0 +1,72 @@ +get_ipython().run_line_magic("matplotlib", " inline") +get_ipython().run_line_magic("reload_ext", " autoreload") +get_ipython().run_line_magic("autoreload", " 2") + +import clmm +import numpy as np +import descwl_shear_sims as dss +import matplotlib.pyplot as plt + + +cosmo = clmm.Cosmology(H0=70.0, Omega_dm0=0.27 - 0.045, Omega_b0=0.045, Omega_k0=0.0) +halo = clmm.Modeling(massdef="mean", delta_mdef=200, halo_profile_model="nfw") +halo.set_cosmo(cosmo) +halo.set_concentration(4) +halo.set_mass(1.0e15) +z_cl = 1.0 +# source properties +z_source = 2.0 # all sources in the same plane + +shear_obj = dss.shear.ShearNFW(halo, z_cl) + + +# generate positions +n_gal = 20 +theta = np.linspace(0, 360, n_gal) / n_gal +x = np.cos(theta) * 5 +y = np.sin(theta) * 5 +shifts = np.zeros(n_gal, dtype=[('dx', 'f8'), ('dy', 'f8')]) +shifts['dx'] = x +shifts['dy'] = y + +# get the shear +g1, g2 = shear_obj.get_shear(z_source, shifts) +gamma = g1 + 1j * g2 + + +angles = np.angle(gamma, deg=True) / 2. +lengths = np.abs(gamma) + +# Create whisker plot +plt.figure(figsize=(6, 6)) +plt.quiver(x, y, np.cos(np.deg2rad(angles)), np.sin(np.deg2rad(angles)), lengths, + angles='xy', scale_units='xy', scale=1, width=0.001) +plt.xlim(-10, 10) +plt.ylim(-10, 10) +plt.xlabel('x') +plt.ylabel('y') +plt.show() + + +n_gal = 1 +d_array = [] +g_array = [] +for i in range(10): + shifts = np.zeros(n_gal, dtype=[('dx', 'f8'), ('dy', 'f8')]) + shifts['dx'][0] = 3.0 ** i + shifts['dy'][0] = 0. + print(shifts) + # get the shear + g1, g2 = shear_obj.get_shear(z_source, shifts) + gabs = np.abs(g1 + 1j * g2) + d_array.append(3 ** i) + g_array.append(gabs) +d_array = np.array(d_array) +g_array = np.array(g_array) + + +plt.plot(d_array / 3600., g_array) +plt.xscale("log") +plt.yscale("log") +plt.xlabel("separation [degree]") +plt.ylabel("shear") diff --git a/descwl_shear_sims/__init__.py b/descwl_shear_sims/__init__.py index 7a8f069f..7c787c39 100644 --- a/descwl_shear_sims/__init__.py +++ b/descwl_shear_sims/__init__.py @@ -14,6 +14,7 @@ from . import objlists from . import surveys from . import shifts +from . import shear from . import constants from . import artifacts from . import masking diff --git a/descwl_shear_sims/shear.py b/descwl_shear_sims/shear.py index fff0f21e..41e54bb3 100644 --- a/descwl_shear_sims/shear.py +++ b/descwl_shear_sims/shear.py @@ -56,23 +56,21 @@ def __init__(self, cluster_obj, z_cl, ra_cl=0., dec_cl=0.): def get_shear(self, z_gals, shifts): - z_cl = self.z_cl # Create the SkyCoord objects coord_cl = SkyCoord(self.ra_cl, self.dec_cl, unit="arcsec") coord_gals = SkyCoord(shifts["dx"], shifts["dy"], unit="arcsec") # Calculate the separation - sep = coord_cl.separation(coord_gals).rads + sep = coord_cl.separation(coord_gals).radian r3d = self.cosmo.rad2mpc(sep, self.z_cl) - phi = coord_cl.position_angle(coord_gals).rads + phi = coord_cl.position_angle(coord_gals).radian # TODO: confirm whether the units is Mpc/h or Mpc? - DeltaSigma = self.cobj.eval_excess_surface_density(r3d, z_cl) gammat = self.cobj.eval_tangential_shear(r3d, z_cl, z_gals) kappa = self.cobj.eval_convergence(r3d, z_cl, z_gals) - gamma1 = gammat * -np.cos(2. * phi) - gamma2 = gammat * -np.sin(2. * phi) + gamma1 = gammat * np.cos(2. * phi) + gamma2 = -gammat * np.sin(2. * phi) return gamma1/(1-kappa), gamma2/(1-kappa) diff --git a/examples/example_NFWShear.ipynb b/examples/example_NFWShear.ipynb new file mode 100644 index 00000000..65bba7c3 --- /dev/null +++ b/examples/example_NFWShear.ipynb @@ -0,0 +1,214 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 12, + "id": "d12a992b-6669-4675-b68a-b705ff09f693", + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "%reload_ext autoreload\n", + "%autoreload 2\n", + "\n", + "import clmm\n", + "import numpy as np\n", + "import descwl_shear_sims as dss\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "707e17ec-2aa0-4470-b986-fefe11e4be47", + "metadata": {}, + "outputs": [], + "source": [ + "cosmo = clmm.Cosmology(H0=70.0, Omega_dm0=0.27 - 0.045, Omega_b0=0.045, Omega_k0=0.0)\n", + "halo = clmm.Modeling(massdef=\"mean\", delta_mdef=200, halo_profile_model=\"nfw\")\n", + "halo.set_cosmo(cosmo)\n", + "halo.set_concentration(4)\n", + "halo.set_mass(1.0e15)\n", + "z_cl = 1.0\n", + "# source properties\n", + "z_source = 2.0 # all sources in the same plane\n", + "\n", + "shear_obj = dss.shear.ShearNFW(halo, z_cl)" + ] + }, + { + "cell_type": "markdown", + "id": "3eae4691-6752-4e77-a81d-d913d7bec263", + "metadata": {}, + "source": [ + "# step1: make sure the direction is correct" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "d348067a-7220-4bdb-a0c5-875b5cdb8213", + "metadata": {}, + "outputs": [], + "source": [ + "# generate positions\n", + "n_gal = 20\n", + "theta = np.linspace(0, 360, n_gal) / n_gal\n", + "x = np.cos(theta) * 5\n", + "y = np.sin(theta) * 5\n", + "shifts = np.zeros(n_gal, dtype=[('dx', 'f8'), ('dy', 'f8')])\n", + "shifts['dx'] = x\n", + "shifts['dy'] = y\n", + "\n", + "# get the shear\n", + "g1, g2 = shear_obj.get_shear(z_source, shifts)\n", + "gamma = g1 + 1j * g2" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "8c203fae-f689-4405-91be-056aa84a3593", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAISCAYAAADIqRXcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABAHklEQVR4nO3de3RU5aH//8/kNgkhF0jITUISw01BAUEhURREuYiotVW05yAclWoVFdFa6eUruKqoyyqrR6u1xxNFT4XWiKUFlVAJFgmKGCygRpBAICRGbkm4TW7P7w9qfkQmIQnJ7Jkn79dasxZ7z/PMfPbaYfLJ3ntmXMYYIwAAAIsFOR0AAACgs1F4AACA9Sg8AADAehQeAABgPQoPAACwHoUHAABYj8IDAACsR+EBAADWo/AAAADrUXgAAID1AqrwfPDBB5oyZYpSUlLkcrn09ttvN7nfGKN58+YpJSVFERERGjNmjLZu3Xrax83NzdW5554rt9utc889V0uXLu2kLQAAAE4IqMJz5MgRDRkyRM8995zX+5966ik988wzeu6557RhwwYlJSXpyiuvVHV1dbOPWVBQoKlTp2ratGn67LPPNG3aNN1444366KOPOmszAACAj7kC9ctDXS6Xli5dquuuu07SiaM7KSkpmj17tn7+859LkjwejxITE/Xkk0/qjjvu8Po4U6dOVVVVld55553GdRMnTlSPHj30xhtvdPp2AACAzhfidICOUlxcrPLyco0fP75xndvt1mWXXaZ169Y1W3gKCgp0//33N1k3YcIELVy4sNnn8ng88ng8jcsNDQ06cOCA4uLi5HK5zmxDAADoQowxqq6uVkpKioKCOu/EkzWFp7y8XJKUmJjYZH1iYqJ27drV4jxvc757PG8WLFig+fPnn0FaAABwst27d6t3796d9vjWFJ7vfP8IizHmtEdd2jpn7ty5mjNnTuNyZWWl+vTpo927dys6OrodqQEA6JqqqqqUmpqqqKioTn0eawpPUlKSpBNHbJKTkxvXV1RUnHIE5/vzvn8053Rz3G633G73Keujo6MpPAAAtENnXxISUO/SaklGRoaSkpKUl5fXuK6mpkZr1qxRdnZ2s/OysrKazJGklStXtjgHAAAEloA6wnP48GFt3769cbm4uFibNm1Sz5491adPH82ePVuPP/64+vXrp379+unxxx9Xt27d9OMf/7hxzi233KKzzjpLCxYskCTdd999uvTSS/Xkk0/q2muv1V//+letWrVKa9eu9fn2AQCAzhFQheeTTz7R2LFjG5e/u45m+vTpeuWVV/TQQw/p2LFjuuuuu3Tw4EGNHDlSK1eubHJesKSkpMlV4NnZ2Vq8eLF+9atf6de//rUyMzO1ZMkSjRw50ncbBgAAOlXAfg6PP6mqqlJMTIwqKyu5hgcAgDbw1e9Qa67hAQAAaA6FBwAAWI/CAwAArEfhAQAA1qPwAAAA61F4AACA9Sg8AADAehQeAABgPQoPAACwHoUHAABYj8IDAACsR+EBAADWo/AAAADrUXgAAID1KDwAAMB6FB4AAGA9Cg8AALAehQcAAFiPwgMAAKxH4QEAANaj8AAAAOtReAAAgPUoPAAAwHoUHgAAYD0KDwAAsB6FBwAAWI/CAwAArEfhAQAA1qPwAAAA61F4AACA9Sg8AADAehQeAABgPQoPAACwHoUHAABYj8IDAACsR+EBAADWo/AAAADrUXgAAID1KDwAAMB6FB4AAGA9Cg8AALAehQcAAFiPwgMAAKxH4QEAANaj8AAAAOtReAAAgPUoPAAAwHpWFZ709HS5XK5TbnfffbfX8fn5+V7Hf/nllz5ODgAAOlOI0wE60oYNG1RfX9+4vGXLFl155ZW64YYbWpxXVFSk6OjoxuVevXp1WkYAAOB7VhWe7xeVJ554QpmZmbrssstanJeQkKDY2NhWP4/H45HH42lcrqqqalNOAADgW1ad0jpZTU2NXn/9dd16661yuVwtjh02bJiSk5M1btw4rV69+rSPvWDBAsXExDTeUlNTOyo2AADoBNYWnrfffluHDh3SjBkzmh2TnJysl156Sbm5uXrrrbc0YMAAjRs3Th988EGLjz137lxVVlY23nbv3t3B6QEAQEdyGWOM0yE6w4QJExQWFqa//e1vbZo3ZcoUuVwuLVu2rNVzqqqqFBMTo8rKyibXAgEAgJb56neolUd4du3apVWrVun2229v89xRo0Zp27ZtnZAKAAA4xcrCk5OTo4SEBE2ePLnNcwsLC5WcnNwJqQAAgFOsepeWJDU0NCgnJ0fTp09XSEjTzZs7d65KS0u1aNEiSdLChQuVnp6uQYMGNV7knJubq9zcXCeiAwCATmJd4Vm1apVKSkp06623nnJfWVmZSkpKGpdramr04IMPqrS0VBERERo0aJCWL1+uq666ypeRAQBAJ7P2omVf4qJlAADah4uWAQAAOgiFBwAAWI/CAwAArEfhAQAA1qPwAAAA61F4AACA9Sg8AADAehQeAABgPQoPAACwHoUHAABYj8IDAACsR+EBAADWo/AAAADrUXgAAID1KDwAAMB6FB4AAGA9Cg8AALAehQcAAFiPwgMAAKxH4QEAANaj8AAAAOtReAAAgPUoPAAAwHoUHgAAYD0KDwAAsB6FBwAAWI/CAwAArEfhAQAA1qPwAAAA61F4AACA9Sg8AADAehQeAABgPQoPAACwHoUHAABYj8IDAACsR+EBAADWo/AAAADrUXgAAID1KDwAAMB6FB4AAGA9Cg8AALAehQcAAFiPwgMAAKxH4QEAANaj8AAAAOtReAAAgPWsKjzz5s2Ty+VqcktKSmpxzpo1azR8+HCFh4fr7LPP1osvvuijtAAAwFdCnA7Q0QYNGqRVq1Y1LgcHBzc7tri4WFdddZVmzpyp119/XR9++KHuuusu9erVSz/84Q99ERcAAPiAdYUnJCTktEd1vvPiiy+qT58+WrhwoSTpnHPO0SeffKKnn36awgP4iUrPcXnq6tQ9LEzdQsM67XmMMao+7lHl0ePava9SG3eUakTmWRrVr49cLlenPS8A37Cu8Gzbtk0pKSlyu90aOXKkHn/8cZ199tlexxYUFGj8+PFN1k2YMEEvv/yyamtrFRoa6nWex+ORx+NpXK6qquq4DQAgSTpw7Kjydn6tnH9t1GV9MjTnootbNc8Yo+O1dao8clyHjh5T5dHjOnT0uCqPHFP18Zpm57kkdQ8PU0xkhNwhwYqNDNeAlF6UHcASVhWekSNHatGiRerfv7+++eYb/eY3v1F2dra2bt2quLi4U8aXl5crMTGxybrExETV1dVp3759Sk5O9vo8CxYs0Pz58ztlG4Cu7ODxY1pZvF3lR6rVMzxCV6T31eTMAeoe1vyRnepjHi1Z95kkyeVyyRijiLBQxXQLV2xkhGK6hSulR7RiIsPV3e1WUBAFBuiKrCo8kyZNavz3eeedp6ysLGVmZurVV1/VnDlzvM75/l9vxhiv6082d+7cJo9XVVWl1NTUM4kOdFkHjx9TXvF2lR85rB7h4boiva+Su0e1en5UhFu3j7uoExMCsIFVhef7IiMjdd5552nbtm1e709KSlJ5eXmTdRUVFQoJCfF6ROg7brdbbre7Q7MCXcnJJSc2PFxXtrHkAEBbWV14PB6PvvjiC40ePdrr/VlZWfrb3/7WZN3KlSs1YsSIZq/fAdA+lBwATrKq8Dz44IOaMmWK+vTpo4qKCv3mN79RVVWVpk+fLunEqajS0lItWrRIknTnnXfqueee05w5czRz5kwVFBTo5Zdf1htvvOHkZgDW+K7klB2pVo/wCF2RnqmU7tFOx/KpuoYG/XHzBg3plawRiWcprIWPygDQeawqPHv27NHNN9+sffv2qVevXho1apTWr1+vtLQ0SVJZWZlKSkoax2dkZGjFihW6//779fzzzyslJUW/+93veEs6cAa+fySnK5ack4UEBWnmeReqsGKv/nfLJ6ppaFBceIRGn5WuPtGxTscDugyX+e4qXbRbVVWVYmJiVFlZqejorvvCDkjSxvK9Su7evUuXnNPZf+yo/lm6UyXVlXJJGhSfqKzkVEWEcCodXY+vfodSeDoAhQdAezUYo637K/RR2W4dratVVGiYLj4rTf1i4/gMIHQJvvodatUpLQAINEEul86LT9R58Sc+E6yqxqN1e3fpvZ3bZCRlxvbUJSlpinGHOxsUCHAUHgDwI9Fhbk1M76+J6Sc+F+zrygNauv1zVdV45A4O1qjkVEWGhikzpidHgIA2oPAAaGSM4ZeoH3G5XOobG6e+sSc+F+x4Xa3Wl+3Rw/98T1kpffTg8Es69fvFAJtQeIAuzhij7dWr9O3xIo3sdaeCeVnwW+EhoRqTmqExqRlORwECTpDTAQA465vjW7Xr8DqdE3O1gl2UHQB24tUN6KKMMSqqWiGXgnVFyiNOxwGATkXhAbqgugaPCg+8rj6Ro5QYMcjpOADQ6Sg8QBdTXVuuLQdzNaTnzeoW0tPpOADgExQeoAspPfKpvjm+VRf1uoPrdQB0KbziAV2AMUZbD72t8OAYXRA3zek4AOBzFB7AcrUNR/Xp/tfVN+pyxYX3dToOADiCwgNYrLJmj7449DcNjfsPhQfzPW8Aui4KD2CpXYcLdKhmly7q9RMFuYKdjgMAjuKDBwHLGNOgfx1YIqMGDel5E2UHpzhef9jpCIDPcYQHsIinvlqF+1/XwNjJig3r43Qc+Kniw+vlqT+iIT2myOXi7150DfykA5bY7/lamw68oQvip1N20KJzYq5QauQw/bPif3S4dp/TcQCfoPAAFthRna+yo5/poviZCgvq5nQcBIA4dx9l95qhzytX6evqdU7HATodhQcIcPWmVuHBsRrc43q5XC6n4yCAhASF6aL4mxQSFK6CbxeptuGY05GATkPhAQJcsCtUKd2GOh0DASwt8gIN7XGt1u/7k745ts3pOECnoPAAABQREqNLet2qfZ4d2nTgrzKmwelIQIei8AAAJEkul0uDYidwQTOsROEBADTBBc2wEYUHAHCKxguaXW4uaIYVKDwAgGaldR/+7wua/48LmhHQKDwAgBaduKD5Nn3r+ZoLmhGwKDwAgNNyuVwaHDux8YLm8mNfyhjjdCyg1Sg8AIBWO3FB83StKluozw4uczoO0GoUHsBPHKk66nQEoFVCgtz6j4wXlNJtkBpMvdNxgFah8AAOM8bo1UeWaOeW3U5HAVrN5XIpIbyvglzBTkcBWoXCAzisomSfPlq+UQMuzHQ6CgBYi8IDOCxv0Ro9teoRhYSGOB0FAKxF4QEcVLRhu87ql6zusZFORwEAq1F4AIfU19XrgzfXa8zUbKejAID1KDyAQ955+X1Nuu1yuVwup6MAZ+zbY5tVb2qdjgE0i8IDOGBf6X4dP3JcvfunOB0F6BCRoUnafCCHDyOE36LwAA5Y9vv3dM1dE5yOAXSYbiG9lBp5qb6qzHU6CuAVhQfwsQ3vFmrImEEKCw9zOgrQoeLCB6pbSIJ2H/7A6SjAKSg8gA95jnm0Ze2XGn7lEKejAJ0itfulOlL3jQ4cL3I6CtAEhQfwoWXPv6drZ010OgbQqQbE/EglR/J1tO5bp6MAjSg8gI/s+mKPImMj1TOph9NRgE7lcrl0Xo//0ucH/6S6huNOxwEkUXgAnzDGaOUr+ZrwX2OcjgL4RHBQmAb3nK5/HfhfGdPgdByAwgP4wvt/WqsxU7MVHMwXLaLrCA+OVWb0JH1x6A2nowAUHqCzVR2oVvnOCvW74GynowA+FxOWodiwvtpZned0FHRxFB6gk/31v9/VdfdMcjoG4JiUyJGqaziuimOfOR0FXRiFB+hEW9cVKX1wqiKjuzkdBXBU35gpKj+2UYdr9zodBV0UhQfoJHW1dVr31w265PqRTkcB/MLgHreo6FCuauqPOB0FXZBVhWfBggW68MILFRUVpYSEBF133XUqKmr5w6/y8/PlcrlOuX355Zc+Sg1bLX9plSb/5Aq+HBT4tyBXiM7r+V/afPB/1WDqnI6DLsaqwrNmzRrdfffdWr9+vfLy8lRXV6fx48fryJHT/zVRVFSksrKyxlu/fv18kBg2G5Q9QCmZSU7HAPxKWHB39Y/5obYefM3pKOhiQpwO0JHefffdJss5OTlKSEjQxo0bdemll7Y4NyEhQbGxsZ2YDl1N32EZTkcA/FJUaIoSIy7Q9sq/q2/M1U7HQRdh1RGe76usrJQk9ezZ87Rjhw0bpuTkZI0bN06rV69ucazH41FVVVWTGwCg9RIihsioQZv2v+R0FHQR1hYeY4zmzJmjSy65RIMHD252XHJysl566SXl5ubqrbfe0oABAzRu3Dh98EHz3/a7YMECxcTENN5SU1M7YxMAwGq9Iy9WZc1OVdeWOh0FXYDLGGOcDtEZ7r77bi1fvlxr165V79692zR3ypQpcrlcWrZsmdf7PR6PPB5P43JVVZVSU1NVWVmp6OjoM8qNwGNMg2SOyhXU3ekoQMAxxqi24ajCgiOdjgKHVFVVKSYmptN/h1p5hOeee+7RsmXLtHr16jaXHUkaNWqUtm3b1uz9brdb0dHRTW7owo4ukur5CxVoD5fLRdmBT1hVeIwxmjVrlt566y29//77ysho30WjhYWFSk5O7uB0sJExtTLH35VcVl3/DwDWsepV+u6779af/vQn/fWvf1VUVJTKy8slSTExMYqIiJAkzZ07V6WlpVq0aJEkaeHChUpPT9egQYNUU1Oj119/Xbm5ucrNzXVsOxBIjFzuy+UKyXQ6CACgBVYVnhdeeEGSNGbMmCbrc3JyNGPGDElSWVmZSkpKGu+rqanRgw8+qNLSUkVERGjQoEFavny5rrrqKl/FRiCrWS+F8UnKAODvrL1o2Zd8dcEV/I85/Hsp8k65XFadHQYAn+GiZcDPGdMgSZQdAAgAvFID7VW7WQo9z+kUAIBWoPAA7VXzEdfvAECAoPAA7VYrlyvM6RAAgFag8ADtYOp2SsFpTscAALQShQdoD88Hkvsyp1MAAFqJwgO0h6mWKyjK6RQAgFai8ABtZOr3SUFxTscAALQBhQdoK0++5B7jdAoAQBtQeIC2avhGruAkp1MAANqAwgO0gWk4IrnCnY4BAGgjCg/QFjVrpbDRTqcArJdXWqSjdTVOx4BFKDxAW9Rtl0L6OZ0CsF6/6F7KKy1yOgYsQuEBWsmYOknBcrlcTkcBrJce1VMlhw86HQMWofAArVWzUQob7nQKoMvoFdFd3xyrdjoGLEHhAVqr9lMp9AKnUwBdxsTe5+jdPV84HQOWoPAArRWSKZcr2OkUQJcRGxahqprjTseAJSg8QCu5wsc7HQHocgbGJuqLQ984HQMWoPAAAPzWZcl9lV+2zekYsACFBwDgt8KCgtVgjOoaGpyOggBH4QEA+LWLE8/Wuopip2MgwFF4AAB+bUjPFH22v9TpGAhwFB4AgF9zuVyKDA1Tda3H6SgIYBQeAIDfG3/WQK0s/dLpGAhgFB4AgN/rHRmrvUcqnY6BAEbhAQAEhKRu0So9csjpGAhQFB4AQECY2HugVvIN6mgnCg8AICBEhYbrcK1HxhinoyAAUXgAAAFjcM9kbT5Y5nQMBCAKDwAgYFySeLbWfrPD6RgIQBQeAEDACA0KlktS2dEqp6MgwFB4AAAB540dG52OgABD4QEABJSZA7J1Tkyi0zEQYCg8AICAEhIUpEmp5zodAwGGwgMAAKxH4QEAANaj8AAAAOtReAAAgPUoPAAAwHoUHgAAYD0KDwAAsB6FBwAAWI/CAwAArEfhAQAA1qPwAAAA61F4AACA9Sg8AADAelYWnt///vfKyMhQeHi4hg8frn/+858tjl+zZo2GDx+u8PBwnX322XrxxRd9lBQAAPiCdYVnyZIlmj17tn75y1+qsLBQo0eP1qRJk1RSUuJ1fHFxsa666iqNHj1ahYWF+sUvfqF7771Xubm5Pk4OAAA6i8sYY9oyYcaMGbr11lt16aWXdlamMzJy5EhdcMEFeuGFFxrXnXPOObruuuu0YMGCU8b//Oc/17Jly/TFF180rrvzzjv12WefqaCgoFXPWVVVpZiYGFVWVio6OvrMNwIAgC7CV79D23yEp7q6WuPHj1e/fv30+OOPq7S0tDNytUtNTY02btyo8ePHN1k/fvx4rVu3zuucgoKCU8ZPmDBBn3zyiWpra73O8Xg8qqqqanIDAPjG7gOHnI6AANTmwpObm6vS0lLNmjVLf/nLX5Senq5JkybpzTffbLYg+Mq+fftUX1+vxMTEJusTExNVXl7udU55ebnX8XV1ddq3b5/XOQsWLFBMTEzjLTU1tWM2AABwWu9u3eZ0BASgdl3DExcXp/vuu0+FhYX6+OOP1bdvX02bNk0pKSm6//77tW2bsz+MLperybIx5pR1pxvvbf135s6dq8rKysbb7t27zzAxAADoTGd00XJZWZlWrlyplStXKjg4WFdddZW2bt2qc889V88++2xHZWy1+Ph4BQcHn3I0p6Ki4pSjON9JSkryOj4kJERxcXFe57jdbkVHRze5AQAA/9XmwlNbW6vc3FxdffXVSktL01/+8hfdf//9Kisr06uvvqqVK1fqtdde06OPPtoZeVsUFham4cOHKy8vr8n6vLw8ZWdne52TlZV1yviVK1dqxIgRCg0N7bSsAADAd0LaOiE5OVkNDQ26+eab9fHHH2vo0KGnjJkwYYJiY2M7IF7bzZkzR9OmTdOIESOUlZWll156SSUlJbrzzjslnTgdVVpaqkWLFkk68Y6s5557TnPmzNHMmTNVUFCgl19+WW+88YYj+QEAQMdrc+F59tlndcMNNyg8PLzZMT169FBxcfEZBWuvqVOnav/+/Xr00UdVVlamwYMHa8WKFUpLS5N04jTcyZ/Jk5GRoRUrVuj+++/X888/r5SUFP3ud7/TD3/4Q0fywz+sf2eTRk0a6nQMAC043fWZwMna/Dk8OBWfw2OfJb/9u6Y+cLXTMQB48cd/btDM0Rfq79u/1NV9BzodB2fIbz+HB+gS+KsR8GtfHzyg5zaudzoGAgiFB/CGA5+AXwsPCdE1/c5xOgYCCIUHABBwPtq7W9f043QWWo/CAwAIOHsPV6t3VIzTMRBAKDwAgIBijJERp53RNhQewBsuWgb81qHa4+oTHet0DAQYCg/gDRctA35r5+FDyjqrj9MxEGAoPACAgHKkrkYJ3SKdjoEAQ+EBvAgJC1FtTZ3TMQB8D5+Vi/ai8ABeRHQP17Hq407HAPA92w/uV3w4R3fQdhQewIuISLeOHaHwAP5m/d7dSuvG29HRdhQewIuIqAiO8AB+qNLjUURIqNMxEIAoPIAX3bqHc4QH8DP1DQ18OzrajcIDeBHR3a2jhyk8gD/5Yv+3Ojeul7Z9s0/lldVOx0GAofAAXkR055QW4G8+LtujC5N7a9/ho4oI47QW2obCA3gR0Z2LlgF/c7S2Vt3DwjTnyosVExHudBwEGAoP4AVvSwf8S219vYKDTly/M/isJIfTIBBReAAvwiPdOn7U43QMAP/2r2/LNSQh2ekYCGAUHsCLoKAgmQY+0RXwFxvL9+qCxBSnYyCAUXgAL3Z+vkfr/v4pH2MP+Ima+nqFh4Q4HQMBjMIDeJE6IEXnXJTJZ34AfuB4XZ3cwcFOx0CAo/AAXgQHB+k/517ndAwAOnF0Z1Jmf6djIMBxfBBoRvdYvqAQ8AfRbrei3W6nYyDAcYQHAABYj8IDAACsR+EBAADWo/AAAADrUXgAAID1KDwAAMB6FB4AAGA9Cg8AALAehQcAAFiPwgMAAKxH4QEAANaj8AAAAOtReAAAgPUoPAAAwHoUHqAdjDFaV7DN6RgAgFai8ADt4HK5tH37N6qtrXc6CmCluoZapyPAMhQeoJ1GXzJAaz/8yukYgFWMMfpk/9+1++hWp6PAMhQeoJ0yMnpp585vnY4BWKWy9httPLhCqd0GOR0FlqHwAGcgMzNR27d/43QMwBqbDuZpRsbTCgkKdToKLEPhAc7Axdn99CEXLwMd4suqD5XRfajcwd2cjgILUXiAMxAcHKRu3cJUVXXM6ShAQKuuPaADnr1KizzP6SiwFIUHOENXXD5Iq97nAkugvYwx2rD/r7oo7lqno8BiFB7gDPXoEamqqmOqr29wOgoQkDZXvq9zYkYrJCjM6SiwGIUH6AAjL8rUxxt2OB0DCDiHasp1vP6wkiP6Oh0FlrOm8OzcuVO33XabMjIyFBERoczMTD3yyCOqqalpcd6MGTPkcrma3EaNGuWj1LDFOQNTVFRU5nQMIKA0mHptPLBCI3pe7XQUdAEhTgfoKF9++aUaGhr0hz/8QX379tWWLVs0c+ZMHTlyRE8//XSLcydOnKicnJzG5bAwDqui7c46q4d27zmg1N49nY4CBIRPD76roT3GK8gV7HQUdAHWFJ6JEydq4sSJjctnn322ioqK9MILL5y28LjdbiUlJbX6uTwejzweT+NyVVVV2wPDOpddOlB//svH+s//yHY6CuD3Ko7vVJCCFefu7XQUdBHWnNLyprKyUj17nv6v7fz8fCUkJKh///6aOXOmKioqWhy/YMECxcTENN5SU1M7KjICWFhYiEJCgnT0qOf0g4EurL6hVpsPva9hPcY7HQVdiMsYY5wO0Rm+/vprXXDBBfrtb3+r22+/vdlxS5YsUffu3ZWWlqbi4mL9+te/Vl1dnTZu3Ci32+11jrcjPKmpqaqsrFR0dHSHbwsCR0VFlT7esENXTx7qdBTAb63f95bOjRmt6NBeTkeBH6iqqlJMTEyn/w71+yM88+bNO+Wi4u/fPvnkkyZz9u7dq4kTJ+qGG25osexI0tSpUzV58mQNHjxYU6ZM0TvvvKOvvvpKy5cvb3aO2+1WdHR0kxsgSQkJ0fr22ypZ+ncEcMZKj36p7iE9KTvwOb+/hmfWrFm66aabWhyTnp7e+O+9e/dq7NixysrK0ksvvdTm50tOTlZaWpq2bePrAtA+Q4emadNnJRo2NM3pKIBfqW04rq+qP9KYhFucjoIuyO8LT3x8vOLj41s1trS0VGPHjtXw4cOVk5OjoKC2H8Dav3+/du/ereTk5DbPBSRp6JA+enXRWgoP8D0f7X9bF8VdJ5fL5XQUdEF+f0qrtfbu3asxY8YoNTVVTz/9tL799luVl5ervLy8ybiBAwdq6dKlkqTDhw/rwQcfVEFBgXbu3Kn8/HxNmTJF8fHx+sEPfuDEZsACLpdL8b2i9E1FpdNRAL+x43ChEsIzFBkS43QUdFHWFJ6VK1dq+/btev/999W7d28lJyc33k5WVFSkysoTv4iCg4O1efNmXXvtterfv7+mT5+u/v37q6CgQFFRUU5sBixxcVY//eGl1VzLA0g6Xn9Yu49uVf+okU5HQRfm96e0WmvGjBmaMWPGaced/AsoIiJC7733XiemQlcVGelWRUWVqquPKzo6wuk4gKM2H1qtUXHXOx0DXZy1b0v3JV+9pQ6B5cCBw5Kknj27O5wEAPyXr36HWnOEB/A3FB0A8B/WXMMDAADQHAoPAACwHoUH8LHPDpRq95GDTscAgC6FwgP42KDYZP3f15+opr7O6SgA0GVQeAAfCwkK0q39RumPX61zOgrQKYwxKjvyofYf3+p0FKARhQdwQEJElC6IS9U7ez53OgrQ4b6uekufH3xFPdwDnI4CNKLwAA7JSshQxbFqfV21z+koQIfZWf2OQoK6aUzKcwpy8ckn8B8UHsBB0/pepDd3btLRuhqnowBnxBijokN/UkRwnNKjJik4yO10JKAJCg/goCCXSzMHZOulog/53i0ErHpTqy0HXlRixEVK7HaR03EAryg8gMN6urvpsqR+ervkX05HAdqspv6wNu9/XpkxP1Ssu6/TcYBmUXgAPzAsrrc89XX6/FC501GAVjtaW67PD76sQT1vV7eQBKfjAC2i8AB+YmrGBVqxZ6uqa487HQU4rYOeIu2o+qvOj7tboUF8bxz8H4UH8BMul0t3DLhYf+B6Hvi5siMF+vbYpxrU8ye8EwsBg8ID+JGo0HBN7j1IS4o/dToK4FVx1XLVNlSrf+zNcrlcTscBWo3CA/iZc2KTFB4cqsL9e5yOAjQyxujLg6+pW0iC+kSNdzoO0GYUHsAPXdvnPH1Qvl0HPEedjgI0vu08uVu2Ertd6HQcoF0oPIAfcrlc+smAi/U/X61TA9fzwEE19dXavP959Y35kWLcmU7HAdqNwgP4qYiQUP0ofahe2/6x01HQRR2pLdPnB/9Xg3rOVERIL6fjAGeEwgP4sbOj4pUYEaUVe7byzi341IHjX6q46m//ftt5pNNxgDNG4QH83OUpA/TCl2u1cf9up6OgCzlSt1eDes7kbeewBoUH8HNhQcF6/dJbVF3rcToKupDU7pfztnNYhcIDBICYsAiNTe7ndAwACFgUHgAAYD0KDwAAsB6FBwAAWI/CAwAArEfhAQAA1qPwAAAA61F4AACA9Sg8QBfxedVmNZgGp2MAgCMoPEAXERvaU0tLl2jvsVKnowCAz1F4gC4iJeIs/eCsqfr68Fda9c07qmuoczoSOpkxRtW1x3W8vtbpKIDjKDxAFxLkCtLoXmN1QY8LtWzvm9pxeLvTkdAJGkyDPvq2WBPzfqffffG+gvhOLEAuY4xxOkSgq6qqUkxMjCorKxUdHe10HKBVjDHaePAjVXi+0eUJExQeHO50JJyhimNVerd0q6rrPLooPl1nR8Urzt3d6VhAi3z1OzSk0x4ZgF9zuVwa0XOUDtdVa2X535XZvb8GxZzvdCy0UW1DvT74Zpu+OFSmXuFRuq7PUEWHRTgdC/A7HOHpABzhgQ22Vv5LXx/+SpcnTlD3kCin4+A0dh7ep7y9X6jeNOjSxH46NzbF6UhAu3CEB4BPDYo5X5nd++v9iveU4E7U8B4j5eLaD79yrK5GeXu/UMmRA0rrHqdpmaMUHhzqdCwgIHCEpwNwhAe22XF4uz47tFGXJYxTz7B4p+N0acYYbT20V//8ZrtCg4J1Zco5Suse53QsoMNwhAeAY87u3ld9uqUr/9s8uYPCdXH8ZQpy8aZOX6qsOaZ3Srdo3/HDGhSbopn9L1FIULDTsYCAReEB4FVIUIiuSJykvcdKtbR0ibLjLlVyxFlOx7Jag2nQx/t2auP+EkWHhmviWYPUK5zrqYCOwCmtDsApLdiuwTTow3358jR41D/qHPXplu50JCuVHj2ksqOHNDwujeun0GX46ncox6gBnNaJDyy8XL0j+ujVnS+p9NhupyNZ6axusRoRn07ZAToBR3g6AEd40JUYY3S0/ogiQ/hAOwBnjiM8APySy+Wi7AAIOBQeAABgPasKT3r6iXPfJ98efvjhFucYYzRv3jylpKQoIiJCY8aM0datW32UGOjaVm3drj/kf6xX1m7UJzv36Hgt3+AOoHNY97b0Rx99VDNnzmxc7t695UPvTz31lJ555hm98sor6t+/v37zm9/oyiuvVFFRkaKieDso0JmuGNRXV0g6XlunLXvK9cZHn8lTWyeXy6Wze/XQ0D4p6hUV6XTM0zLGcKEx4OesKzxRUVFKSkpq1VhjjBYuXKhf/vKXuv766yVJr776qhITE/WnP/1Jd9xxh9d5Ho9HHo+ncbmqqurMgwNdWHhoiEZk9NaIjN6SpIYGo537D+qDomLtO3xUkhTbLVxD+ySrb0KcgoPaf3D6aE2tPHV1qq2rV219vWrqG1Rb/+9/19Wr9t/LNf9e17hc13T5ZGuKdmhAUi/NujxLPbrxxZ2AP7LqXVrp6enyeDyqqalRamqqbrjhBv3sZz9TWFiY1/E7duxQZmamPv30Uw0bNqxx/bXXXqvY2Fi9+uqrXufNmzdP8+fPP2U979ICOs/BI8e0qWSvtlfsV4ORQoKDdE5yLw1JTVak2/v/cW9WfbFdB48eU2hwsMKCgxUaHKzQ4KATyyGnWT5p/MlHdLZV7FN6XA+FBvNJyEBb+epdWlYVnmeffVYXXHCBevTooY8//lhz587Vtddeq//5n//xOn7dunW6+OKLVVpaqpSU//+bhn/yk59o165deu+997zO83aEJzU1lcID+FBNXb2+KKvQv3aX62hNrSQpMTpSdfUN+sHwQWd0FAiA7/BdWv/W3NGUk23YsEEjRozQ/fff37ju/PPPV48ePfSjH/1ITz75pOLimv+yve+fez/d+Xi32y23293KLQDQGcJCgjUkNVlDUpMlnfh/u6mkTO9t+Upriop1+TmZDicE4E/8vvDMmjVLN910U4tj0tPTva4fNWqUJGn79u1eC8931/qUl5crOTm5cX1FRYUSExPbmRiAE1wul4alpWhYWsrpBwPocvy+8MTHxys+Pr5dcwsLCyWpSZk5WUZGhpKSkpSXl9d4DU9NTY3WrFmjJ598sn2BAQCA37HmJHdBQYGeffZZbdq0ScXFxfrzn/+sO+64Q9dcc4369OnTOG7gwIFaunSppBN/Ec6ePVuPP/64li5dqi1btmjGjBnq1q2bfvzjHzu1KQAAoIP5/RGe1nK73VqyZInmz58vj8ejtLQ0zZw5Uw899FCTcUVFRaqsrGxcfuihh3Ts2DHdddddOnjwoEaOHKmVK1fyGTwAAFjEqndpOYUvDwUAoH348lAAAIAOQuEBAADWo/AAAADrUXgAAID1KDwAAMB6FB4AAGA9Cg8AALAehQcAAFiPwgMAAKxH4QEAANaj8AAAAOtReAAAgPUoPAAAwHoUHgAAYD0KDwAAsB6FBwAAWI/CAwAArEfhAQAA1qPwAAAA61F4AACA9Sg8AADAehQeAABgPQoPAACwHoUHAABYj8IDAACsR+EBAADWo/AAAADrUXgAAID1KDwAAMB6FB4AAGA9Cg8AALAehQcAAFiPwgMAAKxH4QEAANaj8AAAAOtReAAAgPUoPAAAwHoUHgAAYD0KDwAAsB6FBwAAWI/CAwAArEfhAQAA1qPwAAAA61F4AACA9Sg8AADAehQeAABgPWsKT35+vlwul9fbhg0bmp03Y8aMU8aPGjXKh8kBAEBnC3E6QEfJzs5WWVlZk3W//vWvtWrVKo0YMaLFuRMnTlROTk7jclhYWKdkBAAAzrCm8ISFhSkpKalxuba2VsuWLdOsWbPkcrlanOt2u5vMBQAAdrHmlNb3LVu2TPv27dOMGTNOOzY/P18JCQnq37+/Zs6cqYqKihbHezweVVVVNbkBAAD/5TLGGKdDdIarrrpKkrRixYoWxy1ZskTdu3dXWlqaiouL9etf/1p1dXXauHGj3G631znz5s3T/PnzT1lfWVmp6OjoMw8PAEAXUVVVpZiYmE7/Her3hae5cnGyDRs2NLlOZ8+ePUpLS9Of//xn/fCHP2zT85WVlSktLU2LFy/W9ddf73WMx+ORx+NpXK6qqlJqaiqFBwCANvJV4fH7a3hmzZqlm266qcUx6enpTZZzcnIUFxena665ps3Pl5ycrLS0NG3btq3ZMW63u9mjPwAAwP/4feGJj49XfHx8q8cbY5STk6NbbrlFoaGhbX6+/fv3a/fu3UpOTm7zXAAA4J+su2j5/fffV3FxsW677Tav9w8cOFBLly6VJB0+fFgPPvigCgoKtHPnTuXn52vKlCmKj4/XD37wA1/GBgAAncjvj/C01csvv6zs7Gydc845Xu8vKipSZWWlJCk4OFibN2/WokWLdOjQISUnJ2vs2LFasmSJoqKifBkbAAB0Ir+/aDkQ+OqCKwAAbOOr36HWndICAAD4PgoPAACwHoUHAABYj8IDAACsR+EBAADWo/AAAADrUXgAAID1KDwAAMB6FB4AAGA9Cg8AALAehQcAAFiPwgMAAKxH4QEAANaj8AAAAOtReAAAgPUoPAAAwHoUHgAAYD0KDwAAsB6FBwAAWI/CAwAArEfhAQAA1qPwAAAA61F4AACA9Sg8AADAehQeAABgPQoPAACwHoUHAABYj8IDAACsR+EBAADWo/AAAADrUXgAAID1KDwAAMB6FB4AAGA9Cg8AALAehQcAAFiPwgMAAKxH4QEAANaj8AAAAOtReAAAgPUoPAAAwHoUHgAAYD0KDwAAsB6FBwAAWI/CAwAArEfhAQAA1qPwAAAA61F4AACA9QKm8Dz22GPKzs5Wt27dFBsb63VMSUmJpkyZosjISMXHx+vee+9VTU1Ni4/r8Xh0zz33KD4+XpGRkbrmmmu0Z8+eTtgCAADglIApPDU1Nbrhhhv005/+1Ov99fX1mjx5so4cOaK1a9dq8eLFys3N1QMPPNDi486ePVtLly7V4sWLtXbtWh0+fFhXX3216uvrO2MzAACAA1zGGON0iLZ45ZVXNHv2bB06dKjJ+nfeeUdXX321du/erZSUFEnS4sWLNWPGDFVUVCg6OvqUx6qsrFSvXr302muvaerUqZKkvXv3KjU1VStWrNCECRNalamqqkoxMTGqrKz0+jwAAMA7X/0ODem0R/axgoICDR48uLHsSNKECRPk8Xi0ceNGjR079pQ5GzduVG1trcaPH9+4LiUlRYMHD9a6deuaLTwej0cej6dxubKyUtKJnQYAAFrvu9+dnX38xZrCU15ersTExCbrevToobCwMJWXlzc7JywsTD169GiyPjExsdk5krRgwQLNnz//lPWpqantSA4AAPbv36+YmJhOe3xHC8+8efO8FoeTbdiwQSNGjGjV47lcrlPWGWO8rm/J6ebMnTtXc+bMaVw+dOiQ0tLSVFJS0qk7y2lVVVVKTU3V7t27rT51x3bapatsp9R1tpXttEtlZaX69Omjnj17durzOFp4Zs2apZtuuqnFMenp6a16rKSkJH300UdN1h08eFC1tbWnHPk5eU5NTY0OHjzY5ChPRUWFsrOzm30ut9stt9t9yvqYmBirfyi/Ex0dzXZahO20T1fZVrbTLkFBnfs+KkcLT3x8vOLj4zvksbKysvTYY4+prKxMycnJkqSVK1fK7XZr+PDhXucMHz5coaGhysvL04033ihJKisr05YtW/TUU091SC4AAOC8gHlbeklJiTZt2qSSkhLV19dr06ZN2rRpkw4fPixJGj9+vM4991xNmzZNhYWF+sc//qEHH3xQM2fObGzGpaWlGjhwoD7++GNJJ47I3HbbbXrggQf0j3/8Q4WFhfrP//xPnXfeebriiisc21YAANCxAuai5f/3//6fXn311cblYcOGSZJWr16tMWPGKDg4WMuXL9ddd92liy++WBEREfrxj3+sp59+unFObW2tioqKdPTo0cZ1zz77rEJCQnTjjTfq2LFjGjdunF555RUFBwe3Opvb7dYjjzzi9TSXTdhOu7Cd9ukq28p22sVX2xlwn8MDAADQVgFzSgsAAKC9KDwAAMB6FB4AAGA9Cg8AALAehacVHnvsMWVnZ6tbt26KjY31OqakpERTpkxRZGSk4uPjde+996qmpqbFx/V4PLrnnnsUHx+vyMhIXXPNNdqzZ08nbEH75Ofny+Vyeb1t2LCh2XkzZsw4ZfyoUaN8mLzt0tPTT8n88MMPtzjHGKN58+YpJSVFERERGjNmjLZu3eqjxG23c+dO3XbbbcrIyFBERIQyMzP1yCOPnPbnNBD25+9//3tlZGQoPDxcw4cP1z//+c8Wx69Zs0bDhw9XeHi4zj77bL344os+Sto+CxYs0IUXXqioqCglJCTouuuuU1FRUYtzmvv/++WXX/oodfvMmzfvlMxJSUktzgm0/Sl5f81xuVy6++67vY4PlP35wQcfaMqUKUpJSZHL5dLbb7/d5P72vm7m5ubq3HPPldvt1rnnnqulS5e2ORuFpxVqamp0ww036Kc//anX++vr6zV58mQdOXJEa9eu1eLFi5Wbm6sHHnigxcedPXu2li5dqsWLF2vt2rU6fPiwrr76atXX13fGZrRZdna2ysrKmtxuv/12paenn/brPiZOnNhk3ooVK3yUuv0effTRJpl/9atftTj+qaee0jPPPKPnnntOGzZsUFJSkq688kpVV1f7KHHbfPnll2poaNAf/vAHbd26Vc8++6xefPFF/eIXvzjtXH/en0uWLNHs2bP1y1/+UoWFhRo9erQmTZqkkpISr+OLi4t11VVXafTo0SosLNQvfvEL3XvvvcrNzfVx8tZbs2aN7r77bq1fv155eXmqq6vT+PHjdeTIkdPOLSoqarLv+vXr54PEZ2bQoEFNMm/evLnZsYG4P6UTX5t08jbm5eVJkm644YYW5/n7/jxy5IiGDBmi5557zuv97XndLCgo0NSpUzVt2jR99tlnmjZtmm688cZTvl3htAxaLScnx8TExJyyfsWKFSYoKMiUlpY2rnvjjTeM2+02lZWVXh/r0KFDJjQ01CxevLhxXWlpqQkKCjLvvvtuh2fvCDU1NSYhIcE8+uijLY6bPn26ufbaa30TqoOkpaWZZ599ttXjGxoaTFJSknniiSca1x0/ftzExMSYF198sRMSdo6nnnrKZGRktDjG3/fnRRddZO68884m6wYOHGgefvhhr+MfeughM3DgwCbr7rjjDjNq1KhOy9jRKioqjCSzZs2aZsesXr3aSDIHDx70XbAO8Mgjj5ghQ4a0erwN+9MYY+677z6TmZlpGhoavN4fiPtTklm6dGnjcntfN2+88UYzceLEJusmTJhgbrrppjbl4QhPBygoKNDgwYOVkpLSuG7ChAnyeDzauHGj1zkbN25UbW2txo8f37guJSVFgwcP1rp16zo9c3ssW7ZM+/bt04wZM047Nj8/XwkJCerfv79mzpypioqKzg94hp588knFxcVp6NCheuyxx1o81VNcXKzy8vIm+8/tduuyyy7z2/3nTWVlZau+sM9f92dNTY02btzYZD9IJz55vbn9UFBQcMr4CRMm6JNPPlFtbW2nZe1IlZWVktSqfTds2DAlJydr3LhxWr16dWdH6xDbtm1TSkqKMjIydNNNN2nHjh3NjrVhf9bU1Oj111/Xrbfeetovuw7E/fmd9r5uNreP2/paS+HpAOXl5ad8QWmPHj0UFham8vLyZueEhYU1+dJSSUpMTGx2jtNefvllTZgwQampqS2OmzRpkv7v//5P77//vn77299qw4YNuvzyy+XxeHyUtO3uu+8+LV68WKtXr9asWbO0cOFC3XXXXc2O/24ffX+/+/P++76vv/5a//3f/60777yzxXH+vD/37dun+vr6Nu0Hb/9fExMTVVdXp3379nVa1o5ijNGcOXN0ySWXaPDgwc2OS05O1ksvvaTc3Fy99dZbGjBggMaNG6cPPvjAh2nbbuTIkVq0aJHee+89/fGPf1R5ebmys7O1f/9+r+MDfX9K0ttvv61Dhw61+MdkoO7Pk7X3dbO5fdzW19qA+WqJjjZv3jzNnz+/xTEbNmw47bUq3/HWyo0xp23rHTGnrdqz7Xv27NF7772nP//5z6d9/KlTpzb+e/DgwRoxYoTS0tK0fPlyXX/99e0P3kZt2c7777+/cd3555+vHj166Ec/+lHjUZ/mfH9f+WL/fV979ufevXs1ceJE3XDDDbr99ttbnOsv+7Mlbd0P3sZ7W++PZs2apX/9619au3Zti+MGDBigAQMGNC5nZWVp9+7devrpp3XppZd2dsx2mzRpUuO/zzvvPGVlZSkzM1Ovvvqq5syZ43VOIO9P6cQfk5MmTWpyluD7AnV/etOe182OeK3tsoVn1qxZuummm1ock56e3qrHSkpKOuXiqYMHD6q2tvaUVnrynJqaGh08eLDJUZ6KigplZ2e36nnbqz3bnpOTo7i4OF1zzTVtfr7k5GSlpaVp27ZtbZ57Js5kH3/3LqTt27d7LTzfvWukvLxcycnJjesrKiqa3eedpa3buXfvXo0dO1ZZWVl66aWX2vx8Tu1Pb+Lj4xUcHHzKX3ot7YekpCSv40NCQlost/7gnnvu0bJly/TBBx+od+/ebZ4/atQovf76652QrPNERkbqvPPOa/bnLZD3pyTt2rVLq1at0ltvvdXmuYG2P9v7utncPm7ra22XLTzx8fGKj4/vkMfKysrSY489prKyssaduHLlSrndbg0fPtzrnOHDhys0NFR5eXm68cYbJUllZWXasmWLnnrqqQ7J1Zy2brsxRjk5ObrlllsUGhra5ufbv3+/du/e3eQH3BfOZB8XFhZKUrOZMzIylJSUpLy8vMYvsq2pqdGaNWv05JNPti9wO7VlO0tLSzV27FgNHz5cOTk5Cgpq+1ltp/anN2FhYRo+fLjy8vL0gx/8oHF9Xl6err32Wq9zsrKy9Le//a3JupUrV2rEiBHt+vn2BWOM7rnnHi1dulT5+fnKyMho1+MUFhb6xX5rC4/Hoy+++EKjR4/2en8g7s+T5eTkKCEhQZMnT27z3EDbn+193czKylJeXl6TI/ErV65s+8GBNl3i3EXt2rXLFBYWmvnz55vu3bubwsJCU1hYaKqrq40xxtTV1ZnBgwebcePGmU8//dSsWrXK9O7d28yaNavxMfbs2WMGDBhgPvroo8Z1d955p+ndu7dZtWqV+fTTT83ll19uhgwZYurq6ny+jS1ZtWqVkWQ+//xzr/cPGDDAvPXWW8YYY6qrq80DDzxg1q1bZ4qLi83q1atNVlaWOeuss0xVVZUvY7faunXrzDPPPGMKCwvNjh07zJIlS0xKSoq55pprmow7eTuNMeaJJ54wMTEx5q233jKbN282N998s0lOTvbb7SwtLTV9+/Y1l19+udmzZ48pKytrvJ0s0Pbn4sWLTWhoqHn55ZfN559/bmbPnm0iIyPNzp07jTHGPPzww2batGmN43fs2GG6detm7r//fvP555+bl19+2YSGhpo333zTqU04rZ/+9KcmJibG5OfnN9lvR48ebRzz/e189tlnzdKlS81XX31ltmzZYh5++GEjyeTm5jqxCa32wAMPmPz8fLNjxw6zfv16c/XVV5uoqCir9ud36uvrTZ8+fczPf/7zU+4L1P1ZXV3d+DtSUuNr665du4wxrXvdnDZtWpN3WX744YcmODjYPPHEE+aLL74wTzzxhAkJCTHr169vUzYKTytMnz7dSDrltnr16sYxu3btMpMnTzYRERGmZ8+eZtasWeb48eON9xcXF58y59ixY2bWrFmmZ8+eJiIiwlx99dWmpKTEh1vWOjfffLPJzs5u9n5JJicnxxhjzNGjR8348eNNr169TGhoqOnTp4+ZPn26X27XdzZu3GhGjhxpYmJiTHh4uBkwYIB55JFHzJEjR5qMO3k7jTnxFstHHnnEJCUlGbfbbS699FKzefNmH6dvvZycHK8/x9//uycQ9+fzzz9v0tLSTFhYmLnggguavF17+vTp5rLLLmsyPj8/3wwbNsyEhYWZ9PR088ILL/g4cds0t99O/nn8/nY++eSTJjMz04SHh5sePXqYSy65xCxfvtz34dto6tSpJjk52YSGhpqUlBRz/fXXm61btzbeb8P+/M57771nJJmioqJT7gvU/fnd2+e/f5s+fboxpnWvm5dddlnj+O/85S9/MQMGDDChoaFm4MCB7Sp6LmP+fXUXAACApXhbOgAAsB6FBwAAWI/CAwAArEfhAQAA1qPwAAAA61F4AACA9Sg8AADAehQeAABgPQoPAACwHoUHAABYj8IDAACsR+EBYKVvv/1WSUlJevzxxxvXffTRRwoLC9PKlSsdTAbACXx5KABrrVixQtddd53WrVungQMHatiwYZo8ebIWLlzodDQAPkbhAWC1u+++W6tWrdKFF16ozz77TBs2bFB4eLjTsQD4GIUHgNWOHTumwYMHa/fu3frkk090/vnnOx0JgAO4hgeA1Xbs2KG9e/eqoaFBu3btcjoOAIdwhAeAtWpqanTRRRdp6NChGjhwoJ555hlt3rxZiYmJTkcD4GMUHgDW+tnPfqY333xTn332mbp3766xY8cqKipKf//7352OBsDHOKUFwEr5+flauHChXnvtNUVHRysoKEivvfaa1q5dqxdeeMHpeAB8jCM8AADAehzhAQAA1qPwAAAA61F4AACA9Sg8AADAehQeAABgPQoPAACwHoUHAABYj8IDAACsR+EBAADWo/AAAADrUXgAAID1/j/yrhMttFwKUQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "angles = np.angle(gamma, deg=True) / 2.\n", + "lengths = np.abs(gamma)\n", + "\n", + "# Create whisker plot\n", + "plt.figure(figsize=(6, 6))\n", + "plt.quiver(x, y, np.cos(np.deg2rad(angles)), np.sin(np.deg2rad(angles)), lengths,\n", + " angles='xy', scale_units='xy', scale=1, width=0.001)\n", + "plt.xlim(-10, 10)\n", + "plt.ylim(-10, 10)\n", + "plt.xlabel('x')\n", + "plt.ylabel('y')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "b70c050a-b590-4192-81da-3b747dd07d27", + "metadata": {}, + "source": [ + "# step2: make sure the amplitude is correct" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "d95fa97a-1415-44b4-82cf-3cae3106e2a1", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[(1., 0.)]\n", + "[(3., 0.)]\n", + "[(9., 0.)]\n", + "[(27., 0.)]\n", + "[(81., 0.)]\n", + "[(243., 0.)]\n", + "[(729., 0.)]\n", + "[(2187., 0.)]\n", + "[(6561., 0.)]\n", + "[(19683., 0.)]\n" + ] + } + ], + "source": [ + "n_gal = 1\n", + "d_array = []\n", + "g_array = []\n", + "for i in range(10):\n", + " shifts = np.zeros(n_gal, dtype=[('dx', 'f8'), ('dy', 'f8')])\n", + " shifts['dx'][0] = 3.0 ** i \n", + " shifts['dy'][0] = 0.\n", + " print(shifts)\n", + " # get the shear\n", + " g1, g2 = shear_obj.get_shear(z_source, shifts)\n", + " gabs = np.abs(g1 + 1j * g2)\n", + " d_array.append(3 ** i)\n", + " g_array.append(gabs)\n", + "d_array = np.array(d_array)\n", + "g_array = np.array(g_array)" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "4f6eb0d7-2809-4b37-8357-1e443e900273", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'shear')" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAG1CAYAAAAV2Js8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABRKElEQVR4nO3dd1xV5eMH8M+5l42AAoIyVFwIgiBTUDSsMC0VtWWmWGppw8xs/Wwvy1KzRHPPLDVHZZZR7hFLcKHiQEFBEZS9731+f2B8IyWGF84dn/frxev15dzDOZ/L6Rufzn2e50hCCAEiIiIiA6SQOwARERGRXFiEiIiIyGCxCBEREZHBYhEiIiIig8UiRERERAaLRYiIiIgMFosQERERGSwWISIiIjJYRnIH0HZqtRqZmZmwsrKCJElyxyEiIqIGEEKgsLAQTk5OUCjqvu/DIlSPzMxMuLq6yh2DiIiImiAjIwMuLi51vs4iVA8rKysA1b9Ia2trmdMQERFRQxQUFMDV1bXm73hdWITq8ffHYdbW1ixCREREOqa+YS0cLE1EREQGi0WIiIiIDBaLEBERERksFiEiIiIyWCxCREREZLBYhOoQHR0NT09PBAYGyh2FiIiImokkhBByh9BmBQUFsLGxQX5+PqfPExER6YiG/v3mHSEiIiIyWCxCREREZLBYhIiIiMhgsQgRERGRwWIRIiIiIoPFIkR35a8LuZj6XRJ2nrwKTkAkIiJdw6fPU5P9mHwFMzYdRaVK4KejmfB2tsH0+7vjHve29T7tl4iISBvwjhA1ydJ9F/DS98moVAn4dWgNCxMljl/Jx1Or4jFq0SEcOJvDO0RERKT1eEeIGkWtFvh4xyksP5AGAHiqbye8/aAnbpZUYPG+C1hz+CKOpOfhyeWxCHazxSsR7ghys5U5NRER0Z1xZel6cGXp/ymvUmHGpmP4+WgmAOD/hvTApLDOtT4Gyy4ow8I957E+Nh0VKjUAIKybPabf3x29O7SRJTcRERmehv79ZhGqB4tQtYKySjy7JhGHL+TCWCnh84d9ENnbuc79M/NKsWD3OWyMz0CVuvofsYE9HDD9/u7wcrZpqdhERGSgWIQ0hEUIuFZQhqgVcTh9tRCWJkosHhuAft3sG/SzGTdK8NWfZ7El6QpUtwrRoJ6OePn+7ujRzjB/n0RE1PxYhDTE0IvQuexCRK2Ix5W8UrS1MsXK8YFNuqOTllOM+X+k4sejmRACkCTgQe/2mHZfd3R1aNUMyYmIyJDxoav/sH37dri7u6Nbt25YtmyZ3HF0RuKlGxi16DCu5JWis70ltkwJbfLHWm72lvjy8d74fVp/POjdHkIA249lIWLeXkzfkIyLOcUaTk9ERFQ/vb8jVFVVBU9PT+zevRvW1tbw8/NDbGwsbG0bNpPJUO8I/X7yKl78LgnlVWr07tAay6MCYWtporHjp2QWYN4fqYhJuQYAUCokPOznghfv7QqXNhYaOw8RERkm3hG6JS4uDj179oSzszOsrKwwZMgQ7Ny5U+5YWu3b2EuYvC4R5VVq3NvDAesn9tFoCQIATydrLB0XgJ9e6It73NtCpRbYkJCB8C/24K1tx3E1v0yj5yMiIroTrS9C+/btw9ChQ+Hk5ARJkrBt27bb9lm4cCHc3NxgZmYGf39/7N+/v+a1zMxMODv/b3aTi4sLrly50hLRdY4QAnN+P4OZW09ALYDRQa5YPNYf5ibKZjtnL5fWWPVUEDZPCUXfrnaoVAms+ysd/T/fjfd/PonsQhYiIiJqPlpfhIqLi+Hj44MFCxbc8fUNGzZg2rRpmDlzJpKSkhAWFobBgwcjPT0dAO64ujEf/3C7SpUar28+hq93nQMATLuvGz4Z4Q0jZcv8I+LfsQ2+ndgH3z/TB0GdbFFRpcbKgxfRf/ZuzNpxCjeKK1okBxERGRatL0KDBw/GRx99hJEjR97x9blz52LChAmYOHEiPDw88OWXX8LV1RWLFi0CADg7O9e6A3T58mW0b9++zvOVl5ejoKCg1pe+K6mowjNrErAx4TIUEjBrpDem3dddlsLYp7MdNjzbB2snBMHXtTXKKtVYvO8Cwj7bhS92nkF+SWWLZyIiIv2l9UXov1RUVCAxMRERERG1tkdERODQoUMAgKCgIJw4cQJXrlxBYWEhduzYgUGDBtV5zFmzZsHGxqbmy9XVtVnfg9xyi8oxeslf2H3mOsyMFVgyNgCjgzrImkmSJIR1a4utz4VixfgA9HSyRnGFCgt2n0O/2bvw1Z9nUVjGQkRERHdPp4tQTk4OVCoVHB0da213dHTE1atXAQBGRkaYM2cOwsPD0bt3b7z66quws7Or85hvvvkm8vPza74yMjKa9T3IKT23BKMWHcLRy/loY2GM9ZP64D5Px/p/sIVIkoSBPRyx/cV++OZJf7g7WqGwrApzY1IRNns3Fu05j5KKKrljEhGRDtOLh67++yMcIUStbcOGDcOwYcMadCxTU1OYmppqNJ82On45H0+tikNOUQVc2phj9dNB6NJWOxc2lCQJD3i1Q4SnI7Yfz8KXf6TiwvVifPbbaSw/cAGTB3TBk306wsy4+QZ1ExGRftLpO0L29vZQKpU1d3/+lp2dfdtdosaKjo6Gp6cnAgMD7+o42mhv6nU8tuQwcooq4NneGlumhGptCfonhULCMB8n/D6tP+Y+6oOOdhbIKarAR7+cwoDPd2PN4Ysor1LJHZOIiHSIThchExMT+Pv7IyYmptb2mJgYhIaG3tWxn3/+eaSkpCA+Pv6ujqNtNidexoRV8SipUKFfV3tseLYPHKzN5I7VKEZKBUb6ueCP6QPw2ShvOLc2x7WCcrzz40kM/GIvvotLR6VKLXdMIiLSAVr/0VhRURHOnTtX831aWhqSk5Nha2uLDh06YPr06Rg7diwCAgIQEhKCJUuWID09HZMnT5YxtfYRQmDR3vOY/dsZAECkrxNmP+wDEyPd7cLGSgUeC+yAEb1dsCEhAwt2ncWVvFK8ueU4Fu05j6n3dkOkr1OLLQFARES6R+sfsbFnzx6Eh4fftj0qKgqrVq0CUL2g4uzZs5GVlQUvLy/MmzcP/fv318j59eERGyq1wAc/n8Tqw5cAAM/274zXH+gBhUK/1lMqq1Th29h0LNpzDjlF1esOdW5riZfu7YahvZz07v0SEVHd+PT5uxQdHY3o6GioVCqkpqbqbBEqq1Th5Q3J+PXEVUgS8PaDnni6n5vcsZpVSUUV1hy+hMV7z+PmrXWH3B2t8PL93TCoZzsuqElEZABYhDREl+8I5ZdUYtLaBMSl3YCJUoG5j/ngoV5OcsdqMUXlVVh5IA1L919AQVn1NPueTtaYfn93DOzhwEJERKTHWIQ0RFeLUGZeKcavjEPqtSJYmRphybgAhHSpe/0kfZZfWonl+y9gxcGLKCqvLkS+rq0x/f7uCOtmz0JERKSHWIQ0RBeL0JmrhYhaEYerBWVwtDbF6qeD0KOdbmRvTjeLK7B43wWsPnQRpZXV0+wDO7XB9PvdDbYkEhHpKxahu6SrY4RiL+Ri0poEFJRVoatDK6x+OgjOrc3ljqVVrheW45u957Hur0sor6qeZh/axQ6vRHSHf0dbmdMREZEmsAhpiC7dEdpxPAvTvk9GhUqNgI5tsCwqAK0tTOSOpbWuFZQheve5W+sOVf/f4EHv9nhnqCccdWxtJSIiqo1FSEN0pQitOpiG97enQAhgUE9HzH+8Nx850UBX8kqxYNdZbEy4DJVawMrUCDMGuePJPh2h5JR7IiKdxCKkIdpehIQQ+Oy3M/hm73kAwNg+HfHesJ78A94EKZkF+L+tx5GckQcA8HGxwccjvOHlbCNvMCIiajQWIQ3R5iJUUaXGG5uPYUvSFQDAq4Pc8dw9XTgL6i6o1ALr49Ix+7fTKCyrgkICnurrhun3d4elqdYvxE5ERLc09O83nz1QB21/6GpReRUmrI7HlqQrUCokfP5wLzwf3pUl6C4pFRLG9umIP18ZgKE+TlALYPmBNNw3dy92nrxa/wGIiEin8I5QPbTxjlB2YRmeXhWPE1cKYGGixMIxfrjH3UHuWHppb+p1vL3tBNJvlAAA7vd0xPvDesKJM/GIiLQaPxrTEG0rQmk5xRi3IhYZN0phZ2mCFeMD4ePaWu5Yeq2sUoWvd53F4r0XUKUWsDBRYvr93TE+tBMf6EpEpKVYhDREm4pQckYenl4VjxvFFehoZ4HVTwWhk72lrJkMSeq1QszcehzxF28CADzbW+OTkd7wZRElItI6LEIaoi1FaNfpa3j+2ySUVqrQy8UGK8YHwr6VqWx5DJVaLbApMQOf7DiN/NJKSFL1TL0Zg9xhbWYsdzwiIrqFg6XvkjYNlt4Qn45JaxJRWqnCgO5t8d2kPixBMlEoJDwW2AF/vjIAI3s7QwhgzeFLuG/OXvxyLAv87woiIt3CO0L1kPOOkBACX+86h7kxqQCAh/1dMGukN4w5LkVrHDqXg7e2ncCFnGIAwD3ubfHhcC+42lrInIyIyLDxozENkasIqdQCb/94Autj0wEAL4R3xSsR3Tk9XguVVarwzd7zWLj7PCpUapgZKzD13m6YFNaZpZWISCYsQhoiRxEqrVBh6vdJiEm5BkkCPhjWE2NDOrXIuanpzl8vwltbT+DwhVwAQHfHVvhkhDcCOvFBrkRELY1FSENaugjdLK7AhNXxOJKeBxMjBb56vDce8GrX7OclzRBCYGvSFXz0yyncKK4AAIwOcsXrD/TgA3CJiFoQB0vroMs3S/DwN4dwJD0PNubG+HZiMEuQjpEkCSP9XLDrlQF4PNAVAPBdXAbunbMXW5MuczA1EZGW4R2herTUHaGUzAKMXxmH7MJyONmYYfXTQejmaNVs56OWEZd2AzO3HsfZ7CIAQN+udvhwuBc6t20lczIiIv3GO0J3qSWnzx86l4NHFx9GdmE5erSzwpbn+rIE6YkgN1v8MjUMrw5yh6mRAgfP5eKB+fsx/4+zKK9SyR2PiMjg8Y5QPZr7jtBPRzPxysZkVKoE+nS2xeKxAbAx58J8+uhSbjHe/vEk9qVeBwB0bmuJjyO9EdLFTuZkRET6h3eEdMCy/Rcw9bskVKoEHuzVHqufDmIJ0mMd7Syx+qlAfDW6N+xbmeLC9WKMXvoXXtl4tGZgNRERtSwWIRmo1QIfbU/BR7+cAgA81bcTvn68N0yNlDIno+YmSRKG+Tjhz1cG4Mk+HSBJwOYjlzFwzh5sjM/gYGoiohbGIiQDASDjZgkA4P+G9MA7D3lCoeBCiYbExtwYH0V6Y/OUUPRoZ4W8kkq8tvkYHlvyF85lF8odj4jIYHCMUD2aa4xQWaUKh8/nIryHg8aOSbqpUqXGyoNpmBdzFqWVKhgrJTzbvwteGNgVZsa8S0hE1BRcUFFDtOXp86T/Lt8swXs/ncQfp7IBAB3tLPDhcC/0795W5mRERLqHg6WJdIxLGwssHReAb570RztrM1zKLcG4FXGY+l0SsgvL5I5HRKSXWISItIgkSXjAqx3+eGUAnurbCQqpeomFe+fsxbq/LkGt5g1cIiJNYhGqQ0suqEj0b61MjfDu0J748fl+8Ha2QWFZFd7adgKjvjmEU1kFcscjItIbHCNUD44RIrmp1AJrDl/EnN9TUVReBaVCwsR+bnjpvm6wMDGSOx4RkVbiGCEiPaFUSHiqrxv+mD4Ag73aQaUWWLzvAu6fuw9/nromdzwiIp3GIkSkI9rZmGHRk/5YHhUA59bmuJJXigmrEzBlXSKu5nMwNRFRU7AIEemYez0cETO9P57t3xlKhYRfT1zFfXP3YuXBNKg4mJqIqFFYhIh0kIWJEd4c4oGfX+gHX9fWKCqvwvs/pyAy+iCOX86XOx4Rkc7gYOl6cLA0aTu1WmB9XDo+++00CsuqoJCAx4M6YNq93eBgbSZ3PCIiWXBlaQ1hESJdkV1Yhg+3n8LPRzMBAObGSkzo54ZnBnSGtZmxzOmIiFoWi5CGsAiRrom9kItPfzuNpPQ8AEAbC2M8H94VY0M6wtSIzy4jIsPAIqQhLEKki4QQ2HnyGmbvPI0L14sBAM6tzfFKRHcM93WGUiHJnJCIqHmxCGkIixDpsiqVGj8kXsa8P1JxraAcANCjnRVeH9wD93RvC0liISIi/cQipCEsQqQPSitUWHkoDYv2nEdhWRUAINjNFm8M7oHeHdrInI6ISPNYhDSERYj0SV5JBRbuOY9Vhy6iokoNABjs1Q4zBrmjS9tWMqcjItIcFqG7FB0djejoaKhUKqSmprIIkV65kleKeTGp2HzkMoSofozHowGumHZfNzhyyj0R6QEWIQ3hHSHSZ2euFuLznafxx6lsAICZsQIT+rnh2QFdOOWeiHQai5CGsAiRIYhLu4FPfz2FI7em3Le2MMYL4V3xZJ+OMDPmlHsi0j0sQhrCIkSGQgiBmJRrmL3zDM5lFwGonnI//f7uiOzNKfdEpFtYhDSERYgMTZVKjc1HLmNezFlcLah+qr27oxVeH+yOcHcHTrknIp3AIqQhLEJkqMoqVVh16CIW7j6HgltT7oNuTbn345R7ItJyLEIawiJEhi6/pBIL957DyoP/m3I/qKcjXh3UA10dOOWeiLQTi5CGsAgRVcvMK8WXf6Tih8TLUAtAIQGPBbripXu7o50Np9wTkXZhEdIQFiGi2s5eK8TsnWcQk3INAGBqpMDT/dwweUAX2Jhzyj0RaQcWIQ1hESK6s4SLN/Dpr6eRcOkmAMDGvHrK/dgQTrknIvmxCGkIixBR3YQQ+PNUNj777TTO3ppy72Rjhpfv746Rfi6cck9EsmER0hAWIaL6qdTi1pT7VGTlV0+57+7YCq8/0AMDe3DKPRG1PBYhDWERImq4skoV1hy+iOjd55FfWgkACOzUBm8M7gH/jrYypyMiQ8IipCEsQkSNl19SiUV7z2PlwTSU35pyH+HpiNcecEdXByuZ0xGRIWAR0hAWIaKmy8ovxfw/zmJjQkbNlPtH/F0x7f5uaG9jLnc8ItJjDf37rWjBTLIZMWIE2rRpg4cffljuKEQGpb2NOT4d1Qu/v9wfg3o6Qi2ADQkZuOfzPfj019PIL6mUOyIRGTiDKEJTp07FmjVr5I5BZLC6Olhh8dgAbJ4SiqBOtiivUuObvefR//PdWLz3PMoqVXJHJCIDZRBFKDw8HFZWHJdAJDf/jm2w4dk+WDE+AO6OVsgvrcSsX08j/Is92JiQAZWan9QTUcuSvQjt27cPQ4cOhZOTEyRJwrZt227bZ+HChXBzc4OZmRn8/f2xf//+lg9KRBohSRIG9nDEjpfC8MUjPnCyMUNWfhle++EYHvhyH2JSroFDF4mopchehIqLi+Hj44MFCxbc8fUNGzZg2rRpmDlzJpKSkhAWFobBgwcjPT29Zh9/f394eXnd9pWZmdlSb4OIGkmpkPCwvwt2zbgHbz3ogdYWxjibXYRJaxLwyDeHkXDxhtwRicgAaNWsMUmSsHXrVkRGRtZsCw4Ohp+fHxYtWlSzzcPDA5GRkZg1a1aDj71nzx4sWLAAP/zww3/uV15ejvLy8prvCwoK4OrqylljRM0sv7QSi/eex4qDaSirrJ5yP8zHCR9GevEZZkTUaHoxa6yiogKJiYmIiIiotT0iIgKHDh1qlnPOmjULNjY2NV+urq7Nch4iqs3G3BivPdADe18Nx+igDlAqJPx0NBND5u/n3SEiajZaXYRycnKgUqng6OhYa7ujoyOuXr3a4OMMGjQIjzzyCHbs2AEXFxfEx8fXue+bb76J/Pz8mq+MjIwm5yeixnO0NsOskd74YXIIOtha4EpeKR5dfBhf/pGKKpVa7nhEpGeM5A7QEP9+TpEQolHPLtq5c2eD9zU1NYWpqWmD9yei5tG7Qxv8MrUf3v3pJLYcuYIv/ziLA2dz8OXjvnBpYyF3PCLSE1p9R8je3h5KpfK2uz/Z2dm33SXStOjoaHh6eiIwMLBZz0NEdbMyM8bcR30x/3FfWJkaIeHSTQyevx8/HeVECCLSDK0uQiYmJvD390dMTEyt7TExMQgNDW3Wcz///PNISUn5z4/RiKhlDPd1xo6XwuDXoTUKy6ow9bskzNh0FEXlVXJHIyIdJ3sRKioqQnJyMpKTkwEAaWlpSE5OrpkeP336dCxbtgwrVqzAqVOn8PLLLyM9PR2TJ0+WMTURtTRXWwtsfDYEU+/tBoUE/JB4GQ99tR9HM/LkjkZEOkz26fN79uxBeHj4bdujoqKwatUqANULKs6ePRtZWVnw8vLCvHnz0L9//xbJx4euEmmfuLQbmPZ9EjLzy2CkkPBKhDue7d8ZCkXDxw4SkX7j0+fvUnR0NKKjo6FSqZCamsoiRKRl8ksq8X9bj+OX41kAgNAudpj7qC/a2ZjJnIyItAGLkIbwjhCR9hJCYFPiZbz300mUVKjQ2sIYn43qhUE928kdjYhkphcLKhIR/RdJkvBogCu2v9gP3s42yCupxLNrEzFz63GUVvCJ9kRUPxYhItJ5ndu2wuYpoXi2f2cAwLex6Ri64ABSMgtkTkZE2o5FqA5cR4hIt5gYKfDmEA+smxAMBytTnMsuQmT0Qaw4kMan2RNRnThGqB4cI0Ske3KLyvH65mP441Q2AOAe97b44hEf2LfiqvFEhoJjhIjIYNm1MsXScQH4cHhPmBopsOfMdTzw5X7sOZMtdzQi0jIsQkSklyRJwtiQTvjphX5wd7RCTlE5xq+Mx4fbU1BexYHURFSNRYiI9Jp7Oyv8+EJfjA/tBABYfiANkdGHcC67UN5gRKQVWITqwMHSRPrDzFiJ94b1xPKoANhamuBUVgEe+voA1semcyA1kYHjYOl6cLA0kX7JLijDK5uOYv/ZHADAoJ6O+HRkL7SxNJE5GRFpEgdLExHdgYO1GVY/FYSZQzxgrJSw8+Q1DJ6/H4fO58gdjYhkwCJERAZHoZAwqX9nbH2uLzq3tcTVgjKMWRaL2b+dRqVKLXc8ImpBLEJEZLC8nG2w/cV+GB3kCiGAhXvO4+FvDuNSbrHc0YiohbAI1YGDpYkMg4WJEWaN7IVFY/xgY26Moxl5GDJ/P7YcucyB1EQGgIOl68HB0kSGIzOvFC9vSEZs2g0AwHBfJ3wY6QVrM2OZkxFRY3GwNBFRIzm1Nsf6SX0wI6I7lAoJPyZnYsj8/Ui8dFPuaETUTFiEiIj+QamQ8MLAbtg0OQSutua4fLMUjy4+jK/+PAuVmjfQifQNixAR0R34dWiDHVPDMKK3M1RqgbkxqRi95C9cySuVOxoRaRCLEBFRHazMjDHvMV/Me8wHrUyNEHfxBh74ch+2H8uUOxoRaQiLEBFRPUb0dsGOqWHwdW2NwrIqvLA+Ca/9cBTF5VVyRyOiu8QiVAdOnyeif+pgZ4FNk0Pw4sCukCRgY8JlPPT1ARy/nC93NCK6C5w+Xw9Onyeif/vrQi5e3pCMrPwyGCslzIhwx6SwzlAoJLmjEdEtnD5PRNRM+nS2w68vhWGwVztUqgRm/XoaY1fE4lpBmdzRiKiRWISIiJqgtYUJFo7xw6cjvWFurMTBc7l44Mt9iEm5Jnc0ImoEFiEioiaSJAmPB3XAzy/2Q08na9wsqcSkNQl4e9sJlFWq5I5HRA3AIkREdJe6OrTCludCMSnMDQCw9q9LGLbgAE5fLZA5GRHVh0WIiEgDTI2UmPmgJ9ZOCEJbK1OkXivCsAUHsfrQRT68lUiLsQgREWlQWLe2+O2lMNzbwwEVVWq8+9NJTF6XyI/KiLQUixARkYbZtTLFsqgAfDC8J0yMFNh58hrGrYhDQVml3NGI6F9YhOrABRWJ6G5IkoRxIZ2w9ukgWJkaIS7tBh5f/BeuF5bLHY2I/oELKtaDCyoS0d06mZmPqBVxyCmqQCc7C6ydEAxXWwu5YxHpNS6oSESkJXo62eCHyaFwaWOOi7klePibQzhztVDuWEQEFiEiohbRyd4Sm6eEwt3RCtcKyvHo4sNIvHRT7lhEBo9FiIiohTham2HDs33g16E18ksr8eSyWOw5ky13LCKDxiJERNSCWluYYN3EYAzo3hallSpMXJ2AH5OvyB2LyGCxCBERtTALEyMsHReAYT5OqFILTNuQjLWHL8odi8ggsQgREcnAxEiBLx/zRVRIRwgBvP3jScz/4yxXoSZqYSxCREQyUSgkvDesJ6bd1w0AMO+PVLz/cwrUapYhopbCIkREJCNJkjDtvu54f1hPAMCqQxfx8sZkVKrUMicjMgwsQkREWiAqtBPmP+4LI4WEH5MzMWlNAkor+HwyoubGIkREpCWG+zpjaVQAzIwV2HPmOp5cHov8Ej6fjKg5sQjVgc8aIyI5hLs74NuJwbA2M0LipZt4dPFhZBeUyR2LSG/xWWP14LPGiEgOp68WYNzyOGQXlsPV1hzrJgSjo52l3LGIdAafNUZEpMN6tLPGD5ND0dHOAhk3SjFq0WGkZBbIHYtI77AIERFpqQ52Ftg0OQQe7a2RU1SOx5YcRlzaDbljEekVFiEiIi3mYGWG75/pg6BOtigsq8LY5bH489Q1uWMR6Q0WISIiLWdjbow1E4Jwn4cDyqvUeGZtIrYcuSx3LCK9wCJERKQDzIyVWPSkP0b2doZKLTB941GsOJAmdywincciRESkI4yVCnzxiA+e7usGAPhgewrm/H6GzycjugssQkREOkShkPD2Qx54dZA7AODrXecwc9sJqPh8MqImYREiItIxkiTh+fCu+HiEFyQJWB+bjqnfJaG8io/kIGosFiEiIh01JrgjFoz2g7FSwi/HszBxdQKKy6vkjkWkU1iEiIh02IO92mPF+EBYmCix/2wOnlgWi5vFFXLHItIZLEJERDourFtbfDsxGK0tjHE0Iw+PLD6MrPxSuWMR6QQWISIiPdC7QxtsejYE7azNcC67CA8vOowL14vkjkWk9ViEiIj0RDdHK/wwJQSd7S1xJa8Uj3xzGMcv58sdi0irsQgREekRlzbVzyfzdrZBbnEFRi/9C4fO58gdi0hr6X0RysjIwD333ANPT0/06tULmzZtkjsSEVGzsmtlivWTghHS2Q5F5VUYvyIeO09elTsWkVaShJ4vSZqVlYVr167B19cX2dnZ8PPzw5kzZ2Bpadmgny8oKICNjQ3y8/NhbW3dzGmJiDSnrFKFqd8l4feUa1BIwKejeuHRAFe5YxG1iIb+/W70HaHKykqEh4cjNTX1rgK2lPbt28PX1xcA4ODgAFtbW9y4cUPeUERELcDMWImFY/zwaIAL1AJ47YdjWLz3vNyxiLRKo4uQsbExTpw4AUmSNBJg3759GDp0KJycnCBJErZt23bbPgsXLoSbmxvMzMzg7++P/fv3N+lcCQkJUKvVcHXlfxERkWEwUirw2aheeHZAZwDArF9PY9avp/h8MqJbmjRGaNy4cVi+fLlGAhQXF8PHxwcLFiy44+sbNmzAtGnTMHPmTCQlJSEsLAyDBw9Genp6zT7+/v7w8vK67SszM7Nmn9zcXIwbNw5LlizRSG4iIl0hSRLeHOyBNwf3AAAs3nsBb2w+jiqVWuZkRPJr0hihF198EWvWrEHXrl0REBBw23ibuXPnNi2MJGHr1q2IjIys2RYcHAw/Pz8sWrSoZpuHhwciIyMxa9asBh23vLwc999/PyZNmoSxY8fWu295eXnN9wUFBXB1deUYISLSCxvjM/DGlmNQC2BQT0fMf7w3zIyVcsci0riGjhEyasrBT5w4AT8/PwC4bayQpj4yA4CKigokJibijTfeqLU9IiIChw4datAxhBAYP348Bg4cWG8JAoBZs2bh/fffb1JeIiJt92igK6zNjTH1uyTsPHkNT62Mx5Jx/rAyM5Y7GpEsmlSEdu/erekcd5STkwOVSgVHR8da2x0dHXH1asOmgh48eBAbNmxAr169asYfrV27Ft7e3nfc/80338T06dNrvv/7jhARkb54wKsdVj0diGfWJOLwhVw8sTQWq54KhF0rU7mjEbW4JhWhlvbvu0xCiAbfeerXrx/U6oZ/Dm5qagpTU/7LgIj0W2gXe3w3qQ+iVsbh+JV8PPLNYaydGAzn1uZyRyNqUU0uQvHx8di0aRPS09NRUVH7Scdbtmy562AAYG9vD6VSedvdn+zs7NvuEmladHQ0oqOjoVKpmvU8RERy8XaxwabJIRi3PA4XcooxauEhrJ0QhG6OVnJHI2oxTZo19v3336Nv375ISUnB1q1bUVlZiZSUFOzatQs2NjYaC2diYgJ/f3/ExMTU2h4TE4PQ0FCNnedOnn/+eaSkpCA+Pr5Zz0NEJKcubVvhhykh6OrQClcLyvDI4sNISr8pdyyiFtOkIvTJJ59g3rx52L59O0xMTDB//nycOnUKjz76KDp06NCoYxUVFSE5ORnJyckAgLS0NCQnJ9dMj58+fTqWLVuGFStW4NSpU3j55ZeRnp6OyZMnNyU6ERH9S3sbc2x6NgQ+rq2RV1KJMctisf/sdbljEbWIJk2ft7S0xMmTJ9GpUyfY29tj9+7d8Pb2xqlTpzBw4EBkZWU1+Fh79uxBeHj4bdujoqKwatUqANULKs6ePRtZWVnw8vLCvHnz0L9//8bGbhI+YoOIDEVxeRUmr0vE/rM5MFZK+PKx3niwV3u5YxE1SbM9YgMAbG1tUVhYCABwdnbGiRMnAAB5eXkoKSlp1LHuueceCCFu+/q7BAHAc889h4sXL6K8vByJiYktUoKio6Ph6emJwMDAZj8XEZE2sDQ1wrKoADzo3R6VKoEXvjuCb2MvyR2LqFk1qQiFhYXVjNt59NFH8dJLL2HSpEkYPXo07r33Xo0GlAvHCBGRITI1UuKr0b3xRHAHCAHM3HoC0bvP8ZEcpLea9NHYjRs3UFZWBicnJ6jVanzxxRc4cOAAunbtirfffhtt2rRpjqyy4EdjRGSIhBCY83sqFuw+BwCY0M8NM4d4QKHQ3KK5RM2poX+/m1SEDAmLEBEZsmX7L+CjX04BAEb5ueDzh3uxDJFOaNYxQgBw/vx5vPXWWxg9ejSys7MBAL/99htOnjzZ1ENqFY4RIiICJoZ1xpxHfKBUSNh85DLe/vEEPyYjvdKkIrR37154e3sjNjYWW7ZsQVFREQDg2LFjePfddzUaUC4cI0REVG2Uvwu+fMwXkgR8G5uOT389zTJEeqNJReiNN97ARx99hJiYGJiYmNRsDw8Px+HDhzUWjoiItMNQHyfMGlH9jMbF+y4g+tbYISJd16QidPz4cYwYMeK27W3btkVubu5dhyIiIu3zeFAHvPWgBwDgi99TsepgmsyJiO5ek4pQ69at77hoYlJSEpydne86lDbgGCEiottNDOuMl+7tBgB47+cUbErIkDkR0d1pUhF64okn8Prrr+Pq1auQJAlqtRoHDx7EjBkzMG7cOE1nlAXHCBER3dm0+7rh6b5uAIDXNx/Dr8cb/jQBIm3TpCL08ccfo0OHDnB2dkZRURE8PT3Rv39/hIaG4q233tJ0RiIi0iKSJOHthzzwWIAr1AKY+n0S9pzJljsWUZPc1TpC58+fR1JSEtRqNXr37o1u3bppMptW4DpCRER3plILTP0+Cb8cy4KZsQJrng5GkJut3LGIAHBBRY1hESIiqltFlRrPrk3A7jPX0crUCN9N6gNvFxu5YxE1bxFSqVRYtWoV/vzzT2RnZ0OtVtd6fdeuXY1PrKVYhIiI/ltZpQpRK+IQm3YDbSyMsfHZEHRztJI7Fhm4Zl1Z+qWXXsJLL70ElUoFLy8v+Pj41PrSB5w1RkTUMGbGSiyLCoCPiw1ullRizLJYpOeWyB2LqEGadEfI3t4ea9aswZAhQ5ojk1bhHSEiooa5WVyBx5f8hTPXCuFqa45Nz4ainY2Z3LHIQDXrHSETExN07dq1yeGIiEj/tLE0wdoJQehoZ4GMG6V4cnkscovK5Y5F9J+aVIReeeUVzJ8/n8+aISKiWhyszbBuQjDa25jhXHYRolbGoaCsUu5YRHVq8EdjI0eOrPX9rl27YGtri549e8LY2LjWa1u2bNFcQpnxozEiosY7l12ExxYfRm5xBQI7tcGap4NhbqKUOxYZkIb+/TZq6AFtbGpPh7zTs8aIiIgAoKtDK6yZEITHl/yF+Is38czaBCyLCoCpEcsQaZcmDZYuLS2FWq2GpaUlAODixYvYtm0bPDw8MGjQII2HlBPvCBERNV3ipRt4clkcSitVeKBnOyx4ojeMlE0alUHUKM06WHr48OFYu3YtACAvLw99+vTBnDlzEBkZiUWLFjUtsZbh9Hkiorvn39EWS8cFwESpwG8nr+L1zcehVnN8KWmPJhWhI0eOICwsDADwww8/wNHREZcuXcKaNWvw1VdfaTSgXPjQVSIizejXzR5fP9EbSoWEzUcu4/2fT3KyDWmNJhWhkpISWFlVrxr6+++/Y+TIkVAoFOjTpw8uXbqk0YBERKT7BvVshy8e6QUAWH34Eub8nipzIqJqTSpCXbt2xbZt25CRkYGdO3ciIiICAJCdnc1xNEREdEcjervgw0gvAMCC3efwzd7zMiciamIReueddzBjxgx06tQJwcHBCAkJAVB9d6h3794aDUhERPpjbJ+OeP2BHgCAT389jXV/8VMEkleTnz5/9epVZGVlwcfHBwpFdZ+Ki4uDtbU1evToodGQcuKsMSIizft852lE7z4PSQLmPuqDEb1d5I5Eekbj6wj9W7t27dCuXbta24KCgpp6OCIiMiAzItxRVFaF1YcvYcamY7A0MUJEz3b1/yCRhnExByIianGSJOHdoT0x0s8ZKrXAC+uTcOBsjtyxyACxCBERkSwUCgmzR/XCAz3boUKlxqQ1CUi8dEPuWGRgWITqwAUViYian5FSgfmjfRHWzR6llSqMXxmPk5n5csciA9LkwdKGgoOliYiaX0lFFcYtj0PCpZuwszTBxskh6NK2ldyxSIc16yM2iIiINMnCxAgrngqEl7M1cosr8OSyWFy+WSJ3LDIALEJERKQVrM2MsfqpIHRpa4ms/DKMWRaL7IIyuWORnmMRIiIirWHXyhTfTuwDV1tzXMotwdjlccgrqZA7FukxFiEiItIq7WzM8O2EPnCwMsWZa4WIWhGHovIquWORnmIRIiIirdPBzgLrJgajjYUxjl7Ox4RV8SirVMkdi/QQixAREWml7o5WWP10EFqZGiE27Qae+/YIKqrUcsciPcMiREREWquXS2ssjwqAqZECu05n4+WNyVCpueoLaQ6LEBERabXgznZYPNYfxkoJvxzLwv9tOQ4ugUeawiJERERa7x53B8x/vDcUErAhIQMf/XKKZYg0gkWIiIh0whDv9vh0VC8AwPIDaZj/51mZE5E+YBGqA581RkSkfR4NcMW7Qz0BAF/+cRbL9l+QORHpOj5rrB581hgRkfb5+s+zmBOTCgD4dKQ3Hg/qIHMi0jZ81hgREemtFwZ2xTP9OwMA3tx6HD8fzZQ5EekqFiEiItI5kiThzcE9MDqoA4QAXt6QjF2nr8kdi3QQixAREekkSZLwUaQXhvs6oUotMGXdERw+nyt3LNIxLEJERKSzlAoJXzzig/s8HFBepcbE1fFIzsiTOxbpEBYhIiLSacZKBRY84YfQLnYorlAhakUcTl8tkDsW6QgWISIi0nlmxkosHReA3h1aI7+0Ek8ui0NaTrHcsUgHsAgREZFesDQ1wqrxQejRzgo5ReV4clksMvNK5Y5FWo5FiIiI9IaNhTHWTgiGm70lruSV4sllscgpKpc7FmkxFiEiItIrba1MsW5iMJxszHAhpxhjl8chv6RS7likpViEiIhI7zi3Nse3k/rAvpUpTmUV4KlVcSgur5I7FmkhFiEiItJLbvaWWDshCNZmRjiSnodn1iagrFIldyzSMixCRESktzzaW2P100GwMFHi4LlcvPhdEipVarljkRZhESIiIr3Wu0MbLIsKgImRAjEp1/DqpqNQq/m8carGIkRERHovtIs9Fj7hByOFhG3Jmfhs52m5I5GW0PsiVFhYiMDAQPj6+sLb2xtLly6VOxIREcngPk9HfDaqFwBg8d4LWHv4oryBSCsYyR2guVlYWGDv3r2wsLBASUkJvLy8MHLkSNjZ2ckdjYiIWtgofxdcySvF3JhUvPvTSbS3Mcd9no5yxyIZ6f0dIaVSCQsLCwBAWVkZVCoVhOBnw0REhurFgV3xWIAr1AJ48bskHOVDWg2a7EVo3759GDp0KJycnCBJErZt23bbPgsXLoSbmxvMzMzg7++P/fv3N+oceXl58PHxgYuLC1577TXY29trKD0REekaSZLw0Qgv9O/eFqWVKkxYHY+MGyVyxyKZyF6EiouL4ePjgwULFtzx9Q0bNmDatGmYOXMmkpKSEBYWhsGDByM9Pb1mH39/f3h5ed32lZmZCQBo3bo1jh49irS0NKxfvx7Xrl1rkfdGRETayVipwMIxfvBsb42cogpErYxDXkmF3LFIBpLQos+JJEnC1q1bERkZWbMtODgYfn5+WLRoUc02Dw8PREZGYtasWY0+x5QpUzBw4EA88sgjd3y9vLwc5eX/ey5NQUEBXF1dkZ+fD2tr60afj4iItNe1gjKMiD6IzPwyBHZqg7UTgmFmrJQ7FmlAQUEBbGxs6v37Lfsdof9SUVGBxMRERERE1NoeERGBQ4cONegY165dQ0FBAYDqX8q+ffvg7u5e5/6zZs2CjY1NzZerq2vT3wAREWk1R2szrHwqCFamRoi/eBMzuMaQwdHqIpSTkwOVSgVHx9oj+h0dHXH16tUGHePy5cvo378/fHx80K9fP7zwwgvo1atXnfu/+eabyM/Pr/nKyMi4q/dARETazb2dFRaP9YexUsL2Y1lcY8jA6MT0eUmSan0vhLhtW138/f2RnJzc4HOZmprC1NS0MfGIiEjHhXa1x2ejemH6xqNYvPcCnFubY1xIJ7ljUQvQ6jtC9vb2UCqVt939yc7Ovu0ukaZFR0fD09MTgYGBzXoeIiLSDiP9XPDK/d0BAO/9dBIxKZxYYwi0ugiZmJjA398fMTExtbbHxMQgNDS0Wc/9/PPPIyUlBfHx8c16HiIi0h4vDOyKxwP/XmPoCNcYMgCyF6GioiIkJyfXfHyVlpaG5OTkmunx06dPx7Jly7BixQqcOnUKL7/8MtLT0zF58mQZUxMRkT6SJAkfRnphQPe2KKtUY8LqeKTnco0hfSb79Pk9e/YgPDz8tu1RUVFYtWoVgOoFFWfPno2srCx4eXlh3rx56N+/f7Pmio6ORnR0NFQqFVJTUzl9nojIgBSVV+HRbw4jJasAndtaYvPkULSxNJE7FjVCQ6fPy16EtF1Df5FERKRfuMaQbtOLdYSIiIjk4mhthlVPB8HKrHqNoVe4xpBeYhEiIiKqQ3dHKyx+snqNoV+OZeGz37jGkL5hESIiIvoPoV3tMfvh6oV4F++7gDWHL8obiDSKRagOXEeIiIj+NqK3C2ZEcI0hfcTB0vXgYGkiIgKqn2rw5pbj+D4+A2bGCnz/TAh8XVvLHYvqwMHSREREGiRJEj765xpDq7jGkD5gESIiImogI6UC0WP80NPJGrnFFRi/Mg43iyvkjkV3gUWoDhwjREREd9LK1AgrxgfCubU5LuQUY9KaBJRVquSORU3EMUL14BghIiK6k9RrhRi16BAKy6rwoHd7fD26NxQKSe5YdAvHCBERETWj7o5WWDz21hpDx7PwKdcY0kksQkRERE0U2sUenz/sAwBYsu8CVh+6KG8gajQWISIiorsQ2dsZrw5yBwC8//NJ/H7yqsyJqDFYhIiIiO7Sc/d0weggV6gFMPX7JCSl35Q7EjUQi1AdOGuMiIgaSpIkfDjcC/e4V68xNHF1Ai7lFssdixqAs8bqwVljRETUUMXlVXhsyWGcuFIAN3tLbJ4SCltLE7ljGSTOGiMiImphlqZGWBFVvcZQGtcY0gksQkRERBrkYG2GVU8FwsrMCImXbmL6xmSo1fzwRVuxCBEREWlYN0crLBkbAGOlhB3Hr2LWr6fkjkR1YBEiIiJqBiFd7PDFI9VrDC3dn4ZVB9NkTkR3wiJERETUTIb7/mONoe0pXGNIC7EI1YHT54mISBOq1xjqAME1hrQSp8/Xg9PniYjoblWp1Ji0JgG7z1yHnaUJtjwXio52lnLH0mucPk9ERKQljJQKLHjCD17O1sgtrsD4lfG4UVwhdywCixAREVGLsDQ1worxXGNI27AIERERtRAHq+o1hqxvrTH08gauMSQ3FiEiIqIW1M3RCkvGBcBEqcCvJ67ikx1cY0hOLEJEREQtrE9nO3z+SC8AwLIDaVjJNYZkwyJEREQkg+G+znjtgeo1hj7YnoKdXGNIFixCREREMpkyoAueCL61xtB3STjCNYZaHItQHbigIhERNTdJkvDBsJ4Id2+L8io1Jq5OwKXcYrljGRQuqFgPLqhIRETNrbi8Co8v+QvHr+TDzd4Sm6eEwtbSRO5YOo0LKhIREekIS1MjLB8fULPG0MTV8VxjqIWwCBEREWkBByszrH66eo2hI+l5mPZ9MlRcY6jZsQgRERFpia4OVlh6a42h305yjaGWwCJERESkRYL/scbQ8gNpWHGAaww1JxYhIiIiLTPc1xmvP9ADAPDhLyn47QTXGGouLEJERERaaPKAzhhza42hl77nGkPNhUWIiIhIC0mShPeH9cTAHg41awxdzOEaQ5rGIkRERKSljJQKfD26N7ydbXCjuALjV8bhRnGF3LH0CosQERGRFvt7jSGXNua4mFvCNYY0jEWIiIhIyzlYmWHVU4GwMTfmGkMaxiJUBz5rjIiItElXByssGetfs8bQR7+kyB1JL/BZY/Xgs8aIiEib/HQ0E1O/SwIAfDi8J8aGdJI3kJbis8aIiIj00DAfJ7z2gDsA4L2fU7D/7HWZE+k2FiEiIiIdM2VAF4z0c4ZKLfDct0dwLrtI7kg6i0WIiIhIx0iShFkjvRHQsQ0Ky6owYXU8bnJafZOwCBEREekgUyMlFo/1h0sbc1zKLcHkdYmoqFLLHUvnsAgRERHpKLtWplgxPhCtTI0Qm3YDb287Ac6BahwWISIiIh3W3dEKXz/RGwoJ2JCQgWX7+bT6xmARIiIi0nHh7g5460FPAMAnv57CHynXZE6kO1iEiIiI9MBTfTthdND/nlZ/KqtA7kg6gUWIiIhID0iShA+G90RoFzsUV6gwcXUCrheWyx1L67EIERER6QljpQILx/jBzd4SV/JK8ezaBD6gtR4sQkRERHqktYUJlkcF1Dyg9fXNxziT7D+wCBEREemZzm1bYdEYPxgpJPyYnIkFu87JHUlrsQgRERHpodCu9nh/eE8AwJyYVPxyLEvmRNqJRYiIiEhPjQnuiKf6dgIAvLIpGccu58maRxsZTBEqKSlBx44dMWPGDLmjEBERtZi3HvTEPe5tUVapxsTVCbiaXyZ3JK1iMEXo448/RnBwsNwxiIiIWpRSIeHr0b3R3bEVsgvLMXFNPEoqquSOpTUMogidPXsWp0+fxpAhQ+SOQkRE1OKszIyxPCoQtpYmOHGlANM3HIVazZlkgBYUoX379mHo0KFwcnKCJEnYtm3bbfssXLgQbm5uMDMzg7+/P/bv39+oc8yYMQOzZs3SUGIiIiLd42prgSVj/WGiVOC3k1cxJ+aM3JG0guxFqLi4GD4+PliwYMEdX9+wYQOmTZuGmTNnIikpCWFhYRg8eDDS09Nr9vH394eXl9dtX5mZmfjxxx/RvXt3dO/evUF5ysvLUVBQUOuLiIhIHwR0ssWskd4AgOjd57HlyGWZE8lPElq0ypIkSdi6dSsiIyNrtgUHB8PPzw+LFi2q2ebh4YHIyMgG3eV58803sW7dOiiVShQVFaGyshKvvPIK3nnnnTvu/9577+H999+/bXt+fj6sra0b/6aIiIi0zGe/ncaiPedholRg/aRgBHSylTuSxhUUFMDGxqbev9+y3xH6LxUVFUhMTERERESt7RERETh06FCDjjFr1ixkZGTg4sWL+OKLLzBp0qQ6SxBQXZzy8/NrvjIyMu7qPRAREWmbVyPcMainIypUajy7NhEZN0rkjiQbrS5COTk5UKlUcHR0rLXd0dERV69ebZZzmpqawtrautYXERGRPlEoJMx7zBc9nayRW1yBiasTUFhWKXcsWWh1EfqbJEm1vhdC3LatIcaPH48vvvhCU7GIiIh0loWJEZZFBcDByhRnrhXipe+ToTLAmWRaXYTs7e2hVCpvu/uTnZ19210iTYuOjoanpycCAwOb9TxERERyaW9jjqXjAmBqpMCu09n4ZMcpuSO1OK0uQiYmJvD390dMTEyt7TExMQgNDW3Wcz///PNISUlBfHx8s56HiIhITj6urTHnUR8AwPIDafguLr2en9AvRnIHKCoqwrlz/3sqblpaGpKTk2Fra4sOHTpg+vTpGDt2LAICAhASEoIlS5YgPT0dkydPljE1ERGR/niolxPOZxdj3h+peHvbCXS0s0BoF3u5Y7UI2YtQQkICwsPDa76fPn06ACAqKgqrVq3CY489htzcXHzwwQfIysqCl5cXduzYgY4dOzZrrujoaERHR0OlUjXreYiIiLTB1Hu74vz1Ivx0NBNT1h3Btuf7ws3eUu5YzU6r1hHSRg1dh4CIiEjXlVWq8PiSv5CckYfO9pbY+lxf2FgYyx2rSfRiHSEiIiJqOWbGSiwZ5w8nGzNcyCnGc+sTUalSyx2rWbEIERERUQ0HKzMsiwqEhYkSB8/l4r2fTkKfPzxiEaoDp88TEZGh8nSyxvzHe0OSgG9j07Hq0EW5IzUbjhGqB8cIERGRoVq89zxm/XoaCglYPj4Q4e4OckdqMI4RIiIiorvyTP/OeMTfBWoBvLg+CanXCuWOpHEsQkRERHRHkiTh4xHeCHKzRVF5FSasjkduUbncsTSKRYiIiIjqZGKkwDdP+qODrQUybpRi8rpElFfpzxp7LEJ14GBpIiKiaraWJlgeFQArUyPEX7yJ/9tyQm9mknGwdD04WJqIiKja3tTreGplHNQCeP2BHphyTxe5I9WJg6WJiIhIowZ0b4t3h/YEAMzeeRo7T16VOdHdYxEiIiKiBosK7YSxfTpCCGDa98k4cSVf7kh3hUWIiIiIGuXdoZ4I62aP0koVJq1JQHZBmdyRmoxFiIiIiBrFSKnAgif80LmtJbLyyzBpbSLKKnVzJhmLUB04a4yIiKhuNubGWBEViNYWxjiakYcZm47q5EwyzhqrB2eNERER1e3w+VyMXR6LKrXAS/d2w8v3d5c7EgDOGiMiIqIWENLFDh+P8AIAzP/zLH46milzosZhESIiIqK78lhgB0wKcwMAzNh0FEnpN2VO1HAsQkRERHTX3hjsgXt7OKCiSo1JaxKRmVcqd6QGYREiIiKiu6ZUSJg/ujd6tLNCTlE5JqxOQHF5ldyx6sUiRERERBrRytQIy6ICYN/KBKeyCjBtQzLUau2ek8UiVAdOnyciImo8lzYWWDw2ACZGCsSkXMNnO0/LHek/cfp8PTh9noiIqPG2JV3BtA3JAIDPH+6FRwJcW/T8nD5PREREsons7YwXB3YFAPzf1uOIS7shc6I7YxEiIiKiZvHyfd0xxLsdKlUCz65NQHpuidyRbsMiRERERM1CoZAw5xFfeDvb4GZJJZ5eHY+Cskq5Y9XCIkRERETNxtxEiaXjAuBobYpz2UV4YX0SqlRquWPVYBEiIiKiZtXOxgzLxgXCzFiBfanX8dEvp+SOVINFiIiIiJqdt4sNvnzMFwCw6tBFrP3rkryBbmERqgPXESIiItKsB7za49VB7gCA9346iQNnc2ROxHWE6sV1hIiIiDRHCIHpG49ia9IVWJsZYevzfdGlbSuNn4frCBEREZHWkSQJs0Z6w79jGxSUVWHCqnjcLK6QLQ+LEBEREbUoM2MlFo/1h3Nrc1zMLcHGhAzZshjJdmYiIiIyWPatTLFifCD2nMnGM/07y5aDRYiIiIhk4d7OCu7trGTNwI/GiIiIyGCxCBEREZHBYhEiIiIig8UiRERERAaLRYiIiIgMFosQERERGSwWISIiIjJYLEJ14ENXiYiI9B8fuloPPnSViIhI9/Chq0RERET1YBEiIiIig8UiRERERAaLRYiIiIgMFp8+X4+/x5IXFBTInISIiIga6u+/2/XNCWMRqkdhYSEAwNXVVeYkRERE1FiFhYWwsbGp83VOn6+HWq1GZmYmrKysIEnSba8HBgYiPj5eI+dqyrEa+jP17fdfrzf2tX9vKygogKurKzIyMmRZgsAQrtF/vc5rpLmf4TXiNfqvbbxG2nWNhBAoLCyEk5MTFIq6RwLxjlA9FAoFXFxc6nxdqVRq7B/4phyroT9T337/9XpjX6trf2tra1n+5WAI1+i/Xuc10tzP8BrxGjVkX16ju9tPk9fov+4E/Y2Dpe/S888/L+uxGvoz9e33X6839jVN/k40wRCu0X+9zmukuZ/hNZLvWLxG9eM1atr750dj1Oy4Orf24zXSfrxG2o/XSDfxjhA1O1NTU7z77rswNTWVOwrVgddI+/EaaT9eI93EO0JERERksHhHiIiIiAwWixAREREZLBYhIiIiMlgsQkRERGSwWISIiIjIYLEIkdYoLCxEYGAgfH194e3tjaVLl8odif4lIyMD99xzDzw9PdGrVy9s2rRJ7kh0ByNGjECbNm3w8MMPyx2Fbtm+fTvc3d3RrVs3LFu2TO449A+cPk9aQ6VSoby8HBYWFigpKYGXlxfi4+NhZ2cndzS6JSsrC9euXYOvry+ys7Ph5+eHM2fOwNLSUu5o9A+7d+9GUVERVq9ejR9++EHuOAavqqoKnp6e2L17N6ytreHn54fY2FjY2trKHY3AO0KkRZRKJSwsLAAAZWVlUKlUYE/XLu3bt4evry8AwMHBAba2trhx44a8oeg24eHhsLKykjsG3RIXF4eePXvC2dkZVlZWGDJkCHbu3Cl3LLqFRYgabN++fRg6dCicnJwgSRK2bdt22z4LFy6Em5sbzMzM4O/vj/379zfqHHl5efDx8YGLiwtee+012Nvbayi9YWiJa/S3hIQEqNVquLq63mVqw9KS14g0426vWWZmJpydnWu+d3FxwZUrV1oiOjUAixA1WHFxMXx8fLBgwYI7vr5hwwZMmzYNM2fORFJSEsLCwjB48GCkp6fX7OPv7w8vL6/bvjIzMwEArVu3xtGjR5GWlob169fj2rVrLfLe9EVLXCMAyM3Nxbhx47BkyZJmf0/6pqWuEWnO3V6zO93ZliSpWTNTIwiiJgAgtm7dWmtbUFCQmDx5cq1tPXr0EG+88UaTzjF58mSxcePGpkY0eM11jcrKykRYWJhYs2aNJmIatOb8/9Hu3bvFqFGj7jYi/UtTrtnBgwdFZGRkzWtTp04V3377bbNnpYbhHSHSiIqKCiQmJiIiIqLW9oiICBw6dKhBx7h27RoKCgoAVD/Fed++fXB3d9d4VkOliWskhMD48eMxcOBAjB07tjliGjRNXCNqWQ25ZkFBQThx4gSuXLmCwsJC7NixA4MGDZIjLt2BkdwBSD/k5ORApVLB0dGx1nZHR0dcvXq1Qce4fPkyJkyYACEEhBB44YUX0KtXr+aIa5A0cY0OHjyIDRs2oFevXjXjJNauXQtvb29NxzVImrhGADBo0CAcOXIExcXFcHFxwdatWxEYGKjpuISGXTMjIyPMmTMH4eHhUKvVeO211zgbVouwCJFG/ftzbyFEgz8L9/f3R3JycjOkon+6m2vUr18/qNXq5ohF/3A31wgAZyTJoL5rNmzYMAwbNqylY1ED8KMx0gh7e3solcrb/qs1Ozv7tv9SInnwGmk/XiPdw2um+1iESCNMTEzg7++PmJiYWttjYmIQGhoqUyr6J14j7cdrpHt4zXQfPxqjBisqKsK5c+dqvk9LS0NycjJsbW3RoUMHTJ8+HWPHjkVAQABCQkKwZMkSpKenY/LkyTKmNiy8RtqP10j38JrpORlnrJGO2b17twBw21dUVFTNPtHR0aJjx47CxMRE+Pn5ib1798oX2ADxGmk/XiPdw2um3/isMSIiIjJYHCNEREREBotFiIiIiAwWixAREREZLBYhIiIiMlgsQkRERGSwWISIiIjIYLEIERERkcFiESIiIiKDxSJERDrvnnvuwbRp05r1HHv27IEkSZAkCZGRkbLn0aROnTrVvLe8vDy54xC1KD5rjIh0xp49exAeHo6bN2+idevWNdu3bNkCY2PjFslw5swZODg4tMi5Wkp8fDz279+PUaNGyR2FqMWxCBGR7CoqKmBiYtLkn7e1tdVgmv/m4OBQq4TJpbKyUmPlr23bti36OyTSJvxojMjA/PDDD/D29oa5uTns7Oxw3333obi4uOb1lStXwsPDA2ZmZujRowcWLlxY89rFixchSRK+//57hIaGwszMDD179sSePXtq9lGpVJgwYQLc3Nxgbm4Od3d3zJ8/v1aG8ePHIzIyErNmzYKTkxO6d+8OAFi3bh0CAgJgZWWFdu3a4YknnkB2dnbNucPDwwEAbdq0gSRJGD9+PIDbP4q6efMmxo0bhzZt2sDCwgKDBw/G2bNna15ftWoVWrdujZ07d8LDwwOtWrXCAw88gKysrEb/PouLizFu3Di0atUK7du3x5w5c27bp6KiAq+99hqcnZ1haWmJ4ODgWr8zAFi6dClcXV1hYWGBESNGYO7cubUK13vvvQdfX1+sWLECnTt3hqmpKYQQyM/PxzPPPAMHBwdYW1tj4MCBOHr0aK1j//zzz/D394eZmRk6d+6M999/H1VVVY1+r0R6SeaHvhJRC8rMzBRGRkZi7ty5Ii0tTRw7dkxER0eLwsJCIYQQS5YsEe3btxebN28WFy5cEJs3bxa2trZi1apVQggh0tLSBADh4uIifvjhB5GSkiImTpworKysRE5OjhBCiIqKCvHOO++IuLg4ceHCBbFu3TphYWEhNmzYUJMjKipKtGrVSowdO1acOHFCHD9+XAghxPLly8WOHTvE+fPnxeHDh0WfPn3E4MGDhRBCVFVVic2bNwsA4syZMyIrK0vk5eUJIYQYMGCAeOmll2qOP2zYMOHh4SH27dsnkpOTxaBBg0TXrl1FRUWFEEKIlStXCmNjY3HfffeJ+Ph4kZiYKDw8PMQTTzxR5+/u7yeQ37x5s9b2KVOmCBcXF/H777+LY8eOiYceeki0atWqVp4nnnhChIaGin379olz586Jzz//XJiamorU1FQhhBAHDhwQCoVCfP755+LMmTMiOjpa2NraChsbm5pjvPvuu8LS0lIMGjRIHDlyRBw9elSo1WrRt29fMXToUBEfHy9SU1PFK6+8Iuzs7ERubq4QQojffvtNWFtbi1WrVonz58+L33//XXTq1Em89957DXp/RPqORYjIgCQmJgoA4uLFi3d83dXVVaxfv77Wtg8//FCEhIQIIf5XhD799NOa1ysrK4WLi4v47LPP6jzvc889J0aNGlXzfVRUlHB0dBTl5eX/mTcuLk4AqClqdf2x/mcRSk1NFQDEwYMHa17PyckR5ubmYuPGjUKI6iIEQJw7d65mn+joaOHo6Fhnljudu7CwUJiYmIjvv/++Zltubq4wNzevyXPu3DkhSZK4cuVKrePde++94s033xRCCPHYY4+JBx98sNbrY8aMua0IGRsbi+zs7Jptf/75p7C2thZlZWW1frZLly5i8eLFQgghwsLCxCeffFLr9bVr14r27dvX+/6IDAHHCBEZEB8fH9x7773w9vbGoEGDEBERgYcffhht2rTB9evXkZGRgQkTJmDSpEk1P1NVVQUbG5taxwkJCan530ZGRggICMCpU6dqtn3zzTdYtmwZLl26hNLSUlRUVMDX17fWMby9vW8bF5SUlIT33nsPycnJuHHjBtRqNQAgPT0dnp6eDXqPp06dgpGREYKDg2u22dnZwd3dvVZGCwsLdOnSpeb79u3b13wM11Dnz59HRUVFrd+Hra0t3N3da74/cuQIhBA1H//9rby8HHZ2dgCqB2CPGDGi1utBQUHYvn17rW0dO3ZE27Zta75PTExEUVFRzXH+VlpaivPnz9fsEx8fj48//rjmdZVKhbKyMpSUlMDCwqJR75lI37AIERkQpVKJmJgYHDp0CL///ju+/vprzJw5E7GxsTV/EJcuXVqrRPz9c/WRJAkAsHHjRrz88suYM2cOQkJCYGVlhc8//xyxsbG19re0tKz1fXFxMSIiIhAREYF169ahbdu2SE9Px6BBg1BRUdHg9yiEqHP73xkB3DbQWJKkOn+2sef6J7VaDaVSicTExNt+j61atbpjtrqO/e/fmVqtRvv27W8bbwSgZnyRWq3G+++/j5EjR962j5mZWb35ifQdixCRgZEkCX379kXfvn3xzjvvoGPHjti6dSumT58OZ2dnXLhwAWPGjPnPY/z111/o378/gOo7RomJiXjhhRcAAPv370doaCiee+65mv3/vjvxX06fPo2cnBx8+umncHV1BQAkJCTU2ufvO0gqlarO43h6eqKqqgqxsbEIDQ0FAOTm5iI1NRUeHh715miMrl27wtjYGH/99Rc6dOgAoHqgdmpqKgYMGAAA6N27N1QqFbKzsxEWFnbH4/To0QNxcXG1tv37vd+Jn58frl69CiMjI3Tq1KnOfc6cOYOuXbs24p0RGQ4WISIDEhsbiz///BMRERFwcHBAbGwsrl+/XlMQ3nvvPUydOhXW1tYYPHgwysvLkZCQgJs3b2L69Ok1x4mOjka3bt3g4eGBefPm4ebNm3j66acBVJeDNWvWYOfOnXBzc8PatWsRHx8PNze3/8zWoUMHmJiY4Ouvv8bkyZNx4sQJfPjhh7X26dixIyRJwvbt2zFkyBCYm5vX3FX5W7du3TB8+HBMmjQJixcvhpWVFd544w04Oztj+PDhmvg11mjVqhUmTJiAV199FXZ2dnB0dMTMmTOhUPxvQm737t0xZswYjBs3DnPmzEHv3r2Rk5ODXbt2wdvbG0OGDMGLL76I/v37Y+7cuRg6dCh27dqFX3/99ba7RP923333ISQkBJGRkfjss8/g7u6OzMxM7NixA5GRkQgICMA777yDhx56CK6urnjkkUegUChw7NgxHD9+HB999JFGfx9EOknG8UlE1MJSUlLEoEGDRNu2bYWpqano3r27+Prrr2vt8+233wpfX19hYmIi2rRpI/r37y+2bNkihPjfYOn169eL4OBgYWJiIjw8PMSff/5Z8/NlZWVi/PjxwsbGRrRu3VpMmTJFvPHGG8LHx6dmn6ioKDF8+PDb8q1fv1506tRJmJqaipCQEPHTTz8JACIpKalmnw8++EC0a9dOSJIkoqKihBC3zxq7ceOGGDt2rLCxsRHm5uZi0KBBNTO0hKgeLP3PgchCCLF161bxX/9KrGswcWFhoXjyySeFhYWFcHR0FLNnz74tz98z6Tp16iSMjY1Fu3btxIgRI8SxY8dq9lmyZIlwdnYW5ubmIjIyUnz00UeiXbt2Na+/++67tX6HfysoKBAvvviicHJyEsbGxsLV1VWMGTNGpKen1+zz22+/idDQUGFubi6sra1FUFCQWLJkSYPeH5G+k4Ro5IfiRGSwLl68CDc3NyQlJd02+Fnf1bWqdXOZNGkSTp8+jf379zf7uYCWf39E2oILKhIRNYKLiwtGjx6t8eN+8cUXOHr0KM6dO4evv/4aq1evRlRUlMbPcyc9e/bE4MGDW+RcRNqGY4SIiBogODi4ZnXqf49L0oS4uDjMnj0bhYWF6Ny5M7766itMnDhR4+e5kx07dqCyshIAYG1t3SLnJNIW/GiMiIiIDBY/GiMiIiKDxSJEREREBotFiIiIiAwWixAREREZLBYhIiIiMlgsQkRERGSwWISIiIjIYLEIERERkcFiESIiIiKD9f9xUoM9JmU12wAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(d_array / 3600., g_array)\n", + "plt.xscale(\"log\")\n", + "plt.yscale(\"log\")\n", + "plt.xlabel(\"separation [degree]\")\n", + "plt.ylabel(\"shear\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "50e7308c-effd-43d5-adeb-708a4290b38f", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "wl_shear_sim", + "language": "python", + "name": "wl_shear_sim" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.4" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} From 997a7b0b1afeb67c4c91bce5eafa8b0f233caf4b Mon Sep 17 00:00:00 2001 From: Xiangchong Li Date: Mon, 24 Jul 2023 15:05:38 -0700 Subject: [PATCH 04/30] put the import astropy into the function of get_shear() --- descwl_shear_sims/shear.py | 5 +---- examples/example_NFWShear.ipynb | 8 -------- 2 files changed, 1 insertion(+), 12 deletions(-) diff --git a/descwl_shear_sims/shear.py b/descwl_shear_sims/shear.py index 41e54bb3..f5ae133b 100644 --- a/descwl_shear_sims/shear.py +++ b/descwl_shear_sims/shear.py @@ -1,8 +1,4 @@ -import clmm -import galsim import numpy as np -from astropy.coordinates import SkyCoord - # maximum kappa allowed # values greater than it will be clipped kappa_max = 0.6 @@ -56,6 +52,7 @@ def __init__(self, cluster_obj, z_cl, ra_cl=0., dec_cl=0.): def get_shear(self, z_gals, shifts): + from astropy.coordinates import SkyCoord z_cl = self.z_cl # Create the SkyCoord objects coord_cl = SkyCoord(self.ra_cl, self.dec_cl, unit="arcsec") diff --git a/examples/example_NFWShear.ipynb b/examples/example_NFWShear.ipynb index 65bba7c3..8b30e9a4 100644 --- a/examples/example_NFWShear.ipynb +++ b/examples/example_NFWShear.ipynb @@ -180,14 +180,6 @@ "plt.xlabel(\"separation [degree]\")\n", "plt.ylabel(\"shear\")" ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "50e7308c-effd-43d5-adeb-708a4290b38f", - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { From da227e6de899dad2b4efc2b8a8a1c55aca38ab6d Mon Sep 17 00:00:00 2001 From: Xiangchong Li Date: Tue, 25 Jul 2023 03:06:21 -0700 Subject: [PATCH 05/30] change to use galsim.PositionD object and Shear object; set the kappa_max=0.8 --- .virtual_documents/Untitled.ipynb | 1 - .../examples/example_NFWShear.ipynb | 72 -------------- descwl_shear_sims/shear.py | 71 ++++++++++---- descwl_shear_sims/shifts.py | 1 + examples/example_NFWShear.ipynb | 97 ++++++++++--------- 5 files changed, 106 insertions(+), 136 deletions(-) delete mode 100644 .virtual_documents/Untitled.ipynb delete mode 100644 .virtual_documents/examples/example_NFWShear.ipynb diff --git a/.virtual_documents/Untitled.ipynb b/.virtual_documents/Untitled.ipynb deleted file mode 100644 index 8b137891..00000000 --- a/.virtual_documents/Untitled.ipynb +++ /dev/null @@ -1 +0,0 @@ - diff --git a/.virtual_documents/examples/example_NFWShear.ipynb b/.virtual_documents/examples/example_NFWShear.ipynb deleted file mode 100644 index 2fda6254..00000000 --- a/.virtual_documents/examples/example_NFWShear.ipynb +++ /dev/null @@ -1,72 +0,0 @@ -get_ipython().run_line_magic("matplotlib", " inline") -get_ipython().run_line_magic("reload_ext", " autoreload") -get_ipython().run_line_magic("autoreload", " 2") - -import clmm -import numpy as np -import descwl_shear_sims as dss -import matplotlib.pyplot as plt - - -cosmo = clmm.Cosmology(H0=70.0, Omega_dm0=0.27 - 0.045, Omega_b0=0.045, Omega_k0=0.0) -halo = clmm.Modeling(massdef="mean", delta_mdef=200, halo_profile_model="nfw") -halo.set_cosmo(cosmo) -halo.set_concentration(4) -halo.set_mass(1.0e15) -z_cl = 1.0 -# source properties -z_source = 2.0 # all sources in the same plane - -shear_obj = dss.shear.ShearNFW(halo, z_cl) - - -# generate positions -n_gal = 20 -theta = np.linspace(0, 360, n_gal) / n_gal -x = np.cos(theta) * 5 -y = np.sin(theta) * 5 -shifts = np.zeros(n_gal, dtype=[('dx', 'f8'), ('dy', 'f8')]) -shifts['dx'] = x -shifts['dy'] = y - -# get the shear -g1, g2 = shear_obj.get_shear(z_source, shifts) -gamma = g1 + 1j * g2 - - -angles = np.angle(gamma, deg=True) / 2. -lengths = np.abs(gamma) - -# Create whisker plot -plt.figure(figsize=(6, 6)) -plt.quiver(x, y, np.cos(np.deg2rad(angles)), np.sin(np.deg2rad(angles)), lengths, - angles='xy', scale_units='xy', scale=1, width=0.001) -plt.xlim(-10, 10) -plt.ylim(-10, 10) -plt.xlabel('x') -plt.ylabel('y') -plt.show() - - -n_gal = 1 -d_array = [] -g_array = [] -for i in range(10): - shifts = np.zeros(n_gal, dtype=[('dx', 'f8'), ('dy', 'f8')]) - shifts['dx'][0] = 3.0 ** i - shifts['dy'][0] = 0. - print(shifts) - # get the shear - g1, g2 = shear_obj.get_shear(z_source, shifts) - gabs = np.abs(g1 + 1j * g2) - d_array.append(3 ** i) - g_array.append(gabs) -d_array = np.array(d_array) -g_array = np.array(g_array) - - -plt.plot(d_array / 3600., g_array) -plt.xscale("log") -plt.yscale("log") -plt.xlabel("separation [degree]") -plt.ylabel("shear") diff --git a/descwl_shear_sims/shear.py b/descwl_shear_sims/shear.py index f5ae133b..02204c2e 100644 --- a/descwl_shear_sims/shear.py +++ b/descwl_shear_sims/shear.py @@ -1,33 +1,34 @@ +import galsim import numpy as np # maximum kappa allowed # values greater than it will be clipped -kappa_max = 0.6 - -# factor from arcsec to radians -arcsec2rad = 1./3600./180.*np.pi - +kappa_max = 0.8 def get_shear( *, shear_type="constant", z_gals=None, - shifts=None, + shift=None, **kwargs, - ): +): """ A shear wrapper to return g1 and g2 with different shear type Parameters ---------- - cluster_obj: cluster object + shear_type: the constant shear or shear from NFW halos + z_gals: redshifts of galaxies + shift: Galsim positionD shift """ if shear_type == "constant": shear_obj = ShearConstant(**kwargs) + elif shear_type =="redshift": + shear_obj = ShearRedshift(**kwargs) elif shear_type == "NFW": shear_obj = ShearNFW(**kwargs) else: raise ValueError("Do not support the shear type: %s" % shear_type) - return shear_obj.get_shear(z_gals, shifts) + return shear_obj.get_shear(z_gals, shift) class ShearNFW(object): @@ -50,28 +51,59 @@ def __init__(self, cluster_obj, z_cl, ra_cl=0., dec_cl=0.): self.cosmo = cluster_obj.cosmo return + def get_shear(self, z_gals, shift): + """ + A shear wrapper to return g1 and g2 with different shear type + + Parameters + ---------- + z_gals (float): redshifts of galaxies + shift (galsim.positionD): Galsim positionD shift [arcsec] - def get_shear(self, z_gals, shifts): + Returns + --------- + shear (galsim.Shear) shear distortion on the galaxy + """ from astropy.coordinates import SkyCoord z_cl = self.z_cl # Create the SkyCoord objects coord_cl = SkyCoord(self.ra_cl, self.dec_cl, unit="arcsec") - coord_gals = SkyCoord(shifts["dx"], shifts["dy"], unit="arcsec") + coord_gals = SkyCoord(shift.x, shift.y, unit="arcsec") # Calculate the separation sep = coord_cl.separation(coord_gals).radian + # What is the unit of r3d? r3d = self.cosmo.rad2mpc(sep, self.z_cl) + # position angle phi = coord_cl.position_angle(coord_gals).radian # TODO: confirm whether the units is Mpc/h or Mpc? - DeltaSigma = self.cobj.eval_excess_surface_density(r3d, z_cl) gammat = self.cobj.eval_tangential_shear(r3d, z_cl, z_gals) - kappa = self.cobj.eval_convergence(r3d, z_cl, z_gals) - gamma1 = gammat * np.cos(2. * phi) - gamma2 = -gammat * np.sin(2. * phi) - return gamma1/(1-kappa), gamma2/(1-kappa) + kappa0 = self.cobj.eval_convergence(r3d, z_cl, z_gals) + # we are forcing kappa to be less than kappa_max + # and scale gamma by the same ratio + kappa = min(kappa0, kappa_max) + ratio = kappa / kappa0 + gamma1 = gammat * np.cos(2. * phi) * ratio + gamma2 = -gammat * np.sin(2. * phi) * ratio + shear = galsim.Shear(g1=gamma1/(1-kappa), g2=gamma2/(1-kappa)) + return shear class ShearConstant(object): + """ + Constant shear along every redshift slice + """ + def __init__(self, g1, g2): + self.g1 = g1 + self.g2 = g2 + return + + def get_shear(self): + shear = galsim.Shear(g1= self.g1, g2=self.g2) + return shear + + +class ShearRedshift(object): """ Constant shear along every redshift slice """ @@ -90,10 +122,11 @@ def __init__(self, mode="0000", g_dist="g1"): self.g_dist = g_dist return - def get_shear(self, z_gals=None, shifts=None): + def get_shear(self, z_gals=None, shift=None): if z_gals is None: assert self.mode == "0" * self.nz_bins - z_gal_bins = z_gals // self.dz_bin + #z_gal_bins = z_gals // self.dz_bin gamma1, gamma2 = (None, None) # TODO: Finish implementing the z-dependent shear - return gamma1, gamma2 + shear = galsim.Shear(g1= gamma1, g2=gamma2) + return shear diff --git a/descwl_shear_sims/shifts.py b/descwl_shear_sims/shifts.py index 45ce3217..4c4d5fed 100644 --- a/descwl_shear_sims/shifts.py +++ b/descwl_shear_sims/shifts.py @@ -57,6 +57,7 @@ def get_shifts( elif layout == 'random': # area covered by objects if nobj is None: + # in units of square arcmin area = ((coadd_dim - 2*buff)*SCALE/60)**2 nobj_mean = max(area * RANDOM_DENSITY, 1) nobj = rng.poisson(nobj_mean) diff --git a/examples/example_NFWShear.ipynb b/examples/example_NFWShear.ipynb index 8b30e9a4..0f4ab029 100644 --- a/examples/example_NFWShear.ipynb +++ b/examples/example_NFWShear.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 12, + "execution_count": 1, "id": "d12a992b-6669-4675-b68a-b705ff09f693", "metadata": {}, "outputs": [], @@ -12,6 +12,7 @@ "%autoreload 2\n", "\n", "import clmm\n", + "import galsim\n", "import numpy as np\n", "import descwl_shear_sims as dss\n", "import matplotlib.pyplot as plt" @@ -19,7 +20,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 2, "id": "707e17ec-2aa0-4470-b986-fefe11e4be47", "metadata": {}, "outputs": [], @@ -46,34 +47,53 @@ }, { "cell_type": "code", - "execution_count": 23, - "id": "d348067a-7220-4bdb-a0c5-875b5cdb8213", + "execution_count": 4, + "id": "913c7ae0-8b39-4a3b-9e09-c40262170e0c", "metadata": {}, "outputs": [], "source": [ "# generate positions\n", + "radius = 50 # arcsec\n", "n_gal = 20\n", "theta = np.linspace(0, 360, n_gal) / n_gal\n", - "x = np.cos(theta) * 5\n", - "y = np.sin(theta) * 5\n", + "x = np.cos(theta) * radius\n", + "y = np.sin(theta) * radius\n", "shifts = np.zeros(n_gal, dtype=[('dx', 'f8'), ('dy', 'f8')])\n", "shifts['dx'] = x\n", "shifts['dy'] = y\n", "\n", + "shift_list = []\n", + "for ss in shifts:\n", + " shift_list.append(galsim.PositionD(ss['dx'], ss['dy']))\n", + "\n", "# get the shear\n", - "g1, g2 = shear_obj.get_shear(z_source, shifts)\n", - "gamma = g1 + 1j * g2" + "shear_list = []\n", + "for ss in shift_list:\n", + " shear_list.append(shear_obj.get_shear(z_source, ss))" ] }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 5, + "id": "3d6955d3-7c6d-4d68-a81f-fa8f2003c06f", + "metadata": {}, + "outputs": [], + "source": [ + "gamma = []\n", + "for ss in shear_list:\n", + " gamma.append(ss.g1 + 1j * ss.g2) \n", + "gamma = np.array(gamma)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, "id": "8c203fae-f689-4405-91be-056aa84a3593", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAISCAYAAADIqRXcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABAHklEQVR4nO3de3RU5aH//8/kNgkhF0jITUISw01BAUEhURREuYiotVW05yAclWoVFdFa6eUruKqoyyqrR6u1xxNFT4XWiKUFlVAJFgmKGCygRpBAICRGbkm4TW7P7w9qfkQmIQnJ7Jkn79dasxZ7z/PMfPbaYfLJ3ntmXMYYIwAAAIsFOR0AAACgs1F4AACA9Sg8AADAehQeAABgPQoPAACwHoUHAABYj8IDAACsR+EBAADWo/AAAADrUXgAAID1AqrwfPDBB5oyZYpSUlLkcrn09ttvN7nfGKN58+YpJSVFERERGjNmjLZu3Xrax83NzdW5554rt9utc889V0uXLu2kLQAAAE4IqMJz5MgRDRkyRM8995zX+5966ik988wzeu6557RhwwYlJSXpyiuvVHV1dbOPWVBQoKlTp2ratGn67LPPNG3aNN1444366KOPOmszAACAj7kC9ctDXS6Xli5dquuuu07SiaM7KSkpmj17tn7+859LkjwejxITE/Xkk0/qjjvu8Po4U6dOVVVVld55553GdRMnTlSPHj30xhtvdPp2AACAzhfidICOUlxcrPLyco0fP75xndvt1mWXXaZ169Y1W3gKCgp0//33N1k3YcIELVy4sNnn8ng88ng8jcsNDQ06cOCA4uLi5HK5zmxDAADoQowxqq6uVkpKioKCOu/EkzWFp7y8XJKUmJjYZH1iYqJ27drV4jxvc757PG8WLFig+fPnn0FaAABwst27d6t3796d9vjWFJ7vfP8IizHmtEdd2jpn7ty5mjNnTuNyZWWl+vTpo927dys6OrodqQEA6JqqqqqUmpqqqKioTn0eawpPUlKSpBNHbJKTkxvXV1RUnHIE5/vzvn8053Rz3G633G73Keujo6MpPAAAtENnXxISUO/SaklGRoaSkpKUl5fXuK6mpkZr1qxRdnZ2s/OysrKazJGklStXtjgHAAAEloA6wnP48GFt3769cbm4uFibNm1Sz5491adPH82ePVuPP/64+vXrp379+unxxx9Xt27d9OMf/7hxzi233KKzzjpLCxYskCTdd999uvTSS/Xkk0/q2muv1V//+letWrVKa9eu9fn2AQCAzhFQheeTTz7R2LFjG5e/u45m+vTpeuWVV/TQQw/p2LFjuuuuu3Tw4EGNHDlSK1eubHJesKSkpMlV4NnZ2Vq8eLF+9atf6de//rUyMzO1ZMkSjRw50ncbBgAAOlXAfg6PP6mqqlJMTIwqKyu5hgcAgDbw1e9Qa67hAQAAaA6FBwAAWI/CAwAArEfhAQAA1qPwAAAA61F4AACA9Sg8AADAehQeAABgPQoPAACwHoUHAABYj8IDAACsR+EBAADWo/AAAADrUXgAAID1KDwAAMB6FB4AAGA9Cg8AALAehQcAAFiPwgMAAKxH4QEAANaj8AAAAOtReAAAgPUoPAAAwHoUHgAAYD0KDwAAsB6FBwAAWI/CAwAArEfhAQAA1qPwAAAA61F4AACA9Sg8AADAehQeAABgPQoPAACwHoUHAABYj8IDAACsR+EBAADWo/AAAADrUXgAAID1KDwAAMB6FB4AAGA9Cg8AALAehQcAAFiPwgMAAKxH4QEAANaj8AAAAOtReAAAgPUoPAAAwHpWFZ709HS5XK5TbnfffbfX8fn5+V7Hf/nllz5ODgAAOlOI0wE60oYNG1RfX9+4vGXLFl155ZW64YYbWpxXVFSk6OjoxuVevXp1WkYAAOB7VhWe7xeVJ554QpmZmbrssstanJeQkKDY2NhWP4/H45HH42lcrqqqalNOAADgW1ad0jpZTU2NXn/9dd16661yuVwtjh02bJiSk5M1btw4rV69+rSPvWDBAsXExDTeUlNTOyo2AADoBNYWnrfffluHDh3SjBkzmh2TnJysl156Sbm5uXrrrbc0YMAAjRs3Th988EGLjz137lxVVlY23nbv3t3B6QEAQEdyGWOM0yE6w4QJExQWFqa//e1vbZo3ZcoUuVwuLVu2rNVzqqqqFBMTo8rKyibXAgEAgJb56neolUd4du3apVWrVun2229v89xRo0Zp27ZtnZAKAAA4xcrCk5OTo4SEBE2ePLnNcwsLC5WcnNwJqQAAgFOsepeWJDU0NCgnJ0fTp09XSEjTzZs7d65KS0u1aNEiSdLChQuVnp6uQYMGNV7knJubq9zcXCeiAwCATmJd4Vm1apVKSkp06623nnJfWVmZSkpKGpdramr04IMPqrS0VBERERo0aJCWL1+uq666ypeRAQBAJ7P2omVf4qJlAADah4uWAQAAOgiFBwAAWI/CAwAArEfhAQAA1qPwAAAA61F4AACA9Sg8AADAehQeAABgPQoPAACwHoUHAABYj8IDAACsR+EBAADWo/AAAADrUXgAAID1KDwAAMB6FB4AAGA9Cg8AALAehQcAAFiPwgMAAKxH4QEAANaj8AAAAOtReAAAgPUoPAAAwHoUHgAAYD0KDwAAsB6FBwAAWI/CAwAArEfhAQAA1qPwAAAA61F4AACA9Sg8AADAehQeAABgPQoPAACwHoUHAABYj8IDAACsR+EBAADWo/AAAADrUXgAAID1KDwAAMB6FB4AAGA9Cg8AALAehQcAAFiPwgMAAKxH4QEAANaj8AAAAOtReAAAgPWsKjzz5s2Ty+VqcktKSmpxzpo1azR8+HCFh4fr7LPP1osvvuijtAAAwFdCnA7Q0QYNGqRVq1Y1LgcHBzc7tri4WFdddZVmzpyp119/XR9++KHuuusu9erVSz/84Q99ERcAAPiAdYUnJCTktEd1vvPiiy+qT58+WrhwoSTpnHPO0SeffKKnn36awgP4iUrPcXnq6tQ9LEzdQsM67XmMMao+7lHl0ePava9SG3eUakTmWRrVr49cLlenPS8A37Cu8Gzbtk0pKSlyu90aOXKkHn/8cZ199tlexxYUFGj8+PFN1k2YMEEvv/yyamtrFRoa6nWex+ORx+NpXK6qquq4DQAgSTpw7Kjydn6tnH9t1GV9MjTnootbNc8Yo+O1dao8clyHjh5T5dHjOnT0uCqPHFP18Zpm57kkdQ8PU0xkhNwhwYqNDNeAlF6UHcASVhWekSNHatGiRerfv7+++eYb/eY3v1F2dra2bt2quLi4U8aXl5crMTGxybrExETV1dVp3759Sk5O9vo8CxYs0Pz58ztlG4Cu7ODxY1pZvF3lR6rVMzxCV6T31eTMAeoe1vyRnepjHi1Z95kkyeVyyRijiLBQxXQLV2xkhGK6hSulR7RiIsPV3e1WUBAFBuiKrCo8kyZNavz3eeedp6ysLGVmZurVV1/VnDlzvM75/l9vxhiv6082d+7cJo9XVVWl1NTUM4kOdFkHjx9TXvF2lR85rB7h4boiva+Su0e1en5UhFu3j7uoExMCsIFVhef7IiMjdd5552nbtm1e709KSlJ5eXmTdRUVFQoJCfF6ROg7brdbbre7Q7MCXcnJJSc2PFxXtrHkAEBbWV14PB6PvvjiC40ePdrr/VlZWfrb3/7WZN3KlSs1YsSIZq/fAdA+lBwATrKq8Dz44IOaMmWK+vTpo4qKCv3mN79RVVWVpk+fLunEqajS0lItWrRIknTnnXfqueee05w5czRz5kwVFBTo5Zdf1htvvOHkZgDW+K7klB2pVo/wCF2RnqmU7tFOx/KpuoYG/XHzBg3plawRiWcprIWPygDQeawqPHv27NHNN9+sffv2qVevXho1apTWr1+vtLQ0SVJZWZlKSkoax2dkZGjFihW6//779fzzzyslJUW/+93veEs6cAa+fySnK5ack4UEBWnmeReqsGKv/nfLJ6ppaFBceIRGn5WuPtGxTscDugyX+e4qXbRbVVWVYmJiVFlZqejorvvCDkjSxvK9Su7evUuXnNPZf+yo/lm6UyXVlXJJGhSfqKzkVEWEcCodXY+vfodSeDoAhQdAezUYo637K/RR2W4dratVVGiYLj4rTf1i4/gMIHQJvvodatUpLQAINEEul86LT9R58Sc+E6yqxqN1e3fpvZ3bZCRlxvbUJSlpinGHOxsUCHAUHgDwI9Fhbk1M76+J6Sc+F+zrygNauv1zVdV45A4O1qjkVEWGhikzpidHgIA2oPAAaGSM4ZeoH3G5XOobG6e+sSc+F+x4Xa3Wl+3Rw/98T1kpffTg8Es69fvFAJtQeIAuzhij7dWr9O3xIo3sdaeCeVnwW+EhoRqTmqExqRlORwECTpDTAQA465vjW7Xr8DqdE3O1gl2UHQB24tUN6KKMMSqqWiGXgnVFyiNOxwGATkXhAbqgugaPCg+8rj6Ro5QYMcjpOADQ6Sg8QBdTXVuuLQdzNaTnzeoW0tPpOADgExQeoAspPfKpvjm+VRf1uoPrdQB0KbziAV2AMUZbD72t8OAYXRA3zek4AOBzFB7AcrUNR/Xp/tfVN+pyxYX3dToOADiCwgNYrLJmj7449DcNjfsPhQfzPW8Aui4KD2CpXYcLdKhmly7q9RMFuYKdjgMAjuKDBwHLGNOgfx1YIqMGDel5E2UHpzhef9jpCIDPcYQHsIinvlqF+1/XwNjJig3r43Qc+Kniw+vlqT+iIT2myOXi7150DfykA5bY7/lamw68oQvip1N20KJzYq5QauQw/bPif3S4dp/TcQCfoPAAFthRna+yo5/poviZCgvq5nQcBIA4dx9l95qhzytX6evqdU7HATodhQcIcPWmVuHBsRrc43q5XC6n4yCAhASF6aL4mxQSFK6CbxeptuGY05GATkPhAQJcsCtUKd2GOh0DASwt8gIN7XGt1u/7k745ts3pOECnoPAAABQREqNLet2qfZ4d2nTgrzKmwelIQIei8AAAJEkul0uDYidwQTOsROEBADTBBc2wEYUHAHCKxguaXW4uaIYVKDwAgGaldR/+7wua/48LmhHQKDwAgBaduKD5Nn3r+ZoLmhGwKDwAgNNyuVwaHDux8YLm8mNfyhjjdCyg1Sg8AIBWO3FB83StKluozw4uczoO0GoUHsBPHKk66nQEoFVCgtz6j4wXlNJtkBpMvdNxgFah8AAOM8bo1UeWaOeW3U5HAVrN5XIpIbyvglzBTkcBWoXCAzisomSfPlq+UQMuzHQ6CgBYi8IDOCxv0Ro9teoRhYSGOB0FAKxF4QEcVLRhu87ql6zusZFORwEAq1F4AIfU19XrgzfXa8zUbKejAID1KDyAQ955+X1Nuu1yuVwup6MAZ+zbY5tVb2qdjgE0i8IDOGBf6X4dP3JcvfunOB0F6BCRoUnafCCHDyOE36LwAA5Y9vv3dM1dE5yOAXSYbiG9lBp5qb6qzHU6CuAVhQfwsQ3vFmrImEEKCw9zOgrQoeLCB6pbSIJ2H/7A6SjAKSg8gA95jnm0Ze2XGn7lEKejAJ0itfulOlL3jQ4cL3I6CtAEhQfwoWXPv6drZ010OgbQqQbE/EglR/J1tO5bp6MAjSg8gI/s+mKPImMj1TOph9NRgE7lcrl0Xo//0ucH/6S6huNOxwEkUXgAnzDGaOUr+ZrwX2OcjgL4RHBQmAb3nK5/HfhfGdPgdByAwgP4wvt/WqsxU7MVHMwXLaLrCA+OVWb0JH1x6A2nowAUHqCzVR2oVvnOCvW74GynowA+FxOWodiwvtpZned0FHRxFB6gk/31v9/VdfdMcjoG4JiUyJGqaziuimOfOR0FXRiFB+hEW9cVKX1wqiKjuzkdBXBU35gpKj+2UYdr9zodBV0UhQfoJHW1dVr31w265PqRTkcB/MLgHreo6FCuauqPOB0FXZBVhWfBggW68MILFRUVpYSEBF133XUqKmr5w6/y8/PlcrlOuX355Zc+Sg1bLX9plSb/5Aq+HBT4tyBXiM7r+V/afPB/1WDqnI6DLsaqwrNmzRrdfffdWr9+vfLy8lRXV6fx48fryJHT/zVRVFSksrKyxlu/fv18kBg2G5Q9QCmZSU7HAPxKWHB39Y/5obYefM3pKOhiQpwO0JHefffdJss5OTlKSEjQxo0bdemll7Y4NyEhQbGxsZ2YDl1N32EZTkcA/FJUaIoSIy7Q9sq/q2/M1U7HQRdh1RGe76usrJQk9ezZ87Rjhw0bpuTkZI0bN06rV69ucazH41FVVVWTGwCg9RIihsioQZv2v+R0FHQR1hYeY4zmzJmjSy65RIMHD252XHJysl566SXl5ubqrbfe0oABAzRu3Dh98EHz3/a7YMECxcTENN5SU1M7YxMAwGq9Iy9WZc1OVdeWOh0FXYDLGGOcDtEZ7r77bi1fvlxr165V79692zR3ypQpcrlcWrZsmdf7PR6PPB5P43JVVZVSU1NVWVmp6OjoM8qNwGNMg2SOyhXU3ekoQMAxxqi24ajCgiOdjgKHVFVVKSYmptN/h1p5hOeee+7RsmXLtHr16jaXHUkaNWqUtm3b1uz9brdb0dHRTW7owo4ukur5CxVoD5fLRdmBT1hVeIwxmjVrlt566y29//77ysho30WjhYWFSk5O7uB0sJExtTLH35VcVl3/DwDWsepV+u6779af/vQn/fWvf1VUVJTKy8slSTExMYqIiJAkzZ07V6WlpVq0aJEkaeHChUpPT9egQYNUU1Oj119/Xbm5ucrNzXVsOxBIjFzuy+UKyXQ6CACgBVYVnhdeeEGSNGbMmCbrc3JyNGPGDElSWVmZSkpKGu+rqanRgw8+qNLSUkVERGjQoEFavny5rrrqKl/FRiCrWS+F8UnKAODvrL1o2Zd8dcEV/I85/Hsp8k65XFadHQYAn+GiZcDPGdMgSZQdAAgAvFID7VW7WQo9z+kUAIBWoPAA7VXzEdfvAECAoPAA7VYrlyvM6RAAgFag8ADtYOp2SsFpTscAALQShQdoD88Hkvsyp1MAAFqJwgO0h6mWKyjK6RQAgFai8ABtZOr3SUFxTscAALQBhQdoK0++5B7jdAoAQBtQeIC2avhGruAkp1MAANqAwgO0gWk4IrnCnY4BAGgjCg/QFjVrpbDRTqcArJdXWqSjdTVOx4BFKDxAW9Rtl0L6OZ0CsF6/6F7KKy1yOgYsQuEBWsmYOknBcrlcTkcBrJce1VMlhw86HQMWofAArVWzUQob7nQKoMvoFdFd3xyrdjoGLEHhAVqr9lMp9AKnUwBdxsTe5+jdPV84HQOWoPAArRWSKZcr2OkUQJcRGxahqprjTseAJSg8QCu5wsc7HQHocgbGJuqLQ984HQMWoPAAAPzWZcl9lV+2zekYsACFBwDgt8KCgtVgjOoaGpyOggBH4QEA+LWLE8/Wuopip2MgwFF4AAB+bUjPFH22v9TpGAhwFB4AgF9zuVyKDA1Tda3H6SgIYBQeAIDfG3/WQK0s/dLpGAhgFB4AgN/rHRmrvUcqnY6BAEbhAQAEhKRu0So9csjpGAhQFB4AQECY2HugVvIN6mgnCg8AICBEhYbrcK1HxhinoyAAUXgAAAFjcM9kbT5Y5nQMBCAKDwAgYFySeLbWfrPD6RgIQBQeAEDACA0KlktS2dEqp6MgwFB4AAAB540dG52OgABD4QEABJSZA7J1Tkyi0zEQYCg8AICAEhIUpEmp5zodAwGGwgMAAKxH4QEAANaj8AAAAOtReAAAgPUoPAAAwHoUHgAAYD0KDwAAsB6FBwAAWI/CAwAArEfhAQAA1qPwAAAA61F4AACA9Sg8AADAelYWnt///vfKyMhQeHi4hg8frn/+858tjl+zZo2GDx+u8PBwnX322XrxxRd9lBQAAPiCdYVnyZIlmj17tn75y1+qsLBQo0eP1qRJk1RSUuJ1fHFxsa666iqNHj1ahYWF+sUvfqF7771Xubm5Pk4OAAA6i8sYY9oyYcaMGbr11lt16aWXdlamMzJy5EhdcMEFeuGFFxrXnXPOObruuuu0YMGCU8b//Oc/17Jly/TFF180rrvzzjv12WefqaCgoFXPWVVVpZiYGFVWVio6OvrMNwIAgC7CV79D23yEp7q6WuPHj1e/fv30+OOPq7S0tDNytUtNTY02btyo8ePHN1k/fvx4rVu3zuucgoKCU8ZPmDBBn3zyiWpra73O8Xg8qqqqanIDAPjG7gOHnI6AANTmwpObm6vS0lLNmjVLf/nLX5Senq5JkybpzTffbLYg+Mq+fftUX1+vxMTEJusTExNVXl7udU55ebnX8XV1ddq3b5/XOQsWLFBMTEzjLTU1tWM2AABwWu9u3eZ0BASgdl3DExcXp/vuu0+FhYX6+OOP1bdvX02bNk0pKSm6//77tW2bsz+MLperybIx5pR1pxvvbf135s6dq8rKysbb7t27zzAxAADoTGd00XJZWZlWrlyplStXKjg4WFdddZW2bt2qc889V88++2xHZWy1+Ph4BQcHn3I0p6Ki4pSjON9JSkryOj4kJERxcXFe57jdbkVHRze5AQAA/9XmwlNbW6vc3FxdffXVSktL01/+8hfdf//9Kisr06uvvqqVK1fqtdde06OPPtoZeVsUFham4cOHKy8vr8n6vLw8ZWdne52TlZV1yviVK1dqxIgRCg0N7bSsAADAd0LaOiE5OVkNDQ26+eab9fHHH2vo0KGnjJkwYYJiY2M7IF7bzZkzR9OmTdOIESOUlZWll156SSUlJbrzzjslnTgdVVpaqkWLFkk68Y6s5557TnPmzNHMmTNVUFCgl19+WW+88YYj+QEAQMdrc+F59tlndcMNNyg8PLzZMT169FBxcfEZBWuvqVOnav/+/Xr00UdVVlamwYMHa8WKFUpLS5N04jTcyZ/Jk5GRoRUrVuj+++/X888/r5SUFP3ud7/TD3/4Q0fywz+sf2eTRk0a6nQMAC043fWZwMna/Dk8OBWfw2OfJb/9u6Y+cLXTMQB48cd/btDM0Rfq79u/1NV9BzodB2fIbz+HB+gS+KsR8GtfHzyg5zaudzoGAgiFB/CGA5+AXwsPCdE1/c5xOgYCCIUHABBwPtq7W9f043QWWo/CAwAIOHsPV6t3VIzTMRBAKDwAgIBijJERp53RNhQewBsuWgb81qHa4+oTHet0DAQYCg/gDRctA35r5+FDyjqrj9MxEGAoPACAgHKkrkYJ3SKdjoEAQ+EBvAgJC1FtTZ3TMQB8D5+Vi/ai8ABeRHQP17Hq407HAPA92w/uV3w4R3fQdhQewIuISLeOHaHwAP5m/d7dSuvG29HRdhQewIuIqAiO8AB+qNLjUURIqNMxEIAoPIAX3bqHc4QH8DP1DQ18OzrajcIDeBHR3a2jhyk8gD/5Yv+3Ojeul7Z9s0/lldVOx0GAofAAXkR055QW4G8+LtujC5N7a9/ho4oI47QW2obCA3gR0Z2LlgF/c7S2Vt3DwjTnyosVExHudBwEGAoP4AVvSwf8S219vYKDTly/M/isJIfTIBBReAAvwiPdOn7U43QMAP/2r2/LNSQh2ekYCGAUHsCLoKAgmQY+0RXwFxvL9+qCxBSnYyCAUXgAL3Z+vkfr/v4pH2MP+Ima+nqFh4Q4HQMBjMIDeJE6IEXnXJTJZ34AfuB4XZ3cwcFOx0CAo/AAXgQHB+k/517ndAwAOnF0Z1Jmf6djIMBxfBBoRvdYvqAQ8AfRbrei3W6nYyDAcYQHAABYj8IDAACsR+EBAADWo/AAAADrUXgAAID1KDwAAMB6FB4AAGA9Cg8AALAehQcAAFiPwgMAAKxH4QEAANaj8AAAAOtReAAAgPUoPAAAwHoUHqAdjDFaV7DN6RgAgFai8ADt4HK5tH37N6qtrXc6CmCluoZapyPAMhQeoJ1GXzJAaz/8yukYgFWMMfpk/9+1++hWp6PAMhQeoJ0yMnpp585vnY4BWKWy9httPLhCqd0GOR0FlqHwAGcgMzNR27d/43QMwBqbDuZpRsbTCgkKdToKLEPhAc7Axdn99CEXLwMd4suqD5XRfajcwd2cjgILUXiAMxAcHKRu3cJUVXXM6ShAQKuuPaADnr1KizzP6SiwFIUHOENXXD5Iq97nAkugvYwx2rD/r7oo7lqno8BiFB7gDPXoEamqqmOqr29wOgoQkDZXvq9zYkYrJCjM6SiwGIUH6AAjL8rUxxt2OB0DCDiHasp1vP6wkiP6Oh0FlrOm8OzcuVO33XabMjIyFBERoczMTD3yyCOqqalpcd6MGTPkcrma3EaNGuWj1LDFOQNTVFRU5nQMIKA0mHptPLBCI3pe7XQUdAEhTgfoKF9++aUaGhr0hz/8QX379tWWLVs0c+ZMHTlyRE8//XSLcydOnKicnJzG5bAwDqui7c46q4d27zmg1N49nY4CBIRPD76roT3GK8gV7HQUdAHWFJ6JEydq4sSJjctnn322ioqK9MILL5y28LjdbiUlJbX6uTwejzweT+NyVVVV2wPDOpddOlB//svH+s//yHY6CuD3Ko7vVJCCFefu7XQUdBHWnNLyprKyUj17nv6v7fz8fCUkJKh///6aOXOmKioqWhy/YMECxcTENN5SU1M7KjICWFhYiEJCgnT0qOf0g4EurL6hVpsPva9hPcY7HQVdiMsYY5wO0Rm+/vprXXDBBfrtb3+r22+/vdlxS5YsUffu3ZWWlqbi4mL9+te/Vl1dnTZu3Ci32+11jrcjPKmpqaqsrFR0dHSHbwsCR0VFlT7esENXTx7qdBTAb63f95bOjRmt6NBeTkeBH6iqqlJMTEyn/w71+yM88+bNO+Wi4u/fPvnkkyZz9u7dq4kTJ+qGG25osexI0tSpUzV58mQNHjxYU6ZM0TvvvKOvvvpKy5cvb3aO2+1WdHR0kxsgSQkJ0fr22ypZ+ncEcMZKj36p7iE9KTvwOb+/hmfWrFm66aabWhyTnp7e+O+9e/dq7NixysrK0ksvvdTm50tOTlZaWpq2bePrAtA+Q4emadNnJRo2NM3pKIBfqW04rq+qP9KYhFucjoIuyO8LT3x8vOLj41s1trS0VGPHjtXw4cOVk5OjoKC2H8Dav3+/du/ereTk5DbPBSRp6JA+enXRWgoP8D0f7X9bF8VdJ5fL5XQUdEF+f0qrtfbu3asxY8YoNTVVTz/9tL799luVl5ervLy8ybiBAwdq6dKlkqTDhw/rwQcfVEFBgXbu3Kn8/HxNmTJF8fHx+sEPfuDEZsACLpdL8b2i9E1FpdNRAL+x43ChEsIzFBkS43QUdFHWFJ6VK1dq+/btev/999W7d28lJyc33k5WVFSkysoTv4iCg4O1efNmXXvtterfv7+mT5+u/v37q6CgQFFRUU5sBixxcVY//eGl1VzLA0g6Xn9Yu49uVf+okU5HQRfm96e0WmvGjBmaMWPGaced/AsoIiJC7733XiemQlcVGelWRUWVqquPKzo6wuk4gKM2H1qtUXHXOx0DXZy1b0v3JV+9pQ6B5cCBw5Kknj27O5wEAPyXr36HWnOEB/A3FB0A8B/WXMMDAADQHAoPAACwHoUH8LHPDpRq95GDTscAgC6FwgP42KDYZP3f15+opr7O6SgA0GVQeAAfCwkK0q39RumPX61zOgrQKYwxKjvyofYf3+p0FKARhQdwQEJElC6IS9U7ez53OgrQ4b6uekufH3xFPdwDnI4CNKLwAA7JSshQxbFqfV21z+koQIfZWf2OQoK6aUzKcwpy8ckn8B8UHsBB0/pepDd3btLRuhqnowBnxBijokN/UkRwnNKjJik4yO10JKAJCg/goCCXSzMHZOulog/53i0ErHpTqy0HXlRixEVK7HaR03EAryg8gMN6urvpsqR+ervkX05HAdqspv6wNu9/XpkxP1Ssu6/TcYBmUXgAPzAsrrc89XX6/FC501GAVjtaW67PD76sQT1vV7eQBKfjAC2i8AB+YmrGBVqxZ6uqa487HQU4rYOeIu2o+qvOj7tboUF8bxz8H4UH8BMul0t3DLhYf+B6Hvi5siMF+vbYpxrU8ye8EwsBg8ID+JGo0HBN7j1IS4o/dToK4FVx1XLVNlSrf+zNcrlcTscBWo3CA/iZc2KTFB4cqsL9e5yOAjQyxujLg6+pW0iC+kSNdzoO0GYUHsAPXdvnPH1Qvl0HPEedjgI0vu08uVu2Ertd6HQcoF0oPIAfcrlc+smAi/U/X61TA9fzwEE19dXavP959Y35kWLcmU7HAdqNwgP4qYiQUP0ofahe2/6x01HQRR2pLdPnB/9Xg3rOVERIL6fjAGeEwgP4sbOj4pUYEaUVe7byzi341IHjX6q46m//ftt5pNNxgDNG4QH83OUpA/TCl2u1cf9up6OgCzlSt1eDes7kbeewBoUH8HNhQcF6/dJbVF3rcToKupDU7pfztnNYhcIDBICYsAiNTe7ndAwACFgUHgAAYD0KDwAAsB6FBwAAWI/CAwAArEfhAQAA1qPwAAAA61F4AACA9Sg8QBfxedVmNZgGp2MAgCMoPEAXERvaU0tLl2jvsVKnowCAz1F4gC4iJeIs/eCsqfr68Fda9c07qmuoczoSOpkxRtW1x3W8vtbpKIDjKDxAFxLkCtLoXmN1QY8LtWzvm9pxeLvTkdAJGkyDPvq2WBPzfqffffG+gvhOLEAuY4xxOkSgq6qqUkxMjCorKxUdHe10HKBVjDHaePAjVXi+0eUJExQeHO50JJyhimNVerd0q6rrPLooPl1nR8Urzt3d6VhAi3z1OzSk0x4ZgF9zuVwa0XOUDtdVa2X535XZvb8GxZzvdCy0UW1DvT74Zpu+OFSmXuFRuq7PUEWHRTgdC/A7HOHpABzhgQ22Vv5LXx/+SpcnTlD3kCin4+A0dh7ep7y9X6jeNOjSxH46NzbF6UhAu3CEB4BPDYo5X5nd++v9iveU4E7U8B4j5eLaD79yrK5GeXu/UMmRA0rrHqdpmaMUHhzqdCwgIHCEpwNwhAe22XF4uz47tFGXJYxTz7B4p+N0acYYbT20V//8ZrtCg4J1Zco5Suse53QsoMNwhAeAY87u3ld9uqUr/9s8uYPCdXH8ZQpy8aZOX6qsOaZ3Srdo3/HDGhSbopn9L1FIULDTsYCAReEB4FVIUIiuSJykvcdKtbR0ibLjLlVyxFlOx7Jag2nQx/t2auP+EkWHhmviWYPUK5zrqYCOwCmtDsApLdiuwTTow3358jR41D/qHPXplu50JCuVHj2ksqOHNDwujeun0GX46ncox6gBnNaJDyy8XL0j+ujVnS+p9NhupyNZ6axusRoRn07ZAToBR3g6AEd40JUYY3S0/ogiQ/hAOwBnjiM8APySy+Wi7AAIOBQeAABgPasKT3r6iXPfJ98efvjhFucYYzRv3jylpKQoIiJCY8aM0datW32UGOjaVm3drj/kf6xX1m7UJzv36Hgt3+AOoHNY97b0Rx99VDNnzmxc7t695UPvTz31lJ555hm98sor6t+/v37zm9/oyiuvVFFRkaKieDso0JmuGNRXV0g6XlunLXvK9cZHn8lTWyeXy6Wze/XQ0D4p6hUV6XTM0zLGcKEx4OesKzxRUVFKSkpq1VhjjBYuXKhf/vKXuv766yVJr776qhITE/WnP/1Jd9xxh9d5Ho9HHo+ncbmqqurMgwNdWHhoiEZk9NaIjN6SpIYGo537D+qDomLtO3xUkhTbLVxD+ySrb0KcgoPaf3D6aE2tPHV1qq2rV219vWrqG1Rb/+9/19Wr9t/LNf9e17hc13T5ZGuKdmhAUi/NujxLPbrxxZ2AP7LqXVrp6enyeDyqqalRamqqbrjhBv3sZz9TWFiY1/E7duxQZmamPv30Uw0bNqxx/bXXXqvY2Fi9+uqrXufNmzdP8+fPP2U979ICOs/BI8e0qWSvtlfsV4ORQoKDdE5yLw1JTVak2/v/cW9WfbFdB48eU2hwsMKCgxUaHKzQ4KATyyGnWT5p/MlHdLZV7FN6XA+FBvNJyEBb+epdWlYVnmeffVYXXHCBevTooY8//lhz587Vtddeq//5n//xOn7dunW6+OKLVVpaqpSU//+bhn/yk59o165deu+997zO83aEJzU1lcID+FBNXb2+KKvQv3aX62hNrSQpMTpSdfUN+sHwQWd0FAiA7/BdWv/W3NGUk23YsEEjRozQ/fff37ju/PPPV48ePfSjH/1ITz75pOLimv+yve+fez/d+Xi32y23293KLQDQGcJCgjUkNVlDUpMlnfh/u6mkTO9t+Upriop1+TmZDicE4E/8vvDMmjVLN910U4tj0tPTva4fNWqUJGn79u1eC8931/qUl5crOTm5cX1FRYUSExPbmRiAE1wul4alpWhYWsrpBwPocvy+8MTHxys+Pr5dcwsLCyWpSZk5WUZGhpKSkpSXl9d4DU9NTY3WrFmjJ598sn2BAQCA37HmJHdBQYGeffZZbdq0ScXFxfrzn/+sO+64Q9dcc4369OnTOG7gwIFaunSppBN/Ec6ePVuPP/64li5dqi1btmjGjBnq1q2bfvzjHzu1KQAAoIP5/RGe1nK73VqyZInmz58vj8ejtLQ0zZw5Uw899FCTcUVFRaqsrGxcfuihh3Ts2DHdddddOnjwoEaOHKmVK1fyGTwAAFjEqndpOYUvDwUAoH348lAAAIAOQuEBAADWo/AAAADrUXgAAID1KDwAAMB6FB4AAGA9Cg8AALAehQcAAFiPwgMAAKxH4QEAANaj8AAAAOtReAAAgPUoPAAAwHoUHgAAYD0KDwAAsB6FBwAAWI/CAwAArEfhAQAA1qPwAAAA61F4AACA9Sg8AADAehQeAABgPQoPAACwHoUHAABYj8IDAACsR+EBAADWo/AAAADrUXgAAID1KDwAAMB6FB4AAGA9Cg8AALAehQcAAFiPwgMAAKxH4QEAANaj8AAAAOtReAAAgPUoPAAAwHoUHgAAYD0KDwAAsB6FBwAAWI/CAwAArEfhAQAA1qPwAAAA61F4AACA9Sg8AADAehQeAABgPWsKT35+vlwul9fbhg0bmp03Y8aMU8aPGjXKh8kBAEBnC3E6QEfJzs5WWVlZk3W//vWvtWrVKo0YMaLFuRMnTlROTk7jclhYWKdkBAAAzrCm8ISFhSkpKalxuba2VsuWLdOsWbPkcrlanOt2u5vMBQAAdrHmlNb3LVu2TPv27dOMGTNOOzY/P18JCQnq37+/Zs6cqYqKihbHezweVVVVNbkBAAD/5TLGGKdDdIarrrpKkrRixYoWxy1ZskTdu3dXWlqaiouL9etf/1p1dXXauHGj3G631znz5s3T/PnzT1lfWVmp6OjoMw8PAEAXUVVVpZiYmE7/Her3hae5cnGyDRs2NLlOZ8+ePUpLS9Of//xn/fCHP2zT85WVlSktLU2LFy/W9ddf73WMx+ORx+NpXK6qqlJqaiqFBwCANvJV4fH7a3hmzZqlm266qcUx6enpTZZzcnIUFxena665ps3Pl5ycrLS0NG3btq3ZMW63u9mjPwAAwP/4feGJj49XfHx8q8cbY5STk6NbbrlFoaGhbX6+/fv3a/fu3UpOTm7zXAAA4J+su2j5/fffV3FxsW677Tav9w8cOFBLly6VJB0+fFgPPvigCgoKtHPnTuXn52vKlCmKj4/XD37wA1/GBgAAncjvj/C01csvv6zs7Gydc845Xu8vKipSZWWlJCk4OFibN2/WokWLdOjQISUnJ2vs2LFasmSJoqKifBkbAAB0Ir+/aDkQ+OqCKwAAbOOr36HWndICAAD4PgoPAACwHoUHAABYj8IDAACsR+EBAADWo/AAAADrUXgAAID1KDwAAMB6FB4AAGA9Cg8AALAehQcAAFiPwgMAAKxH4QEAANaj8AAAAOtReAAAgPUoPAAAwHoUHgAAYD0KDwAAsB6FBwAAWI/CAwAArEfhAQAA1qPwAAAA61F4AACA9Sg8AADAehQeAABgPQoPAACwHoUHAABYj8IDAACsR+EBAADWo/AAAADrUXgAAID1KDwAAMB6FB4AAGA9Cg8AALAehQcAAFiPwgMAAKxH4QEAANaj8AAAAOtReAAAgPUoPAAAwHoUHgAAYD0KDwAAsB6FBwAAWI/CAwAArEfhAQAA1qPwAAAA61F4AACA9QKm8Dz22GPKzs5Wt27dFBsb63VMSUmJpkyZosjISMXHx+vee+9VTU1Ni4/r8Xh0zz33KD4+XpGRkbrmmmu0Z8+eTtgCAADglIApPDU1Nbrhhhv005/+1Ov99fX1mjx5so4cOaK1a9dq8eLFys3N1QMPPNDi486ePVtLly7V4sWLtXbtWh0+fFhXX3216uvrO2MzAACAA1zGGON0iLZ45ZVXNHv2bB06dKjJ+nfeeUdXX321du/erZSUFEnS4sWLNWPGDFVUVCg6OvqUx6qsrFSvXr302muvaerUqZKkvXv3KjU1VStWrNCECRNalamqqkoxMTGqrKz0+jwAAMA7X/0ODem0R/axgoICDR48uLHsSNKECRPk8Xi0ceNGjR079pQ5GzduVG1trcaPH9+4LiUlRYMHD9a6deuaLTwej0cej6dxubKyUtKJnQYAAFrvu9+dnX38xZrCU15ersTExCbrevToobCwMJWXlzc7JywsTD169GiyPjExsdk5krRgwQLNnz//lPWpqantSA4AAPbv36+YmJhOe3xHC8+8efO8FoeTbdiwQSNGjGjV47lcrlPWGWO8rm/J6ebMnTtXc+bMaVw+dOiQ0tLSVFJS0qk7y2lVVVVKTU3V7t27rT51x3bapatsp9R1tpXttEtlZaX69Omjnj17durzOFp4Zs2apZtuuqnFMenp6a16rKSkJH300UdN1h08eFC1tbWnHPk5eU5NTY0OHjzY5ChPRUWFsrOzm30ut9stt9t9yvqYmBirfyi/Ex0dzXZahO20T1fZVrbTLkFBnfs+KkcLT3x8vOLj4zvksbKysvTYY4+prKxMycnJkqSVK1fK7XZr+PDhXucMHz5coaGhysvL04033ihJKisr05YtW/TUU091SC4AAOC8gHlbeklJiTZt2qSSkhLV19dr06ZN2rRpkw4fPixJGj9+vM4991xNmzZNhYWF+sc//qEHH3xQM2fObGzGpaWlGjhwoD7++GNJJ47I3HbbbXrggQf0j3/8Q4WFhfrP//xPnXfeebriiisc21YAANCxAuai5f/3//6fXn311cblYcOGSZJWr16tMWPGKDg4WMuXL9ddd92liy++WBEREfrxj3+sp59+unFObW2tioqKdPTo0cZ1zz77rEJCQnTjjTfq2LFjGjdunF555RUFBwe3Opvb7dYjjzzi9TSXTdhOu7Cd9ukq28p22sVX2xlwn8MDAADQVgFzSgsAAKC9KDwAAMB6FB4AAGA9Cg8AALAehacVHnvsMWVnZ6tbt26KjY31OqakpERTpkxRZGSk4uPjde+996qmpqbFx/V4PLrnnnsUHx+vyMhIXXPNNdqzZ08nbEH75Ofny+Vyeb1t2LCh2XkzZsw4ZfyoUaN8mLzt0tPTT8n88MMPtzjHGKN58+YpJSVFERERGjNmjLZu3eqjxG23c+dO3XbbbcrIyFBERIQyMzP1yCOPnPbnNBD25+9//3tlZGQoPDxcw4cP1z//+c8Wx69Zs0bDhw9XeHi4zj77bL344os+Sto+CxYs0IUXXqioqCglJCTouuuuU1FRUYtzmvv/++WXX/oodfvMmzfvlMxJSUktzgm0/Sl5f81xuVy6++67vY4PlP35wQcfaMqUKUpJSZHL5dLbb7/d5P72vm7m5ubq3HPPldvt1rnnnqulS5e2ORuFpxVqamp0ww036Kc//anX++vr6zV58mQdOXJEa9eu1eLFi5Wbm6sHHnigxcedPXu2li5dqsWLF2vt2rU6fPiwrr76atXX13fGZrRZdna2ysrKmtxuv/12paenn/brPiZOnNhk3ooVK3yUuv0effTRJpl/9atftTj+qaee0jPPPKPnnntOGzZsUFJSkq688kpVV1f7KHHbfPnll2poaNAf/vAHbd26Vc8++6xefPFF/eIXvzjtXH/en0uWLNHs2bP1y1/+UoWFhRo9erQmTZqkkpISr+OLi4t11VVXafTo0SosLNQvfvEL3XvvvcrNzfVx8tZbs2aN7r77bq1fv155eXmqq6vT+PHjdeTIkdPOLSoqarLv+vXr54PEZ2bQoEFNMm/evLnZsYG4P6UTX5t08jbm5eVJkm644YYW5/n7/jxy5IiGDBmi5557zuv97XndLCgo0NSpUzVt2jR99tlnmjZtmm688cZTvl3htAxaLScnx8TExJyyfsWKFSYoKMiUlpY2rnvjjTeM2+02lZWVXh/r0KFDJjQ01CxevLhxXWlpqQkKCjLvvvtuh2fvCDU1NSYhIcE8+uijLY6bPn26ufbaa30TqoOkpaWZZ599ttXjGxoaTFJSknniiSca1x0/ftzExMSYF198sRMSdo6nnnrKZGRktDjG3/fnRRddZO68884m6wYOHGgefvhhr+MfeughM3DgwCbr7rjjDjNq1KhOy9jRKioqjCSzZs2aZsesXr3aSDIHDx70XbAO8Mgjj5ghQ4a0erwN+9MYY+677z6TmZlpGhoavN4fiPtTklm6dGnjcntfN2+88UYzceLEJusmTJhgbrrppjbl4QhPBygoKNDgwYOVkpLSuG7ChAnyeDzauHGj1zkbN25UbW2txo8f37guJSVFgwcP1rp16zo9c3ssW7ZM+/bt04wZM047Nj8/XwkJCerfv79mzpypioqKzg94hp588knFxcVp6NCheuyxx1o81VNcXKzy8vIm+8/tduuyyy7z2/3nTWVlZau+sM9f92dNTY02btzYZD9IJz55vbn9UFBQcMr4CRMm6JNPPlFtbW2nZe1IlZWVktSqfTds2DAlJydr3LhxWr16dWdH6xDbtm1TSkqKMjIydNNNN2nHjh3NjrVhf9bU1Oj111/Xrbfeetovuw7E/fmd9r5uNreP2/paS+HpAOXl5ad8QWmPHj0UFham8vLyZueEhYU1+dJSSUpMTGx2jtNefvllTZgwQampqS2OmzRpkv7v//5P77//vn77299qw4YNuvzyy+XxeHyUtO3uu+8+LV68WKtXr9asWbO0cOFC3XXXXc2O/24ffX+/+/P++76vv/5a//3f/60777yzxXH+vD/37dun+vr6Nu0Hb/9fExMTVVdXp3379nVa1o5ijNGcOXN0ySWXaPDgwc2OS05O1ksvvaTc3Fy99dZbGjBggMaNG6cPPvjAh2nbbuTIkVq0aJHee+89/fGPf1R5ebmys7O1f/9+r+MDfX9K0ttvv61Dhw61+MdkoO7Pk7X3dbO5fdzW19qA+WqJjjZv3jzNnz+/xTEbNmw47bUq3/HWyo0xp23rHTGnrdqz7Xv27NF7772nP//5z6d9/KlTpzb+e/DgwRoxYoTS0tK0fPlyXX/99e0P3kZt2c7777+/cd3555+vHj166Ec/+lHjUZ/mfH9f+WL/fV979ufevXs1ceJE3XDDDbr99ttbnOsv+7Mlbd0P3sZ7W++PZs2apX/9619au3Zti+MGDBigAQMGNC5nZWVp9+7devrpp3XppZd2dsx2mzRpUuO/zzvvPGVlZSkzM1Ovvvqq5syZ43VOIO9P6cQfk5MmTWpyluD7AnV/etOe182OeK3tsoVn1qxZuummm1ock56e3qrHSkpKOuXiqYMHD6q2tvaUVnrynJqaGh08eLDJUZ6KigplZ2e36nnbqz3bnpOTo7i4OF1zzTVtfr7k5GSlpaVp27ZtbZ57Js5kH3/3LqTt27d7LTzfvWukvLxcycnJjesrKiqa3eedpa3buXfvXo0dO1ZZWVl66aWX2vx8Tu1Pb+Lj4xUcHHzKX3ot7YekpCSv40NCQlost/7gnnvu0bJly/TBBx+od+/ebZ4/atQovf76652QrPNERkbqvPPOa/bnLZD3pyTt2rVLq1at0ltvvdXmuYG2P9v7utncPm7ra22XLTzx8fGKj4/vkMfKysrSY489prKyssaduHLlSrndbg0fPtzrnOHDhys0NFR5eXm68cYbJUllZWXasmWLnnrqqQ7J1Zy2brsxRjk5ObrlllsUGhra5ufbv3+/du/e3eQH3BfOZB8XFhZKUrOZMzIylJSUpLy8vMYvsq2pqdGaNWv05JNPti9wO7VlO0tLSzV27FgNHz5cOTk5Cgpq+1ltp/anN2FhYRo+fLjy8vL0gx/8oHF9Xl6err32Wq9zsrKy9Le//a3JupUrV2rEiBHt+vn2BWOM7rnnHi1dulT5+fnKyMho1+MUFhb6xX5rC4/Hoy+++EKjR4/2en8g7s+T5eTkKCEhQZMnT27z3EDbn+193czKylJeXl6TI/ErV65s+8GBNl3i3EXt2rXLFBYWmvnz55vu3bubwsJCU1hYaKqrq40xxtTV1ZnBgwebcePGmU8//dSsWrXK9O7d28yaNavxMfbs2WMGDBhgPvroo8Z1d955p+ndu7dZtWqV+fTTT83ll19uhgwZYurq6ny+jS1ZtWqVkWQ+//xzr/cPGDDAvPXWW8YYY6qrq80DDzxg1q1bZ4qLi83q1atNVlaWOeuss0xVVZUvY7faunXrzDPPPGMKCwvNjh07zJIlS0xKSoq55pprmow7eTuNMeaJJ54wMTEx5q233jKbN282N998s0lOTvbb7SwtLTV9+/Y1l19+udmzZ48pKytrvJ0s0Pbn4sWLTWhoqHn55ZfN559/bmbPnm0iIyPNzp07jTHGPPzww2batGmN43fs2GG6detm7r//fvP555+bl19+2YSGhpo333zTqU04rZ/+9KcmJibG5OfnN9lvR48ebRzz/e189tlnzdKlS81XX31ltmzZYh5++GEjyeTm5jqxCa32wAMPmPz8fLNjxw6zfv16c/XVV5uoqCir9ud36uvrTZ8+fczPf/7zU+4L1P1ZXV3d+DtSUuNr665du4wxrXvdnDZtWpN3WX744YcmODjYPPHEE+aLL74wTzzxhAkJCTHr169vUzYKTytMnz7dSDrltnr16sYxu3btMpMnTzYRERGmZ8+eZtasWeb48eON9xcXF58y59ixY2bWrFmmZ8+eJiIiwlx99dWmpKTEh1vWOjfffLPJzs5u9n5JJicnxxhjzNGjR8348eNNr169TGhoqOnTp4+ZPn26X27XdzZu3GhGjhxpYmJiTHh4uBkwYIB55JFHzJEjR5qMO3k7jTnxFstHHnnEJCUlGbfbbS699FKzefNmH6dvvZycHK8/x9//uycQ9+fzzz9v0tLSTFhYmLnggguavF17+vTp5rLLLmsyPj8/3wwbNsyEhYWZ9PR088ILL/g4cds0t99O/nn8/nY++eSTJjMz04SHh5sePXqYSy65xCxfvtz34dto6tSpJjk52YSGhpqUlBRz/fXXm61btzbeb8P+/M57771nJJmioqJT7gvU/fnd2+e/f5s+fboxpnWvm5dddlnj+O/85S9/MQMGDDChoaFm4MCB7Sp6LmP+fXUXAACApXhbOgAAsB6FBwAAWI/CAwAArEfhAQAA1qPwAAAA61F4AACA9Sg8AADAehQeAABgPQoPAACwHoUHAABYj8IDAACsR+EBYKVvv/1WSUlJevzxxxvXffTRRwoLC9PKlSsdTAbACXx5KABrrVixQtddd53WrVungQMHatiwYZo8ebIWLlzodDQAPkbhAWC1u+++W6tWrdKFF16ozz77TBs2bFB4eLjTsQD4GIUHgNWOHTumwYMHa/fu3frkk090/vnnOx0JgAO4hgeA1Xbs2KG9e/eqoaFBu3btcjoOAIdwhAeAtWpqanTRRRdp6NChGjhwoJ555hlt3rxZiYmJTkcD4GMUHgDW+tnPfqY333xTn332mbp3766xY8cqKipKf//7352OBsDHOKUFwEr5+flauHChXnvtNUVHRysoKEivvfaa1q5dqxdeeMHpeAB8jCM8AADAehzhAQAA1qPwAAAA61F4AACA9Sg8AADAehQeAABgPQoPAACwHoUHAABYj8IDAACsR+EBAADWo/AAAADrUXgAAID1/j/yrhMttFwKUQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAINCAYAAACeQx1BAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA8dElEQVR4nO3deVxVdeL/8fcFBFwAd5CkXKqfNmgmaONSagvibk1a5ljmUppmljOW1besMa2mrEbNJcpMnVxbzNS0TE1NU1xTy8k0VyStuIoCAuf3R9MZrrggwfnc5fV8PO7j4edzD/D2ZN63n/O557osy7IEAADgkCDTAQAAQGChfAAAAEdRPgAAgKMoHwAAwFGUDwAA4CjKBwAAcBTlAwAAOIryAQAAHBViOoC3yc/P1+HDhxURESGXy2U6DgAAPsOyLJ04cUKxsbEKCjr/+gbl4yyHDx9WXFyc6RgAAPisAwcOqGbNmud9nvJxloiICEm/nbjIyEjDaQAA8B1ut1txcXH2a+n5UD7O8vullsjISMoHAADFcLFtC2w4BQAAjqJ8AAAAR1E+AACAoygfAADAUZQPAADgKMoHAABwFOUDAAA4ivIBAAAcRfkAAACOonwAAABHUT4AAICjKB8AAMBRlA8AAOAoygcAAHAU5QMAADgqxHQAAIElOztbx48f93j8/PPPheYKzqekpKhTp06mowMoIZQPAMV28uRJHTly5ILF4ezHqVOnLvnnpKenl0J6AKZQPgAU25QpUzRs2LBS/znHjx8v9Z8BwDmUDwDFVqVKlRL9fuXKlVOVKlVUuXJlValSxX5ce+21JfpzAJhF+QBQbJUrVz7nfHBw8DlLxNnjs+fCw8Md/h04Iysry29/b0BxUD4AFFtCQoJmzpxZqERERkbK5XKZjuc1evbsqW+++Ubt2rVTcnKyWrVqpbJly5qOBRjjsizLMh3Cm7jdbkVFRSkjI0ORkZGm4wDwcWfOnFHVqlXldrvtufDwcLVq1couI1dffTVlDX6hqK+hrHwAfuLXX3/VggULFBERodtuu810HPzXunXrPIqH9NtlmE8//VSffvqpJKlWrVpKTk5Wu3bt1KZNG0VERJiICjiGlY+zsPIBX5KRkaEFCxZozpw5+vTTT3XmzBklJiZqw4YNpqPhv/bt26dp06ZpyZIlWr9+vS72V26ZMmXUsmVLJScnKzk5WQ0aNGBVBD6jqK+hlI+zUD7g7dxutz7++GPNmTNHS5YsUU5OTqFjfvjhB9WuXdtAOlzI8ePH9dlnn2nx4sVasmSJjh49etGviY2NtYvIrbfeqooVK5Z+UKCYKB/FRPmANzpx4oQWLlyoOXPmaPHixcrOzj7vsREREZo5cyZ3BPVy+fn52rZtm5YsWaLFixdr7dq1ys3NveDXBAcH689//rNdRho3bqygID4lA96D8lFMlA94i5MnT+qTTz7RnDlztGjRImVlZZ332AoVKqhz587q3r272rZty9s6fVBGRoaWL19ul5EDBw5c9GuqVaumtm3bKjk5WR07dlRUVJQDSYHzo3wUE+UDJmVmZmrRokWaM2eOPvnkE50+ffq8x5YvX16dOnVS9+7dlZyczFs3/YhlWdq1a5eWLFmiJUuWaOXKlee8vFZQamqqGjdu7FBC4NwoH8VE+YDTTp06pcWLF2vOnDlauHDhBT/7pFy5curYsaO6d++udu3aqVy5cg4mhSmZmZlasWKFXUa+//57j+erV6+uI0eOcAkGxvFWW8CLnT592qNwZGZmnvfYsmXLqkOHDurevbvat2+v8uXLO5gU3qB8+fLq0KGDOnToIEn6/vvv7SKyfPlyJScnUzzgU1j5OAsrHyhNubm5uvfee7VgwQKdPHnyvMeFh4erffv26t69uzp06KAKFSo4mBK+JCsrSxkZGYqOjjYdBWDlA/BGISEh+uGHH85ZPMLCwjwKBzeaQlGEh4ezwRg+h/IBOKx79+5at26dJCk0NFTt2rVT9+7d1bFjR1bbAAQEygfgsDvuuEPLly/XnXfeqU6dOvH2SAABh/IBOCwuLk4ff/yx6RgAYAzbowEAgKMoHwAAwFGUDwAA4CjKBwAAcBTlAwAAOIryAQAAHEX5AAAAjqJ8AAAAR1E+AACAoygfAADAUZQPAADgKMoHAABwFOUDAOCo3NxcnTx50nQMGET5AAA4atSoUWrcuLE2btxoOgoMoXwAABzz5Zdf6h//+If+85//qFmzZnrppZeUn59vOhYcRvkAADjCsiw9/vjjdtnIzc3VY489pqSkJB0+fNhwOjiJ8gEAcITL5dKCBQt02223ecx//vnnatiwoRYsWGAoGZxG+QAAOKZKlSqaP3++Jk+erLJly9rzx48fV5cuXTRo0CCdPn3aYEI4gfIBn5eVlaUNGzaYjgGgiFwul+6//36lpqbq2muv9XjujTfeUGJiorZt22YoHZxA+YBP279/v2644QbddNNN2rlzp+k4AC5B/fr1tX79ej3yyCMe8zt37lTTpk01btw4WZZlKB1Kk8+WjzFjxsjlcmno0KH2nGVZGjlypGJjY1W2bFm1bt1aO3bsMBcSpWrFihVKSEjQxo0bdfLkSd12223KyMgwHQvAJQgLC9PYsWO1ePFiVa9e3Z7Pzs7WkCFD1LFjR6WnpxtMiNLgk+Vjw4YNmjJliho2bOgx/9JLL2ns2LEaP368NmzYoJiYGN166606ceKEoaQoDZZl6bXXXtMtt9yiY8eO2fPHjx/X999/bzAZgOJKTk7Wtm3b1K5dO4/5RYsWqWHDhvr0008NJUNp8LnycfLkSfXs2VNvvvmmKlWqZM///oL05JNP6vbbb1d8fLymTZumU6dO6d///rfBxChJp06dUq9evfTII48oLy/Pnr/uuuuUmpqqhIQEg+kA/BHR0dH65JNP9Prrrys0NNSeP3r0qJKTkzVs2DBlZ2cbTIiS4nPlY9CgQerQoYNuueUWj/m9e/cqLS1NSUlJ9lxYWJhatWqltWvXnvf7ZWdny+12ezzgnfbt26cWLVpo5syZHvO9evXSmjVrdMUVVxhKBqCkuFwuDRkyRBs2bNA111zj8dzYsWP15z//Wd9++62hdCgpPlU+Zs2apU2bNmnMmDGFnktLS5P0W3MuKDo62n7uXMaMGaOoqCj7ERcXV7KhUSI+++wzJSQkaMuWLfZccHCw/vWvf2natGkeb9kD4PsaNmyoDRs2aODAgR7zW7ZsUUJCglJSUtiM6sN8pnwcOHBADz/8sGbMmKHw8PDzHudyuTzGlmUVmitoxIgRysjIsB8HDhwoscz44yzL0j//+U+1bdtWP//8sz1frVo1ff7553rooYcu+N8XgO8qV66c3njjDX344YeqXLmyPX/q1Cn1799f3bp18/h7Ab7DZ8pHamqq0tPTlZCQoJCQEIWEhGjlypX617/+pZCQEHvF4+xVjvT09EKrIQWFhYUpMjLS4wHvkJmZqbvuukvDhw/3+OyHJk2aKDU1Va1atTKYDoBTunTpom3btummm27ymJ8/f76uvfZarVy50lAyFJfPlI+bb75Z27dv15YtW+xHYmKievbsqS1btqhOnTqKiYnRsmXL7K/JycnRypUr1bx5c4PJURx79uxRs2bNNGfOHI/5++67T6tWreLyGBBgLrvsMi1btkwvvviiQkJC7PmDBw+qTZs2evrpp7kM40NCLn6Id4iIiFB8fLzHXPny5VWlShV7fujQoRo9erSuuuoqXXXVVRo9erTKlSunu+++20RkFNOSJUvUo0cP/frrr/ZcmTJl9Prrr2vAgAFcZgECVFBQkIYPH642bdro7rvvtt9ab1mWcnJy+LvBh/jMykdRDB8+XEOHDtWDDz6oxMREHTp0SEuXLlVERITpaCgCy7I0evRotW/f3qN4xMTE6IsvvtDAgQP5ywWAmjRpos2bN+u+++6TJCUmJuq5554znAqXwmWxTuXB7XYrKipKGRkZ7P9w0IkTJ9S7d2+9//77HvPNmjXTvHnzFBsbaygZAG82e/ZsNW7cWFdddZXpKFDRX0N95rIL/Nfu3bvVtWtX7dq1y2P+gQce0Ouvv66wsDBDyQB4uzvvvNN0BBSDX112ge9ZuHChmjRp4lE8QkND9eabb2rSpEkUDwDwQ5QPGJGfn69nn31WnTp18rir7GWXXaZVq1apX79+BtMBAEoTl11gxIMPPqjJkyd7zLVs2VJz585VTEyMoVQAACew8gEj+vbt63FJZfDgwfr8888pHgAQACgfMKJJkyaaOHGiwsLC9M4772jcuHEen2IJAPBfvNX2LLzV1ln79+/X5ZdfbjoGAKAEFPU1lJUPGEXxAIDAQ/kAAACOonwAAABHUT4AAICjKB8AAMBRlA8AAOAoygcAAHAU5QMAADiK8gEAwFncbrfWrl1rOobfonwAAFDADz/8oGbNmqlt27batm2b6Th+ifIBAMB/fffdd7r++uu1c+dOnTx5Up06ddLRo0dNx/I7lA8AAP6rTp06uvbaa+3x/v37dfvttysrK8tgKv9D+QAA4L/KlCmjuXPn6uqrr7bn1q5dq/79+4vPYS05lA8AAAqoVKmSPv74Y1WsWNGemzFjhl544QVzofwM5QMAgLNcffXVmjdvnoKDg+25J554Qu+//77BVP6D8gEAwDncfPPNmjBhgsdcr169tHnzZkOJ/AflAwCA83jggQc0ZMgQe3zq1Cl17txZR44cMZjK91E+AAC4gFdeeUVt27a1xwcPHlSXLl10+vRpg6l8G+UDAIALCAkJ0ezZs1W/fn17bsOGDbrvvvt4B0wxUT4AALiIqKgoffzxx6pSpYo9N3v2bP3jH/8wmMp3UT4AACiCunXr6v3331eZMmXsuWeeeUZz5swxmMo3UT4AACiiG2+8URMnTvSYu/fee7VhwwZDiXwT5QMAgEvQt29fDRs2zB5nZWWpS5cuOnjwoMFUvoXyAQDAJXrxxRfVsWNHe3zkyBF16dJFmZmZBlP5DsoHAACXKDg4WP/+978VHx9vz23atEn33HOP8vPzDSbzDZQPAACKISIiQh9//LGqVatmz73//vt6+umnDabyDZQPAACKqVatWvrggw8UGhpqzz3//POaOXOmwVTej/IBAMAf0KJFC6WkpHjM9e3bV1999ZWhRN6P8gEAwB/Uq1cvjRgxwh5nZ2dr8eLFBhN5N8oHAAAlYNSoUeratauCg4M1YcIEPffcc6Yjea0Q0wEAAPAHQUFBmjFjhjZt2qQbbrjBdByvxsoHAAAlpHz58hSPIqB8BKATJ05o7969pmMAAAIU5SMAjRw5Un/60580evRo5eTkmI4DAAgwLsuyLNMhvInb7VZUVJQyMjIUGRlpOk6J27Ztmxo3bqy8vDxJUlJSkj799FPDqQAA/qCor6GsfASQ/Px8DRgwwC4ekjRgwACDiQAAgYjyEUDefvttj5vedOjQQV27djUXCAAQkCgfAeLYsWN67LHH7HHZsmU1btw4uVwug6kAAIGI8hEghg8frp9//tkeP/XUU6pdu7bBRACAQEX5CACrV6/W1KlT7XG9evX0t7/9zWAiAEAgo3z4uTNnzmjgwIEec2+88YbHJzACAOAkyoefe+211/TNN9/Y47/+9a9q06aNwUQAgEDHfT7O4k/3+di/f7/q16+vU6dOSZIqVqyob7/9VtHR0YaTAQD8Eff5gB5++GG7eEjS6NGjKR4AAOMoH35q4cKF+vDDD+1xkyZNdP/995sLBADAf1E+/NCpU6f00EMP2eOgoCBNmjRJwcHBBlMBAPAbyocfGjVqlPbt22ePBw0apMaNG5sLBABAAWw4PYuvbzjdtWuXrr32Wp05c0aSFBMTo2+//VZRUVGGkwEA/B0bTgOQZVl68MEH7eIhSa+++irFAwDgVSgffmTGjBlasWKFPb7lllt05513mgsEAMA5UD78xC+//KJhw4bZ49DQUE2YMIEPjgMAeB3Kh5944okn9NNPP9njxx9/XFdffbXBRAAAnBvlww98/fXXmjx5sj2uU6eOHn/8cYOJAAA4P8qHj8vNzdWAAQNU8E1LEyZMUNmyZQ2mAgDg/CgfPu7zzz/X5s2b7fEdd9yh5ORkg4kAALgwyoePa9u2rb744gvVq1dPFSpU0GuvvWY6EgAAFxRiOgD+uNatW2vr1q3asmWLLrvsMtNxAAC4IFY+/ERoaKiaNm1qOgYAABdF+QAAAI6ifAAAAEdRPgAAgKMoHwAAwFGUDwAA4CjKBwAAcBTlAwAAOIryAQAAHOUz5WPMmDFq0qSJIiIiVL16dXXt2lXfffedxzGWZWnkyJGKjY1V2bJl1bp1a+3YscNQYgAAcC4+Uz5WrlypQYMGad26dVq2bJlyc3OVlJSkzMxM+5iXXnpJY8eO1fjx47VhwwbFxMTo1ltv1YkTJwwmBwAABbmsgp/F7kN++uknVa9eXStXrtSNN94oy7IUGxuroUOH6rHHHpMkZWdnKzo6Wi+++KIeeOCBIn1ft9utqKgoZWRkKDIysjR/CwAA+JWivob6zMrH2TIyMiRJlStXliTt3btXaWlpSkpKso8JCwtTq1attHbt2vN+n+zsbLndbo8HAADezrIs+ej6gW+WD8uy9Oijj6ply5aKj4+XJKWlpUmSoqOjPY6Njo62nzuXMWPGKCoqyn7ExcWVXnAAAP6g3bt36+mnn1bdunX15Zdfmo5TLCGmAxTH4MGDtW3bNq1evbrQcy6Xy2NsWVahuYJGjBihRx991B673W4KCADAKx09elT16tWzVzymT5+uG2+80XCqS+dzKx8PPfSQFixYoC+++EI1a9a052NiYiSp0CpHenp6odWQgsLCwhQZGenxAADAG0VHR6t169b2eO7cucrKyjIXqJh8pnxYlqXBgwfr/fff1/Lly1W7dm2P52vXrq2YmBgtW7bMnsvJydHKlSvVvHlzp+MCAFAqevXqZf86IyNDH3/8scE0xeMz5WPQoEGaMWOG/v3vfysiIkJpaWlKS0vT6dOnJf12uWXo0KEaPXq0PvjgA33zzTfq3bu3ypUrp7vvvttwegAASsZf/vIXhYeH2+Pp06cbTFM8PvNW2/Pt25g6dap69+4t6bfVkWeffVaTJ0/WL7/8ouuvv14TJkywN6UWBW+1BQB4ux49emjWrFmSpJCQEB0+fFjVqlUznKror6E+Uz6cQvkAAHi7RYsWqUOHDvZ43LhxGjx4sMFEv/H7+3wAABCokpKSVL16dXvsa5deKB8AAPiYkJAQ9ejRwx5//fXXhT7vzJtRPryMZVlauHChx2fWAABwtoLvepGkGTNmGEpy6SgfXmbTpk3q1KmTqlatqs6dO2v79u2mIwEAvFDjxo1Vv359ezxjxgzl5+cbTFR0lA8v89FHH0mSsrKy9PHHH3u8nQoAgN+5XC6P1Y99+/ZpzZo1BhMVHeXDy/xePiSpfv36uuqqqwymAQB4s549e3qMfWXjKeXDi+zdu1fbtm2zx126dDGYBgDg7S6//HKP263PmTPHJ263TvnwIgsWLPAYUz4AABdz9u3WFy5caDBN0VA+vEjBSy4xMTFq2rSpwTQAAF9wxx13+Nzt1ikfXuLnn3/WqlWr7HGnTp0UFMR/HgDAhUVGRnqslC9atEjHjh0zmOjieHXzEosWLVJeXp495pILAKCoCl56yc3N1ezZsw2muTjKh5coeMmlfPnyuvnmmw2mAQD4kqSkJI8PlvP2Sy+UDy+QnZ2tJUuW2OO2bdtyfw8AQJGVKVPG43br69ev1+7duw0mujDKhxdYvny5Tp48aY+55AIAuFS+dLt1yocXKHjJJTg42ONjkgEAKIqEhATVq1fPHs+YMUOWZRlMdH6UD8Py8/M97u/RsmVLValSxWAiAIAvOvt263v37vXa261TPgzbuHGjjhw5Yo+55AIAKC5fud065cOwgpdcJMoHAKD4rrjiCrVq1UrBwcFq166d2rVrZzrSOYWYDhDoCpaP+Ph41alTx2AaAICvGz9+vKpVq6bo6GjTUc6L8mHQnj17tGPHDnvMqgcA4I+Kj483HeGiuOxiEJdcAACBiPJhUMHyERsbq4SEBINpAABwBuXDkGPHjmn16tX2uHPnznyQHAAgIPBqZ8jChQuVn59vj7nkAgAIFJQPQwpecomIiFCbNm0MpgEAwDmUDwNOnz6tpUuX2uPk5GSFhYUZTAQAgHMoHwZ89tlnOnXqlD3u2rWruTAAADiM8mFAnTp1NGTIEF1xxRUKCQlR+/btTUcCAMAxLstbP/LOELfbraioKGVkZCgyMrJUf5ZlWfrhhx9Ut27dUv05AAA4oaivoax8GORyuSgeAICAQ/kAAACOonwAAABHUT4AAICjKB8AAMBRlA8AAOAoygcAAHAU5QMAADiK8gEAABxF+QAAAI6ifAAAAEdRPgAAgKMoHwAAwFGUDwAA4CjKBwAAcBTlAwAAOIryAQAAHEX5AAAAjqJ8AAAAR1E+AACAoygfAADAUZQPAADgKMoHAABwFOUDAAA4ivIBAAAcRfkAAACOonwAAABHUT4AAICjKB8AAMBRlA8AAOAoygcAAHAU5QMAADiK8gEAABxF+QAAAI6ifAAAAEdRPgAAgKNCTAcAAADOcrlc9q8ty3L857PyAQAAHEX5AAAAjqJ8AAAAR1E+AACAoygfAADAUZQPAADgKMoHAABwlF+WjzfeeEO1a9dWeHi4EhIS9OWXX5qOBAAA/svvysfs2bM1dOhQPfnkk9q8ebNuuOEGtWvXTvv373c8y8mTJ7V//37t2LFDmzZtcvznAwDgjS65fPTu3VurVq0qjSwlYuzYserbt6/69eun+vXr67XXXlNcXJwmTpzoeJb/+7//0xVXXKH4+HjdfPPNjv98AAC80SWXjxMnTigpKUlXXXWVRo8erUOHDpVGrmLJyclRamqqkpKSPOaTkpK0du3ac35Ndna23G63x6OkRERE2L8+ceKEkVvYAgDgbS65fMyfP1+HDh3S4MGDNXfuXNWqVUvt2rXTvHnzdObMmdLIWGTHjh1TXl6eoqOjPeajo6OVlpZ2zq8ZM2aMoqKi7EdcXFyJ5alQoYL967y8PGVnZ5fY9wYAwFcVa89HlSpV9PDDD2vz5s36+uuvdeWVV6pXr16KjY3VI488ov/85z8lnfOSFPzAHOm3D805e+53I0aMUEZGhv04cOBAieUouPIh/bb6AQBAoPtDG06PHDmipUuXaunSpQoODlb79u21Y8cOXXPNNXr11VdLKmORVa1aVcHBwYVWOdLT0wuthvwuLCxMkZGRHo+SUnDlQ/ptAyoAAIHuksvHmTNnNH/+fHXs2FFXXHGF5s6dq0ceeURHjhzRtGnTtHTpUk2fPl3PPfdcaeS9oNDQUCUkJGjZsmUe88uWLVPz5s0dz8PKBwAAhYVc6hfUqFFD+fn56tGjh77++ms1atSo0DFt27ZVxYoVSyDepXv00UfVq1cvJSYmqlmzZpoyZYr279+vAQMGOJ6FlQ8AAAq75PLx6quvqlu3bgoPDz/vMZUqVdLevXv/ULDiuvPOO3X8+HE999xzOnLkiOLj47Vo0SJdccUVjmdh5QMAgMIuuXz06tWrNHKUqAcffFAPPvig6RisfAAAcA5+d4dTb8LKBwAAhVE+StHZKx+UDwAAKB+l6uyVDy67AABA+ShVZcqUUVhYmD1m5QMAAMpHqSt46YWVDwAAKB+l7uwPlwMAINBd8lttcWlY+QAAeBvTn7LOykcpY+UDAABPlI9SxsoHAACeKB+ljJUPAAA8UT5KWcGVD8oHAACUj1JXcOWDyy4AAFA+Sh0rHwAAeKJ8lLKCKx9ZWVnKzc01mAYAAPMoH6Xs7A+X49ILACDQUT5KGR8uBwCAJ+5wWsrq1KmjTp06qXz58oqIiFBoaKjpSAAAGOWyTN9j1cu43W5FRUUpIyNDkZGRpuMAAOAzivoaymUXAADgKMoHAABwFOUDAAA4ivIBAAAcRfkAAACOonwAAABHUT4AAICjKB8AAMBRlA8AAOAoygcAAHAU5QMAADiK8gEAABxF+QAAAI6ifAAAAEdRPgAA8HO7du3Sr7/+ajqGjfIBAICfu/fee1WlShUlJibqX//6l+k4lA8AAPxZRkaGUlNTlZ+fr9TUVO3du9d0JMoHAAD+bNWqVcrPz7fHN910k8E0v6F8AADgx7744gv710FBQbrxxhsNpvlvDtMBAABA6Vm+fLn964SEBEVFRRlM8xvKBwAAfur48ePaunWrPW7Tpo3BNP9D+QAAwE+tWLHCY+wN+z0kygcAAH6r4H6PkJAQtWjRwmCa/6F8AADgpwru97j++utVoUIFg2n+h/IBAIAfOnLkiHbt2mWPvWW/h0T5AADAL3nrfg+J8gEAgF8qeMklLCxMzZo1M5jGE+UDAAA/VHCzafPmzRUeHm4wjSfKBwAAfmb//v3as2ePPfamSy4S5QMAAL9TcNVD8q7NphLlAwAAv1Nwv0f58uXVpEkTg2kKo3wAAOBHLMvyWPlo2bKlQkNDDSYqjPIBAIAf2bNnjw4cOGCPvW2/h0T5AADAr3j7fg+J8gEAgF8puN8jKipK1113ncE050b5AADAT5y93+PGG29USEiIwUTnRvkAAMBP7Nq1S0ePHrXH3rjfQ6J8AADgN3xhv4dE+QAAwG8U3O9RpUoVNWjQwGCa86N8AADgJ44fP27/unXr1goK8s6Xee/bhQIAAIplxYoVSk9P14oVKxQdHW06znlRPgAA8CPVq1dX9+7dTce4IO9cjwEAAH6L8gEAABxF+fAy+fn5Wrp0qZ599lnTUQAAKBXs+fAin376qYYMGaLdu3dLknr06KGrr77acCoAAEoWKx9epEKFCnbxkKSJEycaTAMAQOmgfHiR5s2bq1GjRvZ46tSpyszMNBcIAIBSQPnwIi6XS4MGDbLHGRkZmjlzpsFEAACUPMqHl7n77rtVsWJFezxhwgRZlmUuEAAAJYzy4WXKlSunPn362ONt27Zp9erVBhMBAFCyKB9eaODAgXK5XPZ4woQJBtMAAFCyKB9e6Morr1RycrI9nj9/vo4cOWIwEQAAJYfy4aUKbjzNzc3VlClTDKYBAKDkUD68VHJysurUqWOPJ0+erDNnzhhMBABAyfCJ8rFv3z717dtXtWvXVtmyZVW3bl0988wzysnJ8Thu//796tSpk8qXL6+qVatqyJAhhY7xFcHBwRo4cKA9PnLkiD744AODiQAAKBk+UT6+/fZb5efna/LkydqxY4deffVVTZo0SU888YR9TF5enjp06KDMzEytXr1as2bN0vz58zVs2DCDyf+YPn36KDw83B6z8RQA4A9clo/eROKf//ynJk6cqB9++EGStHjxYnXs2FEHDhxQbGysJGnWrFnq3bu30tPTFRkZWaTv63a7FRUVpYyMjCJ/TWnq27ev3n77bXu8bds2NWjQwGAiAADOraivoT6x8nEuGRkZqly5sj3+6quvFB8fbxcPSWrbtq2ys7OVmppqImKJKLjxVGL1AwDg+3yyfOzZs0fjxo3TgAED7Lm0tDRFR0d7HFepUiWFhoYqLS3tvN8rOztbbrfb4+FNGjdurGbNmtnj6dOn69dffzUXCACAP8ho+Rg5cqRcLtcFHxs3bvT4msOHDys5OVndunVTv379PJ4reGOu31mWdc75340ZM0ZRUVH2Iy4urmR+cyWo4OrHqVOnNG3aNINpAAD4Y4zu+Th27JiOHTt2wWNq1aplb7o8fPiw2rRpo+uvv17vvPOOgoL+152efvppffTRR9q6das998svv6hy5cpavny52rRpc87vn52drezsbHvsdrsVFxfnNXs+pN8yXn755UpPT5ckXX311dq1a5fH7x8AANOKuucjxMFMhVStWlVVq1Yt0rGHDh1SmzZtlJCQoKlTpxZ64W3WrJmef/55HTlyRDVq1JAkLV26VGFhYUpISDjv9w0LC1NYWFjxfxMOCAsLU//+/fX8889Lknbv3q3PP/9ct956q+FkAABcOp/4p/Phw4fVunVrxcXF6eWXX9ZPP/2ktLQ0j70cSUlJuuaaa9SrVy9t3rxZn3/+uf72t7+pf//+XrOC8Uc88MADCg4Otsfjx483mAYAgOLzifKxdOlSff/991q+fLlq1qypGjVq2I/fBQcH65NPPlF4eLhatGih7t27q2vXrnr55ZcNJi85cXFx6tKliz1euHCh9u3bZy4QAADF5LP3+Sgt3nafj4K++OIL3XTTTfb4scce0wsvvGAwEQAA/+P39/kIRK1bt9Y111xjj1NSUpSVlWUwEQAAl47y4UNcLpcefPBBe3z8+HHNmTPHYCIAAC4d5cPH3HPPPYqIiFDFihX16KOP6oYbbjAdCQCAS2L0rba4dBEREVqyZIkaNWqkcuXKmY4DAMAlo3z4oObNm5uOAABAsXHZBQAAOIryAQAAHEX5AAAAjqJ8AAAAR1E+AACAoygfAADAUZQPAADgKMoHAABwFOUDAAA4ivIBAAAcRfkAAACOonwAAGDI3Llz9euvv5qO4TjKBwAABqxdu1Z33XWX4uPjtXTpUtNxHEX5AADAYZmZmbrnnnuUn5+vQ4cOqW3bttq8ebPpWI6hfAAA4LDhw4drz5499vjuu+/WddddZzCRsygfAAA4aNmyZXrjjTfscWxsrMaPH28wkfMoHwAAOOTXX39Vnz59PObeeustVapUyVAiMygfAAA45OGHH9bBgwft8QMPPKDk5GSDicygfAAA4IAPP/xQ7777rj2uXbu2Xn75ZYOJzKF8AABQytLT03X//ffbY5fLpWnTpqlChQoGU5lD+QgwWVlZGjhwoGbPnm06CgAEBMuyNHDgQP3000/23KOPPqobbrjBYCqzKB8BZM+ePWrevLkmTZqk/v37a/fu3aYjAYDfmzlzpt5//317fM0112jUqFEGE5lH+Qgg06ZNs29ic+LECXXr1k2nT582nAoA/NfBgwc1ePBgexwcHKx3331X4eHhBlOZR/kIIE8//bTHMt+2bdv08MMPG0wEAP7Lsiz17dtXGRkZ9txTTz2lhIQEg6m8A+UjgISEhOi9995TtWrV7Lk333xT06dPN5gKAPzT5MmTPT6zJSEhQU8++aTBRN6D8hFgLrvsMs2cOVMul8ueGzBggHbu3GkwFQD4lz179uhvf/ubPQ4LC9O7776rMmXKGEzlPSgfAejWW2/V008/bY9PnTqlbt26KTMz02AqAPAPeXl5uvfeez3+Tn3++ed1zTXXGEzlXSgfAer//u//dPPNN9vjnTt3auDAgbIsy2AqAPB9Y8eO1Zo1a+zxDTfcoKFDh5oL5IUoHwEqODhYM2fOVExMjD03ffp0vf322wZTAYBv++abb/TUU0/Z4/Lly+udd95RcHCwwVTeh/IRwKKjozVr1iwFBf3vj8HgwYO1detWg6kAwDedOXNG99xzj3Jycuy5V155RXXq1DGYyjtRPgJcq1atPG52k5WVpW7dusntdhtMBQC+Z9SoUfa9lCQpOTnZ45bq+B/KB/TYY4+pXbt29vg///mP+vfvz/4PACiiDRs26Pnnn7fHFStWVEpKisc7C/E/lA8oKChI7777rmrWrGnPzZkzRxMnTjSYCgB8g2VZGjRokPLy8uy58ePH67LLLjOYyrtRPiBJqlq1qmbPnq2QkBB77pFHHtHGjRsNpgIA7+dyufTee++pZcuWkqS//OUvuvvuuw2n8m6UD9iaN2+uF1980R7n5OSoW7du+uWXXwymAgDvV7duXa1YsUKvv/66Jk6cyOWWi3BZXNj34Ha7FRUVpYyMDEVGRpqO4zjLsnTbbbfpo48+sue6dOmiDz74gP+ZAAAXVNTXUFY+4MHlcmnq1KmqVauWPffRRx/ptddeM5YJAOBfKB8opFKlSpo7d65CQ0PtueHDh+urr74ymAoA4C8oHzinxMREjR071h7n5uaqe/fuOnbsmMFUAAB/QPnAeT344IPq1q2bPT548KDuuece5efnG0wFAPB1lA+cl8vlUkpKiq688kp7bvHixZo7d67BVAAAX0f5wAVFRkZq3rx5CgsLU3BwsF566SV1797ddCwAgA8LufghCHTXXnutpk6dqssvv1wtWrQwHQcA4OMoHyiSHj16mI4AAPATXHYBAACOonwAAABHUT4AAICjKB8AAMBRlA8AAOAoygcAAHAU5QMAADiK8gEAABxF+QAABKSsrCx9++23pmMEJMoHACDg/Pzzz7r11lvVqlUr/fDDD6bjBBzKBwAgoOzdu1fNmzfX6tWrlZ6ernbt2un48eOmYwUUygcAIGBs3LhRzZo103fffWfPpaena8+ePQZTBR7KBwAgICxatEitWrXS0aNH7bnLL79ca9asUdOmTQ0mCzyUDwCA33vzzTfVuXNnnTp1yp5r1KiRvvrqK11zzTUGkwUmygcAwG9ZlqWnnnpK999/v/Ly8uz5tm3batWqVYqNjTWYLnCFmA4AAEBpyMnJUd++fTVjxgyP+T59+mjSpEkqU6aMoWRg5QMA4HcyMjLUvn37QsVj5MiRSklJoXgYxsoHAMCvHDx4UO3bt9f27dvtuZCQEE2ZMkX33XefwWT4HeUDAOA3tm3bpvbt2+vQoUP2XIUKFTR//nwlJSUZTIaCKB8AAL/w+eef6/bbb5fb7bbnatSooUWLFqlRo0bmgqEQ9nwAAHzeu+++q+TkZI/i8ac//Unr1q2jeHghygcAwGdZlqVRo0bp3nvvVW5urj3funVrrV69WpdffrnBdDgfLrsAAHxSbm6uBg4cqJSUFI/5u+++W2+//bbCwsIMJcPFsPIBAPA5J0+eVOfOnQsVj8cff1zTp0+neHg5Vj4AAD4lLS1NHTp00KZNm+y5oKAgjR8/XgMHDjSYDEXlcysf2dnZatSokVwul7Zs2eLx3P79+9WpUyeVL19eVatW1ZAhQ5STk2MmKACgxGVlZally5YexaNs2bL64IMPKB4+xOfKx/Dhw895L/68vDx16NBBmZmZWr16tWbNmqX58+dr2LBhBlICAEpDeHi4HnnkEXtcrVo1rVixQp07dzaYCpfKpy67LF68WEuXLtX8+fO1ePFij+eWLl2qnTt36sCBA3Y5eeWVV9S7d289//zzioyMNBEZAFDCBg0apB9//FEffvihFi9erLp165qOhEvkMysfR48eVf/+/TV9+nSVK1eu0PNfffWV4uPjPVZF2rZtq+zsbKWmpp73+2ZnZ8vtdns84Bvy8vK0Zs0a0zEAGPDCCy/o66+/pnj4KJ8oH5ZlqXfv3howYIASExPPeUxaWpqio6M95ipVqqTQ0FClpaWd93uPGTNGUVFR9iMuLq5Es6P0vPHGG2rZsqV69+6tn3/+2XQcAA4KCgpSxYoVTcdAMRktHyNHjpTL5brgY+PGjRo3bpzcbrdGjBhxwe/ncrkKzVmWdc75340YMUIZGRn248CBA3/494XSt2/fPvvPw7Rp01S/fn3NmzdPlmUZTgYAuBijez4GDx6su+6664LH1KpVS6NGjdK6desKvW87MTFRPXv21LRp0xQTE6P169d7PP/LL7/ozJkzhVZECgoLC+P94D5o0aJFyszMtMfp6enq1q2bunbtqgkTJpxzUzIAwDu4LB/4p+L+/fs99mIcPnxYbdu21bx583T99derZs2aWrx4sTp27KiDBw+qRo0akqTZs2fr3nvvVXp6epE3nLrdbkVFRSkjI4NNql5u5cqV6tevn77//nuP+aioKL3yyivq06fPBVe9AAAlq6ivoT5RPs62b98+1a5dW5s3b7Y/MCgvL0+NGjVSdHS0/vnPf+rnn39W79691bVrV40bN67I35vy4VtOnz6tZ599Vi+//LLy8vI8nrvppps0ZcoUNqQBgEOK+hrqExtOiyI4OFiffPKJwsPD1aJFC3Xv3l1du3bVyy+/bDoaSlHZsmX1wgsvaP369br22ms9nlu+fLkaNGigsWPHFiomAABzfHLlozSx8uG7zpw5o5dfflnPPvussrOzPZ5r2rSpUlJS1KBBA0PpAMD/BdzKB1CmTBmNGDFCW7ZsUYsWLTye+/rrr9W4cWM988wzhYoJAMBZlA/4nXr16mnVqlUaP368KlSoYM/n5ubqueeeU+PGjbVu3TqDCQEgsFE+4JeCgoI0aNAg7dixQ8nJyR7P7dy5U82bN9fQoUN18uRJQwkBIHBRPuDXLr/8ci1atEjTp09X5cqV7XnLsvT666+rQYMGWrZsmcGEABB4KB/wey6XS3/961+1a9euQje127dvn5KSktSnTx/98ssvhhICQGChfCBgVK9eXe+9954++uijQndAnTp1qurXr6/58+cbSgcAgYPygYDTuXNn7dy5Uw888IDH/NGjR3XHHXfooYceMpQMAAID5QMBKSoqSpMmTdIXX3yhK6+80uO5du3aGUoFAIGB8oGA1rp1a23dulV///vfFRQUpJ49e6p9+/amYwGAX+MOp2fhDqeBa+PGjapVq5aqVq1qOgoA+KSivoaGOJgJ8GqJiYmmIwBAQOCyCwAAcBTlAwAAOIryAQAAHEX5AIAAZ1mW1q5dqz59+qhfv36m4yAAsOEUAALUTz/9pOnTpyslJUW7du2SJIWGhurFF19UlSpVDKeDP2PlAwACSH5+vpYuXaru3bvrsssu07Bhw+ziIUk5OTmaMWOGwYQIBKx8AEAAOHjwoKZOnaq33npLP/7443mPu/nmm1WvXj0HkyEQUT4AwE+dOXNGCxcuVEpKipYsWaL8/PxzHhcbG6v77rtPffr0UZ06dRxOiUBE+QAAP7N792699dZbeuedd5Senn7OY4KDg9WxY0f169dPycnJCgnh5QDO4U8bAPiB06dPa/78+UpJSdHKlSvPe1zdunXVt29f9e7dWzVq1HAwIfA/lA8A8GFbtmxRSkqKZsyYoYyMjHMeExYWpr/85S/q16+fWrVqpaAg3msAsygfAOBjMjIy9N577yklJUWpqannPa5Bgwbq37+/evbsqcqVKzuYELgwygcA+JCZM2fq/vvv16lTp875fIUKFdSjRw/1799fiYmJcrlcDicELo7yAfi4X3/9VVFRUbzIBIgGDRqcs3g0a9ZM/fr1U/fu3VWhQgUDyYCio3wAPu7222/XN998o+bNm6tFixZq0aKFEhISFBYWZjoaSkHDhg3VtGlTff3116pSpYruuece9e3bV3/6059MRwOKzGVZlmU6hDdxu92KiopSRkaGIiMjTccBLujMmTOqWLFioX8Jh4WFKTEx0S4jzZo1U7Vq1QylRElbvHix3G63unbtSsmEVynqayjl4yyUD/iSjRs3qkmTJkU69uqrr7bLSIsWLfT//t//41INgBJF+Sgmygd8yZEjRzRnzhytWbNGa9as0eHDh4v8tVWqVPG4VJOYmKjw8PBSTAvA31E+ionyAV9lWZZ+/PFHu4isWbNG27dvV1H/Fw8NDVVCQoJHIalevXoppwbgTygfxUT5gD/JyMjQunXr7DKyfv16ZWZmFvnrr7zySrVo0UJ9+vTRjTfeWIpJAfgDykcxUT7gz3Jzc7Vt2zaP1ZGDBw9e9OtSUlLUt29fBxIC8GWUj2KifCDQ7N+/3y4ia9eu1datWwt9+umuXbu89mPW8/PzlZOTo+zsbOXk5Hg8zp4rOO7YsSPvFAFKGOWjmCgfCHQnTpzQ+vXr7ULy/fffa8+ePY69M2b48OFKTU29YHEoOM7LyyvWzzl69Ch7WoASVtTXUG4yBsBDRESEbrnlFt1yyy2SftvI6uRbcjdv3qzly5eX+s/Jzs4u9Z8B4Nz4aEMAF+T0vUBCQ0Md+Tk5OTmO/BwAhbHyAcCrNGzYUJmZmQoNDVVoaKjCwsLsX19sfCnHxsXFmf6tAgGLPR9nYc8HAADFU9TXUC67AAAAR1E+AACAoygfAADAUZQPAADgKMoHAABwFOUDAAA4ivIBAAAcRfkAAACOonwAAABHUT4AAICjKB8AAMBRlA8AAOAoygcAAHAU5QMAADiK8gEAABxF+QAAAI6ifAAAAEeFmA7gbSzLkiS53W7DSQAA8C2/v3b+/lp6PpSPs5w4cUKSFBcXZzgJAAC+6cSJE4qKijrv8y7rYvUkwOTn5+vw4cOKiIiQy+UyHcdRbrdbcXFxOnDggCIjI03H8Xmcz5LHOS15nNOSFejn07IsnThxQrGxsQoKOv/ODlY+zhIUFKSaNWuajmFUZGRkQP5PU1o4nyWPc1ryOKclK5DP54VWPH7HhlMAAOAoygcAAHAU5QO2sLAwPfPMMwoLCzMdxS9wPkse57TkcU5LFuezaNhwCgAAHMXKBwAAcBTlAwAAOIryAQAAHEX5AAAAjqJ8wEN2drYaNWokl8ulLVu2eDy3f/9+derUSeXLl1fVqlU1ZMgQ5eTkmAnqxfbt26e+ffuqdu3aKlu2rOrWratnnnmm0LnifF6aN954Q7Vr11Z4eLgSEhL05Zdfmo7kM8aMGaMmTZooIiJC1atXV9euXfXdd995HGNZlkaOHKnY2FiVLVtWrVu31o4dOwwl9i1jxoyRy+XS0KFD7TnO54VRPuBh+PDhio2NLTSfl5enDh06KDMzU6tXr9asWbM0f/58DRs2zEBK7/btt98qPz9fkydP1o4dO/Tqq69q0qRJeuKJJ+xjOJ+XZvbs2Ro6dKiefPJJbd68WTfccIPatWun/fv3m47mE1auXKlBgwZp3bp1WrZsmXJzc5WUlKTMzEz7mJdeekljx47V+PHjtWHDBsXExOjWW2+1P+8K57ZhwwZNmTJFDRs29JjnfF6EBfzXokWLrHr16lk7duywJFmbN2/2eC4oKMg6dOiQPffee+9ZYWFhVkZGhoG0vuWll16yateubY85n5emadOm1oABAzzm6tWrZz3++OOGEvm29PR0S5K1cuVKy7IsKz8/34qJibFeeOEF+5isrCwrKirKmjRpkqmYXu/EiRPWVVddZS1btsxq1aqV9fDDD1uWxfksClY+IEk6evSo+vfvr+nTp6tcuXKFnv/qq68UHx/vsSrStm1bZWdnKzU11cmoPikjI0OVK1e2x5zPosvJyVFqaqqSkpI85pOSkrR27VpDqXxbRkaGJNl/Jvfu3au0tDSPcxwWFqZWrVpxji9g0KBB6tChg2655RaPec7nxfHBcpBlWerdu7cGDBigxMRE7du3r9AxaWlpio6O9pirVKmSQkNDlZaW5lBS37Rnzx6NGzdOr7zyij3H+Sy6Y8eOKS8vr9D5io6O5lwVg2VZevTRR9WyZUvFx8dLkn0ez3WOf/zxR8cz+oJZs2Zp06ZN2rBhQ6HnOJ8Xx8qHHxs5cqRcLtcFHxs3btS4cePkdrs1YsSIC34/l8tVaM6yrHPO+6Oins+CDh8+rOTkZHXr1k39+vXzeC7Qz+elOvu8cK6KZ/Dgwdq2bZvee++9Qs9xjovmwIEDevjhhzVjxgyFh4ef9zjO5/mx8uHHBg8erLvuuuuCx9SqVUujRo3SunXrCn0WQWJionr27Klp06YpJiZG69ev93j+l19+0ZkzZwq1e39V1PP5u8OHD6tNmzZq1qyZpkyZ4nEc57PoqlatquDg4EKrHOnp6ZyrS/TQQw9pwYIFWrVqlWrWrGnPx8TESPrtX+w1atSw5znH55aamqr09HQlJCTYc3l5eVq1apXGjx9vv5OI83kBBvebwEv8+OOP1vbt2+3Hp59+akmy5s2bZx04cMCyrP9tkDx8+LD9dbNmzWKD5HkcPHjQuuqqq6y77rrLys3NLfQ85/PSNG3a1Bo4cKDHXP369dlwWkT5+fnWoEGDrNjYWGv37t3nfD4mJsZ68cUX7bns7Gw2SJ6H2+32+Dtz+/btVmJiovXXv/7V2r59O+ezCCgfKGTv3r2F3u2Sm5trxcfHWzfffLO1adMm67PPPrNq1qxpDR482FxQL3Xo0CHryiuvtG666Sbr4MGD1pEjR+zH7zifl2bWrFlWmTJlrLfeesvauXOnNXToUKt8+fLWvn37TEfzCQMHDrSioqKsFStWePx5PHXqlH3MCy+8YEVFRVnvv/++tX37dqtHjx5WjRo1LLfbbTC57yj4bhfL4nxeDOUDhZyrfFjWbyskHTp0sMqWLWtVrlzZGjx4sJWVlWUmpBebOnWqJemcj4I4n5dmwoQJ1hVXXGGFhoZajRs3tt8mios735/HqVOn2sfk5+dbzzzzjBUTE2OFhYVZN954o7V9+3ZzoX3M2eWD83lhLsuyLANXewAAQIDi3S4AAMBRlA8AAOAoygcAAHAU5QMAADiK8gEAABxF+QAAAI6ifAAAAEdRPgAAgKMoHwAAwFGUDwAA4CjKBwCv9tNPPykmJkajR4+259avX6/Q0FAtXbrUYDIAxcVnuwDweosWLVLXrl21du1a1atXT9ddd506dOig1157zXQ0AMVA+QDgEwYNGqTPPvtMTZo00datW7VhwwaFh4ebjgWgGCgfAHzC6dOnFR8frwMHDmjjxo1q2LCh6UgAiok9HwB8wg8//KDDhw8rPz9fP/74o+k4AP4AVj4AeL2cnBw1bdpUjRo1Ur169TR27Fht375d0dHRpqMBKAbKBwCv9/e//13z5s3T1q1bVaFCBbVp00YRERFauHCh6WgAioHLLgC82ooVK/Taa69p+vTpioyMVFBQkKZPn67Vq1dr4sSJpuMBKAZWPgAAgKNY+QAAAI6ifAAAAEdRPgAAgKMoHwAAwFGUDwAA4CjKBwAAcBTlAwAAOIryAQAAHEX5AAAAjqJ8AAAAR1E+AACAoygfAADAUf8fbrvOF6Q/tGwAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -84,14 +104,12 @@ ], "source": [ "angles = np.angle(gamma, deg=True) / 2.\n", - "lengths = np.abs(gamma)\n", + "lengths = np.abs(gamma) * 100.\n", "\n", "# Create whisker plot\n", "plt.figure(figsize=(6, 6))\n", - "plt.quiver(x, y, np.cos(np.deg2rad(angles)), np.sin(np.deg2rad(angles)), lengths,\n", - " angles='xy', scale_units='xy', scale=1, width=0.001)\n", - "plt.xlim(-10, 10)\n", - "plt.ylim(-10, 10)\n", + "plt.quiver(x, y, np.cos(np.deg2rad(angles)), np.sin(np.deg2rad(angles)),\n", + " color=\"black\", headaxislength=0, headlength=0, headwidth=1, pivot = 'middle')\n", "plt.xlabel('x')\n", "plt.ylabel('y')\n", "plt.show()" @@ -107,38 +125,20 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 7, "id": "d95fa97a-1415-44b4-82cf-3cae3106e2a1", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[(1., 0.)]\n", - "[(3., 0.)]\n", - "[(9., 0.)]\n", - "[(27., 0.)]\n", - "[(81., 0.)]\n", - "[(243., 0.)]\n", - "[(729., 0.)]\n", - "[(2187., 0.)]\n", - "[(6561., 0.)]\n", - "[(19683., 0.)]\n" - ] - } - ], + "outputs": [], "source": [ "n_gal = 1\n", "d_array = []\n", "g_array = []\n", "for i in range(10):\n", - " shifts = np.zeros(n_gal, dtype=[('dx', 'f8'), ('dy', 'f8')])\n", - " shifts['dx'][0] = 3.0 ** i \n", - " shifts['dy'][0] = 0.\n", - " print(shifts)\n", + " position = galsim.PositionD(3.0 ** i, 0.)\n", " # get the shear\n", - " g1, g2 = shear_obj.get_shear(z_source, shifts)\n", + " shear = shear_obj.get_shear(z_source, position)\n", + " g1 = shear.g1\n", + " g2 = shear.g2\n", " gabs = np.abs(g1 + 1j * g2)\n", " d_array.append(3 ** i)\n", " g_array.append(gabs)\n", @@ -148,23 +148,23 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 9, "id": "4f6eb0d7-2809-4b37-8357-1e443e900273", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "Text(0, 0.5, 'shear')" + "Text(0, 0.5, '$|g|$')" ] }, - "execution_count": 34, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAG1CAYAAAAV2Js8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABRKElEQVR4nO3dd1xV5eMH8M+5l42AAoIyVFwIgiBTUDSsMC0VtWWmWGppw8xs/Wwvy1KzRHPPLDVHZZZR7hFLcKHiQEFBEZS9731+f2B8IyWGF84dn/frxev15dzDOZ/L6Rufzn2e50hCCAEiIiIiA6SQOwARERGRXFiEiIiIyGCxCBEREZHBYhEiIiIig8UiRERERAaLRYiIiIgMFosQERERGSwWISIiIjJYRnIH0HZqtRqZmZmwsrKCJElyxyEiIqIGEEKgsLAQTk5OUCjqvu/DIlSPzMxMuLq6yh2DiIiImiAjIwMuLi51vs4iVA8rKysA1b9Ia2trmdMQERFRQxQUFMDV1bXm73hdWITq8ffHYdbW1ixCREREOqa+YS0cLE1EREQGi0WIiIiIDBaLEBERERksFiEiIiIyWCxCREREZLBYhOoQHR0NT09PBAYGyh2FiIiImokkhBByh9BmBQUFsLGxQX5+PqfPExER6YiG/v3mHSEiIiIyWCxCREREZLBYhIiIiMhgsQgRERGRwWIRIiIiIoPFIkR35a8LuZj6XRJ2nrwKTkAkIiJdw6fPU5P9mHwFMzYdRaVK4KejmfB2tsH0+7vjHve29T7tl4iISBvwjhA1ydJ9F/DS98moVAn4dWgNCxMljl/Jx1Or4jFq0SEcOJvDO0RERKT1eEeIGkWtFvh4xyksP5AGAHiqbye8/aAnbpZUYPG+C1hz+CKOpOfhyeWxCHazxSsR7ghys5U5NRER0Z1xZel6cGXp/ymvUmHGpmP4+WgmAOD/hvTApLDOtT4Gyy4ow8I957E+Nh0VKjUAIKybPabf3x29O7SRJTcRERmehv79ZhGqB4tQtYKySjy7JhGHL+TCWCnh84d9ENnbuc79M/NKsWD3OWyMz0CVuvofsYE9HDD9/u7wcrZpqdhERGSgWIQ0hEUIuFZQhqgVcTh9tRCWJkosHhuAft3sG/SzGTdK8NWfZ7El6QpUtwrRoJ6OePn+7ujRzjB/n0RE1PxYhDTE0IvQuexCRK2Ix5W8UrS1MsXK8YFNuqOTllOM+X+k4sejmRACkCTgQe/2mHZfd3R1aNUMyYmIyJDxoav/sH37dri7u6Nbt25YtmyZ3HF0RuKlGxi16DCu5JWis70ltkwJbfLHWm72lvjy8d74fVp/POjdHkIA249lIWLeXkzfkIyLOcUaTk9ERFQ/vb8jVFVVBU9PT+zevRvW1tbw8/NDbGwsbG0bNpPJUO8I/X7yKl78LgnlVWr07tAay6MCYWtporHjp2QWYN4fqYhJuQYAUCokPOznghfv7QqXNhYaOw8RERkm3hG6JS4uDj179oSzszOsrKwwZMgQ7Ny5U+5YWu3b2EuYvC4R5VVq3NvDAesn9tFoCQIATydrLB0XgJ9e6It73NtCpRbYkJCB8C/24K1tx3E1v0yj5yMiIroTrS9C+/btw9ChQ+Hk5ARJkrBt27bb9lm4cCHc3NxgZmYGf39/7N+/v+a1zMxMODv/b3aTi4sLrly50hLRdY4QAnN+P4OZW09ALYDRQa5YPNYf5ibKZjtnL5fWWPVUEDZPCUXfrnaoVAms+ysd/T/fjfd/PonsQhYiIiJqPlpfhIqLi+Hj44MFCxbc8fUNGzZg2rRpmDlzJpKSkhAWFobBgwcjPT0dAO64ujEf/3C7SpUar28+hq93nQMATLuvGz4Z4Q0jZcv8I+LfsQ2+ndgH3z/TB0GdbFFRpcbKgxfRf/ZuzNpxCjeKK1okBxERGRatL0KDBw/GRx99hJEjR97x9blz52LChAmYOHEiPDw88OWXX8LV1RWLFi0CADg7O9e6A3T58mW0b9++zvOVl5ejoKCg1pe+K6mowjNrErAx4TIUEjBrpDem3dddlsLYp7MdNjzbB2snBMHXtTXKKtVYvO8Cwj7bhS92nkF+SWWLZyIiIv2l9UXov1RUVCAxMRERERG1tkdERODQoUMAgKCgIJw4cQJXrlxBYWEhduzYgUGDBtV5zFmzZsHGxqbmy9XVtVnfg9xyi8oxeslf2H3mOsyMFVgyNgCjgzrImkmSJIR1a4utz4VixfgA9HSyRnGFCgt2n0O/2bvw1Z9nUVjGQkRERHdPp4tQTk4OVCoVHB0da213dHTE1atXAQBGRkaYM2cOwsPD0bt3b7z66quws7Or85hvvvkm8vPza74yMjKa9T3IKT23BKMWHcLRy/loY2GM9ZP64D5Px/p/sIVIkoSBPRyx/cV++OZJf7g7WqGwrApzY1IRNns3Fu05j5KKKrljEhGRDtOLh67++yMcIUStbcOGDcOwYcMadCxTU1OYmppqNJ82On45H0+tikNOUQVc2phj9dNB6NJWOxc2lCQJD3i1Q4SnI7Yfz8KXf6TiwvVifPbbaSw/cAGTB3TBk306wsy4+QZ1ExGRftLpO0L29vZQKpU1d3/+lp2dfdtdosaKjo6Gp6cnAgMD7+o42mhv6nU8tuQwcooq4NneGlumhGptCfonhULCMB8n/D6tP+Y+6oOOdhbIKarAR7+cwoDPd2PN4Ysor1LJHZOIiHSIThchExMT+Pv7IyYmptb2mJgYhIaG3tWxn3/+eaSkpCA+Pv6ujqNtNidexoRV8SipUKFfV3tseLYPHKzN5I7VKEZKBUb6ueCP6QPw2ShvOLc2x7WCcrzz40kM/GIvvotLR6VKLXdMIiLSAVr/0VhRURHOnTtX831aWhqSk5Nha2uLDh06YPr06Rg7diwCAgIQEhKCJUuWID09HZMnT5YxtfYRQmDR3vOY/dsZAECkrxNmP+wDEyPd7cLGSgUeC+yAEb1dsCEhAwt2ncWVvFK8ueU4Fu05j6n3dkOkr1OLLQFARES6R+sfsbFnzx6Eh4fftj0qKgqrVq0CUL2g4uzZs5GVlQUvLy/MmzcP/fv318j59eERGyq1wAc/n8Tqw5cAAM/274zXH+gBhUK/1lMqq1Th29h0LNpzDjlF1esOdW5riZfu7YahvZz07v0SEVHd+PT5uxQdHY3o6GioVCqkpqbqbBEqq1Th5Q3J+PXEVUgS8PaDnni6n5vcsZpVSUUV1hy+hMV7z+PmrXWH3B2t8PL93TCoZzsuqElEZABYhDREl+8I5ZdUYtLaBMSl3YCJUoG5j/ngoV5OcsdqMUXlVVh5IA1L919AQVn1NPueTtaYfn93DOzhwEJERKTHWIQ0RFeLUGZeKcavjEPqtSJYmRphybgAhHSpe/0kfZZfWonl+y9gxcGLKCqvLkS+rq0x/f7uCOtmz0JERKSHWIQ0RBeL0JmrhYhaEYerBWVwtDbF6qeD0KOdbmRvTjeLK7B43wWsPnQRpZXV0+wDO7XB9PvdDbYkEhHpKxahu6SrY4RiL+Ri0poEFJRVoatDK6x+OgjOrc3ljqVVrheW45u957Hur0sor6qeZh/axQ6vRHSHf0dbmdMREZEmsAhpiC7dEdpxPAvTvk9GhUqNgI5tsCwqAK0tTOSOpbWuFZQheve5W+sOVf/f4EHv9nhnqCccdWxtJSIiqo1FSEN0pQitOpiG97enQAhgUE9HzH+8Nx850UBX8kqxYNdZbEy4DJVawMrUCDMGuePJPh2h5JR7IiKdxCKkIdpehIQQ+Oy3M/hm73kAwNg+HfHesJ78A94EKZkF+L+tx5GckQcA8HGxwccjvOHlbCNvMCIiajQWIQ3R5iJUUaXGG5uPYUvSFQDAq4Pc8dw9XTgL6i6o1ALr49Ix+7fTKCyrgkICnurrhun3d4elqdYvxE5ERLc09O83nz1QB21/6GpReRUmrI7HlqQrUCokfP5wLzwf3pUl6C4pFRLG9umIP18ZgKE+TlALYPmBNNw3dy92nrxa/wGIiEin8I5QPbTxjlB2YRmeXhWPE1cKYGGixMIxfrjH3UHuWHppb+p1vL3tBNJvlAAA7vd0xPvDesKJM/GIiLQaPxrTEG0rQmk5xRi3IhYZN0phZ2mCFeMD4ePaWu5Yeq2sUoWvd53F4r0XUKUWsDBRYvr93TE+tBMf6EpEpKVYhDREm4pQckYenl4VjxvFFehoZ4HVTwWhk72lrJkMSeq1QszcehzxF28CADzbW+OTkd7wZRElItI6LEIaoi1FaNfpa3j+2ySUVqrQy8UGK8YHwr6VqWx5DJVaLbApMQOf7DiN/NJKSFL1TL0Zg9xhbWYsdzwiIrqFg6XvkjYNlt4Qn45JaxJRWqnCgO5t8d2kPixBMlEoJDwW2AF/vjIAI3s7QwhgzeFLuG/OXvxyLAv87woiIt3CO0L1kPOOkBACX+86h7kxqQCAh/1dMGukN4w5LkVrHDqXg7e2ncCFnGIAwD3ubfHhcC+42lrInIyIyLDxozENkasIqdQCb/94Autj0wEAL4R3xSsR3Tk9XguVVarwzd7zWLj7PCpUapgZKzD13m6YFNaZpZWISCYsQhoiRxEqrVBh6vdJiEm5BkkCPhjWE2NDOrXIuanpzl8vwltbT+DwhVwAQHfHVvhkhDcCOvFBrkRELY1FSENaugjdLK7AhNXxOJKeBxMjBb56vDce8GrX7OclzRBCYGvSFXz0yyncKK4AAIwOcsXrD/TgA3CJiFoQB0vroMs3S/DwN4dwJD0PNubG+HZiMEuQjpEkCSP9XLDrlQF4PNAVAPBdXAbunbMXW5MuczA1EZGW4R2herTUHaGUzAKMXxmH7MJyONmYYfXTQejmaNVs56OWEZd2AzO3HsfZ7CIAQN+udvhwuBc6t20lczIiIv3GO0J3qSWnzx86l4NHFx9GdmE5erSzwpbn+rIE6YkgN1v8MjUMrw5yh6mRAgfP5eKB+fsx/4+zKK9SyR2PiMjg8Y5QPZr7jtBPRzPxysZkVKoE+nS2xeKxAbAx58J8+uhSbjHe/vEk9qVeBwB0bmuJjyO9EdLFTuZkRET6h3eEdMCy/Rcw9bskVKoEHuzVHqufDmIJ0mMd7Syx+qlAfDW6N+xbmeLC9WKMXvoXXtl4tGZgNRERtSwWIRmo1QIfbU/BR7+cAgA81bcTvn68N0yNlDIno+YmSRKG+Tjhz1cG4Mk+HSBJwOYjlzFwzh5sjM/gYGoiohbGIiQDASDjZgkA4P+G9MA7D3lCoeBCiYbExtwYH0V6Y/OUUPRoZ4W8kkq8tvkYHlvyF85lF8odj4jIYHCMUD2aa4xQWaUKh8/nIryHg8aOSbqpUqXGyoNpmBdzFqWVKhgrJTzbvwteGNgVZsa8S0hE1BRcUFFDtOXp86T/Lt8swXs/ncQfp7IBAB3tLPDhcC/0795W5mRERLqHg6WJdIxLGwssHReAb570RztrM1zKLcG4FXGY+l0SsgvL5I5HRKSXWISItIgkSXjAqx3+eGUAnurbCQqpeomFe+fsxbq/LkGt5g1cIiJNYhGqQ0suqEj0b61MjfDu0J748fl+8Ha2QWFZFd7adgKjvjmEU1kFcscjItIbHCNUD44RIrmp1AJrDl/EnN9TUVReBaVCwsR+bnjpvm6wMDGSOx4RkVbiGCEiPaFUSHiqrxv+mD4Ag73aQaUWWLzvAu6fuw9/nromdzwiIp3GIkSkI9rZmGHRk/5YHhUA59bmuJJXigmrEzBlXSKu5nMwNRFRU7AIEemYez0cETO9P57t3xlKhYRfT1zFfXP3YuXBNKg4mJqIqFFYhIh0kIWJEd4c4oGfX+gHX9fWKCqvwvs/pyAy+iCOX86XOx4Rkc7gYOl6cLA0aTu1WmB9XDo+++00CsuqoJCAx4M6YNq93eBgbSZ3PCIiWXBlaQ1hESJdkV1Yhg+3n8LPRzMBAObGSkzo54ZnBnSGtZmxzOmIiFoWi5CGsAiRrom9kItPfzuNpPQ8AEAbC2M8H94VY0M6wtSIzy4jIsPAIqQhLEKki4QQ2HnyGmbvPI0L14sBAM6tzfFKRHcM93WGUiHJnJCIqHmxCGkIixDpsiqVGj8kXsa8P1JxraAcANCjnRVeH9wD93RvC0liISIi/cQipCEsQqQPSitUWHkoDYv2nEdhWRUAINjNFm8M7oHeHdrInI6ISPNYhDSERYj0SV5JBRbuOY9Vhy6iokoNABjs1Q4zBrmjS9tWMqcjItIcFqG7FB0djejoaKhUKqSmprIIkV65kleKeTGp2HzkMoSofozHowGumHZfNzhyyj0R6QEWIQ3hHSHSZ2euFuLznafxx6lsAICZsQIT+rnh2QFdOOWeiHQai5CGsAiRIYhLu4FPfz2FI7em3Le2MMYL4V3xZJ+OMDPmlHsi0j0sQhrCIkSGQgiBmJRrmL3zDM5lFwGonnI//f7uiOzNKfdEpFtYhDSERYgMTZVKjc1HLmNezFlcLah+qr27oxVeH+yOcHcHTrknIp3AIqQhLEJkqMoqVVh16CIW7j6HgltT7oNuTbn345R7ItJyLEIawiJEhi6/pBIL957DyoP/m3I/qKcjXh3UA10dOOWeiLQTi5CGsAgRVcvMK8WXf6Tih8TLUAtAIQGPBbripXu7o50Np9wTkXZhEdIQFiGi2s5eK8TsnWcQk3INAGBqpMDT/dwweUAX2Jhzyj0RaQcWIQ1hESK6s4SLN/Dpr6eRcOkmAMDGvHrK/dgQTrknIvmxCGkIixBR3YQQ+PNUNj777TTO3ppy72Rjhpfv746Rfi6cck9EsmER0hAWIaL6qdTi1pT7VGTlV0+57+7YCq8/0AMDe3DKPRG1PBYhDWERImq4skoV1hy+iOjd55FfWgkACOzUBm8M7gH/jrYypyMiQ8IipCEsQkSNl19SiUV7z2PlwTSU35pyH+HpiNcecEdXByuZ0xGRIWAR0hAWIaKmy8ovxfw/zmJjQkbNlPtH/F0x7f5uaG9jLnc8ItJjDf37rWjBTLIZMWIE2rRpg4cffljuKEQGpb2NOT4d1Qu/v9wfg3o6Qi2ADQkZuOfzPfj019PIL6mUOyIRGTiDKEJTp07FmjVr5I5BZLC6Olhh8dgAbJ4SiqBOtiivUuObvefR//PdWLz3PMoqVXJHJCIDZRBFKDw8HFZWHJdAJDf/jm2w4dk+WDE+AO6OVsgvrcSsX08j/Is92JiQAZWan9QTUcuSvQjt27cPQ4cOhZOTEyRJwrZt227bZ+HChXBzc4OZmRn8/f2xf//+lg9KRBohSRIG9nDEjpfC8MUjPnCyMUNWfhle++EYHvhyH2JSroFDF4mopchehIqLi+Hj44MFCxbc8fUNGzZg2rRpmDlzJpKSkhAWFobBgwcjPT29Zh9/f394eXnd9pWZmdlSb4OIGkmpkPCwvwt2zbgHbz3ogdYWxjibXYRJaxLwyDeHkXDxhtwRicgAaNWsMUmSsHXrVkRGRtZsCw4Ohp+fHxYtWlSzzcPDA5GRkZg1a1aDj71nzx4sWLAAP/zww3/uV15ejvLy8prvCwoK4OrqylljRM0sv7QSi/eex4qDaSirrJ5yP8zHCR9GevEZZkTUaHoxa6yiogKJiYmIiIiotT0iIgKHDh1qlnPOmjULNjY2NV+urq7Nch4iqs3G3BivPdADe18Nx+igDlAqJPx0NBND5u/n3SEiajZaXYRycnKgUqng6OhYa7ujoyOuXr3a4OMMGjQIjzzyCHbs2AEXFxfEx8fXue+bb76J/Pz8mq+MjIwm5yeixnO0NsOskd74YXIIOtha4EpeKR5dfBhf/pGKKpVa7nhEpGeM5A7QEP9+TpEQolHPLtq5c2eD9zU1NYWpqWmD9yei5tG7Qxv8MrUf3v3pJLYcuYIv/ziLA2dz8OXjvnBpYyF3PCLSE1p9R8je3h5KpfK2uz/Z2dm33SXStOjoaHh6eiIwMLBZz0NEdbMyM8bcR30x/3FfWJkaIeHSTQyevx8/HeVECCLSDK0uQiYmJvD390dMTEyt7TExMQgNDW3Wcz///PNISUn5z4/RiKhlDPd1xo6XwuDXoTUKy6ow9bskzNh0FEXlVXJHIyIdJ3sRKioqQnJyMpKTkwEAaWlpSE5OrpkeP336dCxbtgwrVqzAqVOn8PLLLyM9PR2TJ0+WMTURtTRXWwtsfDYEU+/tBoUE/JB4GQ99tR9HM/LkjkZEOkz26fN79uxBeHj4bdujoqKwatUqANULKs6ePRtZWVnw8vLCvHnz0L9//xbJx4euEmmfuLQbmPZ9EjLzy2CkkPBKhDue7d8ZCkXDxw4SkX7j0+fvUnR0NKKjo6FSqZCamsoiRKRl8ksq8X9bj+OX41kAgNAudpj7qC/a2ZjJnIyItAGLkIbwjhCR9hJCYFPiZbz300mUVKjQ2sIYn43qhUE928kdjYhkphcLKhIR/RdJkvBogCu2v9gP3s42yCupxLNrEzFz63GUVvCJ9kRUPxYhItJ5ndu2wuYpoXi2f2cAwLex6Ri64ABSMgtkTkZE2o5FqA5cR4hIt5gYKfDmEA+smxAMBytTnMsuQmT0Qaw4kMan2RNRnThGqB4cI0Ske3KLyvH65mP441Q2AOAe97b44hEf2LfiqvFEhoJjhIjIYNm1MsXScQH4cHhPmBopsOfMdTzw5X7sOZMtdzQi0jIsQkSklyRJwtiQTvjphX5wd7RCTlE5xq+Mx4fbU1BexYHURFSNRYiI9Jp7Oyv8+EJfjA/tBABYfiANkdGHcC67UN5gRKQVWITqwMHSRPrDzFiJ94b1xPKoANhamuBUVgEe+voA1semcyA1kYHjYOl6cLA0kX7JLijDK5uOYv/ZHADAoJ6O+HRkL7SxNJE5GRFpEgdLExHdgYO1GVY/FYSZQzxgrJSw8+Q1DJ6/H4fO58gdjYhkwCJERAZHoZAwqX9nbH2uLzq3tcTVgjKMWRaL2b+dRqVKLXc8ImpBLEJEZLC8nG2w/cV+GB3kCiGAhXvO4+FvDuNSbrHc0YiohbAI1YGDpYkMg4WJEWaN7IVFY/xgY26Moxl5GDJ/P7YcucyB1EQGgIOl68HB0kSGIzOvFC9vSEZs2g0AwHBfJ3wY6QVrM2OZkxFRY3GwNBFRIzm1Nsf6SX0wI6I7lAoJPyZnYsj8/Ui8dFPuaETUTFiEiIj+QamQ8MLAbtg0OQSutua4fLMUjy4+jK/+PAuVmjfQifQNixAR0R34dWiDHVPDMKK3M1RqgbkxqRi95C9cySuVOxoRaRCLEBFRHazMjDHvMV/Me8wHrUyNEHfxBh74ch+2H8uUOxoRaQiLEBFRPUb0dsGOqWHwdW2NwrIqvLA+Ca/9cBTF5VVyRyOiu8QiVAdOnyeif+pgZ4FNk0Pw4sCukCRgY8JlPPT1ARy/nC93NCK6C5w+Xw9Onyeif/vrQi5e3pCMrPwyGCslzIhwx6SwzlAoJLmjEdEtnD5PRNRM+nS2w68vhWGwVztUqgRm/XoaY1fE4lpBmdzRiKiRWISIiJqgtYUJFo7xw6cjvWFurMTBc7l44Mt9iEm5Jnc0ImoEFiEioiaSJAmPB3XAzy/2Q08na9wsqcSkNQl4e9sJlFWq5I5HRA3AIkREdJe6OrTCludCMSnMDQCw9q9LGLbgAE5fLZA5GRHVh0WIiEgDTI2UmPmgJ9ZOCEJbK1OkXivCsAUHsfrQRT68lUiLsQgREWlQWLe2+O2lMNzbwwEVVWq8+9NJTF6XyI/KiLQUixARkYbZtTLFsqgAfDC8J0yMFNh58hrGrYhDQVml3NGI6F9YhOrABRWJ6G5IkoRxIZ2w9ukgWJkaIS7tBh5f/BeuF5bLHY2I/oELKtaDCyoS0d06mZmPqBVxyCmqQCc7C6ydEAxXWwu5YxHpNS6oSESkJXo62eCHyaFwaWOOi7klePibQzhztVDuWEQEFiEiohbRyd4Sm6eEwt3RCtcKyvHo4sNIvHRT7lhEBo9FiIiohTham2HDs33g16E18ksr8eSyWOw5ky13LCKDxiJERNSCWluYYN3EYAzo3hallSpMXJ2AH5OvyB2LyGCxCBERtTALEyMsHReAYT5OqFILTNuQjLWHL8odi8ggsQgREcnAxEiBLx/zRVRIRwgBvP3jScz/4yxXoSZqYSxCREQyUSgkvDesJ6bd1w0AMO+PVLz/cwrUapYhopbCIkREJCNJkjDtvu54f1hPAMCqQxfx8sZkVKrUMicjMgwsQkREWiAqtBPmP+4LI4WEH5MzMWlNAkor+HwyoubGIkREpCWG+zpjaVQAzIwV2HPmOp5cHov8Ej6fjKg5sQjVgc8aIyI5hLs74NuJwbA2M0LipZt4dPFhZBeUyR2LSG/xWWP14LPGiEgOp68WYNzyOGQXlsPV1hzrJgSjo52l3LGIdAafNUZEpMN6tLPGD5ND0dHOAhk3SjFq0WGkZBbIHYtI77AIERFpqQ52Ftg0OQQe7a2RU1SOx5YcRlzaDbljEekVFiEiIi3mYGWG75/pg6BOtigsq8LY5bH489Q1uWMR6Q0WISIiLWdjbow1E4Jwn4cDyqvUeGZtIrYcuSx3LCK9wCJERKQDzIyVWPSkP0b2doZKLTB941GsOJAmdywincciRESkI4yVCnzxiA+e7usGAPhgewrm/H6GzycjugssQkREOkShkPD2Qx54dZA7AODrXecwc9sJqPh8MqImYREiItIxkiTh+fCu+HiEFyQJWB+bjqnfJaG8io/kIGosFiEiIh01JrgjFoz2g7FSwi/HszBxdQKKy6vkjkWkU1iEiIh02IO92mPF+EBYmCix/2wOnlgWi5vFFXLHItIZLEJERDourFtbfDsxGK0tjHE0Iw+PLD6MrPxSuWMR6QQWISIiPdC7QxtsejYE7azNcC67CA8vOowL14vkjkWk9ViEiIj0RDdHK/wwJQSd7S1xJa8Uj3xzGMcv58sdi0irsQgREekRlzbVzyfzdrZBbnEFRi/9C4fO58gdi0hr6X0RysjIwD333ANPT0/06tULmzZtkjsSEVGzsmtlivWTghHS2Q5F5VUYvyIeO09elTsWkVaShJ4vSZqVlYVr167B19cX2dnZ8PPzw5kzZ2Bpadmgny8oKICNjQ3y8/NhbW3dzGmJiDSnrFKFqd8l4feUa1BIwKejeuHRAFe5YxG1iIb+/W70HaHKykqEh4cjNTX1rgK2lPbt28PX1xcA4ODgAFtbW9y4cUPeUERELcDMWImFY/zwaIAL1AJ47YdjWLz3vNyxiLRKo4uQsbExTpw4AUmSNBJg3759GDp0KJycnCBJErZt23bbPgsXLoSbmxvMzMzg7++P/fv3N+lcCQkJUKvVcHXlfxERkWEwUirw2aheeHZAZwDArF9PY9avp/h8MqJbmjRGaNy4cVi+fLlGAhQXF8PHxwcLFiy44+sbNmzAtGnTMHPmTCQlJSEsLAyDBw9Genp6zT7+/v7w8vK67SszM7Nmn9zcXIwbNw5LlizRSG4iIl0hSRLeHOyBNwf3AAAs3nsBb2w+jiqVWuZkRPJr0hihF198EWvWrEHXrl0REBBw23ibuXPnNi2MJGHr1q2IjIys2RYcHAw/Pz8sWrSoZpuHhwciIyMxa9asBh23vLwc999/PyZNmoSxY8fWu295eXnN9wUFBXB1deUYISLSCxvjM/DGlmNQC2BQT0fMf7w3zIyVcsci0riGjhEyasrBT5w4AT8/PwC4bayQpj4yA4CKigokJibijTfeqLU9IiIChw4datAxhBAYP348Bg4cWG8JAoBZs2bh/fffb1JeIiJt92igK6zNjTH1uyTsPHkNT62Mx5Jx/rAyM5Y7GpEsmlSEdu/erekcd5STkwOVSgVHR8da2x0dHXH1asOmgh48eBAbNmxAr169asYfrV27Ft7e3nfc/80338T06dNrvv/7jhARkb54wKsdVj0diGfWJOLwhVw8sTQWq54KhF0rU7mjEbW4JhWhlvbvu0xCiAbfeerXrx/U6oZ/Dm5qagpTU/7LgIj0W2gXe3w3qQ+iVsbh+JV8PPLNYaydGAzn1uZyRyNqUU0uQvHx8di0aRPS09NRUVH7Scdbtmy562AAYG9vD6VSedvdn+zs7NvuEmladHQ0oqOjoVKpmvU8RERy8XaxwabJIRi3PA4XcooxauEhrJ0QhG6OVnJHI2oxTZo19v3336Nv375ISUnB1q1bUVlZiZSUFOzatQs2NjYaC2diYgJ/f3/ExMTU2h4TE4PQ0FCNnedOnn/+eaSkpCA+Pr5Zz0NEJKcubVvhhykh6OrQClcLyvDI4sNISr8pdyyiFtOkIvTJJ59g3rx52L59O0xMTDB//nycOnUKjz76KDp06NCoYxUVFSE5ORnJyckAgLS0NCQnJ9dMj58+fTqWLVuGFStW4NSpU3j55ZeRnp6OyZMnNyU6ERH9S3sbc2x6NgQ+rq2RV1KJMctisf/sdbljEbWIJk2ft7S0xMmTJ9GpUyfY29tj9+7d8Pb2xqlTpzBw4EBkZWU1+Fh79uxBeHj4bdujoqKwatUqANULKs6ePRtZWVnw8vLCvHnz0L9//8bGbhI+YoOIDEVxeRUmr0vE/rM5MFZK+PKx3niwV3u5YxE1SbM9YgMAbG1tUVhYCABwdnbGiRMnAAB5eXkoKSlp1LHuueceCCFu+/q7BAHAc889h4sXL6K8vByJiYktUoKio6Ph6emJwMDAZj8XEZE2sDQ1wrKoADzo3R6VKoEXvjuCb2MvyR2LqFk1qQiFhYXVjNt59NFH8dJLL2HSpEkYPXo07r33Xo0GlAvHCBGRITI1UuKr0b3xRHAHCAHM3HoC0bvP8ZEcpLea9NHYjRs3UFZWBicnJ6jVanzxxRc4cOAAunbtirfffhtt2rRpjqyy4EdjRGSIhBCY83sqFuw+BwCY0M8NM4d4QKHQ3KK5RM2poX+/m1SEDAmLEBEZsmX7L+CjX04BAEb5ueDzh3uxDJFOaNYxQgBw/vx5vPXWWxg9ejSys7MBAL/99htOnjzZ1ENqFY4RIiICJoZ1xpxHfKBUSNh85DLe/vEEPyYjvdKkIrR37154e3sjNjYWW7ZsQVFREQDg2LFjePfddzUaUC4cI0REVG2Uvwu+fMwXkgR8G5uOT389zTJEeqNJReiNN97ARx99hJiYGJiYmNRsDw8Px+HDhzUWjoiItMNQHyfMGlH9jMbF+y4g+tbYISJd16QidPz4cYwYMeK27W3btkVubu5dhyIiIu3zeFAHvPWgBwDgi99TsepgmsyJiO5ek4pQ69at77hoYlJSEpydne86lDbgGCEiottNDOuMl+7tBgB47+cUbErIkDkR0d1pUhF64okn8Prrr+Pq1auQJAlqtRoHDx7EjBkzMG7cOE1nlAXHCBER3dm0+7rh6b5uAIDXNx/Dr8cb/jQBIm3TpCL08ccfo0OHDnB2dkZRURE8PT3Rv39/hIaG4q233tJ0RiIi0iKSJOHthzzwWIAr1AKY+n0S9pzJljsWUZPc1TpC58+fR1JSEtRqNXr37o1u3bppMptW4DpCRER3plILTP0+Cb8cy4KZsQJrng5GkJut3LGIAHBBRY1hESIiqltFlRrPrk3A7jPX0crUCN9N6gNvFxu5YxE1bxFSqVRYtWoV/vzzT2RnZ0OtVtd6fdeuXY1PrKVYhIiI/ltZpQpRK+IQm3YDbSyMsfHZEHRztJI7Fhm4Zl1Z+qWXXsJLL70ElUoFLy8v+Pj41PrSB5w1RkTUMGbGSiyLCoCPiw1ullRizLJYpOeWyB2LqEGadEfI3t4ea9aswZAhQ5ojk1bhHSEiooa5WVyBx5f8hTPXCuFqa45Nz4ainY2Z3LHIQDXrHSETExN07dq1yeGIiEj/tLE0wdoJQehoZ4GMG6V4cnkscovK5Y5F9J+aVIReeeUVzJ8/n8+aISKiWhyszbBuQjDa25jhXHYRolbGoaCsUu5YRHVq8EdjI0eOrPX9rl27YGtri549e8LY2LjWa1u2bNFcQpnxozEiosY7l12ExxYfRm5xBQI7tcGap4NhbqKUOxYZkIb+/TZq6AFtbGpPh7zTs8aIiIgAoKtDK6yZEITHl/yF+Is38czaBCyLCoCpEcsQaZcmDZYuLS2FWq2GpaUlAODixYvYtm0bPDw8MGjQII2HlBPvCBERNV3ipRt4clkcSitVeKBnOyx4ojeMlE0alUHUKM06WHr48OFYu3YtACAvLw99+vTBnDlzEBkZiUWLFjUtsZbh9Hkiorvn39EWS8cFwESpwG8nr+L1zcehVnN8KWmPJhWhI0eOICwsDADwww8/wNHREZcuXcKaNWvw1VdfaTSgXPjQVSIizejXzR5fP9EbSoWEzUcu4/2fT3KyDWmNJhWhkpISWFlVrxr6+++/Y+TIkVAoFOjTpw8uXbqk0YBERKT7BvVshy8e6QUAWH34Eub8nipzIqJqTSpCXbt2xbZt25CRkYGdO3ciIiICAJCdnc1xNEREdEcjervgw0gvAMCC3efwzd7zMiciamIReueddzBjxgx06tQJwcHBCAkJAVB9d6h3794aDUhERPpjbJ+OeP2BHgCAT389jXV/8VMEkleTnz5/9epVZGVlwcfHBwpFdZ+Ki4uDtbU1evToodGQcuKsMSIizft852lE7z4PSQLmPuqDEb1d5I5Eekbj6wj9W7t27dCuXbta24KCgpp6OCIiMiAzItxRVFaF1YcvYcamY7A0MUJEz3b1/yCRhnExByIianGSJOHdoT0x0s8ZKrXAC+uTcOBsjtyxyACxCBERkSwUCgmzR/XCAz3boUKlxqQ1CUi8dEPuWGRgWITqwAUViYian5FSgfmjfRHWzR6llSqMXxmPk5n5csciA9LkwdKGgoOliYiaX0lFFcYtj0PCpZuwszTBxskh6NK2ldyxSIc16yM2iIiINMnCxAgrngqEl7M1cosr8OSyWFy+WSJ3LDIALEJERKQVrM2MsfqpIHRpa4ms/DKMWRaL7IIyuWORnmMRIiIirWHXyhTfTuwDV1tzXMotwdjlccgrqZA7FukxFiEiItIq7WzM8O2EPnCwMsWZa4WIWhGHovIquWORnmIRIiIirdPBzgLrJgajjYUxjl7Ox4RV8SirVMkdi/QQixAREWml7o5WWP10EFqZGiE27Qae+/YIKqrUcsciPcMiREREWquXS2ssjwqAqZECu05n4+WNyVCpueoLaQ6LEBERabXgznZYPNYfxkoJvxzLwv9tOQ4ugUeawiJERERa7x53B8x/vDcUErAhIQMf/XKKZYg0gkWIiIh0whDv9vh0VC8AwPIDaZj/51mZE5E+YBGqA581RkSkfR4NcMW7Qz0BAF/+cRbL9l+QORHpOj5rrB581hgRkfb5+s+zmBOTCgD4dKQ3Hg/qIHMi0jZ81hgREemtFwZ2xTP9OwMA3tx6HD8fzZQ5EekqFiEiItI5kiThzcE9MDqoA4QAXt6QjF2nr8kdi3QQixAREekkSZLwUaQXhvs6oUotMGXdERw+nyt3LNIxLEJERKSzlAoJXzzig/s8HFBepcbE1fFIzsiTOxbpEBYhIiLSacZKBRY84YfQLnYorlAhakUcTl8tkDsW6QgWISIi0nlmxkosHReA3h1aI7+0Ek8ui0NaTrHcsUgHsAgREZFesDQ1wqrxQejRzgo5ReV4clksMvNK5Y5FWo5FiIiI9IaNhTHWTgiGm70lruSV4sllscgpKpc7FmkxFiEiItIrba1MsW5iMJxszHAhpxhjl8chv6RS7likpViEiIhI7zi3Nse3k/rAvpUpTmUV4KlVcSgur5I7FmkhFiEiItJLbvaWWDshCNZmRjiSnodn1iagrFIldyzSMixCRESktzzaW2P100GwMFHi4LlcvPhdEipVarljkRZhESIiIr3Wu0MbLIsKgImRAjEp1/DqpqNQq/m8carGIkRERHovtIs9Fj7hByOFhG3Jmfhs52m5I5GW0PsiVFhYiMDAQPj6+sLb2xtLly6VOxIREcngPk9HfDaqFwBg8d4LWHv4oryBSCsYyR2guVlYWGDv3r2wsLBASUkJvLy8MHLkSNjZ2ckdjYiIWtgofxdcySvF3JhUvPvTSbS3Mcd9no5yxyIZ6f0dIaVSCQsLCwBAWVkZVCoVhOBnw0REhurFgV3xWIAr1AJ48bskHOVDWg2a7EVo3759GDp0KJycnCBJErZt23bbPgsXLoSbmxvMzMzg7++P/fv3N+oceXl58PHxgYuLC1577TXY29trKD0REekaSZLw0Qgv9O/eFqWVKkxYHY+MGyVyxyKZyF6EiouL4ePjgwULFtzx9Q0bNmDatGmYOXMmkpKSEBYWhsGDByM9Pb1mH39/f3h5ed32lZmZCQBo3bo1jh49irS0NKxfvx7Xrl1rkfdGRETayVipwMIxfvBsb42cogpErYxDXkmF3LFIBpLQos+JJEnC1q1bERkZWbMtODgYfn5+WLRoUc02Dw8PREZGYtasWY0+x5QpUzBw4EA88sgjd3y9vLwc5eX/ey5NQUEBXF1dkZ+fD2tr60afj4iItNe1gjKMiD6IzPwyBHZqg7UTgmFmrJQ7FmlAQUEBbGxs6v37Lfsdof9SUVGBxMRERERE1NoeERGBQ4cONegY165dQ0FBAYDqX8q+ffvg7u5e5/6zZs2CjY1NzZerq2vT3wAREWk1R2szrHwqCFamRoi/eBMzuMaQwdHqIpSTkwOVSgVHx9oj+h0dHXH16tUGHePy5cvo378/fHx80K9fP7zwwgvo1atXnfu/+eabyM/Pr/nKyMi4q/dARETazb2dFRaP9YexUsL2Y1lcY8jA6MT0eUmSan0vhLhtW138/f2RnJzc4HOZmprC1NS0MfGIiEjHhXa1x2ejemH6xqNYvPcCnFubY1xIJ7ljUQvQ6jtC9vb2UCqVt939yc7Ovu0ukaZFR0fD09MTgYGBzXoeIiLSDiP9XPDK/d0BAO/9dBIxKZxYYwi0ugiZmJjA398fMTExtbbHxMQgNDS0Wc/9/PPPIyUlBfHx8c16HiIi0h4vDOyKxwP/XmPoCNcYMgCyF6GioiIkJyfXfHyVlpaG5OTkmunx06dPx7Jly7BixQqcOnUKL7/8MtLT0zF58mQZUxMRkT6SJAkfRnphQPe2KKtUY8LqeKTnco0hfSb79Pk9e/YgPDz8tu1RUVFYtWoVgOoFFWfPno2srCx4eXlh3rx56N+/f7Pmio6ORnR0NFQqFVJTUzl9nojIgBSVV+HRbw4jJasAndtaYvPkULSxNJE7FjVCQ6fPy16EtF1Df5FERKRfuMaQbtOLdYSIiIjk4mhthlVPB8HKrHqNoVe4xpBeYhEiIiKqQ3dHKyx+snqNoV+OZeGz37jGkL5hESIiIvoPoV3tMfvh6oV4F++7gDWHL8obiDSKRagOXEeIiIj+NqK3C2ZEcI0hfcTB0vXgYGkiIgKqn2rw5pbj+D4+A2bGCnz/TAh8XVvLHYvqwMHSREREGiRJEj765xpDq7jGkD5gESIiImogI6UC0WP80NPJGrnFFRi/Mg43iyvkjkV3gUWoDhwjREREd9LK1AgrxgfCubU5LuQUY9KaBJRVquSORU3EMUL14BghIiK6k9RrhRi16BAKy6rwoHd7fD26NxQKSe5YdAvHCBERETWj7o5WWDz21hpDx7PwKdcY0kksQkRERE0U2sUenz/sAwBYsu8CVh+6KG8gajQWISIiorsQ2dsZrw5yBwC8//NJ/H7yqsyJqDFYhIiIiO7Sc/d0weggV6gFMPX7JCSl35Q7EjUQi1AdOGuMiIgaSpIkfDjcC/e4V68xNHF1Ai7lFssdixqAs8bqwVljRETUUMXlVXhsyWGcuFIAN3tLbJ4SCltLE7ljGSTOGiMiImphlqZGWBFVvcZQGtcY0gksQkRERBrkYG2GVU8FwsrMCImXbmL6xmSo1fzwRVuxCBEREWlYN0crLBkbAGOlhB3Hr2LWr6fkjkR1YBEiIiJqBiFd7PDFI9VrDC3dn4ZVB9NkTkR3wiJERETUTIb7/mONoe0pXGNIC7EI1YHT54mISBOq1xjqAME1hrQSp8/Xg9PniYjoblWp1Ji0JgG7z1yHnaUJtjwXio52lnLH0mucPk9ERKQljJQKLHjCD17O1sgtrsD4lfG4UVwhdywCixAREVGLsDQ1worxXGNI27AIERERtRAHq+o1hqxvrTH08gauMSQ3FiEiIqIW1M3RCkvGBcBEqcCvJ67ikx1cY0hOLEJEREQtrE9nO3z+SC8AwLIDaVjJNYZkwyJEREQkg+G+znjtgeo1hj7YnoKdXGNIFixCREREMpkyoAueCL61xtB3STjCNYZaHItQHbigIhERNTdJkvDBsJ4Id2+L8io1Jq5OwKXcYrljGRQuqFgPLqhIRETNrbi8Co8v+QvHr+TDzd4Sm6eEwtbSRO5YOo0LKhIREekIS1MjLB8fULPG0MTV8VxjqIWwCBEREWkBByszrH66eo2hI+l5mPZ9MlRcY6jZsQgRERFpia4OVlh6a42h305yjaGWwCJERESkRYL/scbQ8gNpWHGAaww1JxYhIiIiLTPc1xmvP9ADAPDhLyn47QTXGGouLEJERERaaPKAzhhza42hl77nGkPNhUWIiIhIC0mShPeH9cTAHg41awxdzOEaQ5rGIkRERKSljJQKfD26N7ydbXCjuALjV8bhRnGF3LH0CosQERGRFvt7jSGXNua4mFvCNYY0jEWIiIhIyzlYmWHVU4GwMTfmGkMaxiJUBz5rjIiItElXByssGetfs8bQR7+kyB1JL/BZY/Xgs8aIiEib/HQ0E1O/SwIAfDi8J8aGdJI3kJbis8aIiIj00DAfJ7z2gDsA4L2fU7D/7HWZE+k2FiEiIiIdM2VAF4z0c4ZKLfDct0dwLrtI7kg6i0WIiIhIx0iShFkjvRHQsQ0Ky6owYXU8bnJafZOwCBEREekgUyMlFo/1h0sbc1zKLcHkdYmoqFLLHUvnsAgRERHpKLtWplgxPhCtTI0Qm3YDb287Ac6BahwWISIiIh3W3dEKXz/RGwoJ2JCQgWX7+bT6xmARIiIi0nHh7g5460FPAMAnv57CHynXZE6kO1iEiIiI9MBTfTthdND/nlZ/KqtA7kg6gUWIiIhID0iShA+G90RoFzsUV6gwcXUCrheWyx1L67EIERER6QljpQILx/jBzd4SV/JK8ezaBD6gtR4sQkRERHqktYUJlkcF1Dyg9fXNxziT7D+wCBEREemZzm1bYdEYPxgpJPyYnIkFu87JHUlrsQgRERHpodCu9nh/eE8AwJyYVPxyLEvmRNqJRYiIiEhPjQnuiKf6dgIAvLIpGccu58maRxsZTBEqKSlBx44dMWPGDLmjEBERtZi3HvTEPe5tUVapxsTVCbiaXyZ3JK1iMEXo448/RnBwsNwxiIiIWpRSIeHr0b3R3bEVsgvLMXFNPEoqquSOpTUMogidPXsWp0+fxpAhQ+SOQkRE1OKszIyxPCoQtpYmOHGlANM3HIVazZlkgBYUoX379mHo0KFwcnKCJEnYtm3bbfssXLgQbm5uMDMzg7+/P/bv39+oc8yYMQOzZs3SUGIiIiLd42prgSVj/WGiVOC3k1cxJ+aM3JG0guxFqLi4GD4+PliwYMEdX9+wYQOmTZuGmTNnIikpCWFhYRg8eDDS09Nr9vH394eXl9dtX5mZmfjxxx/RvXt3dO/evUF5ysvLUVBQUOuLiIhIHwR0ssWskd4AgOjd57HlyGWZE8lPElq0ypIkSdi6dSsiIyNrtgUHB8PPzw+LFi2q2ebh4YHIyMgG3eV58803sW7dOiiVShQVFaGyshKvvPIK3nnnnTvu/9577+H999+/bXt+fj6sra0b/6aIiIi0zGe/ncaiPedholRg/aRgBHSylTuSxhUUFMDGxqbev9+y3xH6LxUVFUhMTERERESt7RERETh06FCDjjFr1ixkZGTg4sWL+OKLLzBp0qQ6SxBQXZzy8/NrvjIyMu7qPRAREWmbVyPcMainIypUajy7NhEZN0rkjiQbrS5COTk5UKlUcHR0rLXd0dERV69ebZZzmpqawtrautYXERGRPlEoJMx7zBc9nayRW1yBiasTUFhWKXcsWWh1EfqbJEm1vhdC3LatIcaPH48vvvhCU7GIiIh0loWJEZZFBcDByhRnrhXipe+ToTLAmWRaXYTs7e2hVCpvu/uTnZ19210iTYuOjoanpycCAwOb9TxERERyaW9jjqXjAmBqpMCu09n4ZMcpuSO1OK0uQiYmJvD390dMTEyt7TExMQgNDW3Wcz///PNISUlBfHx8s56HiIhITj6urTHnUR8AwPIDafguLr2en9AvRnIHKCoqwrlz/3sqblpaGpKTk2Fra4sOHTpg+vTpGDt2LAICAhASEoIlS5YgPT0dkydPljE1ERGR/niolxPOZxdj3h+peHvbCXS0s0BoF3u5Y7UI2YtQQkICwsPDa76fPn06ACAqKgqrVq3CY489htzcXHzwwQfIysqCl5cXduzYgY4dOzZrrujoaERHR0OlUjXreYiIiLTB1Hu74vz1Ivx0NBNT1h3Btuf7ws3eUu5YzU6r1hHSRg1dh4CIiEjXlVWq8PiSv5CckYfO9pbY+lxf2FgYyx2rSfRiHSEiIiJqOWbGSiwZ5w8nGzNcyCnGc+sTUalSyx2rWbEIERERUQ0HKzMsiwqEhYkSB8/l4r2fTkKfPzxiEaoDp88TEZGh8nSyxvzHe0OSgG9j07Hq0EW5IzUbjhGqB8cIERGRoVq89zxm/XoaCglYPj4Q4e4OckdqMI4RIiIiorvyTP/OeMTfBWoBvLg+CanXCuWOpHEsQkRERHRHkiTh4xHeCHKzRVF5FSasjkduUbncsTSKRYiIiIjqZGKkwDdP+qODrQUybpRi8rpElFfpzxp7LEJ14GBpIiKiaraWJlgeFQArUyPEX7yJ/9tyQm9mknGwdD04WJqIiKja3tTreGplHNQCeP2BHphyTxe5I9WJg6WJiIhIowZ0b4t3h/YEAMzeeRo7T16VOdHdYxEiIiKiBosK7YSxfTpCCGDa98k4cSVf7kh3hUWIiIiIGuXdoZ4I62aP0koVJq1JQHZBmdyRmoxFiIiIiBrFSKnAgif80LmtJbLyyzBpbSLKKnVzJhmLUB04a4yIiKhuNubGWBEViNYWxjiakYcZm47q5EwyzhqrB2eNERER1e3w+VyMXR6LKrXAS/d2w8v3d5c7EgDOGiMiIqIWENLFDh+P8AIAzP/zLH46milzosZhESIiIqK78lhgB0wKcwMAzNh0FEnpN2VO1HAsQkRERHTX3hjsgXt7OKCiSo1JaxKRmVcqd6QGYREiIiKiu6ZUSJg/ujd6tLNCTlE5JqxOQHF5ldyx6sUiRERERBrRytQIy6ICYN/KBKeyCjBtQzLUau2ek8UiVAdOnyciImo8lzYWWDw2ACZGCsSkXMNnO0/LHek/cfp8PTh9noiIqPG2JV3BtA3JAIDPH+6FRwJcW/T8nD5PREREsons7YwXB3YFAPzf1uOIS7shc6I7YxEiIiKiZvHyfd0xxLsdKlUCz65NQHpuidyRbsMiRERERM1CoZAw5xFfeDvb4GZJJZ5eHY+Cskq5Y9XCIkRERETNxtxEiaXjAuBobYpz2UV4YX0SqlRquWPVYBEiIiKiZtXOxgzLxgXCzFiBfanX8dEvp+SOVINFiIiIiJqdt4sNvnzMFwCw6tBFrP3rkryBbmERqgPXESIiItKsB7za49VB7gCA9346iQNnc2ROxHWE6sV1hIiIiDRHCIHpG49ia9IVWJsZYevzfdGlbSuNn4frCBEREZHWkSQJs0Z6w79jGxSUVWHCqnjcLK6QLQ+LEBEREbUoM2MlFo/1h3Nrc1zMLcHGhAzZshjJdmYiIiIyWPatTLFifCD2nMnGM/07y5aDRYiIiIhk4d7OCu7trGTNwI/GiIiIyGCxCBEREZHBYhEiIiIig8UiRERERAaLRYiIiIgMFosQERERGSwWISIiIjJYLEJ14ENXiYiI9B8fuloPPnSViIhI9/Chq0RERET1YBEiIiIig8UiRERERAaLRYiIiIgMFp8+X4+/x5IXFBTInISIiIga6u+/2/XNCWMRqkdhYSEAwNXVVeYkRERE1FiFhYWwsbGp83VOn6+HWq1GZmYmrKysIEnSba8HBgYiPj5eI+dqyrEa+jP17fdfrzf2tX9vKygogKurKzIyMmRZgsAQrtF/vc5rpLmf4TXiNfqvbbxG2nWNhBAoLCyEk5MTFIq6RwLxjlA9FAoFXFxc6nxdqVRq7B/4phyroT9T337/9XpjX6trf2tra1n+5WAI1+i/Xuc10tzP8BrxGjVkX16ju9tPk9fov+4E/Y2Dpe/S888/L+uxGvoz9e33X6839jVN/k40wRCu0X+9zmukuZ/hNZLvWLxG9eM1atr750dj1Oy4Orf24zXSfrxG2o/XSDfxjhA1O1NTU7z77rswNTWVOwrVgddI+/EaaT9eI93EO0JERERksHhHiIiIiAwWixAREREZLBYhIiIiMlgsQkRERGSwWISIiIjIYLEIkdYoLCxEYGAgfH194e3tjaVLl8odif4lIyMD99xzDzw9PdGrVy9s2rRJ7kh0ByNGjECbNm3w8MMPyx2Fbtm+fTvc3d3RrVs3LFu2TO449A+cPk9aQ6VSoby8HBYWFigpKYGXlxfi4+NhZ2cndzS6JSsrC9euXYOvry+ys7Ph5+eHM2fOwNLSUu5o9A+7d+9GUVERVq9ejR9++EHuOAavqqoKnp6e2L17N6ytreHn54fY2FjY2trKHY3AO0KkRZRKJSwsLAAAZWVlUKlUYE/XLu3bt4evry8AwMHBAba2trhx44a8oeg24eHhsLKykjsG3RIXF4eePXvC2dkZVlZWGDJkCHbu3Cl3LLqFRYgabN++fRg6dCicnJwgSRK2bdt22z4LFy6Em5sbzMzM4O/vj/379zfqHHl5efDx8YGLiwtee+012Nvbayi9YWiJa/S3hIQEqNVquLq63mVqw9KS14g0426vWWZmJpydnWu+d3FxwZUrV1oiOjUAixA1WHFxMXx8fLBgwYI7vr5hwwZMmzYNM2fORFJSEsLCwjB48GCkp6fX7OPv7w8vL6/bvjIzMwEArVu3xtGjR5GWlob169fj2rVrLfLe9EVLXCMAyM3Nxbhx47BkyZJmf0/6pqWuEWnO3V6zO93ZliSpWTNTIwiiJgAgtm7dWmtbUFCQmDx5cq1tPXr0EG+88UaTzjF58mSxcePGpkY0eM11jcrKykRYWJhYs2aNJmIatOb8/9Hu3bvFqFGj7jYi/UtTrtnBgwdFZGRkzWtTp04V3377bbNnpYbhHSHSiIqKCiQmJiIiIqLW9oiICBw6dKhBx7h27RoKCgoAVD/Fed++fXB3d9d4VkOliWskhMD48eMxcOBAjB07tjliGjRNXCNqWQ25ZkFBQThx4gSuXLmCwsJC7NixA4MGDZIjLt2BkdwBSD/k5ORApVLB0dGx1nZHR0dcvXq1Qce4fPkyJkyYACEEhBB44YUX0KtXr+aIa5A0cY0OHjyIDRs2oFevXjXjJNauXQtvb29NxzVImrhGADBo0CAcOXIExcXFcHFxwdatWxEYGKjpuISGXTMjIyPMmTMH4eHhUKvVeO211zgbVouwCJFG/ftzbyFEgz8L9/f3R3JycjOkon+6m2vUr18/qNXq5ohF/3A31wgAZyTJoL5rNmzYMAwbNqylY1ED8KMx0gh7e3solcrb/qs1Ozv7tv9SInnwGmk/XiPdw2um+1iESCNMTEzg7++PmJiYWttjYmIQGhoqUyr6J14j7cdrpHt4zXQfPxqjBisqKsK5c+dqvk9LS0NycjJsbW3RoUMHTJ8+HWPHjkVAQABCQkKwZMkSpKenY/LkyTKmNiy8RtqP10j38JrpORlnrJGO2b17twBw21dUVFTNPtHR0aJjx47CxMRE+Pn5ib1798oX2ADxGmk/XiPdw2um3/isMSIiIjJYHCNEREREBotFiIiIiAwWixAREREZLBYhIiIiMlgsQkRERGSwWISIiIjIYLEIERERkcFiESIiIiKDxSJERDrvnnvuwbRp05r1HHv27IEkSZAkCZGRkbLn0aROnTrVvLe8vDy54xC1KD5rjIh0xp49exAeHo6bN2+idevWNdu3bNkCY2PjFslw5swZODg4tMi5Wkp8fDz279+PUaNGyR2FqMWxCBGR7CoqKmBiYtLkn7e1tdVgmv/m4OBQq4TJpbKyUmPlr23bti36OyTSJvxojMjA/PDDD/D29oa5uTns7Oxw3333obi4uOb1lStXwsPDA2ZmZujRowcWLlxY89rFixchSRK+//57hIaGwszMDD179sSePXtq9lGpVJgwYQLc3Nxgbm4Od3d3zJ8/v1aG8ePHIzIyErNmzYKTkxO6d+8OAFi3bh0CAgJgZWWFdu3a4YknnkB2dnbNucPDwwEAbdq0gSRJGD9+PIDbP4q6efMmxo0bhzZt2sDCwgKDBw/G2bNna15ftWoVWrdujZ07d8LDwwOtWrXCAw88gKysrEb/PouLizFu3Di0atUK7du3x5w5c27bp6KiAq+99hqcnZ1haWmJ4ODgWr8zAFi6dClcXV1hYWGBESNGYO7cubUK13vvvQdfX1+sWLECnTt3hqmpKYQQyM/PxzPPPAMHBwdYW1tj4MCBOHr0aK1j//zzz/D394eZmRk6d+6M999/H1VVVY1+r0R6SeaHvhJRC8rMzBRGRkZi7ty5Ii0tTRw7dkxER0eLwsJCIYQQS5YsEe3btxebN28WFy5cEJs3bxa2trZi1apVQggh0tLSBADh4uIifvjhB5GSkiImTpworKysRE5OjhBCiIqKCvHOO++IuLg4ceHCBbFu3TphYWEhNmzYUJMjKipKtGrVSowdO1acOHFCHD9+XAghxPLly8WOHTvE+fPnxeHDh0WfPn3E4MGDhRBCVFVVic2bNwsA4syZMyIrK0vk5eUJIYQYMGCAeOmll2qOP2zYMOHh4SH27dsnkpOTxaBBg0TXrl1FRUWFEEKIlStXCmNjY3HfffeJ+Ph4kZiYKDw8PMQTTzxR5+/u7yeQ37x5s9b2KVOmCBcXF/H777+LY8eOiYceeki0atWqVp4nnnhChIaGin379olz586Jzz//XJiamorU1FQhhBAHDhwQCoVCfP755+LMmTMiOjpa2NraChsbm5pjvPvuu8LS0lIMGjRIHDlyRBw9elSo1WrRt29fMXToUBEfHy9SU1PFK6+8Iuzs7ERubq4QQojffvtNWFtbi1WrVonz58+L33//XXTq1Em89957DXp/RPqORYjIgCQmJgoA4uLFi3d83dXVVaxfv77Wtg8//FCEhIQIIf5XhD799NOa1ysrK4WLi4v47LPP6jzvc889J0aNGlXzfVRUlHB0dBTl5eX/mTcuLk4AqClqdf2x/mcRSk1NFQDEwYMHa17PyckR5ubmYuPGjUKI6iIEQJw7d65mn+joaOHo6Fhnljudu7CwUJiYmIjvv/++Zltubq4wNzevyXPu3DkhSZK4cuVKrePde++94s033xRCCPHYY4+JBx98sNbrY8aMua0IGRsbi+zs7Jptf/75p7C2thZlZWW1frZLly5i8eLFQgghwsLCxCeffFLr9bVr14r27dvX+/6IDAHHCBEZEB8fH9x7773w9vbGoEGDEBERgYcffhht2rTB9evXkZGRgQkTJmDSpEk1P1NVVQUbG5taxwkJCan530ZGRggICMCpU6dqtn3zzTdYtmwZLl26hNLSUlRUVMDX17fWMby9vW8bF5SUlIT33nsPycnJuHHjBtRqNQAgPT0dnp6eDXqPp06dgpGREYKDg2u22dnZwd3dvVZGCwsLdOnSpeb79u3b13wM11Dnz59HRUVFrd+Hra0t3N3da74/cuQIhBA1H//9rby8HHZ2dgCqB2CPGDGi1utBQUHYvn17rW0dO3ZE27Zta75PTExEUVFRzXH+VlpaivPnz9fsEx8fj48//rjmdZVKhbKyMpSUlMDCwqJR75lI37AIERkQpVKJmJgYHDp0CL///ju+/vprzJw5E7GxsTV/EJcuXVqrRPz9c/WRJAkAsHHjRrz88suYM2cOQkJCYGVlhc8//xyxsbG19re0tKz1fXFxMSIiIhAREYF169ahbdu2SE9Px6BBg1BRUdHg9yiEqHP73xkB3DbQWJKkOn+2sef6J7VaDaVSicTExNt+j61atbpjtrqO/e/fmVqtRvv27W8bbwSgZnyRWq3G+++/j5EjR962j5mZWb35ifQdixCRgZEkCX379kXfvn3xzjvvoGPHjti6dSumT58OZ2dnXLhwAWPGjPnPY/z111/o378/gOo7RomJiXjhhRcAAPv370doaCiee+65mv3/vjvxX06fPo2cnBx8+umncHV1BQAkJCTU2ufvO0gqlarO43h6eqKqqgqxsbEIDQ0FAOTm5iI1NRUeHh715miMrl27wtjYGH/99Rc6dOgAoHqgdmpqKgYMGAAA6N27N1QqFbKzsxEWFnbH4/To0QNxcXG1tv37vd+Jn58frl69CiMjI3Tq1KnOfc6cOYOuXbs24p0RGQ4WISIDEhsbiz///BMRERFwcHBAbGwsrl+/XlMQ3nvvPUydOhXW1tYYPHgwysvLkZCQgJs3b2L69Ok1x4mOjka3bt3g4eGBefPm4ebNm3j66acBVJeDNWvWYOfOnXBzc8PatWsRHx8PNze3/8zWoUMHmJiY4Ouvv8bkyZNx4sQJfPjhh7X26dixIyRJwvbt2zFkyBCYm5vX3FX5W7du3TB8+HBMmjQJixcvhpWVFd544w04Oztj+PDhmvg11mjVqhUmTJiAV199FXZ2dnB0dMTMmTOhUPxvQm737t0xZswYjBs3DnPmzEHv3r2Rk5ODXbt2wdvbG0OGDMGLL76I/v37Y+7cuRg6dCh27dqFX3/99ba7RP923333ISQkBJGRkfjss8/g7u6OzMxM7NixA5GRkQgICMA777yDhx56CK6urnjkkUegUChw7NgxHD9+HB999JFGfx9EOknG8UlE1MJSUlLEoEGDRNu2bYWpqano3r27+Prrr2vt8+233wpfX19hYmIi2rRpI/r37y+2bNkihPjfYOn169eL4OBgYWJiIjw8PMSff/5Z8/NlZWVi/PjxwsbGRrRu3VpMmTJFvPHGG8LHx6dmn6ioKDF8+PDb8q1fv1506tRJmJqaipCQEPHTTz8JACIpKalmnw8++EC0a9dOSJIkoqKihBC3zxq7ceOGGDt2rLCxsRHm5uZi0KBBNTO0hKgeLP3PgchCCLF161bxX/9KrGswcWFhoXjyySeFhYWFcHR0FLNnz74tz98z6Tp16iSMjY1Fu3btxIgRI8SxY8dq9lmyZIlwdnYW5ubmIjIyUnz00UeiXbt2Na+/++67tX6HfysoKBAvvviicHJyEsbGxsLV1VWMGTNGpKen1+zz22+/idDQUGFubi6sra1FUFCQWLJkSYPeH5G+k4Ro5IfiRGSwLl68CDc3NyQlJd02+Fnf1bWqdXOZNGkSTp8+jf379zf7uYCWf39E2oILKhIRNYKLiwtGjx6t8eN+8cUXOHr0KM6dO4evv/4aq1evRlRUlMbPcyc9e/bE4MGDW+RcRNqGY4SIiBogODi4ZnXqf49L0oS4uDjMnj0bhYWF6Ny5M7766itMnDhR4+e5kx07dqCyshIAYG1t3SLnJNIW/GiMiIiIDBY/GiMiIiKDxSJEREREBotFiIiIiAwWixAREREZLBYhIiIiMlgsQkRERGSwWISIiIjIYLEIERERkcFiESIiIiKD9f9xUoM9JmU12wAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAG1CAYAAAAcMztGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABLJUlEQVR4nO3deVxU5eIG8OfMAMO+C7KJuIMoyIiopUZ5MSwN067lhjeXNMvUlps/u2Xbtc1sEc0lMzXTsrSb15tyS9NcAcElVFxQUFBk32SbeX9/iHMjXAZkOLM838+HT82ZM+c8w7Hm8cx73iMJIQSIiIiICAq5AxAREREZCxYjIiIionosRkRERET1WIyIiIiI6rEYEREREdVjMSIiIiKqx2JEREREVI/FiIiIiKieldwBTI1Wq0VOTg6cnJwgSZLccYiIiEgPQgiUlZXB19cXCsWtzwuxGDVRTk4OAgIC5I5BREREzZCdnQ1/f/9bPs9i1EROTk4Arv9inZ2dZU5DRERE+igtLUVAQIDuc/xWWIya6MbXZ87OzixGREREJuZOw2AscvD11q1b0bVrV3Tu3BkrV66UOw4REREZCYs7Y1RXV4c5c+Zg586dcHZ2RkREBB599FG4u7vLHY2IiIhkZnFnjA4dOoTu3bvDz88PTk5OGDp0KLZv3y53LCIiIjICJleMdu/ejWHDhsHX1xeSJGHLli2N1lmyZAmCgoJga2sLtVqNPXv26J7LycmBn5+f7rG/vz8uXbrUGtGJiIjIyJlcMaqoqEBYWBgWL1580+c3btyIWbNmYd68eUhNTcWAAQMQGxuLrKwsANfnMfgzzkdEREREgAmOMYqNjUVsbOwtn//www8xadIkTJ48GQDw0UcfYfv27Vi6dCkWLFgAPz+/BmeILl68iKioqFtur7q6GtXV1brHpaWlLfAuiIiIyBiZ3Bmj26mpqUFKSgpiYmIaLI+JicG+ffsAAH369MHx48dx6dIllJWVYdu2bRgyZMgtt7lgwQK4uLjofji5IxERkfkyq2KUn58PjUYDb2/vBsu9vb1x+fJlAICVlRUWLlyI6Oho9OrVCy+++CI8PDxuuc25c+eipKRE95OdnW3Q90BERETyMbmv0vTx5zFDQogGy4YPH47hw4frtS2VSgWVStWi+YiIiMg4mdUZI09PTyiVSt3ZoRvy8vIanUVqqoSEBISEhCAyMvKutkNERETGy6yKkY2NDdRqNRITExssT0xMRP/+/e9q2zNmzEB6ejqSkpLuajtERERkvEzuq7Ty8nKcOXNG9zgzMxNpaWlwd3dHu3btMGfOHIwfPx69e/dGv379sHz5cmRlZWHatGkypiYiIiJTYHLFKDk5GdHR0brHc+bMAQDEx8dj9erVGD16NAoKCvDGG28gNzcXoaGh2LZtGwIDA+WKbBEKyquRcqEIKVlFOJtXgTZONvB1sYOvqx383Ozg52oHb2db2FiZ1UlKIiIyM5K42YyH1EhCQgISEhKg0WiQkZGBkpISODs7yx1LFlqtwJmr5Ui5UITk80U4nFWEzPyKO75OkgBvJ1v4uto2KEy+Ltf/3dfVDi521q3wDoiIyNKUlpbCxcXljp/fLEZNpO8v1pxU1tQhLbsYhy8UIflCEQ5fKEJpVV2j9Tp7OUId6IZgH2cUVdYgp/gaLhVfQ05xFS4VX0NNnfaO+3JSWcHX1a5xeXK9/k8vJxWslDzrRERETaPv57fJfZVGhpdTfE1XgFIuFCE9txQabcP+bGutQHiAK3oHukMd6IZe7Vzham9zy21qtQIFFX8sS9f/eanoGnJKrpenwooalFXX4dSVMpy6UnbT7SgVEto629aXpf+VpxvFyc/VDg4q/rEmIqLm4SeIhavVaHEit/T6+KD6n9ySqkbr+bjYQh3opvsJ9nGGdRPO3CgUEto4qdDGSYWwANebrlNZU4ec4qpblqfc4irUacX1ZcXXbrkvFzvrP5xlstUVJ19XO/i72sHTUQWFgvfHIyKixliM9PTHMUamrKSyFoezrheg5AuFOJJdgmu1Dd+TUiEhxMcZ6kA3RAS6oXegG3xd7Qyezd7GCp28HNHJy/Gmz2u0AlfLqnXFKOdGeSr63+PSqjqUXKtFybVapOfe/L521koJPi52tyxPfq52sLVWGvKtEhGRkeIYoyYypTFGQghk5lc0OBt0Oq+80XrOtla6AhQR6IYwf1eT/TqqrKpWd9bp4p/KU07xNVwurYJWjz/xHg42CHC3x8T+7fFIuG+j2dSJiMi0cPC1gRhzMaqq1eDYpRIkn79egg5nFaGwoqbRekGeDg2+FuvUxtFivlqq1WhxpbSqfkB4pW5g+I3idKn4GiprGp5BGxzshbdH9IC3s61MqYmI6G6xGBmIMRWjvNIq3Zmg5AtF+D2nBLWahofTxkqBMH8XRAS6Qd3uehHycOS9325FCIGSa7W4VHwN/03Pw+Kdp1GrEXC2tcKrw7pjZIQfzx4REZkgFiMDkasYabQCpy6XISWrCCnnC5GSVYTswsYDkD0dVegd6Ibe7a9/Ldbd1xkqK46Xaa5Tl8vw4qYjOHqxBABwX9c2WPBoD/i4GH7MFRERtRwWoxbW2hM8llXVIi27WDeBYmpWMcqrG84dJElAV28nqOuLkLqdOwLc7XhGo4XVabRYvuccPko8jRqNFk4qK7zycDD+2juAv2siIhPBYmQghjpjlF1YieQLhbrZpE9dKcOfj4yjygq92rkiov4rsV7tXOFky5miW8uZvDK88O1RpGUXAwAGdPbEOyN7wq8VrtgjIqK7w2JkIIYqRnEJe3UfuDcEuNvpxgWpA93Rta0TlBYySNpYabQCn/92Dgt3ZKC6TgtHlRXmDu2GMX3a8ewREZER48zXJqZvBw8AuP61WP1l87wKyvgoFRKmDuyIwcHeeGnTUSRfKMK8zcex7Vgu3nm0JwLc7eWOSEREd4FnjJrImK5KI3lptAKr953H+9tPoqpWC3sbJV6O7YZxUYEWM/0BEZGp0Pfzm3fjJGompULCpHuD8NNzA9EnyB2VNRq8+sPveGLFAVwoqJA7HhERNQOLkZ4SEhIQEhKCyMhIuaOQkWnv6YANU/ri9eHdYW+jxMHMQjz40R6s+i0TWn2m2SYiIqPBr9KaiF+l0e1kF1bipU1Hsf9cAQAgsr0b3hsVhiBPB5mTERFZNn6VRiSDAHd7fDU5Cm/FhcLBRomk80V48KPdWLH7HDQ8e0REZPRYjIhamEIhYVzfQGyfPRADOnuiuk6Lt7edwKjP9uHMTW7iS0RExoPFiMhA/N3ssebJPnjn0R5wUlkhNasYQz/Zg6W7zqJOo5U7HhER3QSLEZEBSZKEx/u0w/bZA3Ff1zaoqdPi3Z9OYuTSfci4UiZ3PCIi+hMWI6JW4Otqhy8mRuL9UT3hZGuFIxdL8PAnv2HxL6dRy7NHRERGg8WIqJVIkoTHegcgcfYgPNDNCzUaLT7YkYERS/biRG6p3PGIiAgsRnrjPEbUUtq62GJlfG8sGh0GFztrHL9UiuGLf8NH/81ATR3PHhERyYnzGDUR5zGilpRXWoVXthzHjvQrAIBgH2e8P6onQv1cZE5GRGReOI8RkQnwcrbFsvFqfPJEL7jZW+NEbiniEvbiwx2nePaIiEgGLEZEMpMkCcPDfLFj9iAM7dEWdVqBT345g2Gf/oajF4vljkdEZFFYjIiMRBsnFZaMVSNhTAQ8HGxw6koZRizZh/d+OomqWo3c8YiILAKLEZGReainD3bMHohhYb7QaAWW7DqLhz/9DalZRXJHIyIyeyxGREbIw1GFT5/ohc/GqeHpqMKZvHKMXLoPC7ad4NkjIiIDYjEiMmIPhrZF4uyBGNHLD1oBLNt9DkM/2YOUC4VyRyMiMkssRkRGzs3BBotGh2PlhN7wclLh3NUKjPpsP97cmo5rNTx7RETUkliM9MQJHklug0O8kTh7EEap/SEE8PlvmYj9eDcOZfLsERFRS+EEj03ECR7JGOw8lYe53x3D5dIqSBIQ3689XnqwK+xtrOSORkRklDjBI5EZi+7qhR1zBuLxyAAIAazedx4PfrQH+88WyB2NiMiksRgRmShnW2u8M7In1jzZB36udsgqrMQTKw7glS3HUF5dJ3c8IiKTxGJEZOIGdmmDn2YNwNiodgCAdQeyMGTRbvx2Ol/mZEREpofFiMgMONla4+0RPbB+chT83exwqfgaxn1+EHO/P4qyqlq54xERmQwWIyIz0r+TJ7bPGoj4foEAgK8PZSNm0W7s+P0yeJ0FEdGdsRgRmRkHlRVefyQUG6b2RaCHPXJLqjB1bQrGf34IJy+Xyh2PiMiosRgRmam+HTzwn+cG4On7OsLGSoHfzuRj6Md78MqWYygor5Y7HhGRUeI8Rk3EeYzIFGUXVmLBf05g27HLAAAnWys890BnTOjXHjZW/PsREZk/fT+/WYyaiMWITNmBcwV448d0pOde/0otyNMB84YG44FgL0iSJHM6IiLDYTEyEBYjMnUarcCmlGy8vz0D+fVfqQ3o7IlXHgpB17ZOMqcjIjIMFiMDYTEic1FWVYuEnWex6rdM1Gi0UEjA2KhAzP5LF7g72Mgdj4ioRfGWIC2MN5Elc+Nka42XY7vhv3MGITa0LbQCWHvgAu57fyc+/y0TNXVauSMSEbU6njFqIp4xInO1/2wB3tiajhP14486eDrglYeDEd2V44+IyPTxqzQDYTEic6bRCnybnI0PdpxCfnkNgOvjj/7xcAi6eHP8ERGZLhYjA2ExIktQVlWLxTvP4IvfzqNGo4VSIWFsVDvMGszxR0RkmliMDITFiCzJhYIKLNh2Ej/9fn3+I2dbK8wa3AXj+wXCWskhikRkOliMDITFiCzRvrP5eHPrif+NP2rjgH88FIL7urbh+CMiMgksRgbCYkSWSqMV+CY5Gx9sP4WCiuvjjwZ2aYN/PBSMzhx/RERGjsXIQFiMyNKVVtUi4ZczWLU3E7UaAaVCwrj68UduHH9EREaKxchAWIyIrjufX4F/bjuBHelXAAAudtaYNbgzxvXl+CMiMj4sRgbCYkTU0L4z+XhjazpOXi4DAHRs44BXHg5BdFcvmZMREf0Pi5GBsBgRNabRCmxMysbCHf8bfzSoSxv84+FgdPLi+CMikh+LkYGwGBHdWmlVLRb/cgZf/GH80fi+gZg1uDNc7Tn+iIjkw2JkICxGRHeWWT/+KPEP449mD+6MsRx/REQyYTEyEBYjIv3tPZOPN35Mx6kr18cfdfJyxCsPBeM+jj8iolbGYmQgLEZETVOn0WJjcjYW7shAYf34o+iubTDvoRB08nKUOR0RWQoWIwNhMSJqnpJrtVj8y2ms3ncetRoBK4WEcRx/RESthMXIQFiMiO5OZn4F3v73Cfz3xPXxR6721pjzly4Y06cdrDj+iIgMRN/Pb4v8v9CIESPg5uaGUaNGyR2FyOIEeTpgZXxvrJ3UB129nVBcWYtXf/gdsR/vwa8ZV+WOR0QWziKL0cyZM7FmzRq5YxBZtAGd2+DfM+/Fm3GhcLO3xum8csSvOoQnVyfh7NVyueMRkYWyyGIUHR0NJydOOkckNyulAuP7BmLXi9GYfG8QrBQSfjmZhyGLduONH9NRUlkrd0QisjBGV4x2796NYcOGwdfXF5IkYcuWLY3WWbJkCYKCgmBrawu1Wo09e/a0flAiajEudtZ45eEQ7Jg9EIODvVCnFVi1NxP3fbATa/efR51GK3dEIrIQRleMKioqEBYWhsWLF9/0+Y0bN2LWrFmYN28eUlNTMWDAAMTGxiIrK0u3jlqtRmhoaKOfnJyc1nobRNQMHdo4YmV8JNY82QddvB1RVFmLf9SPP9rN8UdE1AqM+qo0SZKwefNmxMXF6ZZFRUUhIiICS5cu1S0LDg5GXFwcFixYoPe2d+3ahcWLF2PTpk23Xa+6uhrV1dW6x6WlpQgICOBVaUQGVqfR4utDWfgwMQNF9V+pPdzTBwse7QEnW2uZ0xGRqTHLq9JqamqQkpKCmJiYBstjYmKwb98+g+xzwYIFcHFx0f0EBAQYZD9E1JCVUoHx/dpj1wvRmFQ//mjr0VwMX7wXJy+Xyh2PiMyUSRWj/Px8aDQaeHt7N1ju7e2Ny5cv672dIUOG4LHHHsO2bdvg7++PpKSkW647d+5clJSU6H6ys7ObnZ+Ims7F3hr/eDgE30zrB18XW2TmVyAuYS82pVyUOxoRmSEruQM0hyRJDR4LIRotu53t27frva5KpYJKpdJ7fSIyjIh2btg6cwBmbUzD7oyreOHbI0g+X4j5w7vD1lopdzwiMhMmdcbI09MTSqWy0dmhvLy8RmeRWlpCQgJCQkIQGRlp0P0Q0a25O9hg9cRIzPlLF0gSsCEpG48u2YcLBRVyRyMiM2FSxcjGxgZqtRqJiYkNlicmJqJ///4G3feMGTOQnp5+26/diMjwFAoJMx/ojLVPRsHDwQbpuaV4+JPf8NNx/b9OJyK6FaMrRuXl5UhLS0NaWhoAIDMzE2lpabrL8efMmYOVK1di1apVOHHiBGbPno2srCxMmzZNxtRE1Nru7eyJf88cgN6BbiirrsO0dSl4a2s6ajnnERHdBaO7XH/Xrl2Ijo5utDw+Ph6rV68GcH2Cx/feew+5ubkIDQ3FokWLMHDgwFbJx5vIEhmXWo0W7/10Eiv2ZAIAege6YfGYCLR1sZU5GREZE30/v42uGBmrhIQEJCQkQKPRICMjg8WIyMj8dPwyXvz2CMqq6+DhYIOPH++Fezt7yh2LiIwEi5GB8IwRkfG6UFCB6esOIz23FJIEzB7cBc9Ed4JCof9Vq0RknsxygkciotsJ9HDA90/3x+ORARAC+DAxAxNXJ6GwokbuaERkIliMiMis2For8c7InvjgsTDYWiuwO+MqHvpkDw5nFckdjYhMAIsREZmlUWp/bJlxDzp4OiC3pAqjl+3HF3szwdEDRHQ7LEZ64gSPRKanW1tn/PDMPXiopw9qNQKv/5iOZ9anoqyqVu5oRGSkOPi6iTj4msj0CCHw5b7zeHvbCdRqBII8HbB0XAS6teV/w0SWgoOviYjqSZKEifcEYeNTvBEtEd0eixERWYwbN6Id2KUNqmq1eOHbI3j5u6OoqtXIHY2IjASLERFZlBs3on2eN6IloptgMdITB18TmQ+FQsKzvBEtEd0EB183EQdfE5mXyyVVeGb9YSRfuD7P0eR7g/D32G6wVvLvjUTmhIOviYj00NbFFl9P7YspA4IAACt/y8QTyw/gckmVzMmISA4sRkRk8ayVCsx7KASfjVPDSWWF5AtFeOiTPfjtdL7c0YiolbEYERHVezC0LbbOvBchPs4oqKjB+FUH8cnPp6HVcsQBkaVgMSIi+oMbN6J9og9vREtkiViM9MSr0ogsh621Egse5Y1oiSwRr0prIl6VRmRZTl4uxdPrDuNcfgWsFBLmPRSMif3bQ5IkuaMRURPwqjQiohbwxxvR1ml5I1oic8diRER0B0621lj8RC/MHxYCa6WEfx/LxfDFe3Hycqnc0YiohbEYERHpgTeiJbIMLEZERE1wsxvR/n0Tb0RLZC5YjIiImujPN6LdmJyNEUv24Xw+b0RLZOpYjPTEy/WJ6I/+fCPaE7mlGPYpb0RLZOp4uX4T8XJ9Ivoz3oiWyPjxcn0iolbCG9ESmQ8WIyKiFsAb0RKZBxYjIqIWxBvREpk2FiMiohbGG9ESmS4WIyIiA+CNaIlME4sREZEBjVL7Y8uMe9DB0wG5JVX462f7sfbABbljEdEtsBgRERnYn29E+48tx/HZr2fljkVEN8FipCdO8EhEd+PGjWhnPtAZAPDOf07i059Py5yKiP6MEzw2ESd4JKK7tfiX0/hgRwYA4LkHOmPW4M6QJEnmVETmjRM8EhEZqWfu74yXY7sBAD7++TQ+2HEK/DsqkXFgMSIiksG0QR3xykPBAICEnWfxzn9OshwRGQEWIyIimUwe0AGvD+8OAFi2+xze2JrOckQkMxYjIiIZxfdvj7dHhAIAvth7Hq/963fOkk0kIxYjIiKZjY0KxLsje0CSgDX7L2DeluMsR0QyYTEiIjICoyPb4f1RYZAk4OtDWXj5+6PQsBwRtToWIyIiIzFK7Y+PRodDIQHfJF/Ei98eYTkiamUsRkRERuSRcD98+kQElAoJ36dewqyNaajTaOWORWQxWIyIiIzMQz19kDCmF6wUEn48koOZG1JRy3JE1CpYjIiIjNCDoT5YOk4Na6WEbccu45n1h1FTx3JEZGgsRkRERuovId5YPr43bKwU2P77FUxfl4LqOo3csYjMGosREZERi+7mhZUTekNlpcDPJ/MwdU0KqmpZjogMhcVITwkJCQgJCUFkZKTcUYjIwgzs0gZfTIyEnbUSv2ZcxeQvk3GthuWIyBAkwfnnm0Tfu/MSEbW0g+cK8LfVSais0aBfBw98PrE37G2s5I5FZBL0/fzmGSMiIhMR1cEDa57sA0eVFfafK8DEVUkor66TOxaRWWExIiIyIb3bu2PNpD5wsrXCofOFmPD5QZRW1codi8hssBgREZmYiHZu+GpyFFzsrHE4qxjjPz+EkmssR0QtgcWIiMgE9fR3xVeTo+Bmb40j2cUYu/IAiitr5I5FZPJYjIiITFSonwvWT+kLdwcbHL9UiidWHERhBcsR0d1gMSIiMmHBPs7YMLUvPB1VOJFbiieWH0B+ebXcsYhMFosREZGJ6+LthA1T+8LLSYVTV8rw+PIDyCutkjsWkUliMSIiMgOdvByx8al+8HGxxZm8cjy+/AAul7AcETUVixERkZkI8nTAxqn94Odqh3P5FRi9fD9yiq/JHYvIpLAYERGZkXYe9tgwtS8C3O1woaASo5fvR3ZhpdyxiEwGixERkZkJcLfHxqn9EOhhj+zCa3h8+QFcKKiQOxaRSWAxIiIyQ76udtg4tR86eDrgUvE1jF52AJn5LEdEd8JiRERkptq62GLDU33RycsRl0urMHrZfpzJK5c7FpFRYzEiIjJjXk622DC1L7p6OyGvrBqPLz+AjCtlcsciMloWV4yys7Nx3333ISQkBD179sS3334rdyQiIoPydFTh66l9EezjjPzy6+XoRG6p3LGIjJIkhBByh2hNubm5uHLlCsLDw5GXl4eIiAicOnUKDg4Oer2+tLQULi4uKCkpgbOzs4HTEhG1nOLKGoz//BCOXSqBq7011k2KQqifi9yxiFqFvp/fFnfGyMfHB+Hh4QAALy8vuLu7o7CwUN5QREStwNXeBusmRyEswBXFlbUYs+IAjl4sljsWkVExumK0e/duDBs2DL6+vpAkCVu2bGm0zpIlSxAUFARbW1uo1Wrs2bOnWftKTk6GVqtFQEDAXaYmIjINLnbWWDupDyLauaK0qg5jVxzE4awiuWMRGQ2jK0YVFRUICwvD4sWLb/r8xo0bMWvWLMybNw+pqakYMGAAYmNjkZWVpVtHrVYjNDS00U9OTo5unYKCAkyYMAHLly83+HsiIjImzrbWWDMpCn3au6Osug4TPj+E5PM8c04EGPkYI0mSsHnzZsTFxemWRUVFISIiAkuXLtUtCw4ORlxcHBYsWKDXdqurq/GXv/wFU6ZMwfjx4++4bnX1/+5UXVpaioCAAI4xIiKTV1lTh0mrk7H/XAHsbZRYNTESfTt4yB2LyCDMcoxRTU0NUlJSEBMT02B5TEwM9u3bp9c2hBCYOHEi7r///juWIgBYsGABXFxcdD/82o2IzIW9jRVWTYzEgM6eqKzRYOIXh7DvTL7csYhkZVLFKD8/HxqNBt7e3g2We3t74/Lly3ptY+/evdi4cSO2bNmC8PBwhIeH49ixY7dcf+7cuSgpKdH9ZGdn39V7ICIyJnY2SqyY0BuDurRBVa0Wf1udhN0ZV+WORSQbK7kDNIckSQ0eCyEaLbuVe++9F1qtVu99qVQqqFSqJuUjIjIlttZKLJ+gxtPrDuPnk3mYvCYZy8apEd3NS+5oRK3OpM4YeXp6QqlUNjo7lJeX1+gsEhER6U9lpcTScWrEhHijpk6LqWuTkZh+Re5YRK3OpIqRjY0N1Go1EhMTGyxPTExE//79DbrvhIQEhISEIDIy0qD7ISKSi42VAgljI/BQDx/UagSmr0vBT8dz5Y5F1KqMrhiVl5cjLS0NaWlpAIDMzEykpaXpLsefM2cOVq5ciVWrVuHEiROYPXs2srKyMG3aNIPmmjFjBtLT05GUlGTQ/RARyclaqcDHj4djeJgv6rQCM9anYuvRnDu/kMhMGN0Yo+TkZERHR+sez5kzBwAQHx+P1atXY/To0SgoKMAbb7yB3NxchIaGYtu2bQgMDJQrMhGRWbFSKrBodDisFBK+T72EmV+nok4jENfLT+5oRAZn1PMYGSPeK42ILIVGK/Dyd0fxbcpFSBLw/qgwjFL7yx2LqFnMch4jOXGMERFZGqVCwrsje+KJPu0gBPDipiPYmJR15xcSmTCeMWoinjEiIksjhMBr//oda/ZfAAC8FReKcX05fIFMC88YERFRi5AkCa8P744n7wkCALyy5ThW782UORWRYbAYERHRHUmShH88HIynBnYAAMz/MR0r95yTORVRy2Mx0hPHGBGRpZMkCS/HdsOM6I4AgLf+fQLfpVyUORVRy+IYoybiGCMisnRCCCz4z0ks330OVgoJqyZGYmCXNnLHIrotjjEiIiKDkCQJLz/YDcPqJ4Gcvi4Fxy+VyB2LqEWwGBERUZMpFBI+eKwn+nXwQEWNBn9bnYTswkq5YxHdNRYjIiJqFpWVEp+NV6NbWydcLavGxC8OobiyRu5YRHeFxUhPHHxNRNSYi501vvhbJHxcbHH2agUmf5mMqlqN3LGImo2Dr5uIg6+JiBrLuFKGkUv3oayqDg92b4uEsRFQKiS5YxHp6Pv53aRiFBQUBElq+h/0WbNmYebMmU1+nTFiMSIiurkD5wow4fNDqNFoMbF/e7w2LKRZnxlEhqDv57dVUza6evXqZoVp3759s15HRESmo28HDyz8axie/ToVq/edh4+LLZ4a1FHuWERN0qRiNGjQIEPlICIiMzAszBdXSqvw1r9PYMF/TqKtiy0eCfeTOxaR3po9+PrYsWOoq6trySxERGQGJg/ooLuv2gvfHsG+M/kyJyLSX7OLUVhYGBwdHREREYG//e1v+Pjjj7Fr1y4UFxe3YDzjwavSiIj098pDwXiohw9qNQJPrU3BidxSuSMR6aXZV6Xt27cPo0aNQr9+/aBSqXDixAkcOXIEkiShU6dO+Otf/4rnn38erq6uLRxZXhx8TUSkn6paDSasOoRDmYXwdlbh+6fvgZ+rndyxyEIZ/JYgzzzzDJYsWYLvvvsO69evR2pqKnbu3IkOHTogPj4ee/bsQa9evXD16tXm7oKIiEyYrbUSK8b3RmcvR1wprcbEVYdQUlkrdyyi22p2MTp58iRCQkIaLBs0aBAWLVqEw4cPY+fOnejduzf+7//+765DEhGRaXKxt8bqJ/vA21mF03nlmLKWE0CScWt2MYqMjMS6desaLe/evTt27NgBSZLw4osv4r///e9dBSQiItPm52qHLyb2gaPKCocyC/H8t0eg1XJuYTJOzS5GS5YswUcffYQxY8bg5MmTAICamhosWrQI7u7uAIA2bdrgypUrLZOUiIhMVoivM5aNV8NaKeHfR3Px9rYTckciuqlmF6Pu3btj//79yM3NRUhICOzs7ODg4IAVK1bgnXfeAQCkpqbC19e3xcISEZHpuqeTJ94fFQYA+Py3TKzcc07mRESNNWmCxz/r3r07du7cifPnz+PIkSOwsrKCWq1G27ZtAVw/Y3SjJJm6hIQEJCQkQKPhd+NERM0V18sPuSVVePenk3jr3yfQ1sUWD/fkX6DJePAmsk3Ey/WJiO6OEALz//U7vtx/ATZKBdZM6oO+HTzkjkVmziD3SuNNZImI6G5JkoRXh3XH5dIqbP/9CqauScam6f3RxdtJ7mhETTtj9OuvvzZrJ+3bt0dgYGCzXmtseMaIiKhlVNVqMG7lQSRfKIKPiy02P30P2rrYyh2LzJS+n9/8Kq2JWIyIiFpOUUUNRn62D+euVqBbWyd8M60fnG2t5Y5FZsjgM18TERHdLTcHG3z5tz5o46TCyctlmLY2BTV1WrljkQVjMSIiIlkFuNvji4mRcLBRYt/ZAry4iRNAknxYjIiISHahfi5YOk4NK4WEH9Jy8O72k3JHIgvFYkREREZhYJc2eGdkTwDAsl/PYfXeTJkTkSViMSIiIqMxSu2PF2K6AABe35qO/xzLlTkRWRoWIz0lJCQgJCQEkZGRckchIjJrM6I7YUxUOwgBPLcxDUnnC+WORBaEl+s3ES/XJyIyvDqNFtPWpeC/J/LgYmeN76b3QycvTgBJzcfL9YmIyGRZKRX49IkIhAe4ouRaLeJXJSGvtEruWGQBWIyIiMgo2dko8Xl8b7T3sMel4muY+EUSyqpq5Y5FZo7FiIiIjJaHowpfPtkHno42SM8txdNfHeYEkGRQLEZERGTUAj0c8Hl8JOysldhzOh8vf38UHB5LhsJiRERERi8swBVLxkZAqZDw/eFL+GDHKbkjkZliMSIiIpMQ3c0LC0b0AAAk7DyLdQcuyJyIzBGLERERmYy/RgZg1uDOAIBXfziOHb9fljkRmRsWIyIiMinPPdAZj0cGQCuAmRtScTirSO5IZEZYjIiIyKRIkoS34kIR3bUNqmq1mLQ6Ceeulssdi8wEixEREZkcK6UCi8dEoKe/C4oqaxH/xSFcLauWOxaZARYjIiIySQ4qK6yaGIl27vbILryGJ1cnoaK6Tu5YZOJYjPTEm8gSERkfz/oJIN0dbHDsUgme/uowajWcAJKajzeRbSLeRJaIyPikZhXhiRUHUFWrxWNqf7w3qickSZI7FhkR3kSWiIgsRq92blj8RAQUEvBtykUs+u9puSORiWIxIiIiszA4xBtvxoUCAD75+TS+PpQlcyIyRSxGRERkNsZGBeKZ6E4AgFe2HMcvJ6/InIhMDYsRERGZledjumBkhD80WoEZX6XiSHax3JHIhLAYERGRWZEkCe+M7IEBnT1xrVaDJ1cn4Xx+hdyxyESwGBERkdmxViqwdJwa3X2dUVBRg4lfHEJBOSeApDtjMSIiIrPkqLLCF3+LhL+bHc4XVOLJL5NRWcMJIOn2WIyIiMhseTnZ4ssn+8DV3hpHsovx7PpU1HECSLoNFiMiIjJrHds44vP43lBZKfDzyTz844ffwbmN6VZYjIiIyOypA93x8eO9IEnA14eysPiXM3JHIiPFYkRERBbhwdC2eH14dwDAwsQMfJOcLXMiMkYsRkREZDEm9GuPaYM6AgDmfn8Mu07lyZyIjA2LERERWZSXhnRFXLgvNFqBp786jGMXS+SOREaExYiIiCyKQiHhvVFhuKeTByprNPjb6iRcKr4mdywyEixGRERkcWysFPhsnBrd2johv7waU9dwjiO6zuKKUVlZGSIjIxEeHo4ePXpgxYoVckciIiIZONlaY8WE3nB3sMHvOaV48dujvIyfIAkL+1Og0WhQXV0Ne3t7VFZWIjQ0FElJSfDw8NDr9aWlpXBxcUFJSQmcnZ0NnJaIiAztUGYhxq48gFqNwJy/dMHMBzrLHYkMQN/Pb4s7Y6RUKmFvbw8AqKqqgkaj4d8QiIgsWJ8gd7z5SCgA4MPEDPx0PFfmRCQnoytGu3fvxrBhw+Dr6wtJkrBly5ZG6yxZsgRBQUGwtbWFWq3Gnj17mrSP4uJihIWFwd/fHy+99BI8PT1bKD0REZmix/u0w8T+7QEAszceQXpOqbyBSDZGV4wqKioQFhaGxYsX3/T5jRs3YtasWZg3bx5SU1MxYMAAxMbGIisrS7eOWq1GaGhoo5+cnBwAgKurK44cOYLMzEysX78eV65caZX3RkRExuuVh4JxbydPXKvVYMqaZOSXV8sdiWRg1GOMJEnC5s2bERcXp1sWFRWFiIgILF26VLcsODgYcXFxWLBgQZP3MX36dNx///147LHHbvp8dXU1qqv/9x9HaWkpAgICOMaIiMgMFVfWIC5hL84XVKJPe3esmxwFGyujO4dAzWCWY4xqamqQkpKCmJiYBstjYmKwb98+vbZx5coVlJZeP0VaWlqK3bt3o2vXrrdcf8GCBXBxcdH9BAQENP8NEBGRUXO1t8HK+N5wUlnh0PlCvPrDcY5DtTAmVYzy8/Oh0Wjg7e3dYLm3tzcuX76s1zYuXryIgQMHIiwsDPfeey+eeeYZ9OzZ85brz507FyUlJbqf7GzeW4eIyJx18nLCJ09cv+HshqRsrN53Xu5I1Iqs5A7QHJIkNXgshGi07FbUajXS0tL03pdKpYJKpWpKPCIiMnHR3bwwN7Yb/rntJN7cmo5OXo4Y0LmN3LGoFZjUGSNPT08olcpGZ4fy8vIanUVqaQkJCQgJCUFkZKRB90NERMZhyoAOeDTCD1oBzPjqMDLzK+SORK3ApIqRjY0N1Go1EhMTGyxPTExE//79DbrvGTNmID09HUlJSQbdDxERGQdJkvDPET3Qq50rSqvqMPnLJJRW1codiwzM6IpReXk50tLSdF93ZWZmIi0tTXc5/pw5c7By5UqsWrUKJ06cwOzZs5GVlYVp06bJmJqIiMyRrbUSy8ap0dbZFmevVuDZ9anQaDkY25wZ3eX6u3btQnR0dKPl8fHxWL16NYDrEzy+9957yM3NRWhoKBYtWoSBAwe2Sj7eEoSIyPIcu1iCx5btQ1WtFlMHdsD/DQ2WOxI1kb6f30ZXjIxVQkICEhISoNFokJGRwWJERGRhfjySg2e/TgUAfPBYGEap/WVORE3BYmQgPGNERGS5Pth+Cot3noGNUoGvp/aFOtBN7kikJ7Oc4JGIiEhOc/7SBTEh3qjRaPHU2hTkllyTOxK1MBYjIiIiPSkUEhaNDke3tk7IL6/GlDXJuFajkTsWtSAWIz1xHiMiIgIAB5UVVkzoDXcHGxy/VIoXNx3hbUPMCMcYNRHHGBEREQAcOFeAcSsPok4r8PxfuuDZBzrLHYlug2OMiIiIDKhvBw+88UgoAGBhYgZ+Oq7fPTvJuLEYERERNdOYqHaI7xcIAJjzTRpO5JbKnIjuFosRERHRXXjl4RD07+iByhoNJn+ZjILyarkj0V1gMdITB18TEdHNWCsVWDI2AoEe9rhUfA3TvzqMmjqt3LGomTj4uok4+JqIiG7m9JUyjFiyD+XVdXiiTzv8c0QoJEmSOxbV4+BrIiKiVtTZ2wmfPBEOSQK+PpSFNfsvyB2JmoHFiIiIqIXc380bf3+wGwDgja3p2HsmX+ZE1FQsRkRERC3oqYEd8GgvP2i0Ak9/dRjn8yvkjkRNwGJERETUgiRJwj8f7YGwAFeUXKvF5DXJKK2qlTsW6YnFSE+8Ko2IiPRla63EivFqeDurcCavHM99nQqNltc6mQJeldZEvCqNiIj0dfRiMR77bD+q67R4amAHzB0aLHcki8Wr0oiIiGTW098V743qCQBYtvscvj98UeZEdCcsRkRERAb0SLgfZkR3BAC8/P0xpGYVyZyIbofFiIiIyMCe/0tXDA72Rk2dFlPXpiC35JrckegWWIyIiIgMTKGQ8NHj4ejq7YSrZdWYuiYFVbUauWPRTbAYERERtQJHlRVWxveGm701jl0qwYubjoLXPxkfFiMiIqJWEuBujyVj1bBSSPjxSA6W7DordyT6ExYjPXEeIyIiagn9Onpg/vDuAID3t5/Cjt8vy5yI/ojzGDUR5zEiIqKW8I8tx7H2wAU42Cjx3dP90a0tP1MMifMYERERGbFXh4WgXwcPVNRoMPnLZBRW1MgdicBiREREJAtrpQJLxkagnbs9LhZdw/R1Kaip08ody+KxGBEREcnEzcEGK+N7w1FlhYOZhXj9x9/ljmTxWIyIiIhk1MXbCR+NDockAV8dzMLa/efljmTRWIyIiIhkNjjEGy8O6QoAmP9jOvadyZc5keViMSIiIjIC0wd1RFy4LzRagafXH8aFggq5I1kkFiMiIiIjIEkS3hnZE2H+LiiurMXkL5NRVlUrdyyLw2KkJ07wSEREhmZrrcTyCb3h5aTC6bxyzNqQBo2W0w22Jk7w2ESc4JGIiAwtLbsYf122HzV1Wkwb1BEvx3aTO5LJ4wSPREREJio8wBXvj+oJAPjs17PYnHpR5kSWg8WIiIjICD0S7ofp93UEAPz9u2NIyy6WN5CFYDEiIiIyUi/GdMXgYC/U1GkxdU0yLpdUyR3J7LEYERERGSmFQsKi0eHo4u2IvLJqTF2bjKpajdyxzBqLERERkRFzsrXGygmRcLW3xtGLJfj7d0fB66YMh8WIiIjIyLXzsMeSsRFQKiT8kJaDpb+elTuS2WIxIiIiMgH9O3pi/rAQAMD720/hv+lXZE5knliMiIiITMT4fu0xNqodhACe25CKU5fL5I5kdliMiIiITMj84d3Rt4M7Kmo0mLwmCUUVNXJHMissRkRERCbEWqnAkrFqBLjbIbvwGqZ/lYJajVbuWGaDxYiIiMjEuDvYYOWESDjYKHHgXCFe//F3uSOZDRYjPfEmskREZEy6tnXCR4/3giQB6w5kYe2BC3JHMgu8iWwT8SayRERkTBJ2nsH720/BSiHhq8lRiOrgIXcko8SbyBIREVmAp+/riGFhvqjTCsxYn8rbhtwlFiMiIiITJkkS3h3ZA93aOiG/vBrTv0pBdR1vG9JcLEZEREQmzt7GCsvGq+Fsa4XUrGK8uTVd7kgmi8WIiIjIDAR6OODjPwzG/iY5W+5IJonFiIiIyExEd/PCrAe6AABe2XIcxy6WyJzI9LAYERERmZFn7++EB7p5oaZOi2nrUlDImbGbhMWIiIjIjCgUEj4cHY72Hva4VHwNz359GHWcGVtvLEZERERmxsXOGsvG94adtRJ7zxTggx0ZckcyGSxGREREZqhrWye8N6onAOCzX8/iP8dyZU5kGliMiIiIzNSwMF9MGRAEAHjh2yM4faVM5kTGj8WIiIjIjP39wW7o28EdFTUaPLU2BaVVtXJHMmosRkRERGbMSqnA4jER8HGxxbn8Cjz/zRFotbxN6q2wGBEREZk5T0cVlo5Tw0apQGL6FSz99azckYwWixEREZEFCA9wxRuPdAcAfLDjFH7NuCpzIuPEYkRERGQhHu/TDk/0CYAQwMyvU5FdWCl3JKNjscWosrISgYGBeOGFF+SOQkRE1GrmD++OsABXlFyrxVNrU3CtRiN3JKNiscXo7bffRlRUlNwxiIiIWpXKSomlYyPg4WCD9NxSzNt8DEJwMPYNFlmMTp8+jZMnT2Lo0KFyRyEiImp1vq52+HRMLygVEr5PvYQ1+y/IHcloGF0x2r17N4YNGwZfX19IkoQtW7Y0WmfJkiUICgqCra0t1Go19uzZ06R9vPDCC1iwYEELJSYiIjI9/Tt6Ym5sNwDAm1vTkXS+UOZExsHoilFFRQXCwsKwePHimz6/ceNGzJo1C/PmzUNqaioGDBiA2NhYZGVl6dZRq9UIDQ1t9JOTk4MffvgBXbp0QZcuXVrrLRERERmlSfcG4eGePqjTCjz91WFcKa2SO5LsJGHEXyxKkoTNmzcjLi5OtywqKgoRERFYunSpbllwcDDi4uL0Ogs0d+5crFu3DkqlEuXl5aitrcXzzz+PV1999abrV1dXo7q6Wve4tLQUAQEBKCkpgbOzc/PfHBERkRGorKnDiIR9OHWlDOpAN3w9pS9srIzuvMldKy0thYuLyx0/v03qndfU1CAlJQUxMTENlsfExGDfvn16bWPBggXIzs7G+fPn8cEHH2DKlCm3LEU31ndxcdH9BAQE3NV7ICIiMib2Nlb4bLwaTrZWSLlQhLf+nS53JFmZVDHKz8+HRqOBt7d3g+Xe3t64fPmyQfY5d+5clJSU6H6ys7MNsh8iIiK5BHk64KPR4QCANfsvYFPKRXkDychK7gDNIUlSg8dCiEbL9DFx4sQ7rqNSqaBSqZq8bSIiIlPyQLA3nnugMz7++TTmbT6Gbm2dEOrnInesVmdSZ4w8PT2hVCobnR3Ky8trdBappSUkJCAkJASRkZEG3Q8REZFcnnugM6K7tkF1nRZPrU1BUUWN3JFanUkVIxsbG6jVaiQmJjZYnpiYiP79+xt03zNmzEB6ejqSkpIMuh8iIiK5KBQSPhrdC4Ee9rhUfA0zN6RCozXaa7QMwuiKUXl5OdLS0pCWlgYAyMzMRFpamu5y/Dlz5mDlypVYtWoVTpw4gdmzZyMrKwvTpk2TMTUREZF5cLG3xmfj1LCzVmLP6Xws3HFK7kityujGGCUnJyM6Olr3eM6cOQCA+Ph4rF69GqNHj0ZBQQHeeOMN5ObmIjQ0FNu2bUNgYKBckYmIiMxKsI8z3hnZA89tSMOSXWfR098FD4b6yB2rVRj1PEbGJCEhAQkJCdBoNMjIyOA8RkREZPbe3JqOz3/LhIONEj88cy86eTnKHanZ9J3HiMWoifT9xRIREZm6Wo0W41YexMHMQnRs44AtM+6Bk6213LGaxSwneCQiIqLWY61UYPGYCLR1tsXZqxV44dsjMPfzKSxGREREdEttnFRYOi4CNkoFtv9+BUt/PSt3JINiMSIiIqLb6tXODfOHdwcAfLD9FHZnXJU5keGwGOmJEzwSEZEle6JPAEb3DoBWADM3pCK7sFLuSAbBwddNxMHXRERkqapqNfjrsv04erEE3X2d8d30/rC1VsodSy8cfE1EREQtytZaiaXj1HB3sMHvOaX4v83HzG4wNosRERER6c3P1Q6Ln+gFhQR8f/gS1h24IHekFsViRERERE3Sv5MnXo7tBgB4/cd0pFwolDlRy2Ex0hMHXxMREf3PlAEd8FAPH9RpBaavO4y80iq5I7UIDr5uIg6+JiIiuq6iug5xCXtxOq8cvQPdsH5KX9hYGec5Fw6+JiIiIoNyUFlh2Xg1nFRWSL5QhH9uOyF3pLvGYkRERETN1qGNIz4cHQ4AWL3vPL4/fFHeQHeJxYiIiIjuyl9CvDHz/k4AgLnfH8PxSyUyJ2o+FiMiIiK6a88N7oL7urZBdZ0W09aloLiyRu5IzcJipCdelUZERHRrSoWEj0f3Qjt3e1wsuoaZG9Kg0Zre9V28Kq2JeFUaERHRrZ3ILcWIJXtRVavFs/d3wvMxXeWOBIBXpREREZEMgn2c8e7IngCAT385gx2/X5Y5UdOwGBEREVGLeiTcD0/eEwQAmPPNEZy9Wi5zIv2xGBEREVGLmzu0G/oEuaO8ug7T1qagvLpO7kh6YTEiIiKiFmetVCBhTAS8nVU4nVeOlzYdgSkMa2YxIiIiIoNo46TC0nFqWCslbDt2Gct3n5M70h2xGOmJl+sTERE1XUQ7N8wf3h0A8O5PJ7H3TL7MiW6Pl+s3ES/XJyIiahohBP7+3VF8k3wRbvbW+PHZe+HvZt+qGXi5PhERERkFSZLwxiOh6OnvgqLKWkxfdxhVtRq5Y90UixEREREZnK21EkvHqeHuYINjl0rwjy3HjXIwNosRERERtQo/Vzt8+kQvKCTg25SLWH8oS+5IjbAYERERUau5p5Mn/v5gNwDA/H/9jsNZRTInaojFiIiIiFrV1IEdMLRHW9RqBKavS8HVsmq5I+mwGBEREVGrkiQJ740KQ2cvR1wprcaM9YdRq9HKHQsAixERERHJwFFlhc/Gq+GkssKhzEIs2HZS7kgAWIz0xgkeiYiIWlbHNo5Y+NcwAMCqvZn4Ie2SzIk4wWOTcYJHIiKilrVwxyl8+ssZ2ForsPnpexDs0/Kfr5zgkYiIiEzCrMFdMKhLG1TVavHU2hSUVNbKloXFiIiIiGSlVEj4+PFwBLjbIauwEhuS5JvfyEq2PRMRERHVc7W3wbJxvbH3TD4mDwiSLQeLERERERmFEF9nhPjKO36XX6URERER1WMxIiIiIqrHYkRERERUj8WIiIiIqB6LEREREVE9FiMiIiKieixGRERERPVYjPTEm8gSERGZP95Etol4E1kiIiLTw5vIEhERETURixERERFRPRYjIiIionosRkRERET1rOQOYGpujFUvLS2VOQkRERHp68bn9p2uOWMxaqKysjIAQEBAgMxJiIiIqKnKysrg4uJyy+d5uX4TabVa5OTkwMnJCZIkNXo+MjISSUlJLbKv5mxL39fcab3bPd/U5/68rLS0FAEBAcjOzpZlygNLOEa3e57HqOVew2PEY3S7ZTxGxnWMhBAoKyuDr68vFIpbjyTiGaMmUigU8Pf3v+XzSqWyxf4DaM629H3Nnda73fNNfe5W6zs7O8vyPwtLOEa3e57HqOVew2PEY6TPujxGd7deSx6j250puoGDr1vYjBkzZN2Wvq+503q3e76pz7Xk76QlWMIxut3zPEYt9xoeI/m2xWN0ZzxGzXv//CqNWh1nDzd+PEbGj8fI+PEYmSaeMaJWp1Kp8Nprr0GlUskdhW6Bx8j48RgZPx4j08QzRkRERET1eMaIiIiIqB6LEREREVE9FiMiIiKieixGRERERPVYjIiIiIjqsRiR0SorK0NkZCTCw8PRo0cPrFixQu5I9CfZ2dm47777EBISgp49e+Lbb7+VOxLdxIgRI+Dm5oZRo0bJHYXqbd26FV27dkXnzp2xcuVKuePQH/ByfTJaGo0G1dXVsLe3R2VlJUJDQ5GUlAQPDw+5o1G93NxcXLlyBeHh4cjLy0NERAROnToFBwcHuaPRH+zcuRPl5eX48ssvsWnTJrnjWLy6ujqEhIRg586dcHZ2RkREBA4ePAh3d3e5oxF4xoiMmFKphL29PQCgqqoKGo0G7PHGxcfHB+Hh4QAALy8vuLu7o7CwUN5Q1Eh0dDScnJzkjkH1Dh06hO7du8PPzw9OTk4YOnQotm/fLncsqsdiRM22e/duDBs2DL6+vpAkCVu2bGm0zpIlSxAUFARbW1uo1Wrs2bOnSfsoLi5GWFgY/P398dJLL8HT07OF0luG1jhGNyQnJ0Or1SIgIOAuU1uW1jxG1DLu9pjl5OTAz89P99jf3x+XLl1qjeikBxYjaraKigqEhYVh8eLFN31+48aNmDVrFubNm4fU1FQMGDAAsbGxyMrK0q2jVqsRGhra6CcnJwcA4OrqiiNHjiAzMxPr16/HlStXWuW9mYvWOEYAUFBQgAkTJmD58uUGf0/mprWOEbWcuz1mNzvzLUmSQTNTEwiiFgBAbN68ucGyPn36iGnTpjVY1q1bN/Hyyy83ax/Tpk0T33zzTXMjWjxDHaOqqioxYMAAsWbNmpaIadEM+d/Rzp07xciRI+82Iv1Jc47Z3r17RVxcnO65mTNniq+++srgWUk/PGNEBlFTU4OUlBTExMQ0WB4TE4N9+/bptY0rV66gtLQUwPW7VO/evRtdu3Zt8ayWqiWOkRACEydOxP3334/x48cbIqZFa4ljRK1Ln2PWp08fHD9+HJcuXUJZWRm2bduGIUOGyBGXbsJK7gBknvLz86HRaODt7d1gube3Ny5fvqzXNi5evIhJkyZBCAEhBJ555hn07NnTEHEtUksco71792Ljxo3o2bOnbpzF2rVr0aNHj5aOa5Fa4hgBwJAhQ3D48GFUVFTA398fmzdvRmRkZEvHJeh3zKysrLBw4UJER0dDq9XipZde4tW2RoTFiAzqz9+bCyH0/i5drVYjLS3NAKnoj+7mGN17773QarWGiEV/cDfHCACveJLBnY7Z8OHDMXz48NaORXrgV2lkEJ6enlAqlY3+VpuXl9fob1IkDx4j48djZHp4zEwfixEZhI2NDdRqNRITExssT0xMRP/+/WVKRX/EY2T8eIxMD4+Z6eNXadRs5eXlOHPmjO5xZmYm0tLS4O7ujnbt2mHOnDkYP348evfujX79+mH58uXIysrCtGnTZExtWXiMjB+PkenhMTNzMl4RRyZu586dAkCjn/j4eN06CQkJIjAwUNjY2IiIiAjx66+/yhfYAvEYGT8eI9PDY2beeK80IiIionocY0RERERUj8WIiIiIqB6LEREREVE9FiMiIiKieixGRERERPVYjIiIiIjqsRgRERER1WMxIiIiIqrHYkREZue+++7DrFmzDLqPXbt2QZIkSJKEuLg42fO0pPbt2+veW3FxsdxxiFoV75VGRCZr165diI6ORlFREVxdXXXLv//+e1hbW7dKhlOnTsHLy6tV9tVakpKSsGfPHowcOVLuKEStjsWIiIxOTU0NbGxsmv16d3f3Fkxze15eXg1KmVxqa2tbrAy2adOmVX+HRMaEX6URWbhNmzahR48esLOzg4eHBwYPHoyKigrd81988QWCg4Nha2uLbt26YcmSJbrnzp8/D0mSsGHDBvTv3x+2trbo3r07du3apVtHo9Fg0qRJCAoKgp2dHbp27YqPP/64QYaJEyciLi4OCxYsgK+vL7p06QIAWLduHXr37g0nJye0bdsWY8aMQV5enm7f0dHRAAA3NzdIkoSJEycCaPzVVVFRESZMmAA3NzfY29sjNjYWp0+f1j2/evVquLq6Yvv27QgODoajoyMefPBB5ObmNvn3WVFRgQkTJsDR0RE+Pj5YuHBho3Vqamrw0ksvwc/PDw4ODoiKimrwOwOAFStWICAgAPb29hgxYgQ+/PDDBgVs/vz5CA8Px6pVq9ChQweoVCoIIVBSUoKpU6fCy8sLzs7OuP/++3HkyJEG2/7xxx+hVqtha2uLDh064PXXX0ddXV2T3yuRWZL5JrZEJKOcnBxhZWUlPvzwQ5GZmSmOHj0qEhISRFlZmRBCiOXLlwsfHx/x3XffiXPnzonvvvtOuLu7i9WrVwshhMjMzBQAhL+/v9i0aZNIT08XkydPFk5OTiI/P18IIURNTY149dVXxaFDh8S5c+fEunXrhL29vdi4caMuR3x8vHB0dBTjx48Xx48fF8eOHRNCCPH555+Lbdu2ibNnz4r9+/eLvn37itjYWCGEEHV1deK7774TAMSpU6dEbm6uKC4uFkIIMWjQIPHcc8/ptj98+HARHBwsdu/eLdLS0sSQIUNEp06dRE1NjRBCiC+++EJYW1uLwYMHi6SkJJGSkiKCg4PFmDFjbvm7u3GH9aKiogbLp0+fLvz9/cWOHTvE0aNHxcMPPywcHR0b5BkzZozo37+/2L17tzhz5ox4//33hUqlEhkZGUIIIX777TehUCjE+++/L06dOiUSEhKEu7u7cHFx0W3jtddeEw4ODmLIkCHi8OHD4siRI0Kr1Yp77rlHDBs2TCQlJYmMjAzx/PPPCw8PD1FQUCCEEOKnn34Szs7OYvXq1eLs2bNix44don379mL+/Pl6vT8ic8diRGTBUlJSBABx/vz5mz4fEBAg1q9f32DZm2++Kfr16yeE+F8xeuedd3TP19bWCn9/f/Huu+/ecr9PP/20GDlypO5xfHy88Pb2FtXV1bfNe+jQIQFAV9xu9eH9x2KUkZEhAIi9e/fqns/Pzxd2dnbim2++EUJcL0YAxJkzZ3TrJCQkCG9v71tmudm+y8rKhI2NjdiwYYNuWUFBgbCzs9PlOXPmjJAkSVy6dKnB9h544AExd+5cIYQQo0ePFg899FCD58eOHduoGFlbW4u8vDzdsp9//lk4OzuLqqqqBq/t2LGjWLZsmRBCiAEDBoh//vOfDZ5fu3at8PHxueP7I7IEHGNEZMHCwsLwwAMPoEePHhgyZAhiYmIwatQouLm54erVq8jOzsakSZMwZcoU3Wvq6urg4uLSYDv9+vXT/buVlRV69+6NEydO6JZ99tlnWLlyJS5cuIBr166hpqYG4eHhDbbRo0ePRuOKUlNTMX/+fKSlpaGwsBBarRYAkJWVhZCQEL3e44kTJ2BlZYWoqCjdMg8PD3Tt2rVBRnt7e3Ts2FH32MfHR/e1nb7Onj2LmpqaBr8Pd3d3dO3aVff48OHDEELovi68obq6Gh4eHgCuD+geMWJEg+f79OmDrVu3NlgWGBiINm3a6B6npKSgvLxct50brl27hrNnz+rWSUpKwttvv617XqPRoKqqCpWVlbC3t2/SeyYyNyxGRBZMqVQiMTER+/btw44dO/Dpp59i3rx5OHjwoO4DcsWKFQ1KxY3X3YkkSQCAb775BrNnz8bChQvRr18/ODk54f3338fBgwcbrO/g4NDgcUVFBWJiYhATE4N169ahTZs2yMrKwpAhQ1BTU6P3exRC3HL5jYwAGg1cliTplq9t6r7+SKvVQqlUIiUlpdHv0dHR8abZbrXtP//OtFotfHx8Go1XAqAbn6TVavH666/j0UcfbbSOra3tHfMTmTsWIyILJ0kS7rnnHtxzzz149dVXERgYiM2bN2POnDnw8/PDuXPnMHbs2Ntu48CBAxg4cCCA62eUUlJS8MwzzwAA9uzZg/79++Ppp5/WrX/j7MXtnDx5Evn5+XjnnXcQEBAAAEhOTm6wzo0zTBqN5pbbCQkJQV1dHQ4ePIj+/fsDAAoKCpCRkYHg4OA75miKTp06wdraGgcOHEC7du0AXB/4nZGRgUGDBgEAevXqBY1Gg7y8PAwYMOCm2+nWrRsOHTrUYNmf3/vNRERE4PLly7CyskL79u1vuc6pU6fQqVOnJrwzIsvBYkRkwQ4ePIiff/4ZMTEx8PLywsGDB3H16lVdYZg/fz5mzpwJZ2dnxMbGorq6GsnJySgqKsKcOXN020lISEDnzp0RHByMRYsWoaioCE8++SSA62VhzZo12L59O4KCgrB27VokJSUhKCjottnatWsHGxsbfPrpp5g2bRqOHz+ON998s8E6gYGBkCQJW7duxdChQ2FnZ6c763JD586d8cgjj2DKlClYtmwZnJyc8PLLL8PPzw+PPPJIS/wadRwdHTFp0iS8+OKL8PDwgLe3N+bNmweF4n8XAHfp0gVjx47FhAkTsHDhQvTq1Qv5+fn45Zdf0KNHDwwdOhTPPvssBg4ciA8//BDDhg3DL7/8gv/85z+NziL92eDBg9GvXz/ExcXh3XffRdeuXZGTk4Nt27YhLi4OvXv3xquvvoqHH34YAQEBeOyxx6BQKHD06FEcO3YMb731Vov+PohMkozjm4hIZunp6WLIkCGiTZs2QqVSiS5duohPP/20wTpfffWVCA8PFzY2NsLNzU0MHDhQfP/990KI/w2+Xr9+vYiKihI2NjYiODhY/Pzzz7rXV1VViYkTJwoXFxfh6uoqpk+fLl5++WURFhamWyc+Pl488sgjjfKtX79etG/fXqhUKtGvXz/xr3/9SwAQqampunXeeOMN0bZtWyFJkoiPjxdCNL4qrbCwUIwfP164uLgIOzs7MWTIEN0VYEJcH3z9x4HNQgixefNmcbv/Rd5qcHJZWZkYN26csLe3F97e3uK9995rlOfGlXrt27cX1tbWom3btmLEiBHi6NGjunWWL18u/Pz8hJ2dnYiLixNvvfWWaNu2re751157rcHv8IbS0lLx7LPPCl9fX2FtbS0CAgLE2LFjRVZWlm6dn376SfTv31/Y2dkJZ2dn0adPH7F8+XK93h+RuZOEaOKX6ERE9c6fP4+goCCkpqY2Gkxt7m4167ahTJkyBSdPnsSePXsMvi+g9d8fkbHgBI9ERHfB398fTzzxRItv94MPPsCRI0dw5swZfPrpp/jyyy8RHx/f4vu5me7duyM2NrZV9kVkbDjGiIioGaKionSzZ/95XFNLOHToEN577z2UlZWhQ4cO+OSTTzB58uQW38/NbNu2DbW1tQAAZ2fnVtknkbHgV2lERERE9fhVGhEREVE9FiMiIiKieixGRERERPVYjIiIiIjqsRgRERER1WMxIiIiIqrHYkRERERUj8WIiIiIqB6LEREREVG9/wcpH/R8d4PzrQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -178,8 +178,17 @@ "plt.xscale(\"log\")\n", "plt.yscale(\"log\")\n", "plt.xlabel(\"separation [degree]\")\n", - "plt.ylabel(\"shear\")" + "plt.ylabel(r\"$|g|$\")\n", + "# We set kappa_max to 0.8" ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0c43422d-d816-4c98-8bb9-8671bbdcd1a1", + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { From e0233a65ca1dc96720df9407e86da0ba9c3d465b Mon Sep 17 00:00:00 2001 From: Xiangchong Li Date: Tue, 25 Jul 2023 17:30:00 -0700 Subject: [PATCH 06/30] finish preliminary implementation --- .virtual_documents/examples/Untitled.ipynb | 50 ++ .../examples/example_NFWShear.ipynb | 118 +++++ .../examples/example_NFWShear_imsim.ipynb | 66 +++ descwl_shear_sims/__init__.py | 1 + descwl_shear_sims/galaxies.py | 9 +- descwl_shear_sims/objlists.py | 3 +- descwl_shear_sims/shear.py | 118 ++--- descwl_shear_sims/sim.py | 41 +- .../tests/test_correlated_noise.py | 7 +- descwl_shear_sims/tests/test_galaxies.py | 6 +- descwl_shear_sims/tests/test_nfw_shear.py | 47 -- descwl_shear_sims/tests/test_nonzero_sky.py | 6 +- descwl_shear_sims/tests/test_pairs.py | 7 +- descwl_shear_sims/tests/test_sim.py | 37 +- descwl_shear_sims/tests/test_sim_center.py | 6 +- .../tests/test_star_masks_and_bleeds.py | 8 +- examples/example_NFWShear.ipynb | 499 +++++++++++++++++- examples/example_NFWShear_imsim.ipynb | 137 +++++ shear_meas_tests/test_shear_meas.py | 23 +- .../test_shear_meas_ringtest_metacal.py | 5 +- 20 files changed, 1011 insertions(+), 183 deletions(-) create mode 100644 .virtual_documents/examples/Untitled.ipynb create mode 100644 .virtual_documents/examples/example_NFWShear.ipynb create mode 100644 .virtual_documents/examples/example_NFWShear_imsim.ipynb delete mode 100644 descwl_shear_sims/tests/test_nfw_shear.py create mode 100644 examples/example_NFWShear_imsim.ipynb diff --git a/.virtual_documents/examples/Untitled.ipynb b/.virtual_documents/examples/Untitled.ipynb new file mode 100644 index 00000000..63ae311a --- /dev/null +++ b/.virtual_documents/examples/Untitled.ipynb @@ -0,0 +1,50 @@ +import clmm +import numpy as np + +from descwl_shear_sims.galaxies import make_galaxy_catalog +from descwl_shear_sims.galaxies import WLDeblendGalaxyCatalog +from descwl_shear_sims.psfs import make_fixed_psf +from descwl_shear_sims.surveys import get_survey + +from descwl_shear_sims.sim import make_sim +from descwl_shear_sims.shear import ShearNFW + +cosmo = clmm.Cosmology(H0=70.0, Omega_dm0=0.27 - 0.045, Omega_b0=0.045, Omega_k0=0.0) +halo = clmm.Modeling(massdef="mean", delta_mdef=200, halo_profile_model="nfw") +halo.set_cosmo(cosmo) +halo.set_concentration(4) +halo.set_mass(1.0e15) +z_cl = 1.0 +# source properties +z_source = 2.0 # all sources in the same plane + +shear_obj = ShearNFW(halo, z_cl) + +seed = 74321 +rng = np.random.RandomState(seed) + +coadd_dim = 200 +se_dim = 200 +psf_dim = 41 + +galaxy_catalog = WLDeblendGalaxyCatalog( + rng=rng, + coadd_dim=coadd_dim, + buff=2, + layout="random_disk", +) +psf = make_fixed_psf(psf_type="gauss") +band_list = ["r"] + +sim_data = make_sim( + rng=rng, + galaxy_catalog=galaxy_catalog, + coadd_dim=coadd_dim, + shear_obj=shear_obj, + psf=psf, + noise_factor=0.0, + bands=band_list, +) + + + diff --git a/.virtual_documents/examples/example_NFWShear.ipynb b/.virtual_documents/examples/example_NFWShear.ipynb new file mode 100644 index 00000000..ab8cccb9 --- /dev/null +++ b/.virtual_documents/examples/example_NFWShear.ipynb @@ -0,0 +1,118 @@ +get_ipython().run_line_magic("matplotlib", " inline") +get_ipython().run_line_magic("reload_ext", " autoreload") +get_ipython().run_line_magic("autoreload", " 2") + +import clmm +import galsim +import numpy as np +import descwl_shear_sims as dss +import matplotlib.pyplot as plt + +from descwl_shear_sims.galaxies import WLDeblendGalaxyCatalog +from descwl_shear_sims.objlists import get_objlist +from descwl_shear_sims.surveys import get_survey + + +cosmo = clmm.Cosmology(H0=70.0, Omega_dm0=0.27 - 0.045, Omega_b0=0.045, Omega_k0=0.0) +halo = clmm.Modeling(massdef="mean", delta_mdef=200, halo_profile_model="nfw") +halo.set_cosmo(cosmo) +halo.set_concentration(4) +halo.set_mass(1.0e15) +z_cl = 1.0 +# source properties +z_source = 2.0 # all sources in the same plane + +shear_obj = dss.shear.ShearNFW(halo, z_cl) + + +# generate positions +radius = 50 # arcsec +n_gal = 20 +theta = np.linspace(0, 360, n_gal) / n_gal +x = np.cos(theta) * radius +y = np.sin(theta) * radius +shifts = np.zeros(n_gal, dtype=[('dx', 'f8'), ('dy', 'f8')]) +shifts['dx'] = x +shifts['dy'] = y + +shift_list = [] +for ss in shifts: + shift_list.append(galsim.PositionD(ss['dx'], ss['dy'])) + +# get the shear +shear_list = [] +for ss in shift_list: + shear_list.append(shear_obj.get_shear(z_source, ss)) + + +gamma = [] +for ss in shear_list: + gamma.append(ss.g1 + 1j * ss.g2) +gamma = np.array(gamma) + + +angles = np.angle(gamma, deg=True) / 2. +lengths = np.abs(gamma) * 100. + +# Create whisker plot +plt.figure(figsize=(6, 6)) +plt.quiver(x, y, np.cos(np.deg2rad(angles)), np.sin(np.deg2rad(angles)), + color="black", headaxislength=0, headlength=0, headwidth=1, pivot = 'middle') +plt.xlabel('x') +plt.ylabel('y') +plt.show() + + +n_gal = 1 +d_array = [] +g_array = [] +for i in range(10): + position = galsim.PositionD(3.0 ** i, 0.) + # get the shear + shear = shear_obj.get_shear(z_source, position) + g1 = shear.g1 + g2 = shear.g2 + gabs = np.abs(g1 + 1j * g2) + d_array.append(3 ** i) + g_array.append(gabs) +d_array = np.array(d_array) +g_array = np.array(g_array) + + +plt.plot(d_array / 3600., g_array) +plt.xscale("log") +plt.yscale("log") +plt.xlabel("separation [degree]") +plt.ylabel(r"$|g|$") +# We set kappa_max to 0.8 + + +band="r" +rng = np.random.RandomState(1) +coadd_dim = 500 +buff = 50 +# galaxy catalog; you can make your own +galaxy_catalog = WLDeblendGalaxyCatalog( + rng=rng, + coadd_dim=coadd_dim, + buff=buff, + layout="random", +) + +survey = get_survey(gal_type=galaxy_catalog.gal_type, band=band) +noise_for_gsparams = survey.noise +lists = get_objlist( + galaxy_catalog=galaxy_catalog, + survey=survey, + star_catalog=None, + noise=noise_for_gsparams, +) + + +lists.keys() + + +lists["redshifts"] + + + diff --git a/.virtual_documents/examples/example_NFWShear_imsim.ipynb b/.virtual_documents/examples/example_NFWShear_imsim.ipynb new file mode 100644 index 00000000..92409184 --- /dev/null +++ b/.virtual_documents/examples/example_NFWShear_imsim.ipynb @@ -0,0 +1,66 @@ +get_ipython().run_line_magic("matplotlib", " inline") +get_ipython().run_line_magic("reload_ext", " autoreload") +get_ipython().run_line_magic("autoreload", " 2") +import clmm +import numpy as np + +from descwl_shear_sims.galaxies import make_galaxy_catalog +from descwl_shear_sims.galaxies import WLDeblendGalaxyCatalog +from descwl_shear_sims.psfs import make_fixed_psf +from descwl_shear_sims.surveys import get_survey + +from descwl_shear_sims.sim import make_sim +from descwl_shear_sims.shear import ShearNFW + + +import matplotlib.pyplot as plt + + +cosmo = clmm.Cosmology(H0=70.0, Omega_dm0=0.27 - 0.045, Omega_b0=0.045, Omega_k0=0.0) +halo = clmm.Modeling(massdef="mean", delta_mdef=200, halo_profile_model="nfw") +halo.set_cosmo(cosmo) +halo.set_concentration(4) +halo.set_mass(1.0e15) +z_cl = 1.0 +# source properties +z_source = 2.0 # all sources in the same plane + +shear_obj = ShearNFW(halo, z_cl) + +seed = 74321 +rng = np.random.RandomState(seed) + +coadd_dim = 50 +se_dim = 50 +psf_dim = 41 + +galaxy_catalog = WLDeblendGalaxyCatalog( + rng=rng, + coadd_dim=coadd_dim, + buff=2, + layout="random_disk", +) +psf = make_fixed_psf(psf_type="gauss") +band_list = ["r"] + +sim_data = make_sim( + rng=rng, + galaxy_catalog=galaxy_catalog, + coadd_dim=coadd_dim, + shear_obj=shear_obj, + psf=psf, + noise_factor=0.0, + bands=band_list, +) + + +exp = sim_data["band_data"]["r"][0] +img = exp.getImage().getArray() + + +from astropy.visualization import simple_norm +plt.imshow(img,aspect='equal',cmap='RdYlBu_r',origin='lower',interpolation='None',\ + norm=simple_norm(img,'asinh',asinh_a=0.1,min_cut=-0.01,max_cut=4)) + + + diff --git a/descwl_shear_sims/__init__.py b/descwl_shear_sims/__init__.py index 7c787c39..fe93f7ce 100644 --- a/descwl_shear_sims/__init__.py +++ b/descwl_shear_sims/__init__.py @@ -19,3 +19,4 @@ from . import artifacts from . import masking from . import wcs +from . import shear diff --git a/descwl_shear_sims/galaxies.py b/descwl_shear_sims/galaxies.py index 4637f2ae..fa62a642 100644 --- a/descwl_shear_sims/galaxies.py +++ b/descwl_shear_sims/galaxies.py @@ -203,7 +203,7 @@ def get_objlist(self, *, survey): objlist.append(self._get_galaxy(flux)) shifts.append(galsim.PositionD(sarray['dx'][i], sarray['dy'][i])) - return objlist, shifts + return objlist, shifts, None def _get_galaxy(self, flux): """ @@ -633,6 +633,7 @@ def __init__(self, *, rng, coadd_dim, buff=0, layout='random'): nobj=nobj, ) + # randomly sample from the catalog num = len(self) self.indices = self.rng.randint( 0, @@ -640,6 +641,7 @@ def __init__(self, *, rng, coadd_dim, buff=0, layout='random'): size=num, ) + # do a random rotation for each galaxy self.angles = self.rng.uniform(low=0, high=360, size=num) def __len__(self): @@ -672,11 +674,14 @@ def get_objlist(self, *, survey): sarray = self.shifts_array objlist = [] shifts = [] + redshifts = [] for i in range(len(self)): objlist.append(self._get_galaxy(builder, band, i)) shifts.append(galsim.PositionD(sarray['dx'][i], sarray['dy'][i])) + index = self.indices[i] + redshifts.append(self._wldeblend_cat[index]["redshift"]) - return objlist, shifts + return objlist, shifts, redshifts def _get_galaxy(self, builder, band, i): """ diff --git a/descwl_shear_sims/objlists.py b/descwl_shear_sims/objlists.py index 38f2b54c..a9fef9ee 100644 --- a/descwl_shear_sims/objlists.py +++ b/descwl_shear_sims/objlists.py @@ -20,7 +20,7 @@ def get_objlist(*, galaxy_catalog, survey, star_catalog=None, noise=None): objlist is a list of galsim GSObject with transformations applied. Shifts is an array with fields dx and dy for each object """ - objlist, shifts = galaxy_catalog.get_objlist(survey=survey) + objlist, shifts, redshifts = galaxy_catalog.get_objlist(survey=survey) if star_catalog is not None: assert noise is not None @@ -39,6 +39,7 @@ def get_objlist(*, galaxy_catalog, survey, star_catalog=None, noise=None): return { 'objlist': objlist, 'shifts': shifts, + 'redshifts': redshifts, 'star_objlist': sobjlist, 'star_shifts': sshifts, 'bright_objlist': bright_objlist, diff --git a/descwl_shear_sims/shear.py b/descwl_shear_sims/shear.py index 02204c2e..bfb1f78a 100644 --- a/descwl_shear_sims/shear.py +++ b/descwl_shear_sims/shear.py @@ -2,45 +2,24 @@ import numpy as np # maximum kappa allowed # values greater than it will be clipped -kappa_max = 0.8 - -def get_shear( - *, - shear_type="constant", - z_gals=None, - shift=None, - **kwargs, -): - """ - A shear wrapper to return g1 and g2 with different shear type - - Parameters - ---------- - shear_type: the constant shear or shear from NFW halos - z_gals: redshifts of galaxies - shift: Galsim positionD shift - """ - if shear_type == "constant": - shear_obj = ShearConstant(**kwargs) - elif shear_type =="redshift": - shear_obj = ShearRedshift(**kwargs) - elif shear_type == "NFW": - shear_obj = ShearNFW(**kwargs) - else: - raise ValueError("Do not support the shear type: %s" % shear_type) - return shear_obj.get_shear(z_gals, shift) +kappa_max = 0.6 +""" +shear_obj = ShearConstant(cluster_obj, z_cl, ra_cl, dec_cl) +shear_obj = ShearRedshift(g1=0.02, g2=0.00) +shear_obj = ShearNFW(mode="0000", g_dist="g1") +""" class ShearNFW(object): """ - Shear object from NFW + Shear object from NFW halos Parameters ---------- - cluster_obj (object): cluster object from clmm - z_cl (float): redshift of the cluster - x_cl (float): ra of the cluster [arcsec] - y_cl (float): dec of the cluster [arcsec] + cluster_obj (object): cluster object from clmm + z_cl (float): redshift of the cluster + x_cl (float): ra of the cluster [arcsec] + y_cl (float): dec of the cluster [arcsec] """ def __init__(self, cluster_obj, z_cl, ra_cl=0., dec_cl=0.): @@ -51,56 +30,69 @@ def __init__(self, cluster_obj, z_cl, ra_cl=0., dec_cl=0.): self.cosmo = cluster_obj.cosmo return - def get_shear(self, z_gals, shift): + def get_shear(self, redshift, shift): """ A shear wrapper to return g1 and g2 with different shear type Parameters ---------- - z_gals (float): redshifts of galaxies - shift (galsim.positionD): Galsim positionD shift [arcsec] + redshift (float): redshifts of galaxies + shift (galsim.positionD): Galsim positionD shift [arcsec] Returns --------- shear (galsim.Shear) shear distortion on the galaxy """ - from astropy.coordinates import SkyCoord z_cl = self.z_cl - # Create the SkyCoord objects - coord_cl = SkyCoord(self.ra_cl, self.dec_cl, unit="arcsec") - coord_gals = SkyCoord(shift.x, shift.y, unit="arcsec") - # Calculate the separation - sep = coord_cl.separation(coord_gals).radian - # What is the unit of r3d? - r3d = self.cosmo.rad2mpc(sep, self.z_cl) - # position angle - phi = coord_cl.position_angle(coord_gals).radian - - # TODO: confirm whether the units is Mpc/h or Mpc? - gammat = self.cobj.eval_tangential_shear(r3d, z_cl, z_gals) - kappa0 = self.cobj.eval_convergence(r3d, z_cl, z_gals) - # we are forcing kappa to be less than kappa_max - # and scale gamma by the same ratio - kappa = min(kappa0, kappa_max) - ratio = kappa / kappa0 - gamma1 = gammat * np.cos(2. * phi) * ratio - gamma2 = -gammat * np.sin(2. * phi) * ratio - shear = galsim.Shear(g1=gamma1/(1-kappa), g2=gamma2/(1-kappa)) + if redshift > z_cl: + from astropy.coordinates import SkyCoord + # Create the SkyCoord objects + coord_cl = SkyCoord(self.ra_cl, self.dec_cl, unit="arcsec") + coord_gals = SkyCoord(shift.x, shift.y, unit="arcsec") + # Calculate the separation + sep = coord_cl.separation(coord_gals).radian + # What is the unit of r3d? + r3d = self.cosmo.rad2mpc(sep, self.z_cl) + # position angle + phi = coord_cl.position_angle(coord_gals).radian + + # TODO: confirm whether the units is Mpc/h or Mpc? + gammat = self.cobj.eval_tangential_shear(r3d, z_cl, redshift) + kappa0 = self.cobj.eval_convergence(r3d, z_cl, redshift) + # we are forcing kappa to be less than kappa_max + # and scale gamma by the same ratio + kappa = min(kappa0, kappa_max) + ratio = kappa / kappa0 + gamma1 = gammat * np.cos(2. * phi) * ratio + gamma2 = -gammat * np.sin(2. * phi) * ratio + g1 = gamma1 / (1-kappa) + g2 = gamma2 / (1-kappa) + else: + g1 = 0.; g2 = 0. + shear = galsim.Shear(g1=g1, g2=g2) return shear class ShearConstant(object): """ Constant shear along every redshift slice + Parameters + ---------- + g1, g2: Constant shear distortion """ def __init__(self, g1, g2): self.g1 = g1 self.g2 = g2 + self.shear = galsim.Shear(g1=self.g1, g2=self.g2) return - def get_shear(self): - shear = galsim.Shear(g1= self.g1, g2=self.g2) - return shear + def get_shear(self, redshift=None, shift=None): + """ + Returns + --------- + shear (galsim.Shear) shear distortion on the galaxy + """ + return self.shear class ShearRedshift(object): @@ -122,11 +114,9 @@ def __init__(self, mode="0000", g_dist="g1"): self.g_dist = g_dist return - def get_shear(self, z_gals=None, shift=None): - if z_gals is None: - assert self.mode == "0" * self.nz_bins - #z_gal_bins = z_gals // self.dz_bin + def get_shear(self, redshift, shift=None): + # z_gal_bins = redshift // self.dz_bin gamma1, gamma2 = (None, None) # TODO: Finish implementing the z-dependent shear - shear = galsim.Shear(g1= gamma1, g2=gamma2) + shear = galsim.Shear(g1=gamma1, g2=gamma2) return shear diff --git a/descwl_shear_sims/sim.py b/descwl_shear_sims/sim.py index 6867e6f9..537abab2 100644 --- a/descwl_shear_sims/sim.py +++ b/descwl_shear_sims/sim.py @@ -52,8 +52,7 @@ def make_sim( rng, galaxy_catalog, coadd_dim, - g1, - g2, + shear_obj, psf, se_dim=None, star_catalog=None, @@ -70,7 +69,6 @@ def make_sim( sky_n_sigma=None, draw_method='auto', theta0=0., - shear_obj=None, ): """ Make simulation data @@ -85,10 +83,8 @@ def make_sim( Dimensions for planned final coadd. This is used for generating the final coadd WCS and deteremines some properties of the single epoch images. - g1: float - Shear g1 for galaxies - g2: float - Shear g2 for galaxies + shear_obj: + shear distortion object psf: GSObject or PowerSpectrumPSF The psf object or power spectrum psf se_dim: int, optional @@ -182,10 +178,11 @@ def make_sim( noise=noise_per_epoch, objlist=lists['objlist'], shifts=lists['shifts'], + redshifts=lists['redshifts'], dim=se_dim, psf=psf, psf_dim=psf_dim, - g1=g1, g2=g2, + shear_obj=shear_obj, star_objlist=lists['star_objlist'], star_shifts=lists['star_shifts'], draw_stars=draw_stars, @@ -202,7 +199,6 @@ def make_sim( sky_n_sigma=sky_n_sigma, draw_method=draw_method, theta0=theta0, - shear_obj=None, ) if epoch == 0: bright_info += this_bright_info @@ -246,11 +242,11 @@ def make_exp( noise, objlist, shifts, + redshifts, dim, psf, psf_dim, - g1, - g2, + shear_obj, star_objlist=None, star_shifts=None, draw_stars=True, @@ -267,7 +263,6 @@ def make_exp( sky_n_sigma=None, draw_method='auto', theta0=0., - shear_obj=None, ): """ Make an SEObs @@ -338,10 +333,6 @@ def make_exp( radius_pixels: radius of mask in pixels has_bleed: bool, True if there is a bleed trail """ - if shear_obj is None: - shear = galsim.Shear(g1=g1, g2=g2) - else: - shear = shear_obj dims = [dim]*2 # I think Galsim uses 1 offset. An array with length=dim=5 # The center is at 3=(5+1)/2 @@ -371,17 +362,17 @@ def make_exp( _draw_objects( image, - objlist, shifts, psf, draw_method, + objlist, shifts, redshifts, psf, draw_method, coadd_bbox_cen_gs_skypos, rng, - shear=shear, + shear_obj=shear_obj, theta0=theta0, ) if star_objlist is not None and draw_stars: assert star_shifts is not None, 'send star_shifts with star_objlist' _draw_objects( image, - star_objlist, star_shifts, psf, draw_method, + star_objlist, star_shifts, None, psf, draw_method, coadd_bbox_cen_gs_skypos, rng, ) @@ -454,10 +445,10 @@ def make_exp( def _draw_objects( - image, objlist, shifts, psf, draw_method, + image, objlist, shifts, redshifts, psf, draw_method, coadd_bbox_cen_gs_skypos, rng, - shear=None, + shear_obj=None, theta0=None, ): @@ -467,7 +458,10 @@ def _draw_objects( kw['maxN'] = 1_000_000 kw['rng'] = galsim.BaseDeviate(seed=rng.randint(low=0, high=2**30)) - for obj, shift in zip(objlist, shifts): + if redshifts is None: + redshifts = np.zeros(len(objlist)) + + for obj, shift, z in zip(objlist, shifts, redshifts): if theta0 is not None: ang = theta0*galsim.radians @@ -475,7 +469,8 @@ def _draw_objects( obj = obj.rotate(ang) shift = _roate_pos(shift, theta0) - if shear is not None: + if shear_obj is not None: + shear = shear_obj.get_shear(z, shift) obj = obj.shear(shear) shift = shift.shear(shear) diff --git a/descwl_shear_sims/tests/test_correlated_noise.py b/descwl_shear_sims/tests/test_correlated_noise.py index e4bb107a..56ebea38 100644 --- a/descwl_shear_sims/tests/test_correlated_noise.py +++ b/descwl_shear_sims/tests/test_correlated_noise.py @@ -5,6 +5,10 @@ from ..galaxies import make_galaxy_catalog from numba import njit +from descwl_shear_sims.shear import ShearConstant + +shear_obj = ShearConstant(g1=0.02, g2=0.) + @njit def get_cov(image): @@ -56,8 +60,7 @@ def test_correlated_noise(): rng=rng, galaxy_catalog=galaxy_catalog, coadd_dim=coadd_dim, - g1=0.02, - g2=0.00, + shear_obj=shear_obj, psf=psf, dither=True, rotate=True, diff --git a/descwl_shear_sims/tests/test_galaxies.py b/descwl_shear_sims/tests/test_galaxies.py index f9bc7de7..fd19c5dc 100644 --- a/descwl_shear_sims/tests/test_galaxies.py +++ b/descwl_shear_sims/tests/test_galaxies.py @@ -9,6 +9,9 @@ ) from descwl_shear_sims.psfs import make_fixed_psf from descwl_shear_sims.sim import make_sim +from descwl_shear_sims.shear import ShearConstant + +shear_obj = ShearConstant(g1=0.02, g2=0.) @pytest.mark.parametrize('layout', ('pair', 'random', 'hex')) @@ -62,8 +65,7 @@ def test_galaxies_smoke(layout, gal_type, morph): galaxy_catalog=galaxy_catalog, coadd_dim=coadd_dim, bands=bands, - g1=0.02, - g2=0.00, + shear_obj=shear_obj, psf=psf, ) diff --git a/descwl_shear_sims/tests/test_nfw_shear.py b/descwl_shear_sims/tests/test_nfw_shear.py deleted file mode 100644 index d9dc04c6..00000000 --- a/descwl_shear_sims/tests/test_nfw_shear.py +++ /dev/null @@ -1,47 +0,0 @@ -import os -import pytest -import numpy as np -import lsst.afw.image as afw_image -import lsst.afw.geom as afw_geom - -from descwl_shear_sims.galaxies import make_galaxy_catalog, DEFAULT_FIXED_GAL_CONFIG -from descwl_shear_sims.stars import StarCatalog, make_star_catalog -from descwl_shear_sims.psfs import make_fixed_psf, make_ps_psf - -from descwl_shear_sims.sim import make_sim, get_se_dim - -def test_sim_se_dim(): - """ - test sim can run - """ - seed = 74321 - rng = np.random.RandomState(seed) - - coadd_dim = 351 - se_dim = 351 - psf_dim = 51 - bands = ["i"] - galaxy_catalog = make_galaxy_catalog( - rng=rng, - gal_type="fixed", - coadd_dim=coadd_dim, - buff=30, - layout="grid", - ) - - psf = make_fixed_psf(psf_type="gauss") - data = make_sim( - rng=rng, - galaxy_catalog=galaxy_catalog, - coadd_dim=coadd_dim, - se_dim=se_dim, - psf_dim=psf_dim, - bands=bands, - g1=0.02, - g2=0.00, - psf=psf, - ) - return data['band_data']['i'][0] - -a = test_sim_se_dim() -data = a.getImage().getArray() diff --git a/descwl_shear_sims/tests/test_nonzero_sky.py b/descwl_shear_sims/tests/test_nonzero_sky.py index ee52838e..6a6ceb03 100644 --- a/descwl_shear_sims/tests/test_nonzero_sky.py +++ b/descwl_shear_sims/tests/test_nonzero_sky.py @@ -3,6 +3,9 @@ from ..psfs import make_fixed_psf from ..sim import make_sim +from descwl_shear_sims.shear import ShearConstant + +shear_obj = ShearConstant(g1=0.02, g2=0.) def test_nonzero_sky(): @@ -37,8 +40,7 @@ def test_nonzero_sky(): coadd_dim=coadd_dim, psf_dim=psf_dim, bands=bands, - g1=0.02, - g2=0.00, + shear_obj=shear_obj, psf=psf, sky_n_sigma=sky_n_sigma, ) diff --git a/descwl_shear_sims/tests/test_pairs.py b/descwl_shear_sims/tests/test_pairs.py index ba99b664..63b22c33 100644 --- a/descwl_shear_sims/tests/test_pairs.py +++ b/descwl_shear_sims/tests/test_pairs.py @@ -6,6 +6,10 @@ from ..sim import make_sim from ..constants import ZERO_POINT +from descwl_shear_sims.shear import ShearConstant + +shear_obj = ShearConstant(g1=0.02, g2=0.) + @pytest.mark.parametrize('dither,rotate', [ (False, False), @@ -38,8 +42,7 @@ def test_pairs_smoke(dither, rotate): galaxy_catalog=galaxy_catalog, coadd_dim=coadd_dim, bands=bands, - g1=0.02, - g2=0.00, + shear_obj=shear_obj, psf=psf, dither=dither, rotate=rotate, diff --git a/descwl_shear_sims/tests/test_sim.py b/descwl_shear_sims/tests/test_sim.py index 9e1d82cd..6363baad 100644 --- a/descwl_shear_sims/tests/test_sim.py +++ b/descwl_shear_sims/tests/test_sim.py @@ -11,6 +11,10 @@ from descwl_shear_sims.sim import make_sim, get_se_dim from descwl_shear_sims.constants import ZERO_POINT +from descwl_shear_sims.shear import ShearConstant + +shear_obj = ShearConstant(g1=0.02, g2=0.) + @pytest.mark.parametrize('dither,rotate', [ (False, False), @@ -43,8 +47,7 @@ def test_sim_smoke(dither, rotate): coadd_dim=coadd_dim, psf_dim=psf_dim, bands=bands, - g1=0.02, - g2=0.00, + shear_obj=shear_obj, psf=psf, dither=dither, rotate=rotate, @@ -94,8 +97,7 @@ def test_sim_se_dim(): se_dim=se_dim, psf_dim=psf_dim, bands=bands, - g1=0.02, - g2=0.00, + shear_obj=shear_obj, psf=psf, ) @@ -138,8 +140,7 @@ def test_sim_exp_mag(rotate, show=False): galaxy_catalog=galaxy_catalog, coadd_dim=coadd_dim, se_dim=se_dim, - g1=0.02, - g2=0.00, + shear_obj=shear_obj, psf=psf, bands=bands, rotate=rotate, @@ -200,8 +201,7 @@ def test_sim_psf_type(psf_type): rng=rng, galaxy_catalog=galaxy_catalog, coadd_dim=coadd_dim, - g1=0.02, - g2=0.00, + shear_obj=shear_obj, psf=psf, dither=dither, rotate=rotate, @@ -232,8 +232,7 @@ def test_sim_epochs(epochs_per_band): galaxy_catalog=galaxy_catalog, coadd_dim=coadd_dim, psf_dim=psf_dim, - g1=0.02, - g2=0.00, + shear_obj=shear_obj, psf=psf, bands=bands, epochs_per_band=epochs_per_band, @@ -264,8 +263,7 @@ def test_sim_layout(layout): rng=rng, galaxy_catalog=galaxy_catalog, coadd_dim=coadd_dim, - g1=0.02, - g2=0.00, + shear_obj=shear_obj, psf=psf, ) @@ -299,8 +297,7 @@ def test_sim_defects(cosmic_rays, bad_columns): rng=rng, galaxy_catalog=galaxy_catalog, coadd_dim=coadd_dim, - g1=0.02, - g2=0.00, + shear_obj=shear_obj, psf=psf, cosmic_rays=cosmic_rays, bad_columns=bad_columns, @@ -341,8 +338,7 @@ def test_sim_wldeblend(): rng=rng, galaxy_catalog=galaxy_catalog, coadd_dim=coadd_dim, - g1=0.02, - g2=0.00, + shear_obj=shear_obj, psf=psf, ) @@ -407,8 +403,7 @@ def test_sim_stars(density, min_density, max_density): galaxy_catalog=galaxy_catalog, star_catalog=star_catalog, coadd_dim=coadd_dim, - g1=0.02, - g2=0.00, + shear_obj=shear_obj, psf=psf, ) @@ -455,8 +450,7 @@ def test_sim_star_bleeds(): galaxy_catalog=galaxy_catalog, star_catalog=star_catalog, coadd_dim=coadd_dim, - g1=0.02, - g2=0.00, + shear_obj=shear_obj, psf=psf, star_bleeds=True, ) @@ -485,8 +479,7 @@ def test_sim_draw_method_smoke(draw_method): rng=rng, galaxy_catalog=galaxy_catalog, coadd_dim=coadd_dim, - g1=0.02, - g2=0.00, + shear_obj=shear_obj, psf=psf, **kw ) diff --git a/descwl_shear_sims/tests/test_sim_center.py b/descwl_shear_sims/tests/test_sim_center.py index 8c14901f..5d902eb2 100644 --- a/descwl_shear_sims/tests/test_sim_center.py +++ b/descwl_shear_sims/tests/test_sim_center.py @@ -9,6 +9,9 @@ from descwl_shear_sims.sim import make_sim from descwl_shear_sims.galaxies import make_galaxy_catalog from descwl_shear_sims.psfs import make_fixed_psf # for making a power spectrum PSF +from descwl_shear_sims.shear import ShearConstant + +shear_obj = ShearConstant(g1=0.02, g2=0.) @pytest.mark.parametrize("ran_seed", [0, 1, 2]) @@ -44,8 +47,7 @@ def test_sim_center(ran_seed): rng=rng, galaxy_catalog=galaxy_catalog, coadd_dim=coadd_dim, - g1=0.02, - g2=0.00, + shear_obj=shear_obj, psf=psf, bands=band_list, noise_factor=0.0, diff --git a/descwl_shear_sims/tests/test_star_masks_and_bleeds.py b/descwl_shear_sims/tests/test_star_masks_and_bleeds.py index 1b7eec48..9fae6c02 100644 --- a/descwl_shear_sims/tests/test_star_masks_and_bleeds.py +++ b/descwl_shear_sims/tests/test_star_masks_and_bleeds.py @@ -10,6 +10,10 @@ from descwl_shear_sims.galaxies import make_galaxy_catalog from descwl_shear_sims.psfs import make_fixed_psf from descwl_shear_sims.sim import make_sim +from descwl_shear_sims.shear import ShearConstant + + +shear_obj = ShearConstant(g1=0., g2=0.) @pytest.mark.skipif( @@ -79,7 +83,7 @@ def test_star_mask_in_sim(draw_stars): coadd_dim=coadd_dim, bands=bands, psf=psf, - g1=0, g2=0, + shear_obj=shear_obj, star_bleeds=True, ) @@ -153,7 +157,7 @@ def test_star_mask_in_sim_repeatable(): coadd_dim=coadd_dim, bands=bands, psf=psf, - g1=0, g2=0, + shear_obj=shear_obj, star_bleeds=True, ) diff --git a/examples/example_NFWShear.ipynb b/examples/example_NFWShear.ipynb index 0f4ab029..c1ba54d0 100644 --- a/examples/example_NFWShear.ipynb +++ b/examples/example_NFWShear.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 1, + "execution_count": 16, "id": "d12a992b-6669-4675-b68a-b705ff09f693", "metadata": {}, "outputs": [], @@ -15,7 +15,11 @@ "import galsim\n", "import numpy as np\n", "import descwl_shear_sims as dss\n", - "import matplotlib.pyplot as plt" + "import matplotlib.pyplot as plt\n", + "\n", + "from descwl_shear_sims.galaxies import WLDeblendGalaxyCatalog\n", + "from descwl_shear_sims.objlists import get_objlist\n", + "from descwl_shear_sims.surveys import get_survey" ] }, { @@ -184,10 +188,499 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 44, "id": "0c43422d-d816-4c98-8bb9-8671bbdcd1a1", "metadata": {}, "outputs": [], + "source": [ + "band=\"r\"\n", + "rng = np.random.RandomState(1)\n", + "coadd_dim = 500\n", + "buff = 50\n", + "# galaxy catalog; you can make your own\n", + "galaxy_catalog = WLDeblendGalaxyCatalog(\n", + " rng=rng,\n", + " coadd_dim=coadd_dim,\n", + " buff=buff,\n", + " layout=\"random\",\n", + ")\n", + "\n", + "survey = get_survey(gal_type=galaxy_catalog.gal_type, band=band)\n", + "noise_for_gsparams = survey.noise\n", + "lists = get_objlist(\n", + " galaxy_catalog=galaxy_catalog,\n", + " survey=survey,\n", + " star_catalog=None,\n", + " noise=noise_for_gsparams,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "id": "717a8a13-7bf7-45ab-a163-a17f783be24a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "dict_keys(['objlist', 'shifts', 'redshifts', 'star_objlist', 'star_shifts', 'bright_objlist', 'bright_shifts', 'bright_mags'])" + ] + }, + "execution_count": 45, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lists.keys()" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "id": "aaf65a03-5261-4ec1-b8e9-f26d5db85ba0", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[0.300422102213,\n", + " 0.652480721474,\n", + " 0.575277209282,\n", + " 2.52627205849,\n", + " 1.45767605305,\n", + " 3.21435308456,\n", + " 1.43933665752,\n", + " 0.602639317513,\n", + " 0.351592004299,\n", + " 1.4857083559,\n", + " 1.23648571968,\n", + " 2.45936989784,\n", + " 1.65149867535,\n", + " 1.95639693737,\n", + " 0.673706114292,\n", + " 1.33176410198,\n", + " 0.832303106785,\n", + " 1.23708331585,\n", + " 2.74137616158,\n", + " 0.478885412216,\n", + " 1.71309113503,\n", + " 3.10937333107,\n", + " 1.58497214317,\n", + " 1.53414404392,\n", + " 2.21907281876,\n", + " 3.05395698547,\n", + " 0.624157905579,\n", + " 2.48969173431,\n", + " 1.65923559666,\n", + " 1.72423791885,\n", + " 1.72161865234,\n", + " 1.41527807713,\n", + " 1.9740653038,\n", + " 1.57185637951,\n", + " 1.36203336716,\n", + " 0.998158812523,\n", + " 2.22123336792,\n", + " 0.0790505036712,\n", + " 1.54114544392,\n", + " 1.28051483631,\n", + " 0.633835613728,\n", + " 0.935597300529,\n", + " 2.90864443779,\n", + " 0.397633910179,\n", + " 1.96410322189,\n", + " 2.22879934311,\n", + " 0.681291222572,\n", + " 2.69742965698,\n", + " 0.310196310282,\n", + " 2.89895749092,\n", + " 1.48319602013,\n", + " 1.25393915176,\n", + " 1.32725834846,\n", + " 1.49158430099,\n", + " 1.06035864353,\n", + " 2.03195810318,\n", + " 1.80608427525,\n", + " 0.736506402493,\n", + " 1.11696577072,\n", + " 0.290101289749,\n", + " 0.578349113464,\n", + " 1.81913363934,\n", + " 1.52007460594,\n", + " 1.07314383984,\n", + " 0.803764998913,\n", + " 0.668692708015,\n", + " 1.02715909481,\n", + " 0.867182075977,\n", + " 1.41402947903,\n", + " 0.5780569911,\n", + " 0.188184097409,\n", + " 1.88854825497,\n", + " 1.57122135162,\n", + " 1.31176841259,\n", + " 1.77145779133,\n", + " 1.06479489803,\n", + " 1.45442044735,\n", + " 0.712578594685,\n", + " 2.21411037445,\n", + " 1.63247942924,\n", + " 1.17663383484,\n", + " 0.588364779949,\n", + " 1.11000394821,\n", + " 1.16703224182,\n", + " 0.641001403332,\n", + " 1.64528286457,\n", + " 1.15830636024,\n", + " 0.335720986128,\n", + " 0.906032621861,\n", + " 2.21711087227,\n", + " 2.40289640427,\n", + " 2.84520173073,\n", + " 1.34919595718,\n", + " 2.46827530861,\n", + " 2.83999967575,\n", + " 1.04901909828,\n", + " 0.319967508316,\n", + " 0.341769695282,\n", + " 2.46187758446,\n", + " 0.79427921772,\n", + " 2.31489515305,\n", + " 1.22375190258,\n", + " 0.501341700554,\n", + " 0.873788118362,\n", + " 0.487286388874,\n", + " 1.15298783779,\n", + " 1.4753049612,\n", + " 2.08395910263,\n", + " 2.40972471237,\n", + " 1.01812720299,\n", + " 1.16665363312,\n", + " 2.22886013985,\n", + " 2.12949180603,\n", + " 0.864983677864,\n", + " 0.77624219656,\n", + " 1.33834803104,\n", + " 1.139534235,\n", + " 1.81312501431,\n", + " 0.168495103717,\n", + " 1.67772495747,\n", + " 1.41799271107,\n", + " 0.941433608532,\n", + " 2.65767550468,\n", + " 2.28444099426,\n", + " 2.707062006,\n", + " 2.11041426659,\n", + " 1.79551744461,\n", + " 0.889996528625,\n", + " 2.55368709564,\n", + " 3.41086649895,\n", + " 0.599908709526,\n", + " 0.421412497759,\n", + " 1.31073558331,\n", + " 0.520302295685,\n", + " 2.25809669495,\n", + " 2.11552023888,\n", + " 2.62590360641,\n", + " 0.46127268672,\n", + " 1.02121424675,\n", + " 2.40373373032,\n", + " 1.9007294178,\n", + " 0.899684309959,\n", + " 1.70473027229,\n", + " 0.495625197887,\n", + " 0.427616208792,\n", + " 0.397975295782,\n", + " 0.648187816143,\n", + " 0.130950897932,\n", + " 1.52637636662,\n", + " 2.81915616989,\n", + " 2.11356329918,\n", + " 1.61144244671,\n", + " 2.06564879417,\n", + " 1.04404497147,\n", + " 1.34818983078,\n", + " 1.39981412888,\n", + " 0.864934980869,\n", + " 1.33908998966,\n", + " 2.46712183952,\n", + " 1.89539885521,\n", + " 1.24982535839,\n", + " 1.1437817812,\n", + " 2.01672744751,\n", + " 0.340645611286,\n", + " 2.41918492317,\n", + " 1.41926276684,\n", + " 1.10521566868,\n", + " 1.10822916031,\n", + " 2.25334000587,\n", + " 2.22653150558,\n", + " 3.05836296082,\n", + " 0.482657194138,\n", + " 0.318901002407,\n", + " 1.96011662483,\n", + " 1.61710560322,\n", + " 1.90298342705,\n", + " 1.73685991764,\n", + " 2.93522453308,\n", + " 0.650065481663,\n", + " 1.25021719933,\n", + " 1.10114979744,\n", + " 0.866418004036,\n", + " 2.19380021095,\n", + " 1.08637464046,\n", + " 0.822790801525,\n", + " 1.38353955746,\n", + " 1.64931476116,\n", + " 0.302997589111,\n", + " 1.51071894169,\n", + " 2.8846642971,\n", + " 1.32703089714,\n", + " 2.67867779732,\n", + " 1.76590585709,\n", + " 3.17645263672,\n", + " 1.71681344509,\n", + " 2.52285122871,\n", + " 1.17834913731,\n", + " 1.50523948669,\n", + " 1.14093506336,\n", + " 3.16135239601,\n", + " 1.09506905079,\n", + " 1.08600640297,\n", + " 1.98616600037,\n", + " 1.48948955536,\n", + " 0.502289891243,\n", + " 0.996598005295,\n", + " 1.73006772995,\n", + " 1.76647496223,\n", + " 1.09649145603,\n", + " 1.54330563545,\n", + " 0.989837527275,\n", + " 2.44702649117,\n", + " 0.830703914165,\n", + " 2.08731150627,\n", + " 1.58221542835,\n", + " 0.214862897992,\n", + " 0.538595914841,\n", + " 1.24603927135,\n", + " 0.319257706404,\n", + " 0.790669679642,\n", + " 0.159857407212,\n", + " 2.3959107399,\n", + " 2.67075037956,\n", + " 1.14329791069,\n", + " 1.15164625645,\n", + " 0.683000683784,\n", + " 0.834991812706,\n", + " 1.36701524258,\n", + " 0.547425210476,\n", + " 0.620535314083,\n", + " 2.90232038498,\n", + " 1.89723217487,\n", + " 1.75947773457,\n", + " 1.77549481392,\n", + " 1.49135160446,\n", + " 0.303325414658,\n", + " 0.974943816662,\n", + " 0.993987500668,\n", + " 2.52588868141,\n", + " 0.850441098213,\n", + " 1.87186586857,\n", + " 1.96139752865,\n", + " 1.00067532063,\n", + " 2.98829460144,\n", + " 1.35702085495,\n", + " 0.695308089256,\n", + " 1.4819444418,\n", + " 1.78945732117,\n", + " 2.82897782326,\n", + " 0.618653714657,\n", + " 2.28428649902,\n", + " 2.78763699532,\n", + " 3.39486765862,\n", + " 0.681082129478,\n", + " 1.73980367184,\n", + " 0.287106394768,\n", + " 0.76867300272,\n", + " 1.73666203022,\n", + " 0.493183493614,\n", + " 0.688378274441,\n", + " 1.49327087402,\n", + " 1.81206035614,\n", + " 1.40067899227,\n", + " 0.528106093407,\n", + " 2.16370892525,\n", + " 0.832297980785,\n", + " 3.14188766479,\n", + " 1.17325472832,\n", + " 0.560717523098,\n", + " 0.364278107882,\n", + " 2.39610099792,\n", + " 1.75224924088,\n", + " 1.52973818779,\n", + " 1.68229234219,\n", + " 2.08690261841,\n", + " 0.669252991676,\n", + " 2.28056359291,\n", + " 0.488966494799,\n", + " 0.952519595623,\n", + " 1.61904525757,\n", + " 0.411360710859,\n", + " 0.703873991966,\n", + " 1.58890843391,\n", + " 0.681704580784,\n", + " 2.14935588837,\n", + " 1.95650875568,\n", + " 1.22865474224,\n", + " 2.14638471603,\n", + " 2.22874379158,\n", + " 1.16049194336,\n", + " 1.33151984215,\n", + " 2.18627977371,\n", + " 2.74079608917,\n", + " 2.26002693176,\n", + " 2.55797576904,\n", + " 2.46304249763,\n", + " 0.879791796207,\n", + " 0.245726600289,\n", + " 0.96441757679,\n", + " 2.324187994,\n", + " 1.35781395435,\n", + " 0.609515607357,\n", + " 1.97818136215,\n", + " 1.98495614529,\n", + " 0.990938007832,\n", + " 2.14657449722,\n", + " 1.83527719975,\n", + " 1.22004532814,\n", + " 3.07879710197,\n", + " 1.11159157753,\n", + " 1.34688043594,\n", + " 2.92512249947,\n", + " 1.20276975632,\n", + " 0.796617090702,\n", + " 0.337698996067,\n", + " 0.270693898201,\n", + " 1.57235705853,\n", + " 1.24777424335,\n", + " 0.75832682848,\n", + " 2.1555109024,\n", + " 0.355849504471,\n", + " 2.36194968224,\n", + " 3.72843241692,\n", + " 1.0002001524,\n", + " 0.98874527216,\n", + " 0.810296714306,\n", + " 1.325989604,\n", + " 1.92509412766,\n", + " 1.74832165241,\n", + " 1.28338968754,\n", + " 1.33858644962,\n", + " 1.59239339828,\n", + " 0.820500671864,\n", + " 1.56284725666,\n", + " 2.06568646431,\n", + " 0.394071787596,\n", + " 1.77705764771,\n", + " 0.835838913918,\n", + " 0.857961416245,\n", + " 1.44001173973,\n", + " 2.74829339981,\n", + " 0.659689605236,\n", + " 3.04629516602,\n", + " 1.41354310513,\n", + " 0.803993582726,\n", + " 1.40441155434,\n", + " 0.543169021606,\n", + " 0.861344218254,\n", + " 1.59517264366,\n", + " 0.557316601276,\n", + " 2.9552257061,\n", + " 1.06244301796,\n", + " 0.942095577717,\n", + " 1.50433290005,\n", + " 0.673812627792,\n", + " 1.82197785378,\n", + " 1.60710632801,\n", + " 1.13935494423,\n", + " 1.16524159908,\n", + " 1.97302734852,\n", + " 1.28499805927,\n", + " 0.328805297613,\n", + " 3.23074674606,\n", + " 1.91709780693,\n", + " 2.08039426804,\n", + " 2.19860076904,\n", + " 1.40333878994,\n", + " 1.12804555893,\n", + " 0.467510610819,\n", + " 2.68251442909,\n", + " 1.37591946125,\n", + " 1.37382102013,\n", + " 0.233396604657,\n", + " 2.58502340317,\n", + " 1.92203700542,\n", + " 0.819615900517,\n", + " 0.716398119926,\n", + " 0.949211418629,\n", + " 3.56541395187,\n", + " 1.17153179646,\n", + " 2.21085906029,\n", + " 0.405795812607,\n", + " 1.33492434025,\n", + " 2.53875398636,\n", + " 1.74736618996,\n", + " 1.54196977615,\n", + " 3.26410460472,\n", + " 1.56685042381,\n", + " 2.05833029747,\n", + " 0.328493088484,\n", + " 1.71686947346,\n", + " 1.13734316826,\n", + " 1.76037442684,\n", + " 0.656079471111,\n", + " 1.0399980545,\n", + " 0.646704792976,\n", + " 2.72219848633,\n", + " 0.552381873131,\n", + " 2.58017683029,\n", + " 2.39596509933,\n", + " 0.286328285933,\n", + " 0.671723008156,\n", + " 0.894760787487,\n", + " 1.35102260113,\n", + " 0.61196821928,\n", + " 0.863633692265,\n", + " 0.74019497633,\n", + " 1.53510355949,\n", + " 1.32124757767,\n", + " 1.36363995075,\n", + " 1.84346938133,\n", + " 0.654158771038,\n", + " 2.15651893616,\n", + " 2.94037532806,\n", + " 2.07316756248,\n", + " 0.508974313736,\n", + " 2.45654439926,\n", + " 1.23254072666,\n", + " 1.85351324081]" + ] + }, + "execution_count": 46, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lists[\"redshifts\"]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a64792ea-69b8-45e1-9379-334f73cacfbb", + "metadata": {}, + "outputs": [], "source": [] } ], diff --git a/examples/example_NFWShear_imsim.ipynb b/examples/example_NFWShear_imsim.ipynb new file mode 100644 index 00000000..e58356b8 --- /dev/null +++ b/examples/example_NFWShear_imsim.ipynb @@ -0,0 +1,137 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 14, + "id": "177f93ce-ec8b-4c36-9ff4-d16951a4941f", + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "%reload_ext autoreload\n", + "%autoreload 2\n", + "import clmm\n", + "import numpy as np\n", + "\n", + "from descwl_shear_sims.galaxies import make_galaxy_catalog\n", + "from descwl_shear_sims.galaxies import WLDeblendGalaxyCatalog\n", + "from descwl_shear_sims.psfs import make_fixed_psf\n", + "from descwl_shear_sims.surveys import get_survey\n", + "\n", + "from descwl_shear_sims.sim import make_sim\n", + "from descwl_shear_sims.shear import ShearNFW\n", + "\n", + "\n", + "import matplotlib.pyplot as plt\n", + "\n", + "\n", + "cosmo = clmm.Cosmology(H0=70.0, Omega_dm0=0.27 - 0.045, Omega_b0=0.045, Omega_k0=0.0)\n", + "halo = clmm.Modeling(massdef=\"mean\", delta_mdef=200, halo_profile_model=\"nfw\")\n", + "halo.set_cosmo(cosmo)\n", + "halo.set_concentration(4)\n", + "halo.set_mass(1.0e15)\n", + "z_cl = 1.0\n", + "# source properties\n", + "z_source = 2.0 # all sources in the same plane\n", + "\n", + "shear_obj = ShearNFW(halo, z_cl)\n", + "\n", + "seed = 74321\n", + "rng = np.random.RandomState(seed)\n", + "\n", + "coadd_dim = 50\n", + "se_dim = 50\n", + "psf_dim = 41\n", + "\n", + "galaxy_catalog = WLDeblendGalaxyCatalog(\n", + " rng=rng,\n", + " coadd_dim=coadd_dim,\n", + " buff=2,\n", + " layout=\"random_disk\",\n", + ")\n", + "psf = make_fixed_psf(psf_type=\"gauss\")\n", + "band_list = [\"r\"]\n", + "\n", + "sim_data = make_sim(\n", + " rng=rng,\n", + " galaxy_catalog=galaxy_catalog,\n", + " coadd_dim=coadd_dim,\n", + " shear_obj=shear_obj,\n", + " psf=psf,\n", + " noise_factor=0.0,\n", + " bands=band_list,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "5db4e4bf-7d48-4bab-9692-1d21f6f0952b", + "metadata": {}, + "outputs": [], + "source": [ + "exp = sim_data[\"band_data\"][\"r\"][0]" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "998c9093-b310-4722-af44-bc1c9311866a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaEAAAGfCAYAAAD22G0fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAjk0lEQVR4nO3df2yV5f3/8dfdX4e2tEdRPIcG9FNn0cmvTNgqjQpTacIc0S/7Q8UYtv2jAoaGLSiSzLq4FllCcKmy4IxiFsb+GP5ItjmaKGULISkIXxt0hn2s2H3kWPFTTw9tOf11ff5wnll6XccdeurVnj4fyZ3Q677POdd9eujr3O37vK/AGGMEAIAHeb4nAACYugghAIA3hBAAwBtCCADgDSEEAPCGEAIAeEMIAQC8IYQAAN4QQgAAbwghAIA3BeN1x88++6x++ctf6syZM5o3b5527typm2+++StvNzw8rI8++khlZWUKgmC8pgcAGCfGGCUSCVVUVCgv7yuudcw42LdvnyksLDTPPfeceeedd8zGjRtNaWmpOX369FfetqOjw0hiY2NjY5vkW0dHx1f+zA+MyX4D0+rqat1www3atWtXauyb3/ym7rrrLjU2Nqa9bTwe1yWXXKKb9D0VqDDbUwMAjLNBDehv+pM+++wzhcPhtMdm/ddx/f39OnbsmB599NER47W1tTp8+PCo45PJpJLJZOrrRCLxr4kVqiAghABg0vnXpc1/8ieVrBcmnD17VkNDQ4pEIiPGI5GIYrHYqOMbGxsVDodT25w5c7I9JQDABDVu1XEXJqAxxpqKW7ZsUTweT20dHR3jNSUAwAST9V/HXX755crPzx911dPZ2Tnq6kiSQqGQQqFQtqcBAJgEsn4lVFRUpMWLF6u5uXnEeHNzs2pqarL9cACASWxcPie0adMm3X///VqyZImWLl2q3bt368MPP9SDDz44Hg8HAJikxiWE7r77bn366af6+c9/rjNnzmj+/Pn605/+pKuuumo8Hg4AMEmNy+eExqK7u1vhcFjLdScl2gAwCQ2aAR3Uq4rH4yovL097LL3jAADeEEIAAG8IIQCAN4QQAMAbQggA4A0hBADwhhACAHhDCAEAvCGEAADeEEIAAG8IIQCAN4QQAMAbQggA4A0hBADwhhACAHhDCAEAvCGEAADeEEIAAG8IIQCAN4QQAMAbQggA4A0hBADwhhACAHhDCAEAvCGEAADeEEIAAG8IIQCAN4QQAMAbQggA4A0hBADwhhACAHhDCAEAvCGEAADeEEIAAG8IIQCAN4QQAMAbQggA4A0hBADwhhACAHhDCAEAvCGEAADeEEIAAG8IIQCAN4QQAMAbQggA4A0hBADwhhACAHhDCAEAvCGEAADeEEIAAG8IIQCANxmH0KFDh7Rq1SpVVFQoCAK98sorI/YbY1RfX6+KigoVFxdr+fLlOnnyZLbmCwDIIRmHUE9PjxYtWqSmpibr/u3bt2vHjh1qampSa2urotGoVqxYoUQiMebJAgByS0GmN1i5cqVWrlxp3WeM0c6dO7V161atXr1akrRnzx5FIhHt3btXDzzwwKjbJJNJJZPJ1Nfd3d2ZTgkAMEll9W9C7e3tisViqq2tTY2FQiEtW7ZMhw8ftt6msbFR4XA4tc2ZMyebUwIATGBZDaFYLCZJikQiI8YjkUhq34W2bNmieDye2jo6OrI5JQDABJbxr+P+E0EQjPjaGDNq7AuhUEihUGg8pgEAmOCyeiUUjUYladRVT2dn56irIwAAshpClZWVikajam5uTo319/erpaVFNTU12XwoAEAOyPjXcefOndM//vGP1Nft7e06ceKEZsyYoSuvvFJ1dXVqaGhQVVWVqqqq1NDQoJKSEq1ZsyarEwcATH4Zh9DRo0f13e9+N/X1pk2bJElr167Viy++qM2bN6uvr0/r1q1TV1eXqqurdeDAAZWVlWVv1gCAnBAYY4zvSXxZd3e3wuGwlutOFQSFvqcDAMjQoBnQQb2qeDyu8vLytMfSOw4A4A0hBADwhhACAHhDCAEAvCGEAADeEEIAAG8IIQCAN4QQAMAbQggA4A0hBADwhhACAHhDCAEAvCGEAADeEEIAAG8IIQCAN4QQAMAbQggA4A0hBADwhhACAHhDCAEAvCGEAADeEEIAAG8IIQCAN4QQAMAbQggA4A0hBADwpsD3BAD8B4Ige/dlTPbuCxgjroQAAN4QQgAAbwghAIA3hBAAwBtCCADgDdVxgA+OarcgP99xfPbeL5qhIceOYcc41XQYP1wJAQC8IYQAAN4QQgAAbwghAIA3hBAAwBuq44DxlGevdnNVwQXTQvbxokL7/afrKTdkr3YzyaR9vL/fPu6spqNqDmPHlRAAwBtCCADgDSEEAPCGEAIAeEMIAQC8oToOyAZXL7g8x7ijCi6vvMw6bkqL7Y9b4Og1J0n9A/bHTvTYj0+csz/2eXs1nYyjag7IAFdCAABvCCEAgDeEEADAG0IIAOANIQQA8Caj6rjGxkbt379ff//731VcXKyamho99dRTuvbaa1PHGGP0xBNPaPfu3erq6lJ1dbWeeeYZzZs3L+uTByY8Z4+4adZxM73EOj54Wal1fLjIXR2X32uvjisYdvR8c1XTDQxaxw0rsSILMroSamlp0fr163XkyBE1NzdrcHBQtbW16un5d8nn9u3btWPHDjU1Nam1tVXRaFQrVqxQIpHI+uQBAJNbYMzFv2355JNPdMUVV6ilpUW33HKLjDGqqKhQXV2dHnnkEUlSMplUJBLRU089pQceeOAr77O7u1vhcFjLdacKAkfnYGCicX1OqKjIOp5XXm6/nxlh63BWr4TO2t8Qmq64/THO2T9XZAbt98+VEAbNgA7qVcXjcZW7Xuv/Mqa/CcXjn79oZ8yYIUlqb29XLBZTbW1t6phQKKRly5bp8OHD1vtIJpPq7u4esQEApoaLDiFjjDZt2qSbbrpJ8+fPlyTFYjFJUiQSGXFsJBJJ7btQY2OjwuFwapszZ87FTgkAMMlcdAht2LBBb7/9tn73u9+N2hdc8KsJY8yosS9s2bJF8Xg8tXV0dFzslAAAk8xF9Y57+OGH9dprr+nQoUOaPXt2ajwajUr6/Ipo1qxZqfHOzs5RV0dfCIVCCoXsfbSASSOwv59zvfmSo6ecKbT/lxwO2f/2M+QYl6RgyP63GddjKN/xntQxVyAbMroSMsZow4YN2r9/v9544w1VVlaO2F9ZWaloNKrm5ubUWH9/v1paWlRTU5OdGQMAckZGV0Lr16/X3r179eqrr6qsrCz1d55wOKzi4mIFQaC6ujo1NDSoqqpKVVVVamhoUElJidasWTMuJwAAmLwyCqFdu3ZJkpYvXz5i/IUXXtAPf/hDSdLmzZvV19endevWpT6seuDAAZWV2VvUAwCmrjF9Tmg88DkhTEp59r/N5BXZX8NB2P7ZCTNzhnV8YKa9k0K6vwkV9Ng7HRR2Oj44/mmXdXjYtc5Qf7/9fibWjxR48LV9TggAgLEghAAA3rC8N5ANjmaert92B0P2pbEDRxPR/D77r9aCQfevvvLP228jx2PzazT4wJUQAMAbQggA4A0hBADwhhACAHhDCAEAvKE6DhhPjko0k7R/0DMvYV9AzvWRVNeHYaU0FXhJewWecS377XwAx3tY46i+Ayy4EgIAeEMIAQC8IYQAAN4QQgAAbwghAIA3VMcB2eDou+aqOAsGHBVq55P24/Mcy4cPZrESzbG8d1Dg+DHhqvwzaZYDpz8dLsCVEADAG0IIAOANIQQA8IYQAgB4QwgBALyhOg4YT64VV4fs465+b85KtLw0lWiuvnIh+3hQ4OhQ5+wR56h067f3xZMkw6quuABXQgAAbwghAIA3hBAAwBtCCADgDSEEAPCG6jhgMnD0bzMlIedNhsqmWceHC+3vPfOS9sq1gv91VNO5KvMS55xzcvXGYzXWqYsrIQCAN4QQAMAbQggA4A0hBADwhhACAHhDdRwwkbgqzgrt/1WHprur43qj9n390+3vPfMH7P3bisvs1XHTXCuxuvrDpdln+u299Ogpl/u4EgIAeEMIAQC8IYQAAN4QQgAAbwghAIA3hBAAwBtKtAEfHMt+Ow93LL09ON2xhLek3ivs7zF7o44ycMfw+ViRdfySoNw6Xtw/4JxTnmPfsKt0e3DQeV/IDVwJAQC8IYQAAN4QQgAAbwghAIA3hBAAwBuq44DxlGkDzuHMjh8qcr+PTF5iL3dLXmlfYruoxF65Fg+XWMfzB+yVeUXxMuecCs712nckHct+u5qh0tg0Z3AlBADwhhACAHhDCAEAvCGEAADeEEIAAG8yqo7btWuXdu3apQ8++ECSNG/ePP3sZz/TypUrJUnGGD3xxBPavXu3urq6VF1drWeeeUbz5s3L+sQnjMDRcCubqATKOcZRBWcc1WB5Q/Zec0Ga18awo61c2aX2CrW5l31iHf/vaZdbx899NsM6XnpmmnNO0zuLreNB4px13Aw4escZ9xLimFwyuhKaPXu2tm3bpqNHj+ro0aO69dZbdeedd+rkyZOSpO3bt2vHjh1qampSa2urotGoVqxYoUQiMS6TBwBMbhmF0KpVq/S9731Pc+fO1dy5c/WLX/xC06dP15EjR2SM0c6dO7V161atXr1a8+fP1549e9Tb26u9e/eO1/wBAJPYRf9NaGhoSPv27VNPT4+WLl2q9vZ2xWIx1dbWpo4JhUJatmyZDh8+7LyfZDKp7u7uERsAYGrIOITa2to0ffp0hUIhPfjgg3r55Zd1/fXXKxaLSZIikciI4yORSGqfTWNjo8LhcGqbM2dOplMCAExSGYfQtddeqxMnTujIkSN66KGHtHbtWr3zzjup/cEFf6g3xowa+7ItW7YoHo+nto6OjkynBACYpDLuHVdUVKRrrrlGkrRkyRK1trbq6aef1iOPPCJJisVimjVrVur4zs7OUVdHXxYKhRQKhTKdxtfPEaRBvn3FS7nG08mwYsq5OifVdBOf63vn+l47ViQt6HVXiRX02cvjkklHz7c8+33NKLVX031Qfol1vL/c/d7WFNv/rweF9h9FQdL+/y7DhWkxgY35c0LGGCWTSVVWVioajaq5uTm1r7+/Xy0tLaqpqRnrwwAAclBGV0KPPfaYVq5cqTlz5iiRSGjfvn06ePCgXn/9dQVBoLq6OjU0NKiqqkpVVVVqaGhQSUmJ1qxZM17zBwBMYhmF0Mcff6z7779fZ86cUTgc1sKFC/X6669rxYoVkqTNmzerr69P69atS31Y9cCBAyorc7d2BwBMXRmF0PPPP592fxAEqq+vV319/VjmBACYIugdBwDwhpVVL+SqgiuwVxQF0xzVPkWOxl15aarmBu19soxj1UlXX62Mq+nSodLua2UcPeJMX591vLDrvPO+Sj62vzZ7P7KvlHoyFLU/tuP+A8fLbDjf/ZEMU2h//QcFjh9FgeN9sutjH7xeJx2uhAAA3hBCAABvCCEAgDeEEADAG0IIAOAN1XEXclTjuKrdghLHSpGl9gokU+Cujgsc/cHk6AEW9Nkro4yjyk7DjsqrdBVF9LMbH47nw/W8mvP2Csm8z+wrkkrS9H/aX5v9ZfaquXP9l1jHh0P2uU77X/v/lYLkRVRhuqrg8r6GlYvhFVdCAABvCCEAgDeEEADAG0IIAOANIQQA8IYQAgB4M3VLtF2NSh0loa5lvF0NTIenT7OOuxo4SlIwYC/FzstzvFcodJRuu8qnXdKUTzvLvR3l5Ka/P6P7cZd6T9GSbkeJu3E93wl3iXbojP21eUlh2Dpe2GN/PQ2UOkqxe+3fo8KE+/UXDGT42kTO40oIAOANIQQA8IYQAgB4QwgBALwhhAAA3kzd6rhsVV85GnzK1cPRtSyxJOOowBsusVfayTFuQo77Cdm/3SZNk8i8QfuJ5J2zV8HlJXrsj9Ftr+Ia7u21H+9YuvzzG+VwhVWmjU177M+fJAVn7a8De1tTqaCn1Do+UOaownS89ovi9teGJCnp2Jfp99TV8NTk8GsjR3ElBADwhhACAHhDCAEAvCGEAADeEEIAAG+mbnWcg3EtZ+3qoeZadtmxjLcZKnI/uKNHnKvf3KBjmebzM+2P0XeZ/f77yzJfQrkobn+epp8ps44X/zNhHc/v7LKOD3fbj5fS9KfL5T50rp5yrtelJPXYKxVd3+2ipL0/XYGrOtPxFjZIuucUnM/we4ecx5UQAMAbQggA4A0hBADwhhACAHhDCAEAvKE67kLOlS3T9MOycfTCCs6nqY5zrNJqykus44Ol9m/fuai9mq67yn5uJf8Vd04pXHzeOv5JfLp1PPEPe/+xS9+5xDp+yXv2c8j/H3fF3nC8275jClbNuao5JUmu/nuOfn2u12xen/01IEevw7Qr9Sbt1aTOXoGu83P8P8Xkw5UQAMAbQggA4A0hBADwhhACAHhDCAEAvKE67kIZrmyZaUVWUGTvzyVJwbC94icosq9s6ZrrkKvVV8Re5XT3N95yzun/lR+3jv/PYLl1/FeR263j7xX8l3U8f8BeZVfen6b/2KDje+F4/pwVZBNxFc40K+9mLNN+c32O58lVuZZmRV7nlIYcVW3OCkaq4HIdV0IAAG8IIQCAN4QQAMAbQggA4A0hBADwhuq4/1SmVXOuiqx0vb4c8grt1XGF3fY+bUXd9uMTPfbxAePoASap0rFC7DxHlV9HxF5N99RVM63j587Yq+OmnbWfmyRNO+foZTZgr1QMHBVZxlV5lc2echlWuwWufmyB4/1imgq1wPHYJuPXcoYVao4VgtPdl6tqLm1vPOQEroQAAN4QQgAAbwghAIA3hBAAwBtCCADgzZhCqLGxUUEQqK6uLjVmjFF9fb0qKipUXFys5cuX6+TJk2OdJwAgB110iXZra6t2796thQsXjhjfvn27duzYoRdffFFz587Vk08+qRUrVui9995TWVnZmCc84bjKeR3NMZ1lwZLkqDw2+ees4wWf2JcKL+uwl2InL7Uf/7uyxe4pXWu/r28Wf2Qd//89c6zjw0P20uNhR2/WoWL3+yMzzbFEeqF9PCh0NI11Nfh0lSqn4yihDlwl1I5SbFeJdlDg+K/qKulOx9XAdMD+PLlKup0fN3A1KZVoSIpRLupK6Ny5c7rvvvv03HPP6dJLL02NG2O0c+dObd26VatXr9b8+fO1Z88e9fb2au/evVmbNAAgN1xUCK1fv1533HGHbr99ZNv+9vZ2xWIx1dbWpsZCoZCWLVumw4cPW+8rmUyqu7t7xAYAmBoy/nXcvn379NZbb6m1tXXUvlgsJkmKRCIjxiORiE6fPm29v8bGRj3xxBOZTgMAkAMyuhLq6OjQxo0b9dvf/lbTpjlWTtPodiHGGGcLkS1btigej6e2jo6OTKYEAJjEMroSOnbsmDo7O7V48b//kD00NKRDhw6pqalJ7733nqTPr4hmzZqVOqazs3PU1dEXQqGQQqHQxcwdADDJZRRCt912m9ra2kaM/ehHP9J1112nRx55RFdffbWi0aiam5v1rW99S5LU39+vlpYWPfXUU9mb9WSWpjmmGbRXJw332a8i8z79zDpe7GggOdNcah3v6rU3EZWkP3QstY4PzXBUnA3a51rUaX+phbrsz0deMvMqqiDfft4mw6aggavgzNVENM1jy9F81lnt5ljKPXDcj1yPK7mr1xxL0svxOjPJpP14V3XhxTQdzbRqLptNZuFVRiFUVlam+fPnjxgrLS3VZZddlhqvq6tTQ0ODqqqqVFVVpYaGBpWUlGjNmjXZmzUAICdkfSmHzZs3q6+vT+vWrVNXV5eqq6t14MCB3PyMEABgTMYcQgcPHhzxdRAEqq+vV319/VjvGgCQ4+gdBwDwhhACAHjD8t4TiWvZZUc107CjCinPUWlU3G+vaCvqCjunFP7A/nmwZNj+0hnOt1dYFZy3zykUt/dpK+pyNNKTFJy3Px+uJaKd9+OsLHNUzRU5etZJkuNjBkHIcRtHFZxxLKduCu3Pt0mzfHjg6IEX9Dqq4Bw95QLH689Zn5bN/nBUweU8roQAAN4QQgAAbwghAIA3hBAAwBtCCADgDdVxk4Gras7Va+6cvTopcFTH5Z3rcT50aazYOl5S4uii7qjuchpwVGQlHf3NJJnzjl5mA47bDDuqtVyrmDqq4IIS+3MhSWZ6iXV8qMReNWcKM3v/F7iKxNJVjzmeDtfqrXJV2jl6EV5cjziq3TASV0IAAG8IIQCAN4QQAMAbQggA4A0hBADwhuq4ycxZNWevODOuXmKulTYlBa7KOdeKoa5+bGlWJbVxzVWSjKvCKs1tbFyrm7r6vbkq4CRpKGyvnBsqdfSIc1Si5Q3YK/nykvbvqet4SQoGHM+HoyJRrt57rupCFyrgkAGuhAAA3hBCAABvCCEAgDeEEADAG0IIAOAN1XFTSYbVdFKaKjVHH7ogz73Sp+MGmR2fjuOxnb3SXOOOqrl0ffFMgaO/mqMKLnCtiuuqgut1PN+uPnqSgqT9Nqavzz7uWkHVVTWXzRVUMWVxJQQA8IYQAgB4QwgBALwhhAAA3hBCAABvCCEAgDeUaCM9VzNKYy/ddlbtupaOVmZNRz+/L/t7p8A4HsP12K7JZliWLkn5PfY55fU7msY6mosGffYy6aD3vHXcpFsG3bHcuXE0MDWO83OW6dOoFFnAlRAAwBtCCADgDSEEAPCGEAIAeEMIAQC8oToOX4+sVlLZq9rMsOM9lasBp6vazVl95z6H4LyjSs3V0HXQUV2YtDckHXZVwQ24K/YyXQbdOJqq0qgU44krIQCAN4QQAMAbQggA4A0hBADwhhACAHhDdRwmH2eVmqNqLtP2dMOO+3Esfy1Jysvw/ZyrQs3Vpy3TirbPd2Y2J3rBwQOuhAAA3hBCAABvCCEAgDeEEADAG0IIAOAN1XHIHZlWzQ26qukcvePy7CuSXoys9Wmjog2THFdCAABvCCEAgDeEEADAG0IIAOANIQQA8CajEKqvr1cQBCO2aDSa2m+MUX19vSoqKlRcXKzly5fr5MmTWZ80kBFjMtuGh6ybGRzM2uZ6jIznCkxyGV8JzZs3T2fOnEltbW1tqX3bt2/Xjh071NTUpNbWVkWjUa1YsUKJRCKrkwYA5IaMQ6igoEDRaDS1zZw5U9LnV0E7d+7U1q1btXr1as2fP1979uxRb2+v9u7dm/WJAwAmv4xD6NSpU6qoqFBlZaXuuecevf/++5Kk9vZ2xWIx1dbWpo4NhUJatmyZDh8+7Ly/ZDKp7u7uERsAYGrIKISqq6v10ksv6S9/+Yuee+45xWIx1dTU6NNPP1UsFpMkRSKREbeJRCKpfTaNjY0Kh8Opbc6cORdxGgCAySijEFq5cqV+8IMfaMGCBbr99tv1xz/+UZK0Z8+e1DFBEIy4jTFm1NiXbdmyRfF4PLV1dHRkMiUAwCQ2phLt0tJSLViwQKdOnUpVyV141dPZ2Tnq6ujLQqGQysvLR2wAgKlhTCGUTCb17rvvatasWaqsrFQ0GlVzc3Nqf39/v1paWlRTUzPmiQIAck9GXbR/+tOfatWqVbryyivV2dmpJ598Ut3d3Vq7dq2CIFBdXZ0aGhpUVVWlqqoqNTQ0qKSkRGvWrBmv+QMAJrGMQuif//yn7r33Xp09e1YzZ87UjTfeqCNHjuiqq66SJG3evFl9fX1at26durq6VF1drQMHDqisrGxcJg8AmNwCYybWx667u7sVDoe1XHeqICj0PR0AQIYGzYAO6lXF4/Gv/Ds/veMAAN4QQgAAbwghAIA3hBAAwBtCCADgDSEEAPCGEAIAeEMIAQC8IYQAAN4QQgAAbwghAIA3hBAAwBtCCADgDSEEAPCGEAIAeEMIAQC8IYQAAN4QQgAAbwghAIA3hBAAwBtCCADgDSEEAPCGEAIAeEMIAQC8IYQAAN4QQgAAbwghAIA3hBAAwBtCCADgDSEEAPCGEAIAeEMIAQC8IYQAAN4QQgAAbwghAIA3hBAAwBtCCADgDSEEAPCGEAIAeEMIAQC8IYQAAN4QQgAAbwghAIA3hBAAwBtCCADgDSEEAPCGEAIAeEMIAQC8IYQAAN4QQgAAbwp8T+BCxhhJ0qAGJON5MgCAjA1qQNK/f56nM+FCKJFISJL+pj95ngkAYCwSiYTC4XDaYwLzn0TV12h4eFgfffSRysrKFASBuru7NWfOHHV0dKi8vNz39L4WU/Gcpal53lPxnCXOO9fP2xijRCKhiooK5eWl/6vPhLsSysvL0+zZs0eNl5eX5/Q3zWYqnrM0Nc97Kp6zxHnnsq+6AvoChQkAAG8IIQCANxM+hEKhkB5//HGFQiHfU/naTMVzlqbmeU/Fc5Y476l23ulMuMIEAMDUMeGvhAAAuYsQAgB4QwgBALwhhAAA3hBCAABvJnQIPfvss6qsrNS0adO0ePFi/fWvf/U9paw6dOiQVq1apYqKCgVBoFdeeWXEfmOM6uvrVVFRoeLiYi1fvlwnT570M9ksaWxs1Le//W2VlZXpiiuu0F133aX33ntvxDG5eN67du3SwoULU5+UX7p0qf785z+n9ufiOV+osbFRQRCorq4uNZaL511fX68gCEZs0Wg0tT8Xz3ksJmwI/f73v1ddXZ22bt2q48eP6+abb9bKlSv14Ycf+p5a1vT09GjRokVqamqy7t++fbt27NihpqYmtba2KhqNasWKFakmr5NRS0uL1q9fryNHjqi5uVmDg4Oqra1VT09P6phcPO/Zs2dr27ZtOnr0qI4ePapbb71Vd955Z+qHTy6e85e1trZq9+7dWrhw4YjxXD3vefPm6cyZM6mtra0ttS9Xz/mimQnqO9/5jnnwwQdHjF133XXm0Ucf9TSj8SXJvPzyy6mvh4eHTTQaNdu2bUuNnT9/3oTDYfPrX//awwzHR2dnp5FkWlpajDFT57yNMebSSy81v/nNb3L+nBOJhKmqqjLNzc1m2bJlZuPGjcaY3P1eP/7442bRokXWfbl6zmMxIa+E+vv7dezYMdXW1o4Yr62t1eHDhz3N6uvV3t6uWCw24jkIhUJatmxZTj0H8XhckjRjxgxJU+O8h4aGtG/fPvX09Gjp0qU5f87r16/XHXfcodtvv33EeC6f96lTp1RRUaHKykrdc889ev/99yXl9jlfrAnXRVuSzp49q6GhIUUikRHjkUhEsVjM06y+Xl+cp+05OH36tI8pZZ0xRps2bdJNN92k+fPnS8rt825ra9PSpUt1/vx5TZ8+XS+//LKuv/761A+fXDznffv26a233lJra+uofbn6va6urtZLL72kuXPn6uOPP9aTTz6pmpoanTx5MmfPeSwmZAh9IQiCEV8bY0aN5bpcfg42bNigt99+W3/7299G7cvF87722mt14sQJffbZZ/rDH/6gtWvXqqWlJbU/1865o6NDGzdu1IEDBzRt2jTncbl23itXrkz9e8GCBVq6dKm+8Y1vaM+ePbrxxhsl5d45j8WE/HXc5Zdfrvz8/FFXPZ2dnaPeQeSqL6ppcvU5ePjhh/Xaa6/pzTffHLF+VC6fd1FRka655hotWbJEjY2NWrRokZ5++umcPedjx46ps7NTixcvVkFBgQoKCtTS0qJf/epXKigoSJ1brp33hUpLS7VgwQKdOnUqZ7/XYzEhQ6ioqEiLFy9Wc3PziPHm5mbV1NR4mtXXq7KyUtFodMRz0N/fr5aWlkn9HBhjtGHDBu3fv19vvPGGKisrR+zP1fO2McYomUzm7Dnfdtttamtr04kTJ1LbkiVLdN999+nEiRO6+uqrc/K8L5RMJvXuu+9q1qxZOfu9HhNvJRFfYd++faawsNA8//zz5p133jF1dXWmtLTUfPDBB76nljWJRMIcP37cHD9+3EgyO3bsMMePHzenT582xhizbds2Ew6Hzf79+01bW5u59957zaxZs0x3d7fnmV+8hx56yITDYXPw4EFz5syZ1Nbb25s6JhfPe8uWLebQoUOmvb3dvP322+axxx4zeXl55sCBA8aY3Dxnmy9XxxmTm+f9k5/8xBw8eNC8//775siRI+b73/++KSsrS/3sysVzHosJG0LGGPPMM8+Yq666yhQVFZkbbrghVcabK958800jadS2du1aY8zn5ZyPP/64iUajJhQKmVtuucW0tbX5nfQY2c5XknnhhRdSx+Tief/4xz9OvZZnzpxpbrvttlQAGZOb52xzYQjl4nnffffdZtasWaawsNBUVFSY1atXm5MnT6b25+I5jwXrCQEAvJmQfxMCAEwNhBAAwBtCCADgDSEEAPCGEAIAeEMIAQC8IYQAAN4QQgAAbwghAIA3hBAAwBtCCADgzf8BaTV69m5sGzsAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.imshow(exp.getImage().getArray())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "516ec59d-c0d9-4a63-9d84-1f7a8cdb405d", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "wl_shear_sim", + "language": "python", + "name": "wl_shear_sim" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.4" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/shear_meas_tests/test_shear_meas.py b/shear_meas_tests/test_shear_meas.py index 73647cd5..b19d5e0c 100644 --- a/shear_meas_tests/test_shear_meas.py +++ b/shear_meas_tests/test_shear_meas.py @@ -8,6 +8,10 @@ from metadetect.lsst.metadetect import run_metadetect import descwl_shear_sims as sim +from descwl_shear_sims.shear import ShearConstant + +shear_obj_p = ShearConstant(g1=0.02, g2=0.) +shear_obj_m = ShearConstant(g1=-0.02, g2=0.) CONFIG = { "meas_type": "wmom", @@ -29,7 +33,7 @@ } -def _make_lsst_sim(*, rng, g1, g2, layout): +def _make_lsst_sim(*, rng, shear_obj, layout): galaxy_catalog = sim.galaxies.make_galaxy_catalog( rng=rng, @@ -45,8 +49,7 @@ def _make_lsst_sim(*, rng, g1, g2, layout): rng=rng, galaxy_catalog=galaxy_catalog, coadd_dim=sim.sim.DEFAULT_SIM_CONFIG["coadd_dim"], - g1=g1, - g2=g2, + shear_obj=shear_obj, psf=psf, ) return sim_data @@ -150,9 +153,9 @@ def _coadd_sim_data(rng, sim_data, nowarp, remove_poisson): return extract_multiband_coadd_data(coadd_data_list) -def _run_sim_one(*, seed, mdet_seed, g1, g2, **kwargs): +def _run_sim_one(*, seed, mdet_seed, shear_obj, **kwargs): rng = np.random.RandomState(seed=seed) - sim_data = _make_lsst_sim(rng=rng, g1=g1, g2=g2, **kwargs) + sim_data = _make_lsst_sim(rng=rng, shear_obj=shear_obj, **kwargs) coadd_data = _coadd_sim_data( rng=rng, sim_data=sim_data, nowarp=True, remove_poisson=False, @@ -170,12 +173,18 @@ def _run_sim_one(*, seed, mdet_seed, g1, g2, **kwargs): def run_sim(seed, mdet_seed, **kwargs): # positive shear - _pres = _run_sim_one(seed=seed, mdet_seed=mdet_seed, g1=0.02, g2=0, **kwargs) + _pres = _run_sim_one( + seed=seed, mdet_seed=mdet_seed, + shear_obj=shear_obj_p, **kwargs, + ) if _pres is None: return None # negative shear - _mres = _run_sim_one(seed=seed, mdet_seed=mdet_seed, g1=-0.02, g2=0, **kwargs) + _mres = _run_sim_one( + seed=seed, mdet_seed=mdet_seed, + shear_obj=shear_obj_m, **kwargs, + ) if _mres is None: return None diff --git a/shear_meas_tests/test_shear_meas_ringtest_metacal.py b/shear_meas_tests/test_shear_meas_ringtest_metacal.py index 5843b272..d9e1772c 100644 --- a/shear_meas_tests/test_shear_meas_ringtest_metacal.py +++ b/shear_meas_tests/test_shear_meas_ringtest_metacal.py @@ -6,7 +6,9 @@ from descwl_shear_sims.galaxies import make_galaxy_catalog from descwl_shear_sims.psfs import make_fixed_psf # for making a power spectrum PSF from descwl_shear_sims.constants import SCALE +from descwl_shear_sims.shear import ShearConstant +shear_obj = ShearConstant(g1=0.02, g2=0.) rng0 = np.random.RandomState(1024) # We will measure moments with a fixed gaussian weight function @@ -68,8 +70,7 @@ def make_desc_sim(ran_seed, psf): rng=rng, galaxy_catalog=galaxy_catalog, coadd_dim=coadd_dim, - g1=0.02, - g2=0.00, + shear_obj=shear_obj, psf=psf, bands=band_list, noise_factor=0.0, From 16a2fe512569baf3803fb5c447013e852854a1a7 Mon Sep 17 00:00:00 2001 From: Xiangchong Li Date: Tue, 25 Jul 2023 22:37:02 -0700 Subject: [PATCH 07/30] lint --- descwl_shear_sims/shear.py | 3 ++- examples/example_NFWShear_imsim.ipynb | 21 ++++++++++++--------- 2 files changed, 14 insertions(+), 10 deletions(-) diff --git a/descwl_shear_sims/shear.py b/descwl_shear_sims/shear.py index bfb1f78a..dcb1f53f 100644 --- a/descwl_shear_sims/shear.py +++ b/descwl_shear_sims/shear.py @@ -68,7 +68,8 @@ def get_shear(self, redshift, shift): g1 = gamma1 / (1-kappa) g2 = gamma2 / (1-kappa) else: - g1 = 0.; g2 = 0. + g1 = 0. + g2 = 0. shear = galsim.Shear(g1=g1, g2=g2) return shear diff --git a/examples/example_NFWShear_imsim.ipynb b/examples/example_NFWShear_imsim.ipynb index e58356b8..4b84d596 100644 --- a/examples/example_NFWShear_imsim.ipynb +++ b/examples/example_NFWShear_imsim.ipynb @@ -65,33 +65,34 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 17, "id": "5db4e4bf-7d48-4bab-9692-1d21f6f0952b", "metadata": {}, "outputs": [], "source": [ - "exp = sim_data[\"band_data\"][\"r\"][0]" + "exp = sim_data[\"band_data\"][\"r\"][0]\n", + "img = exp.getImage().getArray()" ] }, { "cell_type": "code", - "execution_count": 16, - "id": "998c9093-b310-4722-af44-bc1c9311866a", + "execution_count": 21, + "id": "516ec59d-c0d9-4a63-9d84-1f7a8cdb405d", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 16, + "execution_count": 21, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaEAAAGfCAYAAAD22G0fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAjk0lEQVR4nO3df2yV5f3/8dfdX4e2tEdRPIcG9FNn0cmvTNgqjQpTacIc0S/7Q8UYtv2jAoaGLSiSzLq4FllCcKmy4IxiFsb+GP5ItjmaKGULISkIXxt0hn2s2H3kWPFTTw9tOf11ff5wnll6XccdeurVnj4fyZ3Q677POdd9eujr3O37vK/AGGMEAIAHeb4nAACYugghAIA3hBAAwBtCCADgDSEEAPCGEAIAeEMIAQC8IYQAAN4QQgAAbwghAIA3BeN1x88++6x++ctf6syZM5o3b5527typm2+++StvNzw8rI8++khlZWUKgmC8pgcAGCfGGCUSCVVUVCgv7yuudcw42LdvnyksLDTPPfeceeedd8zGjRtNaWmpOX369FfetqOjw0hiY2NjY5vkW0dHx1f+zA+MyX4D0+rqat1www3atWtXauyb3/ym7rrrLjU2Nqa9bTwe1yWXXKKb9D0VqDDbUwMAjLNBDehv+pM+++wzhcPhtMdm/ddx/f39OnbsmB599NER47W1tTp8+PCo45PJpJLJZOrrRCLxr4kVqiAghABg0vnXpc1/8ieVrBcmnD17VkNDQ4pEIiPGI5GIYrHYqOMbGxsVDodT25w5c7I9JQDABDVu1XEXJqAxxpqKW7ZsUTweT20dHR3jNSUAwAST9V/HXX755crPzx911dPZ2Tnq6kiSQqGQQqFQtqcBAJgEsn4lVFRUpMWLF6u5uXnEeHNzs2pqarL9cACASWxcPie0adMm3X///VqyZImWLl2q3bt368MPP9SDDz44Hg8HAJikxiWE7r77bn366af6+c9/rjNnzmj+/Pn605/+pKuuumo8Hg4AMEmNy+eExqK7u1vhcFjLdScl2gAwCQ2aAR3Uq4rH4yovL097LL3jAADeEEIAAG8IIQCAN4QQAMAbQggA4A0hBADwhhACAHhDCAEAvCGEAADeEEIAAG8IIQCAN4QQAMAbQggA4A0hBADwhhACAHhDCAEAvCGEAADeEEIAAG8IIQCAN4QQAMAbQggA4A0hBADwhhACAHhDCAEAvCGEAADeEEIAAG8IIQCAN4QQAMAbQggA4A0hBADwhhACAHhDCAEAvCGEAADeEEIAAG8IIQCAN4QQAMAbQggA4A0hBADwhhACAHhDCAEAvCGEAADeEEIAAG8IIQCAN4QQAMAbQggA4A0hBADwhhACAHhDCAEAvCGEAADeEEIAAG8IIQCANxmH0KFDh7Rq1SpVVFQoCAK98sorI/YbY1RfX6+KigoVFxdr+fLlOnnyZLbmCwDIIRmHUE9PjxYtWqSmpibr/u3bt2vHjh1qampSa2urotGoVqxYoUQiMebJAgByS0GmN1i5cqVWrlxp3WeM0c6dO7V161atXr1akrRnzx5FIhHt3btXDzzwwKjbJJNJJZPJ1Nfd3d2ZTgkAMEll9W9C7e3tisViqq2tTY2FQiEtW7ZMhw8ftt6msbFR4XA4tc2ZMyebUwIATGBZDaFYLCZJikQiI8YjkUhq34W2bNmieDye2jo6OrI5JQDABJbxr+P+E0EQjPjaGDNq7AuhUEihUGg8pgEAmOCyeiUUjUYladRVT2dn56irIwAAshpClZWVikajam5uTo319/erpaVFNTU12XwoAEAOyPjXcefOndM//vGP1Nft7e06ceKEZsyYoSuvvFJ1dXVqaGhQVVWVqqqq1NDQoJKSEq1ZsyarEwcATH4Zh9DRo0f13e9+N/X1pk2bJElr167Viy++qM2bN6uvr0/r1q1TV1eXqqurdeDAAZWVlWVv1gCAnBAYY4zvSXxZd3e3wuGwlutOFQSFvqcDAMjQoBnQQb2qeDyu8vLytMfSOw4A4A0hBADwhhACAHhDCAEAvCGEAADeEEIAAG8IIQCAN4QQAMAbQggA4A0hBADwhhACAHhDCAEAvCGEAADeEEIAAG8IIQCAN4QQAMAbQggA4A0hBADwhhACAHhDCAEAvCGEAADeEEIAAG8IIQCAN4QQAMAbQggA4A0hBADwpsD3BAD8B4Ige/dlTPbuCxgjroQAAN4QQgAAbwghAIA3hBAAwBtCCADgDdVxgA+OarcgP99xfPbeL5qhIceOYcc41XQYP1wJAQC8IYQAAN4QQgAAbwghAIA3hBAAwBuq44DxlGevdnNVwQXTQvbxokL7/afrKTdkr3YzyaR9vL/fPu6spqNqDmPHlRAAwBtCCADgDSEEAPCGEAIAeEMIAQC8oToOyAZXL7g8x7ijCi6vvMw6bkqL7Y9b4Og1J0n9A/bHTvTYj0+csz/2eXs1nYyjag7IAFdCAABvCCEAgDeEEADAG0IIAOANIQQA8Caj6rjGxkbt379ff//731VcXKyamho99dRTuvbaa1PHGGP0xBNPaPfu3erq6lJ1dbWeeeYZzZs3L+uTByY8Z4+4adZxM73EOj54Wal1fLjIXR2X32uvjisYdvR8c1XTDQxaxw0rsSILMroSamlp0fr163XkyBE1NzdrcHBQtbW16un5d8nn9u3btWPHDjU1Nam1tVXRaFQrVqxQIpHI+uQBAJNbYMzFv2355JNPdMUVV6ilpUW33HKLjDGqqKhQXV2dHnnkEUlSMplUJBLRU089pQceeOAr77O7u1vhcFjLdacKAkfnYGCicX1OqKjIOp5XXm6/nxlh63BWr4TO2t8Qmq64/THO2T9XZAbt98+VEAbNgA7qVcXjcZW7Xuv/Mqa/CcXjn79oZ8yYIUlqb29XLBZTbW1t6phQKKRly5bp8OHD1vtIJpPq7u4esQEApoaLDiFjjDZt2qSbbrpJ8+fPlyTFYjFJUiQSGXFsJBJJ7btQY2OjwuFwapszZ87FTgkAMMlcdAht2LBBb7/9tn73u9+N2hdc8KsJY8yosS9s2bJF8Xg8tXV0dFzslAAAk8xF9Y57+OGH9dprr+nQoUOaPXt2ajwajUr6/Ipo1qxZqfHOzs5RV0dfCIVCCoXsfbSASSOwv59zvfmSo6ecKbT/lxwO2f/2M+QYl6RgyP63GddjKN/xntQxVyAbMroSMsZow4YN2r9/v9544w1VVlaO2F9ZWaloNKrm5ubUWH9/v1paWlRTU5OdGQMAckZGV0Lr16/X3r179eqrr6qsrCz1d55wOKzi4mIFQaC6ujo1NDSoqqpKVVVVamhoUElJidasWTMuJwAAmLwyCqFdu3ZJkpYvXz5i/IUXXtAPf/hDSdLmzZvV19endevWpT6seuDAAZWV2VvUAwCmrjF9Tmg88DkhTEp59r/N5BXZX8NB2P7ZCTNzhnV8YKa9k0K6vwkV9Ng7HRR2Oj44/mmXdXjYtc5Qf7/9fibWjxR48LV9TggAgLEghAAA3rC8N5ANjmaert92B0P2pbEDRxPR/D77r9aCQfevvvLP228jx2PzazT4wJUQAMAbQggA4A0hBADwhhACAHhDCAEAvKE6DhhPjko0k7R/0DMvYV9AzvWRVNeHYaU0FXhJewWecS377XwAx3tY46i+Ayy4EgIAeEMIAQC8IYQAAN4QQgAAbwghAIA3VMcB2eDou+aqOAsGHBVq55P24/Mcy4cPZrESzbG8d1Dg+DHhqvwzaZYDpz8dLsCVEADAG0IIAOANIQQA8IYQAgB4QwgBALyhOg4YT64VV4fs465+b85KtLw0lWiuvnIh+3hQ4OhQ5+wR56h067f3xZMkw6quuABXQgAAbwghAIA3hBAAwBtCCADgDSEEAPCG6jhgMnD0bzMlIedNhsqmWceHC+3vPfOS9sq1gv91VNO5KvMS55xzcvXGYzXWqYsrIQCAN4QQAMAbQggA4A0hBADwhhACAHhDdRwwkbgqzgrt/1WHprur43qj9n390+3vPfMH7P3bisvs1XHTXCuxuvrDpdln+u299Ogpl/u4EgIAeEMIAQC8IYQAAN4QQgAAbwghAIA3hBAAwBtKtAEfHMt+Ow93LL09ON2xhLek3ivs7zF7o44ycMfw+ViRdfySoNw6Xtw/4JxTnmPfsKt0e3DQeV/IDVwJAQC8IYQAAN4QQgAAbwghAIA3hBAAwBuq44DxlGkDzuHMjh8qcr+PTF5iL3dLXmlfYruoxF65Fg+XWMfzB+yVeUXxMuecCs712nckHct+u5qh0tg0Z3AlBADwhhACAHhDCAEAvCGEAADeEEIAAG8yqo7btWuXdu3apQ8++ECSNG/ePP3sZz/TypUrJUnGGD3xxBPavXu3urq6VF1drWeeeUbz5s3L+sQnjMDRcCubqATKOcZRBWcc1WB5Q/Zec0Ga18awo61c2aX2CrW5l31iHf/vaZdbx899NsM6XnpmmnNO0zuLreNB4px13Aw4escZ9xLimFwyuhKaPXu2tm3bpqNHj+ro0aO69dZbdeedd+rkyZOSpO3bt2vHjh1qampSa2urotGoVqxYoUQiMS6TBwBMbhmF0KpVq/S9731Pc+fO1dy5c/WLX/xC06dP15EjR2SM0c6dO7V161atXr1a8+fP1549e9Tb26u9e/eO1/wBAJPYRf9NaGhoSPv27VNPT4+WLl2q9vZ2xWIx1dbWpo4JhUJatmyZDh8+7LyfZDKp7u7uERsAYGrIOITa2to0ffp0hUIhPfjgg3r55Zd1/fXXKxaLSZIikciI4yORSGqfTWNjo8LhcGqbM2dOplMCAExSGYfQtddeqxMnTujIkSN66KGHtHbtWr3zzjup/cEFf6g3xowa+7ItW7YoHo+nto6OjkynBACYpDLuHVdUVKRrrrlGkrRkyRK1trbq6aef1iOPPCJJisVimjVrVur4zs7OUVdHXxYKhRQKhTKdxtfPEaRBvn3FS7nG08mwYsq5OifVdBOf63vn+l47ViQt6HVXiRX02cvjkklHz7c8+33NKLVX031Qfol1vL/c/d7WFNv/rweF9h9FQdL+/y7DhWkxgY35c0LGGCWTSVVWVioajaq5uTm1r7+/Xy0tLaqpqRnrwwAAclBGV0KPPfaYVq5cqTlz5iiRSGjfvn06ePCgXn/9dQVBoLq6OjU0NKiqqkpVVVVqaGhQSUmJ1qxZM17zBwBMYhmF0Mcff6z7779fZ86cUTgc1sKFC/X6669rxYoVkqTNmzerr69P69atS31Y9cCBAyorc7d2BwBMXRmF0PPPP592fxAEqq+vV319/VjmBACYIugdBwDwhpVVL+SqgiuwVxQF0xzVPkWOxl15aarmBu19soxj1UlXX62Mq+nSodLua2UcPeJMX591vLDrvPO+Sj62vzZ7P7KvlHoyFLU/tuP+A8fLbDjf/ZEMU2h//QcFjh9FgeN9sutjH7xeJx2uhAAA3hBCAABvCCEAgDeEEADAG0IIAOAN1XEXclTjuKrdghLHSpGl9gokU+Cujgsc/cHk6AEW9Nkro4yjyk7DjsqrdBVF9LMbH47nw/W8mvP2Csm8z+wrkkrS9H/aX5v9ZfaquXP9l1jHh0P2uU77X/v/lYLkRVRhuqrg8r6GlYvhFVdCAABvCCEAgDeEEADAG0IIAOANIQQA8IYQAgB4M3VLtF2NSh0loa5lvF0NTIenT7OOuxo4SlIwYC/FzstzvFcodJRuu8qnXdKUTzvLvR3l5Ka/P6P7cZd6T9GSbkeJu3E93wl3iXbojP21eUlh2Dpe2GN/PQ2UOkqxe+3fo8KE+/UXDGT42kTO40oIAOANIQQA8IYQAgB4QwgBALwhhAAA3kzd6rhsVV85GnzK1cPRtSyxJOOowBsusVfayTFuQo77Cdm/3SZNk8i8QfuJ5J2zV8HlJXrsj9Ftr+Ia7u21H+9YuvzzG+VwhVWmjU177M+fJAVn7a8De1tTqaCn1Do+UOaownS89ovi9teGJCnp2Jfp99TV8NTk8GsjR3ElBADwhhACAHhDCAEAvCGEAADeEEIAAG+mbnWcg3EtZ+3qoeZadtmxjLcZKnI/uKNHnKvf3KBjmebzM+2P0XeZ/f77yzJfQrkobn+epp8ps44X/zNhHc/v7LKOD3fbj5fS9KfL5T50rp5yrtelJPXYKxVd3+2ipL0/XYGrOtPxFjZIuucUnM/we4ecx5UQAMAbQggA4A0hBADwhhACAHhDCAEAvKE67kLOlS3T9MOycfTCCs6nqY5zrNJqykus44Ol9m/fuai9mq67yn5uJf8Vd04pXHzeOv5JfLp1PPEPe/+xS9+5xDp+yXv2c8j/H3fF3nC8275jClbNuao5JUmu/nuOfn2u12xen/01IEevw7Qr9Sbt1aTOXoGu83P8P8Xkw5UQAMAbQggA4A0hBADwhhACAHhDCAEAvKE67kIZrmyZaUVWUGTvzyVJwbC94icosq9s6ZrrkKvVV8Re5XT3N95yzun/lR+3jv/PYLl1/FeR263j7xX8l3U8f8BeZVfen6b/2KDje+F4/pwVZBNxFc40K+9mLNN+c32O58lVuZZmRV7nlIYcVW3OCkaq4HIdV0IAAG8IIQCAN4QQAMAbQggA4A0hBADwhuq4/1SmVXOuiqx0vb4c8grt1XGF3fY+bUXd9uMTPfbxAePoASap0rFC7DxHlV9HxF5N99RVM63j587Yq+OmnbWfmyRNO+foZTZgr1QMHBVZxlV5lc2echlWuwWufmyB4/1imgq1wPHYJuPXcoYVao4VgtPdl6tqLm1vPOQEroQAAN4QQgAAbwghAIA3hBAAwBtCCADgzZhCqLGxUUEQqK6uLjVmjFF9fb0qKipUXFys5cuX6+TJk2OdJwAgB110iXZra6t2796thQsXjhjfvn27duzYoRdffFFz587Vk08+qRUrVui9995TWVnZmCc84bjKeR3NMZ1lwZLkqDw2+ees4wWf2JcKL+uwl2InL7Uf/7uyxe4pXWu/r28Wf2Qd//89c6zjw0P20uNhR2/WoWL3+yMzzbFEeqF9PCh0NI11Nfh0lSqn4yihDlwl1I5SbFeJdlDg+K/qKulOx9XAdMD+PLlKup0fN3A1KZVoSIpRLupK6Ny5c7rvvvv03HPP6dJLL02NG2O0c+dObd26VatXr9b8+fO1Z88e9fb2au/evVmbNAAgN1xUCK1fv1533HGHbr99ZNv+9vZ2xWIx1dbWpsZCoZCWLVumw4cPW+8rmUyqu7t7xAYAmBoy/nXcvn379NZbb6m1tXXUvlgsJkmKRCIjxiORiE6fPm29v8bGRj3xxBOZTgMAkAMyuhLq6OjQxo0b9dvf/lbTpjlWTtPodiHGGGcLkS1btigej6e2jo6OTKYEAJjEMroSOnbsmDo7O7V48b//kD00NKRDhw6pqalJ7733nqTPr4hmzZqVOqazs3PU1dEXQqGQQqHQxcwdADDJZRRCt912m9ra2kaM/ehHP9J1112nRx55RFdffbWi0aiam5v1rW99S5LU39+vlpYWPfXUU9mb9WSWpjmmGbRXJw332a8i8z79zDpe7GggOdNcah3v6rU3EZWkP3QstY4PzXBUnA3a51rUaX+phbrsz0deMvMqqiDfft4mw6aggavgzNVENM1jy9F81lnt5ljKPXDcj1yPK7mr1xxL0svxOjPJpP14V3XhxTQdzbRqLptNZuFVRiFUVlam+fPnjxgrLS3VZZddlhqvq6tTQ0ODqqqqVFVVpYaGBpWUlGjNmjXZmzUAICdkfSmHzZs3q6+vT+vWrVNXV5eqq6t14MCB3PyMEABgTMYcQgcPHhzxdRAEqq+vV319/VjvGgCQ4+gdBwDwhhACAHjD8t4TiWvZZUc107CjCinPUWlU3G+vaCvqCjunFP7A/nmwZNj+0hnOt1dYFZy3zykUt/dpK+pyNNKTFJy3Px+uJaKd9+OsLHNUzRU5etZJkuNjBkHIcRtHFZxxLKduCu3Pt0mzfHjg6IEX9Dqq4Bw95QLH689Zn5bN/nBUweU8roQAAN4QQgAAbwghAIA3hBAAwBtCCADgDdVxk4Gras7Va+6cvTopcFTH5Z3rcT50aazYOl5S4uii7qjuchpwVGQlHf3NJJnzjl5mA47bDDuqtVyrmDqq4IIS+3MhSWZ6iXV8qMReNWcKM3v/F7iKxNJVjzmeDtfqrXJV2jl6EV5cjziq3TASV0IAAG8IIQCAN4QQAMAbQggA4A0hBADwhuq4ycxZNWevODOuXmKulTYlBa7KOdeKoa5+bGlWJbVxzVWSjKvCKs1tbFyrm7r6vbkq4CRpKGyvnBsqdfSIc1Si5Q3YK/nykvbvqet4SQoGHM+HoyJRrt57rupCFyrgkAGuhAAA3hBCAABvCCEAgDeEEADAG0IIAOAN1XFTSYbVdFKaKjVHH7ogz73Sp+MGmR2fjuOxnb3SXOOOqrl0ffFMgaO/mqMKLnCtiuuqgut1PN+uPnqSgqT9Nqavzz7uWkHVVTWXzRVUMWVxJQQA8IYQAgB4QwgBALwhhAAA3hBCAABvCCEAgDeUaCM9VzNKYy/ddlbtupaOVmZNRz+/L/t7p8A4HsP12K7JZliWLkn5PfY55fU7msY6mosGffYy6aD3vHXcpFsG3bHcuXE0MDWO83OW6dOoFFnAlRAAwBtCCADgDSEEAPCGEAIAeEMIAQC8oToOX4+sVlLZq9rMsOM9lasBp6vazVl95z6H4LyjSs3V0HXQUV2YtDckHXZVwQ24K/YyXQbdOJqq0qgU44krIQCAN4QQAMAbQggA4A0hBADwhhACAHhDdRwmH2eVmqNqLtP2dMOO+3Esfy1Jysvw/ZyrQs3Vpy3TirbPd2Y2J3rBwQOuhAAA3hBCAABvCCEAgDeEEADAG0IIAOAN1XHIHZlWzQ26qukcvePy7CuSXoys9Wmjog2THFdCAABvCCEAgDeEEADAG0IIAOANIQQA8CajEKqvr1cQBCO2aDSa2m+MUX19vSoqKlRcXKzly5fr5MmTWZ80kBFjMtuGh6ybGRzM2uZ6jIznCkxyGV8JzZs3T2fOnEltbW1tqX3bt2/Xjh071NTUpNbWVkWjUa1YsUKJRCKrkwYA5IaMQ6igoEDRaDS1zZw5U9LnV0E7d+7U1q1btXr1as2fP1979uxRb2+v9u7dm/WJAwAmv4xD6NSpU6qoqFBlZaXuuecevf/++5Kk9vZ2xWIx1dbWpo4NhUJatmyZDh8+7Ly/ZDKp7u7uERsAYGrIKISqq6v10ksv6S9/+Yuee+45xWIx1dTU6NNPP1UsFpMkRSKREbeJRCKpfTaNjY0Kh8Opbc6cORdxGgCAySijEFq5cqV+8IMfaMGCBbr99tv1xz/+UZK0Z8+e1DFBEIy4jTFm1NiXbdmyRfF4PLV1dHRkMiUAwCQ2phLt0tJSLViwQKdOnUpVyV141dPZ2Tnq6ujLQqGQysvLR2wAgKlhTCGUTCb17rvvatasWaqsrFQ0GlVzc3Nqf39/v1paWlRTUzPmiQIAck9GXbR/+tOfatWqVbryyivV2dmpJ598Ut3d3Vq7dq2CIFBdXZ0aGhpUVVWlqqoqNTQ0qKSkRGvWrBmv+QMAJrGMQuif//yn7r33Xp09e1YzZ87UjTfeqCNHjuiqq66SJG3evFl9fX1at26durq6VF1drQMHDqisrGxcJg8AmNwCYybWx667u7sVDoe1XHeqICj0PR0AQIYGzYAO6lXF4/Gv/Ds/veMAAN4QQgAAbwghAIA3hBAAwBtCCADgDSEEAPCGEAIAeEMIAQC8IYQAAN4QQgAAbwghAIA3hBAAwBtCCADgDSEEAPCGEAIAeEMIAQC8IYQAAN4QQgAAbwghAIA3hBAAwBtCCADgDSEEAPCGEAIAeEMIAQC8IYQAAN4QQgAAbwghAIA3hBAAwBtCCADgDSEEAPCGEAIAeEMIAQC8IYQAAN4QQgAAbwghAIA3hBAAwBtCCADgDSEEAPCGEAIAeEMIAQC8IYQAAN4QQgAAbwghAIA3hBAAwBtCCADgDSEEAPCGEAIAeEMIAQC8IYQAAN4QQgAAbwp8T+BCxhhJ0qAGJON5MgCAjA1qQNK/f56nM+FCKJFISJL+pj95ngkAYCwSiYTC4XDaYwLzn0TV12h4eFgfffSRysrKFASBuru7NWfOHHV0dKi8vNz39L4WU/Gcpal53lPxnCXOO9fP2xijRCKhiooK5eWl/6vPhLsSysvL0+zZs0eNl5eX5/Q3zWYqnrM0Nc97Kp6zxHnnsq+6AvoChQkAAG8IIQCANxM+hEKhkB5//HGFQiHfU/naTMVzlqbmeU/Fc5Y476l23ulMuMIEAMDUMeGvhAAAuYsQAgB4QwgBALwhhAAA3hBCAABvJnQIPfvss6qsrNS0adO0ePFi/fWvf/U9paw6dOiQVq1apYqKCgVBoFdeeWXEfmOM6uvrVVFRoeLiYi1fvlwnT570M9ksaWxs1Le//W2VlZXpiiuu0F133aX33ntvxDG5eN67du3SwoULU5+UX7p0qf785z+n9ufiOV+osbFRQRCorq4uNZaL511fX68gCEZs0Wg0tT8Xz3ksJmwI/f73v1ddXZ22bt2q48eP6+abb9bKlSv14Ycf+p5a1vT09GjRokVqamqy7t++fbt27NihpqYmtba2KhqNasWKFakmr5NRS0uL1q9fryNHjqi5uVmDg4Oqra1VT09P6phcPO/Zs2dr27ZtOnr0qI4ePapbb71Vd955Z+qHTy6e85e1trZq9+7dWrhw4YjxXD3vefPm6cyZM6mtra0ttS9Xz/mimQnqO9/5jnnwwQdHjF133XXm0Ucf9TSj8SXJvPzyy6mvh4eHTTQaNdu2bUuNnT9/3oTDYfPrX//awwzHR2dnp5FkWlpajDFT57yNMebSSy81v/nNb3L+nBOJhKmqqjLNzc1m2bJlZuPGjcaY3P1eP/7442bRokXWfbl6zmMxIa+E+vv7dezYMdXW1o4Yr62t1eHDhz3N6uvV3t6uWCw24jkIhUJatmxZTj0H8XhckjRjxgxJU+O8h4aGtG/fPvX09Gjp0qU5f87r16/XHXfcodtvv33EeC6f96lTp1RRUaHKykrdc889ev/99yXl9jlfrAnXRVuSzp49q6GhIUUikRHjkUhEsVjM06y+Xl+cp+05OH36tI8pZZ0xRps2bdJNN92k+fPnS8rt825ra9PSpUt1/vx5TZ8+XS+//LKuv/761A+fXDznffv26a233lJra+uofbn6va6urtZLL72kuXPn6uOPP9aTTz6pmpoanTx5MmfPeSwmZAh9IQiCEV8bY0aN5bpcfg42bNigt99+W3/7299G7cvF87722mt14sQJffbZZ/rDH/6gtWvXqqWlJbU/1865o6NDGzdu1IEDBzRt2jTncbl23itXrkz9e8GCBVq6dKm+8Y1vaM+ePbrxxhsl5d45j8WE/HXc5Zdfrvz8/FFXPZ2dnaPeQeSqL6ppcvU5ePjhh/Xaa6/pzTffHLF+VC6fd1FRka655hotWbJEjY2NWrRokZ5++umcPedjx46ps7NTixcvVkFBgQoKCtTS0qJf/epXKigoSJ1brp33hUpLS7VgwQKdOnUqZ7/XYzEhQ6ioqEiLFy9Wc3PziPHm5mbV1NR4mtXXq7KyUtFodMRz0N/fr5aWlkn9HBhjtGHDBu3fv19vvPGGKisrR+zP1fO2McYomUzm7Dnfdtttamtr04kTJ1LbkiVLdN999+nEiRO6+uqrc/K8L5RMJvXuu+9q1qxZOfu9HhNvJRFfYd++faawsNA8//zz5p133jF1dXWmtLTUfPDBB76nljWJRMIcP37cHD9+3EgyO3bsMMePHzenT582xhizbds2Ew6Hzf79+01bW5u59957zaxZs0x3d7fnmV+8hx56yITDYXPw4EFz5syZ1Nbb25s6JhfPe8uWLebQoUOmvb3dvP322+axxx4zeXl55sCBA8aY3Dxnmy9XxxmTm+f9k5/8xBw8eNC8//775siRI+b73/++KSsrS/3sysVzHosJG0LGGPPMM8+Yq666yhQVFZkbbrghVcabK958800jadS2du1aY8zn5ZyPP/64iUajJhQKmVtuucW0tbX5nfQY2c5XknnhhRdSx+Tief/4xz9OvZZnzpxpbrvttlQAGZOb52xzYQjl4nnffffdZtasWaawsNBUVFSY1atXm5MnT6b25+I5jwXrCQEAvJmQfxMCAEwNhBAAwBtCCADgDSEEAPCGEAIAeEMIAQC8IYQAAN4QQgAAbwghAIA3hBAAwBtCCADgzf8BaTV69m5sGzsAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaEAAAGdCAYAAAC7EMwUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAlb0lEQVR4nO3dbXDU5f3v8c/mbnNDsnITskQCjZpoJUAtKMKo0AqZQ62jpQ9UHIdO2xkVdGRohxZ5YOzQRHmQwf/Q0sE6gtOh9MxUrXNaLemphPZQTiOSyh8sxRIhSJYAhtxnQ5LrPOiwx8h1RTdsvJLN+zWzM+S7d9dvs+GTX/LN9woYY4wAAPAgxfcCAADjFyEEAPCGEAIAeEMIAQC8IYQAAN4QQgAAbwghAIA3hBAAwJs03wv4tIGBAZ05c0a5ubkKBAK+lwMAiJMxRu3t7SosLFRKytDnOqMuhM6cOaOioiLfywAAXKXGxkZNnz59yNuMuhDKzc2VJJXNq1Rqaqbn1QAA4tXf36P/Pvh07P/zoYy6ELr8I7jU1EylpmV5Xg0AYLg+z69UaEwAAHhDCAEAvCGEAADeEEIAAG8IIQCAN4QQAMAbQggA4A0hBADwhhACAHhDCAEAvCGEAADeEEIAAG8IIQCAN4QQAMAbQggA4A0hBADwhhACAHhDCAEAvCGEAADeEEIAAG8IIQCAN4QQAMAbQggA4A0hBADwhhACAHhDCAEAvCGEAADeEEIAAG8IIQCAN4QQAMAbQggA4A0hBADwhhACAHhDCAEAvCGEAADeEEIAAG8IIQCAN4QQAMAbQggA4A0hBADwhhACAHhDCAEAvCGEAADeEEIAAG8IIQCAN4QQAMAbQggA4A0hBADwhhACAHhDCAEAvCGEAADexBVCFRUVCgQCgy7hcDh2vTFGFRUVKiwsVFZWlpYsWaIjR44kfNEAgOSQFu8dZs2apT/96U+xj1NTU2P/3rx5s6qrq7Vjxw6VlpZq06ZNWrZsmY4dO6bc3NzErBhwCKQGEvM4KYl5nKGYARPf7fvjuz0wVsT947i0tDSFw+HYJT8/X9J/zoK2bNmijRs3asWKFSorK9POnTvV1dWlXbt2JXzhAICxL+4QOn78uAoLC1VcXKwHH3xQJ06ckCQ1NDQoEomovLw8dttgMKjFixdr//79zseLRqNqa2sbdAEAjA9xhdCCBQv0yiuv6I9//KNefPFFRSIRLVq0SBcuXFAkEpEkFRQUDLpPQUFB7DqbqqoqhUKh2KWoqGgYhwEAGIviCqHly5fr29/+tmbPnq2lS5fq97//vSRp586dsdsEAoN/nm6MuaL2SRs2bFBra2vs0tjYGM+SAABj2FW1aOfk5Gj27Nk6fvx4rEvu02c9zc3NV5wdfVIwGFReXt6gCwBgfIi7O+6TotGo3n//fd15550qLi5WOBxWTU2NbrnlFklSb2+vamtr9fzzzydksYDk7oJzdrWl2r/XSkm3112PE0hPtdaHw1zqt9YHLg3Edfshn4MOPIwBcYXQD3/4Q917772aMWOGmpubtWnTJrW1tWnVqlUKBAJau3atKisrVVJSopKSElVWVio7O1srV64cqfUDAMawuELo9OnTeuihh3T+/Hnl5+fr9ttv14EDBzRz5kxJ0vr169Xd3a3Vq1erpaVFCxYs0J49e/gbIQCAVcAYM6rOwdva2hQKhTT3tmqlpmX5Xg5GIX4c9zmfgx/HwZP+vm794+/r1Nra+pm/52d2HADAG0IIAODNVXXHASNlqDlw8f64LDXTUc9Ot9bTJmTY66FM55pcP9pz6Wvvtdc74qsP9PQ5n8P5oz3Hj+kCKfHdnh/fIRE4EwIAeEMIAQC8IYQAAN4QQgAAbwghAIA3dMfBq7j/8FSK+49PUycErfXgFPsfQ18zzT7hY2qh+4/uJk22P1aKY4J8W3vUWj8f6bDWz0XarfXej3uca+rvvmSvd8VXd3XZSfY/oKVrDvHgTAgA4A0hBADwhhACAHhDCAEAvCGEAADe0B2HYRlWV5uNo9NtqMdxdcGlZNrfzmnZ9nrWNfZZcIUzr7HWb7pusnNNXyqYYK1nO+bZdTm2Zjh1rtNaP/FRq7V+rsneNSdJFy90WevtjueInu+21vta7R14/f2urjk3OufwaZwJAQC8IYQAAN4QQgAAbwghAIA3hBAAwBu648aR4XS0uXYrdXWoxX37IXZQjZfruV319KD97Z/t2HE1f5J9PpwkFeXZO+0mZdk7yPqN/bHys+27uk52dPI1TbV35UnSmXP2OXRNp9vst09vsda7HZ18zp1bo+7dXoFP40wIAOANIQQA8IYQAgB4QwgBALwhhAAA3hBCAABvaNFOQnEP+JxgbwuWpPSQfWvs9In2FuOsHPtjpQftbdIDA/aBlpeGaPONdtuvc21P7WoDdz1HR0evtd7aYd+SW5J6QvbXwxj75yItYB8Kek2m/fX+kuN5czPcX8Ihx+c1Lc2+pu5O+3FfarEPNnW93uZS4truXRiEmjw4EwIAeEMIAQC8IYQAAN4QQgAAbwghAIA3dMeNAc7Bo67BnI6OtsywfdjltJIhtq2+YZK9XphnrYcm2J/b1QXX6uhEcw3flKSPTtu3uj4fsd+n46K9E62n097ddebkRWs9I8P+eg+lZXKOtR5yDE9NCdjXdMnx+rm2D5ekkKNT0fU5ysyyD25NcazVOXzWsWW7JAXkGHrqOD7n4ziem665sYczIQCAN4QQAMAbQggA4A0hBADwhhACAHhDd9wo4ur4cXUnZUzJttYnldq73eYtLLLWl84pdK5p1pRmaz0UeN9+h37HPLFgyFo/11NqrR89n+tcU52ji6vPsd10Z5t95ptrJlpLu71jzzVbTZJazndZ6x8U2o9j8jX2WXOuzrVcx5bjwSG649q77Ovt7LZ/jvr67Nt4OzvOUhxbtg+xXbxxfN8bcB1Gf3zddHTNjT2cCQEAvCGEAADeEEIAAG8IIQCAN4QQAMAbuuO+YM55W5JSHR1Qri64cNlUa/3rX7veWv/2HPsssfyLv3Guyfzvemu9r+mitR5w7ep63bXW+tSbv2J/3slLnWtqarPPwDvR0OK8j01fl31n1QHHjquubjpJ6mnutNY/arB3weVNstcnOj7XE6fYZ9BlO3bLlaTeS/Zut3Nn7TP2Wj+2H5/r9XBx7ew7FFe3m703LnEz6OAfZ0IAAG8IIQCAN4QQAMAbQggA4A0hBADw5qq646qqqvT000/rqaee0pYtWyRJxhg9++yz2r59u1paWrRgwQL97Gc/06xZsxKx3jHD1SGUMkQ3U/pEe8fUZMcsuDvu+JK17uqCm3L6V9Z67+/+5lzTxb83Wes9LfbdSrPz7d1deQvst0+fOsVaz5x50bkmyd4d1+OaiebYvbW/y357V30orueInrd3nPXk2j9HLXmOXU8nZlrrWY7dU4fS2W6fpdfjWKur4yw10z7wzQzRHed6LOPo5HNxdc1pIL7HgX/DPhOqq6vT9u3bNWfOnEH1zZs3q7q6Wlu3blVdXZ3C4bCWLVum9vb2q14sACC5DCuEOjo69PDDD+vFF1/UxIkTY3VjjLZs2aKNGzdqxYoVKisr086dO9XV1aVdu3YlbNEAgOQwrBBas2aN7rnnHi1dOvgPChsaGhSJRFReXh6rBYNBLV68WPv377c+VjQaVVtb26ALAGB8iPt3Qrt379a7776rurq6K66LRCKSpIKCgkH1goICnTx50vp4VVVVevbZZ+NdBgAgCcR1JtTY2KinnnpKv/rVr5SZaf9FqSQFAoNH0xhjrqhdtmHDBrW2tsYujY2N8SwJADCGxXUmdPDgQTU3N2vevHmxWn9/v/bt26etW7fq2LFjkv5zRjRt2rTYbZqbm684O7osGAwqGLR3BI0mrplvrl0kXV1w6SH3sWbPyLPWb5xtf+3uLM231vN7/pe13v9/6q31lr995FzTuWMXrfU+xzgx1+uR59j1NOD43Hdcsh+zJJ1uPmutf+yY33ap1d4N5pqJ5urUGs5csoEe+3O4OvD6HLu69jq6ETsdHWrD4dp91NXpGXDscDvUfETXa+7sSHTUBxzvJ4w9cZ0J3X333Tp8+LDq6+tjl/nz5+vhhx9WfX29rrvuOoXDYdXU1MTu09vbq9raWi1atCjhiwcAjG1xnQnl5uaqrKxsUC0nJ0eTJ0+O1deuXavKykqVlJSopKRElZWVys7O1sqVKxO3agBAUkj4Vg7r169Xd3e3Vq9eHftj1T179ig3NzfRTwUAGOOuOoT27t076ONAIKCKigpVVFRc7UMDAJIcs+MAAN4QQgAAb9je+1Ocrdjp9lbYtAn2AZIZk+x/RxWcat+mWZJmXD/JWi+dOdFaL8prtdZNU8Ra73e0+Q7VepyRaf8+JcexFfnEG66x1tPn2rf3VtFsa/ngv+1t1ZL0z2PnrPW20/bXo6/Vftyu9mnnkE1HC/NQXPcJuJ7Dtc21q7V5iGGhrvesaxt513s5GOfw1KHeT12djhb0813WuqsVO5DiaKN3PjNGK86EAADeEEIAAG8IIQCAN4QQAMAbQggA4M247Y6LtwvONXg061r7JIgpRSFrfeq19iGlknRt2P5Y4Wvs236nyN5RFMiyP076DfZtwid2urezDt1g78xLybevKWPB9fY1LVxqre/76BZr/U//99/ONX34nn2AadQxwNQ1HDORXXDxcj+HvetroN81sNP9JZwWtF+X4eh2i/c9m+3osutxdB1K0vlIh7V+1tEF59o2Pd6Bwl/E5xTDw5kQAMAbQggA4A0hBADwhhACAHhDCAEAvBm33XEuqUF7d5xr5tu1pVOs9Ztusm+9XZjvnh2X6ehmSnN0/FzosT/HhPyvWOsZi+wdfhll551rcglMnGatX8y6zVrfd8resffWX49b68f+ftr53N2Njhlxjq2xfXbBJUyq/fvFFMd7RpIyp02w1osc782yWfYt1WdMs3/ugo41Nbd2O9f0zzT7fdov2uf7RR3dqkgenAkBALwhhAAA3hBCAABvCCEAgDeEEADAm3HbHeeaMZWSaX9JsibbZ6VdO8M+b+tGx26oU7Ltu1FKUk+ffW5Yq2NXzfqzbdZ6Y5t9ftvkrJus9cxr3N+LdPTa13Sy2d4BVf8v+66nR99rsNbPH79grUfP2ufASe5ZcK5dOJNBimMH1eAU+/tSkmbOmmqtL1k001q/fYZ9Z9/JmfbPab+xz447lWt/70tSV7f9vXzm1EVr/aLj69RlqF1dMTpxJgQA8IYQAgB4QwgBALwhhAAA3hBCAABvxm13XLxSHF06aa6ZXo6mngHj7t7pumTvRDvV1G6tN52z71LZ6+hoc+kboquso9U+06vlvL17rSNir/desO8C65r3NuDoCJTG2My3OMW7s29+iX23XEm66/YZ1vr/KLG/Z/P7fm9/oJaP7fWca6zl1NDtzjV9MDnbWk/PsP9X5NpBFcmDMyEAgDeEEADAG0IIAOANIQQA8IYQAgB4Q3fcpxhHh1q3Y+fHsxF759q/J9i7mXKy7PO2JOmCY0fKDz9ssdbPnLxorfe02Nfq6jjrj7q76QZ67PdxPlaP/bFcr2tS7Ho6DK6uL9fOvplh+y6pZV+x73ArSUtL8qz1/Nb/aa2bw/+wP1CXY6fUL9m77ybNse/cKkmhzDnWuqv71PU+SPb3x3jCmRAAwBtCCADgDSEEAPCGEAIAeEMIAQC8IYQAAN6M2xZtV2uwq8U42mwfzNnwz/PWertj8KdrUKMkdbZHrfWLjgGmrjU5h4I6BpUOuSVyf3z3oXX283FtL5+Wa9/+Pd+xjfztN9m38Jaka/Vna93U/d1ajx5qcj6WTTDN8V6+0b01u2uw7yXH0N1437O8/8YezoQAAN4QQgAAbwghAIA3hBAAwBtCCADgzfjtjnMNRnQM2uz92DEU1NG90xOxb72dku7OfVdnXn+HvWuOYaGjn2tQqWsb77QJ9u64whnXWOtfnpLlfG5z5ri13vt+s7UePdVmrac71qQBx7bwqe4hvS3dl6x1V2eoc5t3R9cmxh7OhAAA3hBCAABvCCEAgDeEEADAm7hCaNu2bZozZ47y8vKUl5enhQsX6s0334xdb4xRRUWFCgsLlZWVpSVLlujIkSMJXzQAIDnE1R03ffp0Pffcc7rhhhskSTt37tR9992nQ4cOadasWdq8ebOqq6u1Y8cOlZaWatOmTVq2bJmOHTum3NzcETmARHN1uwUcnWWXHJ1orvltQ3HOcGN+W9JxdUmmhTKt9YIpOdZ6XsZH7ie52GotG0dXpWueXUrIvlW9pky2ljtk3/Zbkk6ftXeNdlx0dJ86tpcfct4hxpS4zoTuvfdefeMb31BpaalKS0v105/+VBMmTNCBAwdkjNGWLVu0ceNGrVixQmVlZdq5c6e6urq0a9eukVo/AGAMG/bvhPr7+7V79251dnZq4cKFamhoUCQSUXl5eew2wWBQixcv1v79+52PE41G1dbWNugCABgf4g6hw4cPa8KECQoGg3rsscf02muv6eabb1YkEpEkFRQUDLp9QUFB7DqbqqoqhUKh2KWoqCjeJQEAxqi4Q+jGG29UfX29Dhw4oMcff1yrVq3S0aNHY9cHAoN/rmyMuaL2SRs2bFBra2vs0tjYGO+SAABjVNxjezIyMmKNCfPnz1ddXZ1eeOEF/ehHP5IkRSIRTZs2LXb75ubmK86OPikYDCoYdPziEwCQ1K56dpwxRtFoVMXFxQqHw6qpqdEtt9wiSert7VVtba2ef/75q16ob85Zc65ONFeXnWOW2JCPhTHL1XHmmh2XkWX/kszJtM9jSw10u588095pl1Zg77QLZDrWVDLJfvvSm6314y3TnUv64MT71nrv+S5rvT9q7+RD8ogrhJ5++mktX75cRUVFam9v1+7du7V371699dZbCgQCWrt2rSorK1VSUqKSkhJVVlYqOztbK1euHKn1AwDGsLhC6OzZs3rkkUfU1NSkUCikOXPm6K233tKyZcskSevXr1d3d7dWr16tlpYWLViwQHv27BkzfyMEAPhixRVCL7300pDXBwIBVVRUqKKi4mrWBAAYJ5gdBwDwhhACAHgzbndW9YUOuHEm1f59nnN2XJq9Q82lu+8a53UTpk6z1lPndNrrjscJFF9vrZ/LXmqt/+XgOeeaPjx+3lq/1GrfWdU5N5Gvo6TBmRAAwBtCCADgDSEEAPCGEAIAeEMIAQC8oTsOSIChZgImQnuXfafe5q58530m5ttnu6XlTLTfIWifKdfc9xVrveYD+1y3dw66d3vtbLTvF9bfdclaZwfV5MeZEADAG0IIAOANIQQA8IYQAgB4QwgBALwhhAAA3tCiDYwg5/bejpbuvj5723NLW4+1fvxj+zBSSUoJzLXWJ2TY6+db7M996PRFa/1v75y21k+/7x5geulj+3bk5pL9uRlUmvw4EwIAeEMIAQC8IYQAAN4QQgAAbwghAIA3dMcBPqTYv/8bcAzs7OiwDzBtaGp3PkVnT5+13ufYMvvMOXun3b/+Zd+Su/Gf9i64nqYO55r6o44uOAaVjlucCQEAvCGEAADeEEIAAG8IIQCAN4QQAMAbuuOABHDNiEtJt3+fl5qZaq3n5Aat9cxM+5eqq9NNkiIXuqz1C632+W2nP7xorTed+Nhad3XBubbqlpgRhytxJgQA8IYQAgB4QwgBALwhhAAA3hBCAABv6I4DPifXbqiSpFRHF1x2urUenJpjrU8vnmitl35pkrU+JZTpXFJ7l33enKs7rqM9aq33tth3de1zzLNzdcBJdMHhSpwJAQC8IYQAAN4QQgAAbwghAIA3hBAAwBu644AEcM2Oc3XH5YdzrfWbrptsrc+bYe+au8YxU06Sznbau9daHV1tJzLs8+xcu566Ot3YJRXx4EwIAOANIQQA8IYQAgB4QwgBALwhhAAA3tAdBySAa65cStD+JZaTm2GtT52YZa/nOHZiTTvnXNOAybfWJzg69tLS7c8BjCTOhAAA3hBCAABvCCEAgDeEEADAG0IIAOBNXCFUVVWlW2+9Vbm5uZo6daruv/9+HTt2bNBtjDGqqKhQYWGhsrKytGTJEh05ciShiwYAJIe4WrRra2u1Zs0a3Xrrrerr69PGjRtVXl6uo0ePKifnP9sVb968WdXV1dqxY4dKS0u1adMmLVu2TMeOHVNurn1oI5CsTJ99q+ue7j5r/WKHfYvtiz3Z9sfPnOp87o+77Y/V0mavdzkGnrq262ZQKRIhrhB66623Bn388ssva+rUqTp48KDuuusuGWO0ZcsWbdy4UStWrJAk7dy5UwUFBdq1a5ceffTRxK0cADDmXdXvhFpbWyVJkyZNkiQ1NDQoEomovLw8dptgMKjFixdr//791seIRqNqa2sbdAEAjA/DDiFjjNatW6c77rhDZWVlkqRIJCJJKigoGHTbgoKC2HWfVlVVpVAoFLsUFRUNd0kAgDFm2CH0xBNP6L333tOvf/3rK64LBAaPMDHGXFG7bMOGDWptbY1dGhsbh7skAMAYM6zZcU8++aTeeOMN7du3T9OnT4/Vw+GwpP+cEU2bNi1Wb25uvuLs6LJgMKhgMDicZQAAxri4QsgYoyeffFKvvfaa9u7dq+Li4kHXFxcXKxwOq6amRrfccoskqbe3V7W1tXr++ecTt2pglBm4NGCt97XbO86az9h/9/neMftA0l7H44cm2AehSlLkQpe1/s9/2Z+j9Uy7td7fdcn+BP32Nbm2/QZs4gqhNWvWaNeuXfrd736n3Nzc2O95QqGQsrKyFAgEtHbtWlVWVqqkpEQlJSWqrKxUdna2Vq5cOSIHAAAYu+IKoW3btkmSlixZMqj+8ssv6zvf+Y4kaf369eru7tbq1avV0tKiBQsWaM+ePfyNEADgCnH/OO6zBAIBVVRUqKKiYrhrAgCME8yOAwB4QwgBALxhe2/gcxqq6yuQ4uiO67B3x3V82GqtH3V0wUUa7bfPcGwfLkkd7fYZca4uuJ5Ih7Xe12Wfc8fsOCQCZ0IAAG8IIQCAN4QQAMAbQggA4A0hBADwhu44IAFcnWIDPfbOst7z9rlurjlt3Y7uOKW4v4907Yjqeo7+qGMHVdfOqsyIQwJwJgQA8IYQAgB4QwgBALwhhAAA3hBCAABv6I4DEsDVKeaqBxzddK5OtL6OYXy/6Nr51PXcdLvBA86EAADeEEIAAG8IIQCAN4QQAMAbQggA4A3dcYAH8XbTybHjKjDWcSYEAPCGEAIAeEMIAQC8IYQAAN4QQgAAbwghAIA3hBAAwBtCCADgDSEEAPCGEAIAeEMIAQC8IYQAAN4QQgAAbwghAIA3hBAAwBtCCADgDSEEAPCGEAIAeEMIAQC8IYQAAN4QQgAAbwghAIA3hBAAwBtCCADgDSEEAPCGEAIAeEMIAQC8IYQAAN4QQgAAb+IOoX379unee+9VYWGhAoGAXn/99UHXG2NUUVGhwsJCZWVlacmSJTpy5Eii1gsASCJxh1BnZ6fmzp2rrVu3Wq/fvHmzqqurtXXrVtXV1SkcDmvZsmVqb2+/6sUCAJJLWrx3WL58uZYvX269zhijLVu2aOPGjVqxYoUkaefOnSooKNCuXbv06KOPXt1qAQBJJaG/E2poaFAkElF5eXmsFgwGtXjxYu3fvz+RTwUASAJxnwkNJRKJSJIKCgoG1QsKCnTy5EnrfaLRqKLRaOzjtra2RC4JADCKjUh3XCAQGPSxMeaK2mVVVVUKhUKxS1FR0UgsCQAwCiU0hMLhsKT/f0Z0WXNz8xVnR5dt2LBBra2tsUtjY2MilwQAGMUSGkLFxcUKh8OqqamJ1Xp7e1VbW6tFixZZ7xMMBpWXlzfoAgAYH+L+nVBHR4c++OCD2McNDQ2qr6/XpEmTNGPGDK1du1aVlZUqKSlRSUmJKisrlZ2drZUrVyZ04QCAsS/uEHrnnXf0ta99LfbxunXrJEmrVq3Sjh07tH79enV3d2v16tVqaWnRggULtGfPHuXm5iZu1QCApBAwxhjfi/iktrY2hUIhzb2tWqlpWb6XAwCIU39ft/7x93VqbW39zF+xMDsOAOANIQQA8IYQAgB4QwgBALwhhAAA3hBCAABvCCEAgDeEEADAG0IIAOANIQQA8IYQAgB4QwgBALwhhAAA3hBCAABvCCEAgDeEEADAG0IIAOANIQQA8IYQAgB4QwgBALwhhAAA3hBCAABvCCEAgDeEEADAG0IIAOANIQQA8IYQAgB4QwgBALwhhAAA3hBCAABvCCEAgDeEEADAG0IIAOANIQQA8IYQAgB4QwgBALwhhAAA3hBCAABvCCEAgDeEEADAG0IIAOANIQQA8IYQAgB4QwgBALwhhAAA3hBCAABvCCEAgDeEEADAG0IIAOANIQQA8IYQAgB4M2Ih9POf/1zFxcXKzMzUvHnz9Je//GWkngoAMEaNSAj95je/0dq1a7Vx40YdOnRId955p5YvX65Tp06NxNMBAMaoEQmh6upqfe9739P3v/99ffnLX9aWLVtUVFSkbdu2jcTTAQDGqISHUG9vrw4ePKjy8vJB9fLycu3fv/+K20ejUbW1tQ26AADGh4SH0Pnz59Xf36+CgoJB9YKCAkUikStuX1VVpVAoFLsUFRUlekkAgFFqxBoTAoHAoI+NMVfUJGnDhg1qbW2NXRobG0dqSQCAUSYt0Q84ZcoUpaamXnHW09zcfMXZkSQFg0EFg8HYx8YYSVJ/f0+ilwYA+AJc/v/78v/nQ0l4CGVkZGjevHmqqanRt771rVi9pqZG991332fev729XZL03wefTvTSAABfoPb2doVCoSFvk/AQkqR169bpkUce0fz587Vw4UJt375dp06d0mOPPfaZ9y0sLFRjY6Nyc3MVCATU1tamoqIiNTY2Ki8vbySWO+qMx2OWxudxj8djljjuZD9uY4za29tVWFj4mbcdkRB64IEHdOHCBf3kJz9RU1OTysrK9Ic//EEzZ878zPumpKRo+vTpV9Tz8vKS+pNmMx6PWRqfxz0ej1niuJPZZ50BXTYiISRJq1ev1urVq0fq4QEASYDZcQAAb0Z9CAWDQT3zzDODOuiS3Xg8Zml8Hvd4PGaJ4x5vxz2UgPk8PXQAAIyAUX8mBABIXoQQAMAbQggA4A0hBADwZlSHULLvzrpv3z7de++9KiwsVCAQ0Ouvvz7oemOMKioqVFhYqKysLC1ZskRHjhzxs9gEqaqq0q233qrc3FxNnTpV999/v44dOzboNsl43Nu2bdOcOXNif6S4cOFCvfnmm7Hrk/GYP62qqkqBQEBr166N1ZLxuCsqKhQIBAZdwuFw7PpkPOarMWpDaDzsztrZ2am5c+dq69at1us3b96s6upqbd26VXV1dQqHw1q2bFlsvt5YVFtbqzVr1ujAgQOqqalRX1+fysvL1dnZGbtNMh739OnT9dxzz+mdd97RO++8o69//eu67777Yv/5JOMxf1JdXZ22b9+uOXPmDKon63HPmjVLTU1Nscvhw4dj1yXrMQ+bGaVuu+0289hjjw2q3XTTTebHP/6xpxWNLEnmtddei308MDBgwuGwee6552K1np4eEwqFzC9+8QsPKxwZzc3NRpKpra01xoyf4zbGmIkTJ5pf/vKXSX/M7e3tpqSkxNTU1JjFixebp556yhiTvJ/rZ555xsydO9d6XbIe89UYlWdC8e7OmowaGhoUiUQGvQbBYFCLFy9OqtegtbVVkjRp0iRJ4+O4+/v7tXv3bnV2dmrhwoVJf8xr1qzRPffco6VLlw6qJ/NxHz9+XIWFhSouLtaDDz6oEydOSEruYx6uEZsddzXi3Z01GV0+TttrcPLkSR9LSjhjjNatW6c77rhDZWVlkpL7uA8fPqyFCxeqp6dHEyZM0Guvvaabb7459p9PMh7z7t279e6776quru6K65L1c71gwQK98sorKi0t1dmzZ7Vp0yYtWrRIR44cSdpjvhqjMoQu+7y7syazZH4NnnjiCb333nv661//esV1yXjcN954o+rr63Xx4kX99re/1apVq1RbWxu7PtmOubGxUU899ZT27NmjzMxM5+2S7biXL18e+/fs2bO1cOFCXX/99dq5c6duv/12Scl3zFdjVP44Lt7dWZPR5W6aZH0NnnzySb3xxht6++23B23dkczHnZGRoRtuuEHz589XVVWV5s6dqxdeeCFpj/ngwYNqbm7WvHnzlJaWprS0NNXW1uq//uu/lJaWFju2ZDvuT8vJydHs2bN1/PjxpP1cX41RGUKf3J31k2pqarRo0SJPq/piFRcXKxwOD3oNent7VVtbO6ZfA2OMnnjiCb366qv685//rOLi4kHXJ+tx2xhjFI1Gk/aY7777bh0+fFj19fWxy/z58/Xwww+rvr5e1113XVIe96dFo1G9//77mjZtWtJ+rq+Kt5aIz7B7926Tnp5uXnrpJXP06FGzdu1ak5OTYz788EPfS0uY9vZ2c+jQIXPo0CEjyVRXV5tDhw6ZkydPGmOMee6550woFDKvvvqqOXz4sHnooYfMtGnTTFtbm+eVD9/jjz9uQqGQ2bt3r2lqaopdurq6YrdJxuPesGGD2bdvn2loaDDvvfeeefrpp01KSorZs2ePMSY5j9nmk91xxiTncf/gBz8we/fuNSdOnDAHDhww3/zmN01ubm7s/65kPOarMWpDyBhjfvazn5mZM2eajIwM89WvfjXWxpss3n77bSPpisuqVauMMf9p53zmmWdMOBw2wWDQ3HXXXebw4cN+F32VbMcrybz88sux2yTjcX/3u9+NvZfz8/PN3XffHQsgY5LzmG0+HULJeNwPPPCAmTZtmklPTzeFhYVmxYoV5siRI7Hrk/GYrwZbOQAAvBmVvxMCAIwPhBAAwBtCCADgDSEEAPCGEAIAeEMIAQC8IYQAAN4QQgAAbwghAIA3hBAAwBtCCADgDSEEAPDm/wHAgpYpOXY+VQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -101,13 +102,15 @@ } ], "source": [ - "plt.imshow(exp.getImage().getArray())" + "from astropy.visualization import simple_norm\n", + "plt.imshow(img,aspect='equal',cmap='RdYlBu_r',origin='lower',interpolation='None',\\\n", + " norm=simple_norm(img,'asinh',asinh_a=0.1,min_cut=-0.01,max_cut=4))" ] }, { "cell_type": "code", "execution_count": null, - "id": "516ec59d-c0d9-4a63-9d84-1f7a8cdb405d", + "id": "e1585107-4a8d-4178-80e0-9ba793475f70", "metadata": {}, "outputs": [], "source": [] From b64f6d9de39f8eeef97086e749f8a121f3f2d29d Mon Sep 17 00:00:00 2001 From: Xiangchong Li Date: Wed, 26 Jul 2023 07:30:54 -0700 Subject: [PATCH 08/30] update gitignore --- .gitignore | 1 + .virtual_documents/examples/Untitled.ipynb | 50 -------- .../examples/example_NFWShear.ipynb | 118 ------------------ .../examples/example_NFWShear_imsim.ipynb | 66 ---------- examples/example_NFWShear_imsim.ipynb | 21 ++-- 5 files changed, 12 insertions(+), 244 deletions(-) delete mode 100644 .virtual_documents/examples/Untitled.ipynb delete mode 100644 .virtual_documents/examples/example_NFWShear.ipynb delete mode 100644 .virtual_documents/examples/example_NFWShear_imsim.ipynb diff --git a/.gitignore b/.gitignore index d34c2830..848f8830 100644 --- a/.gitignore +++ b/.gitignore @@ -105,3 +105,4 @@ venv.bak/ .mypy_cache/ pytest_session.txt outputs +.virtual_documents/ diff --git a/.virtual_documents/examples/Untitled.ipynb b/.virtual_documents/examples/Untitled.ipynb deleted file mode 100644 index 63ae311a..00000000 --- a/.virtual_documents/examples/Untitled.ipynb +++ /dev/null @@ -1,50 +0,0 @@ -import clmm -import numpy as np - -from descwl_shear_sims.galaxies import make_galaxy_catalog -from descwl_shear_sims.galaxies import WLDeblendGalaxyCatalog -from descwl_shear_sims.psfs import make_fixed_psf -from descwl_shear_sims.surveys import get_survey - -from descwl_shear_sims.sim import make_sim -from descwl_shear_sims.shear import ShearNFW - -cosmo = clmm.Cosmology(H0=70.0, Omega_dm0=0.27 - 0.045, Omega_b0=0.045, Omega_k0=0.0) -halo = clmm.Modeling(massdef="mean", delta_mdef=200, halo_profile_model="nfw") -halo.set_cosmo(cosmo) -halo.set_concentration(4) -halo.set_mass(1.0e15) -z_cl = 1.0 -# source properties -z_source = 2.0 # all sources in the same plane - -shear_obj = ShearNFW(halo, z_cl) - -seed = 74321 -rng = np.random.RandomState(seed) - -coadd_dim = 200 -se_dim = 200 -psf_dim = 41 - -galaxy_catalog = WLDeblendGalaxyCatalog( - rng=rng, - coadd_dim=coadd_dim, - buff=2, - layout="random_disk", -) -psf = make_fixed_psf(psf_type="gauss") -band_list = ["r"] - -sim_data = make_sim( - rng=rng, - galaxy_catalog=galaxy_catalog, - coadd_dim=coadd_dim, - shear_obj=shear_obj, - psf=psf, - noise_factor=0.0, - bands=band_list, -) - - - diff --git a/.virtual_documents/examples/example_NFWShear.ipynb b/.virtual_documents/examples/example_NFWShear.ipynb deleted file mode 100644 index ab8cccb9..00000000 --- a/.virtual_documents/examples/example_NFWShear.ipynb +++ /dev/null @@ -1,118 +0,0 @@ -get_ipython().run_line_magic("matplotlib", " inline") -get_ipython().run_line_magic("reload_ext", " autoreload") -get_ipython().run_line_magic("autoreload", " 2") - -import clmm -import galsim -import numpy as np -import descwl_shear_sims as dss -import matplotlib.pyplot as plt - -from descwl_shear_sims.galaxies import WLDeblendGalaxyCatalog -from descwl_shear_sims.objlists import get_objlist -from descwl_shear_sims.surveys import get_survey - - -cosmo = clmm.Cosmology(H0=70.0, Omega_dm0=0.27 - 0.045, Omega_b0=0.045, Omega_k0=0.0) -halo = clmm.Modeling(massdef="mean", delta_mdef=200, halo_profile_model="nfw") -halo.set_cosmo(cosmo) -halo.set_concentration(4) -halo.set_mass(1.0e15) -z_cl = 1.0 -# source properties -z_source = 2.0 # all sources in the same plane - -shear_obj = dss.shear.ShearNFW(halo, z_cl) - - -# generate positions -radius = 50 # arcsec -n_gal = 20 -theta = np.linspace(0, 360, n_gal) / n_gal -x = np.cos(theta) * radius -y = np.sin(theta) * radius -shifts = np.zeros(n_gal, dtype=[('dx', 'f8'), ('dy', 'f8')]) -shifts['dx'] = x -shifts['dy'] = y - -shift_list = [] -for ss in shifts: - shift_list.append(galsim.PositionD(ss['dx'], ss['dy'])) - -# get the shear -shear_list = [] -for ss in shift_list: - shear_list.append(shear_obj.get_shear(z_source, ss)) - - -gamma = [] -for ss in shear_list: - gamma.append(ss.g1 + 1j * ss.g2) -gamma = np.array(gamma) - - -angles = np.angle(gamma, deg=True) / 2. -lengths = np.abs(gamma) * 100. - -# Create whisker plot -plt.figure(figsize=(6, 6)) -plt.quiver(x, y, np.cos(np.deg2rad(angles)), np.sin(np.deg2rad(angles)), - color="black", headaxislength=0, headlength=0, headwidth=1, pivot = 'middle') -plt.xlabel('x') -plt.ylabel('y') -plt.show() - - -n_gal = 1 -d_array = [] -g_array = [] -for i in range(10): - position = galsim.PositionD(3.0 ** i, 0.) - # get the shear - shear = shear_obj.get_shear(z_source, position) - g1 = shear.g1 - g2 = shear.g2 - gabs = np.abs(g1 + 1j * g2) - d_array.append(3 ** i) - g_array.append(gabs) -d_array = np.array(d_array) -g_array = np.array(g_array) - - -plt.plot(d_array / 3600., g_array) -plt.xscale("log") -plt.yscale("log") -plt.xlabel("separation [degree]") -plt.ylabel(r"$|g|$") -# We set kappa_max to 0.8 - - -band="r" -rng = np.random.RandomState(1) -coadd_dim = 500 -buff = 50 -# galaxy catalog; you can make your own -galaxy_catalog = WLDeblendGalaxyCatalog( - rng=rng, - coadd_dim=coadd_dim, - buff=buff, - layout="random", -) - -survey = get_survey(gal_type=galaxy_catalog.gal_type, band=band) -noise_for_gsparams = survey.noise -lists = get_objlist( - galaxy_catalog=galaxy_catalog, - survey=survey, - star_catalog=None, - noise=noise_for_gsparams, -) - - -lists.keys() - - -lists["redshifts"] - - - diff --git a/.virtual_documents/examples/example_NFWShear_imsim.ipynb b/.virtual_documents/examples/example_NFWShear_imsim.ipynb deleted file mode 100644 index 92409184..00000000 --- a/.virtual_documents/examples/example_NFWShear_imsim.ipynb +++ /dev/null @@ -1,66 +0,0 @@ -get_ipython().run_line_magic("matplotlib", " inline") -get_ipython().run_line_magic("reload_ext", " autoreload") -get_ipython().run_line_magic("autoreload", " 2") -import clmm -import numpy as np - -from descwl_shear_sims.galaxies import make_galaxy_catalog -from descwl_shear_sims.galaxies import WLDeblendGalaxyCatalog -from descwl_shear_sims.psfs import make_fixed_psf -from descwl_shear_sims.surveys import get_survey - -from descwl_shear_sims.sim import make_sim -from descwl_shear_sims.shear import ShearNFW - - -import matplotlib.pyplot as plt - - -cosmo = clmm.Cosmology(H0=70.0, Omega_dm0=0.27 - 0.045, Omega_b0=0.045, Omega_k0=0.0) -halo = clmm.Modeling(massdef="mean", delta_mdef=200, halo_profile_model="nfw") -halo.set_cosmo(cosmo) -halo.set_concentration(4) -halo.set_mass(1.0e15) -z_cl = 1.0 -# source properties -z_source = 2.0 # all sources in the same plane - -shear_obj = ShearNFW(halo, z_cl) - -seed = 74321 -rng = np.random.RandomState(seed) - -coadd_dim = 50 -se_dim = 50 -psf_dim = 41 - -galaxy_catalog = WLDeblendGalaxyCatalog( - rng=rng, - coadd_dim=coadd_dim, - buff=2, - layout="random_disk", -) -psf = make_fixed_psf(psf_type="gauss") -band_list = ["r"] - -sim_data = make_sim( - rng=rng, - galaxy_catalog=galaxy_catalog, - coadd_dim=coadd_dim, - shear_obj=shear_obj, - psf=psf, - noise_factor=0.0, - bands=band_list, -) - - -exp = sim_data["band_data"]["r"][0] -img = exp.getImage().getArray() - - -from astropy.visualization import simple_norm -plt.imshow(img,aspect='equal',cmap='RdYlBu_r',origin='lower',interpolation='None',\ - norm=simple_norm(img,'asinh',asinh_a=0.1,min_cut=-0.01,max_cut=4)) - - - diff --git a/examples/example_NFWShear_imsim.ipynb b/examples/example_NFWShear_imsim.ipynb index 4b84d596..0d41fec1 100644 --- a/examples/example_NFWShear_imsim.ipynb +++ b/examples/example_NFWShear_imsim.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 14, + "execution_count": 24, "id": "177f93ce-ec8b-4c36-9ff4-d16951a4941f", "metadata": {}, "outputs": [], @@ -29,7 +29,7 @@ "halo = clmm.Modeling(massdef=\"mean\", delta_mdef=200, halo_profile_model=\"nfw\")\n", "halo.set_cosmo(cosmo)\n", "halo.set_concentration(4)\n", - "halo.set_mass(1.0e15)\n", + "halo.set_mass(1.0e16)\n", "z_cl = 1.0\n", "# source properties\n", "z_source = 2.0 # all sources in the same plane\n", @@ -39,8 +39,8 @@ "seed = 74321\n", "rng = np.random.RandomState(seed)\n", "\n", - "coadd_dim = 50\n", - "se_dim = 50\n", + "coadd_dim = 1000\n", + "se_dim = 1000\n", "psf_dim = 41\n", "\n", "galaxy_catalog = WLDeblendGalaxyCatalog(\n", @@ -65,7 +65,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 25, "id": "5db4e4bf-7d48-4bab-9692-1d21f6f0952b", "metadata": {}, "outputs": [], @@ -76,23 +76,23 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 28, "id": "516ec59d-c0d9-4a63-9d84-1f7a8cdb405d", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "(-0.5, 1009.5, -0.5, 1009.5)" ] }, - "execution_count": 21, + "execution_count": 28, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaEAAAGdCAYAAAC7EMwUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAlb0lEQVR4nO3dbXDU5f3v8c/mbnNDsnITskQCjZpoJUAtKMKo0AqZQ62jpQ9UHIdO2xkVdGRohxZ5YOzQRHmQwf/Q0sE6gtOh9MxUrXNaLemphPZQTiOSyh8sxRIhSJYAhtxnQ5LrPOiwx8h1RTdsvJLN+zWzM+S7d9dvs+GTX/LN9woYY4wAAPAgxfcCAADjFyEEAPCGEAIAeEMIAQC8IYQAAN4QQgAAbwghAIA3hBAAwJs03wv4tIGBAZ05c0a5ubkKBAK+lwMAiJMxRu3t7SosLFRKytDnOqMuhM6cOaOioiLfywAAXKXGxkZNnz59yNuMuhDKzc2VJJXNq1Rqaqbn1QAA4tXf36P/Pvh07P/zoYy6ELr8I7jU1EylpmV5Xg0AYLg+z69UaEwAAHhDCAEAvCGEAADeEEIAAG8IIQCAN4QQAMAbQggA4A0hBADwhhACAHhDCAEAvCGEAADeEEIAAG8IIQCAN4QQAMAbQggA4A0hBADwhhACAHhDCAEAvCGEAADeEEIAAG8IIQCAN4QQAMAbQggA4A0hBADwhhACAHhDCAEAvCGEAADeEEIAAG8IIQCAN4QQAMAbQggA4A0hBADwhhACAHhDCAEAvCGEAADeEEIAAG8IIQCAN4QQAMAbQggA4A0hBADwhhACAHhDCAEAvCGEAADeEEIAAG8IIQCAN4QQAMAbQggA4A0hBADwhhACAHhDCAEAvCGEAADexBVCFRUVCgQCgy7hcDh2vTFGFRUVKiwsVFZWlpYsWaIjR44kfNEAgOSQFu8dZs2apT/96U+xj1NTU2P/3rx5s6qrq7Vjxw6VlpZq06ZNWrZsmY4dO6bc3NzErBhwCKQGEvM4KYl5nKGYARPf7fvjuz0wVsT947i0tDSFw+HYJT8/X9J/zoK2bNmijRs3asWKFSorK9POnTvV1dWlXbt2JXzhAICxL+4QOn78uAoLC1VcXKwHH3xQJ06ckCQ1NDQoEomovLw8dttgMKjFixdr//79zseLRqNqa2sbdAEAjA9xhdCCBQv0yiuv6I9//KNefPFFRSIRLVq0SBcuXFAkEpEkFRQUDLpPQUFB7DqbqqoqhUKh2KWoqGgYhwEAGIviCqHly5fr29/+tmbPnq2lS5fq97//vSRp586dsdsEAoN/nm6MuaL2SRs2bFBra2vs0tjYGM+SAABj2FW1aOfk5Gj27Nk6fvx4rEvu02c9zc3NV5wdfVIwGFReXt6gCwBgfIi7O+6TotGo3n//fd15550qLi5WOBxWTU2NbrnlFklSb2+vamtr9fzzzydksYDk7oJzdrWl2r/XSkm3112PE0hPtdaHw1zqt9YHLg3Edfshn4MOPIwBcYXQD3/4Q917772aMWOGmpubtWnTJrW1tWnVqlUKBAJau3atKisrVVJSopKSElVWVio7O1srV64cqfUDAMawuELo9OnTeuihh3T+/Hnl5+fr9ttv14EDBzRz5kxJ0vr169Xd3a3Vq1erpaVFCxYs0J49e/gbIQCAVcAYM6rOwdva2hQKhTT3tmqlpmX5Xg5GIX4c9zmfgx/HwZP+vm794+/r1Nra+pm/52d2HADAG0IIAODNVXXHASNlqDlw8f64LDXTUc9Ot9bTJmTY66FM55pcP9pz6Wvvtdc74qsP9PQ5n8P5oz3Hj+kCKfHdnh/fIRE4EwIAeEMIAQC8IYQAAN4QQgAAbwghAIA3dMfBq7j/8FSK+49PUycErfXgFPsfQ18zzT7hY2qh+4/uJk22P1aKY4J8W3vUWj8f6bDWz0XarfXej3uca+rvvmSvd8VXd3XZSfY/oKVrDvHgTAgA4A0hBADwhhACAHhDCAEAvCGEAADe0B2HYRlWV5uNo9NtqMdxdcGlZNrfzmnZ9nrWNfZZcIUzr7HWb7pusnNNXyqYYK1nO+bZdTm2Zjh1rtNaP/FRq7V+rsneNSdJFy90WevtjueInu+21vta7R14/f2urjk3OufwaZwJAQC8IYQAAN4QQgAAbwghAIA3hBAAwBu648aR4XS0uXYrdXWoxX37IXZQjZfruV319KD97Z/t2HE1f5J9PpwkFeXZO+0mZdk7yPqN/bHys+27uk52dPI1TbV35UnSmXP2OXRNp9vst09vsda7HZ18zp1bo+7dXoFP40wIAOANIQQA8IYQAgB4QwgBALwhhAAA3hBCAABvaNFOQnEP+JxgbwuWpPSQfWvs9In2FuOsHPtjpQftbdIDA/aBlpeGaPONdtuvc21P7WoDdz1HR0evtd7aYd+SW5J6QvbXwxj75yItYB8Kek2m/fX+kuN5czPcX8Ihx+c1Lc2+pu5O+3FfarEPNnW93uZS4truXRiEmjw4EwIAeEMIAQC8IYQAAN4QQgAAbwghAIA3dMeNAc7Bo67BnI6OtsywfdjltJIhtq2+YZK9XphnrYcm2J/b1QXX6uhEcw3flKSPTtu3uj4fsd+n46K9E62n097ddebkRWs9I8P+eg+lZXKOtR5yDE9NCdjXdMnx+rm2D5ekkKNT0fU5ysyyD25NcazVOXzWsWW7JAXkGHrqOD7n4ziem665sYczIQCAN4QQAMAbQggA4A0hBADwhhACAHhDd9wo4ur4cXUnZUzJttYnldq73eYtLLLWl84pdK5p1pRmaz0UeN9+h37HPLFgyFo/11NqrR89n+tcU52ji6vPsd10Z5t95ptrJlpLu71jzzVbTZJazndZ6x8U2o9j8jX2WXOuzrVcx5bjwSG649q77Ovt7LZ/jvr67Nt4OzvOUhxbtg+xXbxxfN8bcB1Gf3zddHTNjT2cCQEAvCGEAADeEEIAAG8IIQCAN4QQAMAbuuO+YM55W5JSHR1Qri64cNlUa/3rX7veWv/2HPsssfyLv3Guyfzvemu9r+mitR5w7ep63bXW+tSbv2J/3slLnWtqarPPwDvR0OK8j01fl31n1QHHjquubjpJ6mnutNY/arB3weVNstcnOj7XE6fYZ9BlO3bLlaTeS/Zut3Nn7TP2Wj+2H5/r9XBx7ew7FFe3m703LnEz6OAfZ0IAAG8IIQCAN4QQAMAbQggA4A0hBADw5qq646qqqvT000/rqaee0pYtWyRJxhg9++yz2r59u1paWrRgwQL97Gc/06xZsxKx3jHD1SGUMkQ3U/pEe8fUZMcsuDvu+JK17uqCm3L6V9Z67+/+5lzTxb83Wes9LfbdSrPz7d1deQvst0+fOsVaz5x50bkmyd4d1+OaiebYvbW/y357V30orueInrd3nPXk2j9HLXmOXU8nZlrrWY7dU4fS2W6fpdfjWKur4yw10z7wzQzRHed6LOPo5HNxdc1pIL7HgX/DPhOqq6vT9u3bNWfOnEH1zZs3q7q6Wlu3blVdXZ3C4bCWLVum9vb2q14sACC5DCuEOjo69PDDD+vFF1/UxIkTY3VjjLZs2aKNGzdqxYoVKisr086dO9XV1aVdu3YlbNEAgOQwrBBas2aN7rnnHi1dOvgPChsaGhSJRFReXh6rBYNBLV68WPv377c+VjQaVVtb26ALAGB8iPt3Qrt379a7776rurq6K66LRCKSpIKCgkH1goICnTx50vp4VVVVevbZZ+NdBgAgCcR1JtTY2KinnnpKv/rVr5SZaf9FqSQFAoNH0xhjrqhdtmHDBrW2tsYujY2N8SwJADCGxXUmdPDgQTU3N2vevHmxWn9/v/bt26etW7fq2LFjkv5zRjRt2rTYbZqbm684O7osGAwqGLR3BI0mrplvrl0kXV1w6SH3sWbPyLPWb5xtf+3uLM231vN7/pe13v9/6q31lr995FzTuWMXrfU+xzgx1+uR59j1NOD43Hdcsh+zJJ1uPmutf+yY33ap1d4N5pqJ5urUGs5csoEe+3O4OvD6HLu69jq6ETsdHWrD4dp91NXpGXDscDvUfETXa+7sSHTUBxzvJ4w9cZ0J3X333Tp8+LDq6+tjl/nz5+vhhx9WfX29rrvuOoXDYdXU1MTu09vbq9raWi1atCjhiwcAjG1xnQnl5uaqrKxsUC0nJ0eTJ0+O1deuXavKykqVlJSopKRElZWVys7O1sqVKxO3agBAUkj4Vg7r169Xd3e3Vq9eHftj1T179ig3NzfRTwUAGOOuOoT27t076ONAIKCKigpVVFRc7UMDAJIcs+MAAN4QQgAAb9je+1Ocrdjp9lbYtAn2AZIZk+x/RxWcat+mWZJmXD/JWi+dOdFaL8prtdZNU8Ra73e0+Q7VepyRaf8+JcexFfnEG66x1tPn2rf3VtFsa/ngv+1t1ZL0z2PnrPW20/bXo6/Vftyu9mnnkE1HC/NQXPcJuJ7Dtc21q7V5iGGhrvesaxt513s5GOfw1KHeT12djhb0813WuqsVO5DiaKN3PjNGK86EAADeEEIAAG8IIQCAN4QQAMAbQggA4M247Y6LtwvONXg061r7JIgpRSFrfeq19iGlknRt2P5Y4Wvs236nyN5RFMiyP076DfZtwid2urezDt1g78xLybevKWPB9fY1LVxqre/76BZr/U//99/ONX34nn2AadQxwNQ1HDORXXDxcj+HvetroN81sNP9JZwWtF+X4eh2i/c9m+3osutxdB1K0vlIh7V+1tEF59o2Pd6Bwl/E5xTDw5kQAMAbQggA4A0hBADwhhACAHhDCAEAvBm33XEuqUF7d5xr5tu1pVOs9Ztusm+9XZjvnh2X6ehmSnN0/FzosT/HhPyvWOsZi+wdfhll551rcglMnGatX8y6zVrfd8resffWX49b68f+ftr53N2Njhlxjq2xfXbBJUyq/fvFFMd7RpIyp02w1osc782yWfYt1WdMs3/ugo41Nbd2O9f0zzT7fdov2uf7RR3dqkgenAkBALwhhAAA3hBCAABvCCEAgDeEEADAm3HbHeeaMZWSaX9JsibbZ6VdO8M+b+tGx26oU7Ltu1FKUk+ffW5Yq2NXzfqzbdZ6Y5t9ftvkrJus9cxr3N+LdPTa13Sy2d4BVf8v+66nR99rsNbPH79grUfP2ufASe5ZcK5dOJNBimMH1eAU+/tSkmbOmmqtL1k001q/fYZ9Z9/JmfbPab+xz447lWt/70tSV7f9vXzm1EVr/aLj69RlqF1dMTpxJgQA8IYQAgB4QwgBALwhhAAA3hBCAABvxm13XLxSHF06aa6ZXo6mngHj7t7pumTvRDvV1G6tN52z71LZ6+hoc+kboquso9U+06vlvL17rSNir/desO8C65r3NuDoCJTG2My3OMW7s29+iX23XEm66/YZ1vr/KLG/Z/P7fm9/oJaP7fWca6zl1NDtzjV9MDnbWk/PsP9X5NpBFcmDMyEAgDeEEADAG0IIAOANIQQA8IYQAgB4Q3fcpxhHh1q3Y+fHsxF759q/J9i7mXKy7PO2JOmCY0fKDz9ssdbPnLxorfe02Nfq6jjrj7q76QZ67PdxPlaP/bFcr2tS7Ho6DK6uL9fOvplh+y6pZV+x73ArSUtL8qz1/Nb/aa2bw/+wP1CXY6fUL9m77ybNse/cKkmhzDnWuqv71PU+SPb3x3jCmRAAwBtCCADgDSEEAPCGEAIAeEMIAQC8IYQAAN6M2xZtV2uwq8U42mwfzNnwz/PWertj8KdrUKMkdbZHrfWLjgGmrjU5h4I6BpUOuSVyf3z3oXX283FtL5+Wa9/+Pd+xjfztN9m38Jaka/Vna93U/d1ajx5qcj6WTTDN8V6+0b01u2uw7yXH0N1437O8/8YezoQAAN4QQgAAbwghAIA3hBAAwBtCCADgzfjtjnMNRnQM2uz92DEU1NG90xOxb72dku7OfVdnXn+HvWuOYaGjn2tQqWsb77QJ9u64whnXWOtfnpLlfG5z5ri13vt+s7UePdVmrac71qQBx7bwqe4hvS3dl6x1V2eoc5t3R9cmxh7OhAAA3hBCAABvCCEAgDeEEADAm7hCaNu2bZozZ47y8vKUl5enhQsX6s0334xdb4xRRUWFCgsLlZWVpSVLlujIkSMJXzQAIDnE1R03ffp0Pffcc7rhhhskSTt37tR9992nQ4cOadasWdq8ebOqq6u1Y8cOlZaWatOmTVq2bJmOHTum3NzcETmARHN1uwUcnWWXHJ1orvltQ3HOcGN+W9JxdUmmhTKt9YIpOdZ6XsZH7ie52GotG0dXpWueXUrIvlW9pky2ljtk3/Zbkk6ftXeNdlx0dJ86tpcfct4hxpS4zoTuvfdefeMb31BpaalKS0v105/+VBMmTNCBAwdkjNGWLVu0ceNGrVixQmVlZdq5c6e6urq0a9eukVo/AGAMG/bvhPr7+7V79251dnZq4cKFamhoUCQSUXl5eew2wWBQixcv1v79+52PE41G1dbWNugCABgf4g6hw4cPa8KECQoGg3rsscf02muv6eabb1YkEpEkFRQUDLp9QUFB7DqbqqoqhUKh2KWoqCjeJQEAxqi4Q+jGG29UfX29Dhw4oMcff1yrVq3S0aNHY9cHAoN/rmyMuaL2SRs2bFBra2vs0tjYGO+SAABjVNxjezIyMmKNCfPnz1ddXZ1eeOEF/ehHP5IkRSIRTZs2LXb75ubmK86OPikYDCoYdPziEwCQ1K56dpwxRtFoVMXFxQqHw6qpqdEtt9wiSert7VVtba2ef/75q16ob85Zc65ONFeXnWOW2JCPhTHL1XHmmh2XkWX/kszJtM9jSw10u588095pl1Zg77QLZDrWVDLJfvvSm6314y3TnUv64MT71nrv+S5rvT9q7+RD8ogrhJ5++mktX75cRUVFam9v1+7du7V371699dZbCgQCWrt2rSorK1VSUqKSkhJVVlYqOztbK1euHKn1AwDGsLhC6OzZs3rkkUfU1NSkUCikOXPm6K233tKyZcskSevXr1d3d7dWr16tlpYWLViwQHv27BkzfyMEAPhixRVCL7300pDXBwIBVVRUqKKi4mrWBAAYJ5gdBwDwhhACAHgzbndW9YUOuHEm1f59nnN2XJq9Q82lu+8a53UTpk6z1lPndNrrjscJFF9vrZ/LXmqt/+XgOeeaPjx+3lq/1GrfWdU5N5Gvo6TBmRAAwBtCCADgDSEEAPCGEAIAeEMIAQC8oTsOSIChZgImQnuXfafe5q58530m5ttnu6XlTLTfIWifKdfc9xVrveYD+1y3dw66d3vtbLTvF9bfdclaZwfV5MeZEADAG0IIAOANIQQA8IYQAgB4QwgBALwhhAAA3tCiDYwg5/bejpbuvj5723NLW4+1fvxj+zBSSUoJzLXWJ2TY6+db7M996PRFa/1v75y21k+/7x5geulj+3bk5pL9uRlUmvw4EwIAeEMIAQC8IYQAAN4QQgAAbwghAIA3dMcBPqTYv/8bcAzs7OiwDzBtaGp3PkVnT5+13ufYMvvMOXun3b/+Zd+Su/Gf9i64nqYO55r6o44uOAaVjlucCQEAvCGEAADeEEIAAG8IIQCAN4QQAMAbuuOABHDNiEtJt3+fl5qZaq3n5Aat9cxM+5eqq9NNkiIXuqz1C632+W2nP7xorTed+Nhad3XBubbqlpgRhytxJgQA8IYQAgB4QwgBALwhhAAA3hBCAABv6I4DPifXbqiSpFRHF1x2urUenJpjrU8vnmitl35pkrU+JZTpXFJ7l33enKs7rqM9aq33tth3de1zzLNzdcBJdMHhSpwJAQC8IYQAAN4QQgAAbwghAIA3hBAAwBu644AEcM2Oc3XH5YdzrfWbrptsrc+bYe+au8YxU06Sznbau9daHV1tJzLs8+xcu566Ot3YJRXx4EwIAOANIQQA8IYQAgB4QwgBALwhhAAA3tAdBySAa65cStD+JZaTm2GtT52YZa/nOHZiTTvnXNOAybfWJzg69tLS7c8BjCTOhAAA3hBCAABvCCEAgDeEEADAG0IIAOBNXCFUVVWlW2+9Vbm5uZo6daruv/9+HTt2bNBtjDGqqKhQYWGhsrKytGTJEh05ciShiwYAJIe4WrRra2u1Zs0a3Xrrrerr69PGjRtVXl6uo0ePKifnP9sVb968WdXV1dqxY4dKS0u1adMmLVu2TMeOHVNurn1oI5CsTJ99q+ue7j5r/WKHfYvtiz3Z9sfPnOp87o+77Y/V0mavdzkGnrq262ZQKRIhrhB66623Bn388ssva+rUqTp48KDuuusuGWO0ZcsWbdy4UStWrJAk7dy5UwUFBdq1a5ceffTRxK0cADDmXdXvhFpbWyVJkyZNkiQ1NDQoEomovLw8dptgMKjFixdr//791seIRqNqa2sbdAEAjA/DDiFjjNatW6c77rhDZWVlkqRIJCJJKigoGHTbgoKC2HWfVlVVpVAoFLsUFRUNd0kAgDFm2CH0xBNP6L333tOvf/3rK64LBAaPMDHGXFG7bMOGDWptbY1dGhsbh7skAMAYM6zZcU8++aTeeOMN7du3T9OnT4/Vw+GwpP+cEU2bNi1Wb25uvuLs6LJgMKhgMDicZQAAxri4QsgYoyeffFKvvfaa9u7dq+Li4kHXFxcXKxwOq6amRrfccoskqbe3V7W1tXr++ecTt2pglBm4NGCt97XbO86az9h/9/neMftA0l7H44cm2AehSlLkQpe1/s9/2Z+j9Uy7td7fdcn+BP32Nbm2/QZs4gqhNWvWaNeuXfrd736n3Nzc2O95QqGQsrKyFAgEtHbtWlVWVqqkpEQlJSWqrKxUdna2Vq5cOSIHAAAYu+IKoW3btkmSlixZMqj+8ssv6zvf+Y4kaf369eru7tbq1avV0tKiBQsWaM+ePfyNEADgCnH/OO6zBAIBVVRUqKKiYrhrAgCME8yOAwB4QwgBALxhe2/gcxqq6yuQ4uiO67B3x3V82GqtH3V0wUUa7bfPcGwfLkkd7fYZca4uuJ5Ih7Xe12Wfc8fsOCQCZ0IAAG8IIQCAN4QQAMAbQggA4A0hBADwhu44IAFcnWIDPfbOst7z9rlurjlt3Y7uOKW4v4907Yjqeo7+qGMHVdfOqsyIQwJwJgQA8IYQAgB4QwgBALwhhAAA3hBCAABv6I4DEsDVKeaqBxzddK5OtL6OYXy/6Nr51PXcdLvBA86EAADeEEIAAG8IIQCAN4QQAMAbQggA4A3dcYAH8XbTybHjKjDWcSYEAPCGEAIAeEMIAQC8IYQAAN4QQgAAbwghAIA3hBAAwBtCCADgDSEEAPCGEAIAeEMIAQC8IYQAAN4QQgAAbwghAIA3hBAAwBtCCADgDSEEAPCGEAIAeEMIAQC8IYQAAN4QQgAAbwghAIA3hBAAwBtCCADgDSEEAPCGEAIAeEMIAQC8IYQAAN4QQgAAb+IOoX379unee+9VYWGhAoGAXn/99UHXG2NUUVGhwsJCZWVlacmSJTpy5Eii1gsASCJxh1BnZ6fmzp2rrVu3Wq/fvHmzqqurtXXrVtXV1SkcDmvZsmVqb2+/6sUCAJJLWrx3WL58uZYvX269zhijLVu2aOPGjVqxYoUkaefOnSooKNCuXbv06KOPXt1qAQBJJaG/E2poaFAkElF5eXmsFgwGtXjxYu3fvz+RTwUASAJxnwkNJRKJSJIKCgoG1QsKCnTy5EnrfaLRqKLRaOzjtra2RC4JADCKjUh3XCAQGPSxMeaK2mVVVVUKhUKxS1FR0UgsCQAwCiU0hMLhsKT/f0Z0WXNz8xVnR5dt2LBBra2tsUtjY2MilwQAGMUSGkLFxcUKh8OqqamJ1Xp7e1VbW6tFixZZ7xMMBpWXlzfoAgAYH+L+nVBHR4c++OCD2McNDQ2qr6/XpEmTNGPGDK1du1aVlZUqKSlRSUmJKisrlZ2drZUrVyZ04QCAsS/uEHrnnXf0ta99LfbxunXrJEmrVq3Sjh07tH79enV3d2v16tVqaWnRggULtGfPHuXm5iZu1QCApBAwxhjfi/iktrY2hUIhzb2tWqlpWb6XAwCIU39ft/7x93VqbW39zF+xMDsOAOANIQQA8IYQAgB4QwgBALwhhAAA3hBCAABvCCEAgDeEEADAG0IIAOANIQQA8IYQAgB4QwgBALwhhAAA3hBCAABvCCEAgDeEEADAG0IIAOANIQQA8IYQAgB4QwgBALwhhAAA3hBCAABvCCEAgDeEEADAG0IIAOANIQQA8IYQAgB4QwgBALwhhAAA3hBCAABvCCEAgDeEEADAG0IIAOANIQQA8IYQAgB4QwgBALwhhAAA3hBCAABvCCEAgDeEEADAG0IIAOANIQQA8IYQAgB4QwgBALwhhAAA3hBCAABvCCEAgDeEEADAG0IIAOANIQQA8IYQAgB4M2Ih9POf/1zFxcXKzMzUvHnz9Je//GWkngoAMEaNSAj95je/0dq1a7Vx40YdOnRId955p5YvX65Tp06NxNMBAMaoEQmh6upqfe9739P3v/99ffnLX9aWLVtUVFSkbdu2jcTTAQDGqISHUG9vrw4ePKjy8vJB9fLycu3fv/+K20ejUbW1tQ26AADGh4SH0Pnz59Xf36+CgoJB9YKCAkUikStuX1VVpVAoFLsUFRUlekkAgFFqxBoTAoHAoI+NMVfUJGnDhg1qbW2NXRobG0dqSQCAUSYt0Q84ZcoUpaamXnHW09zcfMXZkSQFg0EFg8HYx8YYSVJ/f0+ilwYA+AJc/v/78v/nQ0l4CGVkZGjevHmqqanRt771rVi9pqZG991332fev729XZL03wefTvTSAABfoPb2doVCoSFvk/AQkqR169bpkUce0fz587Vw4UJt375dp06d0mOPPfaZ9y0sLFRjY6Nyc3MVCATU1tamoqIiNTY2Ki8vbySWO+qMx2OWxudxj8djljjuZD9uY4za29tVWFj4mbcdkRB64IEHdOHCBf3kJz9RU1OTysrK9Ic//EEzZ878zPumpKRo+vTpV9Tz8vKS+pNmMx6PWRqfxz0ej1niuJPZZ50BXTYiISRJq1ev1urVq0fq4QEASYDZcQAAb0Z9CAWDQT3zzDODOuiS3Xg8Zml8Hvd4PGaJ4x5vxz2UgPk8PXQAAIyAUX8mBABIXoQQAMAbQggA4A0hBADwZlSHULLvzrpv3z7de++9KiwsVCAQ0Ouvvz7oemOMKioqVFhYqKysLC1ZskRHjhzxs9gEqaqq0q233qrc3FxNnTpV999/v44dOzboNsl43Nu2bdOcOXNif6S4cOFCvfnmm7Hrk/GYP62qqkqBQEBr166N1ZLxuCsqKhQIBAZdwuFw7PpkPOarMWpDaDzsztrZ2am5c+dq69at1us3b96s6upqbd26VXV1dQqHw1q2bFlsvt5YVFtbqzVr1ujAgQOqqalRX1+fysvL1dnZGbtNMh739OnT9dxzz+mdd97RO++8o69//eu67777Yv/5JOMxf1JdXZ22b9+uOXPmDKon63HPmjVLTU1Nscvhw4dj1yXrMQ+bGaVuu+0289hjjw2q3XTTTebHP/6xpxWNLEnmtddei308MDBgwuGwee6552K1np4eEwqFzC9+8QsPKxwZzc3NRpKpra01xoyf4zbGmIkTJ5pf/vKXSX/M7e3tpqSkxNTU1JjFixebp556yhiTvJ/rZ555xsydO9d6XbIe89UYlWdC8e7OmowaGhoUiUQGvQbBYFCLFy9OqtegtbVVkjRp0iRJ4+O4+/v7tXv3bnV2dmrhwoVJf8xr1qzRPffco6VLlw6qJ/NxHz9+XIWFhSouLtaDDz6oEydOSEruYx6uEZsddzXi3Z01GV0+TttrcPLkSR9LSjhjjNatW6c77rhDZWVlkpL7uA8fPqyFCxeqp6dHEyZM0Guvvaabb7459p9PMh7z7t279e6776quru6K65L1c71gwQK98sorKi0t1dmzZ7Vp0yYtWrRIR44cSdpjvhqjMoQu+7y7syazZH4NnnjiCb333nv661//esV1yXjcN954o+rr63Xx4kX99re/1apVq1RbWxu7PtmOubGxUU899ZT27NmjzMxM5+2S7biXL18e+/fs2bO1cOFCXX/99dq5c6duv/12Scl3zFdjVP44Lt7dWZPR5W6aZH0NnnzySb3xxht6++23B23dkczHnZGRoRtuuEHz589XVVWV5s6dqxdeeCFpj/ngwYNqbm7WvHnzlJaWprS0NNXW1uq//uu/lJaWFju2ZDvuT8vJydHs2bN1/PjxpP1cX41RGUKf3J31k2pqarRo0SJPq/piFRcXKxwOD3oNent7VVtbO6ZfA2OMnnjiCb366qv685//rOLi4kHXJ+tx2xhjFI1Gk/aY7777bh0+fFj19fWxy/z58/Xwww+rvr5e1113XVIe96dFo1G9//77mjZtWtJ+rq+Kt5aIz7B7926Tnp5uXnrpJXP06FGzdu1ak5OTYz788EPfS0uY9vZ2c+jQIXPo0CEjyVRXV5tDhw6ZkydPGmOMee6550woFDKvvvqqOXz4sHnooYfMtGnTTFtbm+eVD9/jjz9uQqGQ2bt3r2lqaopdurq6YrdJxuPesGGD2bdvn2loaDDvvfeeefrpp01KSorZs2ePMSY5j9nmk91xxiTncf/gBz8we/fuNSdOnDAHDhww3/zmN01ubm7s/65kPOarMWpDyBhjfvazn5mZM2eajIwM89WvfjXWxpss3n77bSPpisuqVauMMf9p53zmmWdMOBw2wWDQ3HXXXebw4cN+F32VbMcrybz88sux2yTjcX/3u9+NvZfz8/PN3XffHQsgY5LzmG0+HULJeNwPPPCAmTZtmklPTzeFhYVmxYoV5siRI7Hrk/GYrwZbOQAAvBmVvxMCAIwPhBAAwBtCCADgDSEEAPCGEAIAeEMIAQC8IYQAAN4QQgAAbwghAIA3hBAAwBtCCADgDSEEAPDm/wHAgpYpOXY+VQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAGFCAYAAAASI+9IAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3Qc5dXGfzOzs00rrXq33LuNO6aYGnonhAApkF5ID6lfGumFkEISQiohBQi9F2OMbXDv3ZKs3qWVVqtdbZv2/TE765UsybItF8g+5/iApN2Zd2Zn733vvc99rmAYhkEaaaSRRhppAOKpXkAaaaSRRhqnD9JOIY000kgjjSTSTiGNNNJII40k0k4hjTTSSCONJNJOIY000kgjjSTSTiGNNNJII40k0k4hjTTSSCONJNJOIY000kgjjSRso33honMfOJHrSCONNNJI4wRj69pPHfE16UghjTTSSCONJNJOIY000kgjjSRGnT5KI423EwRJMP8rChi6Ke9laKdO5it1PQCGbpzS9aSRxnBIO4U03lEQJAHRYUOURWyZdkSHDS2smP9iGoainXRjLMoikltGcsvYMu1oYQUlEEOPquiKflLXkkYaR0LaKaTxjoEgCQiyhOx14CrLZO45FUwo87K/ykdtZRfBA92ooThw8hyDIAmIThueGfnMXlLG+YvK2VPbzernDhBpCaL4I4etxYoq0pFEGqcCaaeQxjsKgmgaYWeWg2kTcllQkU1M0fD7+gk7e1FDJ39NosNG+eRcrjlnApfkr+HM0kuo2t9FY18MNRAdYPxFpw2bx56MbtJI42Qj7RTSOKkQJAFHYQbe6XkEKruJ+8JjmkIxdAM1GCfU3s/GLc00dwZprPXT3R5Ci2pjdp6jgSAJOF0yeS4ZeprJKW4gI9OOKIsgiQj6IadQdE45yy6cxOsvV+Hf1JKOFtI46Ug7hTROKgRRoHRxKZ963wL+89J+DiyvIdbRPybHNg2ohhqIooUVKjv7qZZFdEVHj6noUfWUFHjVYJyqLS3cr2osO/MGanYGqNnZTrwnCprpEAVRQHLLjJucR3GeG0lOEwPTODVIO4U0TioM3aCz0sdza+torOoe8xSJZfCNmIqhHIoMThUDydAMDEUj0hKkOqLQWNODGowTaQkmr10QBeRcFzd87iwWTc7nqdU19Df1ndR1ppGGhbRTSOOkwtAMQlU9rK3ZnPz5RJzjRB37WKArOoo/ghqIEm5MGHtNx9ANBFEgY2oeb/zeySPOa+gArqldx45nD5zSNafxv4u0U0hjTCFIQjIVMhIF9HQx2CcLhpZIW6XUTyyW0Y13LGDb3CuTv2/u6U8XmdM4ZUgnLtMYUwiyRNbcQh5/7Gauuusc7PnupPFLYyAMzQBJZH+Vj4Wvf45x5XBb5//xj5+uQQsr/3OOM43TA2mnkMaYQhAFJs4tomz797nzojxcZZmnekmnNzSd/W/W89lVZ1H17Aou+YGXuC+crIGkkcbJRjp9lMaYwlA0qtc3senab/P8iiaibaegMeBtBEM3iLaF2L++ifamAP01/rQERhqnFGmnkMaYQld0+mv8fP72J0zjdgpkJd5OMDQDz9Rcfnv3pczOeovLegroWd98qpeVxv8w0umjNMYchmaghRWzLyDtEIaFJYExfnYhs7XHMF56nPwSz6leVhr/40hHCmmkMQQGF8dPhHOTvQ5Kzx5HpD9OV+YVFFyaR+eK3jE/TxppHA3STiGNNAbBotUKsgRYjW9jmwYTJAHP9Hx++4Ul3PPcQT5xzx4E0U3fvvoxO0caaRwL0k4hjbc9xmJXL0gChmYkHYLotCG5ZQRRQI+pqGEYS8dgaAbBfV189197qNvRTri+15TjiKpjcvw00jhWpJ1CGm9bDNf/cLTS05JbRvY6zBkHMdMoWw141lAcIaox1gkkNRRn7zMHklIY1trTdZg0TiXSheY0Tks4ijLInFWAq8KL6Dx875I6yUyQpYH/xET6ZxRNc84SD5//1ZW8dW837//eRcmUESS6kPVD/8YahmYkIwPJLSM6beb6081+aZxCpJ1CGqcdXOWZfPTbF/Lj71/C+DPLDvt7as5fkCVzsplDSv4TZMmUpB6FYzj/g/O49nfv45EJ9/OpzV9F9jowdAMtpqH4Iyg9EdRgPKlmOpaw2EfOEg+eqblkTs/DnuN8RzqGd9r1vJORTh+lcVpBkAQ8k3KQRIHVe9tp2NA0IM9uOQQkEVEWER02JKd0qCisaGhRU3NJVwRIpGWGS8mEwwr28kygDVtF1iExPUVDT3EEY91QZl2H7HUwbVkFi+aVkumWeXF5FQ1rm1ACMQzt7V9fsKbhAQiinm7MexsgHSmkcVpBEAUqJufizbCze1fbsLMWRFlMzj62ZTmx5zhx5LmQc1zmbGanzdydSuYjPtxOdefKOnru+hfv/skMti+7DzUUT4rXpaaOToghk0RsHjtLFpRxy3yD98+p5PxlE5G9DkRZfNvvri2H4Mh3kTHBi83rHHVaL41Th3SkkMZRw/qyC6Jg5to1fcympxm6Qd0BH6sy7LQd6B5w3MFRguSWsec4ySnPwpvrwm63EfCH6UqZfWxoCljrHAKhSh/ved9zZEz4CKEPPzEgKjkZO1pPaSY3zpHJ3nYfyvYabvrwb3m22EPcF+bUzIkbOwiigD3HyZd+eCkXjw/xkxdDvPnXrYk52Wmcrkg7hTSOCqLThj3HScXZ5ZRPzGX35mZCtX5iHf1j4hgMzaBnfTNrRxhFadUTRIcNT0EGk2YUMKnMS162k6oGP7s1g25NN7uqYypGQoV6KGaPoRnEfWHivvBxr/1oIcoin/zQYrIfvJN4KI59XjlRzYsoCiC+M4J4QRLIdsp45A7cTu+pXk4ao0DaKaQxaoiyiOx14J2ex+3vnsvkHDe/iyjs9kWI+SIDZgUcLwYb79SUQ7KXQBaRHRIFOS4mFXkoy3QSjigczDDTR4hiMrJAP3333bZx2TChgu6pH2JDQxAxcW2C+Pampxq6Qbwnyve/vRx7jpNIS016TsTbAGmncBrBVZ6JozCDSEtwzOYWnwjEQ3G2H/RRn+WkZl8nij9yQtg5I8HK9eu6QX9EIRBTcdoU+iMqmqq/LYypruj84787KfjwPdglkXEEuHJSD/UXT+a1iIoSiCG8TQqzYmKmdGq0aGgGekwl0hIk2hY6sfWZNMYMaadwmsBV4eXN+8HY8jrrZ/+IL37w8dOqu9WqIxiKRripj5f+ugVd0VGDcTNFcwK/6IIkIDpsyfSP9U+LagR7ItTV9BDqj+PJsNPZ2Y/f128WjBUtWfM43WDeL42Wtxr5a76b771vLhnf+Sgb/13PV/59BQs+9z2+/41XibUFT3sj6izx8L67lmG3i/zz1+sI1/Um/2Zdp8H/3rS9tyvSTuE0gbPQjdG+D0SR9lDstDJkoiyaLJKiDOw5TnRFJ9bZb9ImT7A0tiAJ2Dx2MibnIMgSkcZA8rxaGOK+MK2ajq89iM0mEY0qxHuiqKHDndXpZJSsdJgt084v7ijB8dUbePnPTcRiEFtby7xzYthznMQ6+0/7aMFV4eWmeRkYiDyS5Tjs76fz2tM4HGmncJqgv9bPb7reiy4ZvPDz1WPG5jleWLROyS3jKstkwtQ8goEozaE4ajA+5tIPQ0Fyy+SWZWGTRZoSQ3t0RUcEtLBCHFMywopk1FDc1BFS9BG7kQXpkJSFFlZO2j1P7cYGUHUHrhwni89zU3hOGc5Pv4flLbak5Ib1ntPVuPbX+Pnhkw0oMZVwfe+pXk4axwnBMIxRPWmLzn3gRK/lfx6n4xffSt3IXgfFC0uYMrOAro4QB9eZU9VORupI9jpwjTOZK5GmgNlhnOg/sPoVEMVD6aVE2khXdND0pFMYvE7Z62DODTMoK/fy1stVBHZ2nPD7P8AhJPoUvLPymXdmOXnZLlrag/jaQ7TX9tBf4zdnNQ/h1E7H5wROv3WlMRBb137qiK9JRwqnEU7XL5Shm0NzfNXdBDpCqGHV7AM4CVPVDM1ADcYJVfck6wOGboCumQqmHMpbp64XSL52pDVmZDooLfCQkeum7ySxfSxKraMog3vuuZJ+ReeeP66nd2dHcv1W85z1euv3yWOcZkb4dFlHGsePtFNIY0QYmoEg6uiKQLwnmsznq2H1pA2X1xUdYajdsm4goGMMwTYdzdrUUJxNj+5hq1tGDURP+PUMptUWzirgzE13waQJrDr3Rl7b2ZFMeVkQnbakgzBd4OntHNJ4+yPtFNI4MiQRW6Yd97gstJhmNnqFj5w2SnYgw7ApnNEi9X2pxnWwIRcGdS+PdD5DM0zRO3/kuNZ2rAh0hBDuupFeZnLgxfrDIgPJKZE5qwA1GDfTZmEVNP1tETmk8fZF2imkMSJEWcQ7r4gbb57LzfMdPLkrzvPP7cO3qXXE9wmSgJzjomB+MRlZduperzOLwYPqJifCmAmyNKCWMBJOlBE9kr6PrugEK7u56LNe9NjmpGNKrTk4y7L42EcW09gW5JWn9xKs7MZIcXoC+gBHIrnlZA3Cui5RNh06kBDZe/s4DdFpw+axI8oiWlhJ6lKlcWKRdgppjAib18lNt5zBp6a+hf7sci647I+syLCPaHCtCMFRmMH118+kIi+D729qSRqsVMNnpUdGW7AeydgKsoTNY8eWaUePqsT9UcZ6jKYFURZN0T1RQItpyfqKVRi357uTkYgajB9+vzQdHZN1lhzkkyIJbhnCRx7fTSyioPTFkNxyQv3VbM4zEJMppYypeUxaVMKB5TVJyQ5BEvDOK+KS62bSH1FY8afNbxvHIEgCkkMiY3IOBWWZdHf2E9zXZfbFnCbMvHcq0k4hjWEhSKbcQjAcp8d9Ht73TuBP/z1Ax+7O5KSw4WDoBpGmAA/9Zh2iw0bMFxmY7hBNg3XxNTOoqvKx96n9I0pFH2nnLYimEfHOyqd8Yg7tTQG6d7SjBMZe3kKQBNwTs7n0tjPI87p4+aVKOjY2Y2gGrvJMvvadi7lq4l6a+pfw1fs30rCq/pBDFEdwagmHILllbG4bNq8TTdGx2SQchRkINskUkwsrh5wDphxGVmkmmV7nYQZfi2m0tAfp9YVNSfETzBQbDkd7XkMzyQ39NX7ivjC6opvrP0l1rP9lpJ1CGiNCj6lsXN9IIFREXMlk+8v7ifvCo/qS61GVSGMAJHFIJ1IyKZfLzijF6bCx//lKDGVo9s9opZYFWSLT6ySvIINgb5TuEyQqJ8gSFfNL+NalbdDTjHjNBTy0uwNBFJh53gSujPyJ4J0rKL/9LKbMfD+NbzaY77McgnT4ugRJSDphyWlGPAVlmUyalk+m205XT5ia/V30NvWZDgHMpraEkQw09rKrI3SYAmm4vpdtvjB6TB3Q9zCm9yO1gG5pTaXAULRjolvrim5GWoGoeZzTvInvnYK0U3gb4mQVFS06aMtbjbSubzJ3a2HliOe10ijJXd0wYnT1m1v4eUShp6VvSEmPo9XdNxSN7sYA/cEY4c7wiTOCokBuYQa0bMBoa6U090ozd++xM2F8NrR3YvPYEcrLaNzkP5TuSEyDS653iF2vIAlILhl3tot580u566JupLVPIVy+hPtKFvP6awcJqJqZklKEZGE93Ng3oI5iGWE1aDYZnigMHosqOU31WkGWQDefFy0qJDcFxxIxpB3ByUXaKbyNYA2Yt+e7UfyRo5artvSLjkZTSVd0jMTu83hz/qkwdINocx/1baHDisLDHWOk1AuYqZJwfS+RJsHsaD5B2lGGorFzRQ13ey8k021n+RMbifdE0RWddWvqWf/JHzBuqczTO9qp27DR/IwSDsESjhuuIc2in+q6jk0SsbXtpOfP68m+roszzrqULbkugh0hhKiGIKkI+qGZFicbSYcgS9jcNiSPA3dFFsXlXpwuG8FAlM76XsKNfWhhME6Qk05jbJF2CmMA0WlLfim0sIIaiI55MUx02ph+zTS+cOt85uRV89PlTpb/aUtymMyR4CrP5LN3v4tbxm/iA3/K5sAT+0Z97tE6A4sBoyv6kOmiwYbQakIbfJzDjp3YhQ6bT7YMoqajhU/cCE0LuqLTX+Pnlfs2JH82FA3DLZNf4uHsmh8RengLn//2Lbw2ZQKdKYXf5NjQhIEcfE26oqOG4oRFgZ0723im7N1c9Ld30RIvY+PGZsL9hzNwTIntMb/MEZEaIUgOCdc4L2XT83nvNTM5tzyEKCjs7irg0ZUH2RuuI9Z5+DNhFdStaCf1uUlHB6cOaadwnBAkk2UzbnEJ114xnZ1VXax9dPeYDZ2xIHsdfOrmM1i459vE19dx7cf/w+vO7aij7MIdd2YZt3ieoPW9/+BDf1jON5/eP2ZfPMtA2PPdLL5pFu1NAepeqz3cCAzBrz/isWWJzOl5OHOchJr6iHX2DxS5041DOWzt8OauEwWzycycDZBcj65js4kQ6icWiJOpxpLrSUY5+tDPRJKVpZsRjioKtDcFePqVKjZVeNH1g7Q2BujriZhpscRxUjufTwUEWcKWaadsej5XXjKFa7JfRnvsVQS3zLIrb6Rq9gIqt7SYTDDJZEuJTlM2JWtKLvnFmRi6QVd7kFB9AMUfQY+eWOmUNEZG2ikcJ0SHjbmXT+H+O8LUXXA5N103hT985h6e/vNmIo2BMXm4Bckca3hGQSvxfzegh+K0hWLD6uIMhdY9nay8+f1c/HAhX35g55itK/n/ooB3eh7fuqGEnZ0T+N6G5gEDVQbINgzRmTvk8UWBnMUl/Of781B1F794vpEdb9RhKFrSOaRGAwbiSU2jDL6HajDOnpeq+foHPsXsr+Wy6oUGfFurzPRYYhy6ziBjrh2qN1ibCENTkoJ+jf4Izfu7zPcqOnpMTYr3nWpqppUOc5Zlceu1M7nK8QSPFf0aLbEXuP7LLXzkl9/i+RfcRNtDZkRRkcv7Pr6Yjy2sIfrdX2K06TivnEPtGT/gR//exsE19cQ147RXhn0nI+0UjhOGbiBKAvR3U7k7huSoY8EtubyY4zSZN2MEJRDjl68ZXP+hf9EVjvPrX6wxi42j/OKEqnr4xu2PI8gSWrjnmNcxOL2Tyqjx7+niE/fsob8vhiCafH1IDFuxUiy6YZrFRGfusAqmCRaLFlZ4YqdGVX0ju9c1cvWtZ1Be5OGBX601d5UpxwWS3P3BBdeTAV3RiXX088Zv1rNq0LVZchyGPjCqSSLxs04iXaYbCXlwaWAHd4rg32DHcqTeEev9YwbJ7NUonZjDZROqCXzikaRDAOhvCSFpmeiaD0GW8EzN5UtfOJd3PfExHlm8P/m68f+p5ZyDl2B3eA8p26YdwilD2ikcLzSdyi0tPHPWMq5/7DKYUMGfdyTC5TGCoRkogRirn97P5rUNRP1RQtU9R71T1BX9mEdmHol2KIgmw6RrV4c5xznfjeSWzTx/zJSz1hL8eiDpGCwFViUQG5It1F/j5+HfrU++r60rhDfTjj3XiZFg4egAg8T5RnI4JxqDGTOpTCwrSoJBMhWWc01EFVbKSRjU25AqF3KkAnPqZyZ7HWbHczQhLT5GRXhRFsnIdGALNxHuHDjnOueiCpY3VhAOtiCIAgUVXs4sjdK1qmnA66adm8/evmXUV68a8IykcWqQdgrHCV3RCezs4J6vv8pfZl6Frhv0VW4f885RLazQX91Nf3X3Sd1JpXbZWnRD0WkzO26jWvJLbElsOwoz8JZmcva541kwKY+2QIR1W1pobzajJlXRCDb3EevoR3I7ufCO+dx1mYcvPNDEgaf3D1l4VXoiyaau/TvaKMrP4OprZ7J7Xwc129rMiEESADXZ0HU6DSmyKLow/G5+gO6RtfNPOIdhoQ3tYFIhex2c/5GF/DjwczRfBPtdn+Pyb4Txb2wZm/RTohdEdZdQcO0UeH4bAOdd6UH76Nd49h8Hzb4W3SAe09jW7uKyP3+U965Yi9oWwvH5D/NUyzncf/drBA90n3Ap9jSOjLRTGANYaQOLZXKiHupj/RLbc5187meX47JL3PP1V0c9/9lyCJYGTfHCEi551xSmFGei6gZrdrWy5c0GYp396DEVm8csOL7rgoncXvddDt68gYu/vIRZV/+eiqwQBc4qdncv4nsPbKDdF0Z02vB6HPQr+XS07j103pSdsdXUJbllbB47FZPz+NS5OplCLavGn8nvfWG6NSOpi5Pa0JV6jFNtaEbblDc45XTE444wa0F02rjs02fyPeVXPPrhLQC8t+hvGNqtgElxNnTjuKIGQ9HwtQdZ1TSfCz/6eW4963WE/EJ6cy/hhy+Hqd5Sn9R16tjZzi/a3uTPJdOx2WYS6IsQ+lgANfBiWtfoNELaKYwhTteH+sYvn4v33AsJh+HOrW/w6089d8T3WA7BlmnHnu8mszyLj9w6jysbfkzwx9txVGRx/jd+zNf6iqnc0kKsO2JOSCvMYFZxFn2/r2HrFo3yre0sunENsXv+hD49l5JrJxPs6jfTGOEQT93zFk/L0uHS1QlevyCaEYjNbcOe68Sb40Q1HCDbyXHKFI/zErQ6XhXtUEPXoNrC6YjDqKWDnMSxrN06ptUd7esOE7/tTm74ShOuL9/Et7ecQ+/2DbgnZnPvz66kIRDhni++iBKIDXtMQRJwlngABrLqNLPw3dPSxyubGunoG8/EvM+xq7GXXa92UrmpmWhLX1LdVQ3GiXX007e7M3l9p+t35n8ZaafwDocgCaiqTm4OuF2wL3Tk7tZUh+CekE3+OC+l47M5uyyE7/828sYT3cyZ1casL1Zjt09M1hcMzaA/GONAZ5Al37uZmy/YgHT5u8Duxr6gFOGiq3h4S5xISzCZD9fCOoY+/JpSI4WMTAc5WU56Y8WIgoJNFCgp8tDeFCAQVVFDEoKkgjLs4U4KrJnWlj7RaJFq0I8Wg42roZkRwM4XKnn3gVwmnvFj9v+wif7aTRiKxpnXzmDO3z/AwlkFPDDrBnrWNw97bDnHxbd+dgVuWeJbd71INDESFRLpvUAMf3eYQChOj9vOgdpuGqp9xDpN5z/S9Ls0Tj+kncI7HJJbZu+eDrwPv4ovEOGl768c8fWpTWgFC0v56AcXMDU3g+5IHIEevIuLOdsfpfj6KeyPX0Fd5VpTsCzBrW+s6WGlojPxhg+w6LZlNIem8+Z2H13OL7PqhwcJVq8zi/CjkLYWJAFEEdFhw5XtpLjcy7kzCpmoPomxv4bZFVPxz76SltYgsYhC3B9FE0VSp7CdbIiySOasAs67ZjotzQF2P7X/qGUmjhRBDPe6wdAVnUhzkEhzkI5VDQP+5nHLRKr9oBlkZDkYiY/mLPFwhfsZjF4fRfMW09B20Dx/ouFM8Udo2NtJLKKyJ8dF9a52oi19yYFM6Yjg7YW0U3iHwzuviL9/3s3TVU4e/cOGURko0WkqdJZNzGFitot8V4C6Xpk/rlG46o5/UnxnhLXdNh7460Z8ezuTekgWnbBFM6jpClGWOYMNjd08+vBO+mv9o9JNspAqJ20xXMaVZbGsYD2rxv+AtnaYPhWWVZaysrgQX3uQUEJCYoDuknW8UdQVJLdMxuQcDEWjvz4wqly7JZUNiXkFuoGnIIOPnD+J7rDCXdvaCO7rOi6jONx7j4dm+sofN5N514MEw3HafrN+xNeGqnt4z98mkumdQev66oFrUzTUoE6ouoeaGj+CJCTVTIfqTnaVZzLjXZOo291B77b2o153GiceaafwDseicyoQH/opN33oc/yt2EO4rnfY1yaZRqLZWVu9q53vt/ahxDT6WoMYqsbePR1c/q7JOB06HdU9xHuiA+iTqq4Tjqo8/MhOns10EGgNEmkKoEVNhlLG5BzOuXoaG9+oI7CtbVR5c0GWcGXYKch1YaxdTlvCllRWw4KDm8j23ITdYUtew7FAdNq4857Lud31HyKTr+Kqj+8nXNc74i5XkARcFV7u/eVVOG0in/vqS4TreunY2MwXf/MWNptIrHN0Rf2jXq8sDpAUOVoSQtwX5pHvvg4cmcBgKBqNr9clm9VEh+2wCMCiFkdagsNKVQiSwNm3zOUX13Xw3+qzuPfTz53yBrw0DkfaKbzD0euPIs0cT1tkJmpo+NTRAOqpW8bQDCKNAcL1vehRk+opSALNtPMqINsls6vYMgAJ+qQVMYSqewhhGhQtag6hkZx2Sqfn8/lLCnjQbefpfV0Dup5HBdvAR1ZwOFBUHT1F9uFYYHPbuHaGjvr3rbgnzMHQDGyZdrSoNixNUhAF5CwHM3LbkMQ4cpYZMajBOC2rGxAkYcwkG1KjAkESkHNd5M8twl/TY+b4j8G4HpWYYiKlaE13U0MDdavKzy5n3sJSXnlw+7BNm4ZmUL2ng1VLFrNybeVpTQL4X0baKZxAWKwNyS0T94WJ94xdQ9tI54RDxnHvylr+vfCzvPrnXYTre4d9j+gw2T3Z0/K4/oZZrN/czJ4n9w/oFgazmawqEW0MRZ80NDCUhMEZxKNXg3EaNrVw35RcqvZ2jtpYGppBLKrQ3RtFuOgKlpz1Eps3qFxySx6B4ivp3h4hGlGPy8jois4PnvaxaNmvefbeA+hKH1Mvm0IwEKVrdwfRttBh67Wc3/t+WAdA3z5f0tAetbMbAaIsYvM6EWWRuC+MoyiDqz62mI+fl8Fdf6mn6uXqE6YICyS7011lmRRUePH7wvRVdicYS6ZjUFWdyChUUJtX1PK11Q3JSXVpnH5IO4UTCGdZFg/8/jomZNXzmzcknrtn7Zgai1RYCpw2t23A3INIY4A//3QNij8y4rklt8yC62bw3gsn09IXJdgbHTYtkdqMNew85CFmKBi6QbSlj+X3rkv+nHqswa+16gB6TKW/L05Tax+rWhZy4epfMiXQiZo3jaers2hr7qQ/GDPXquvHZGzUYJx1f9rCusTPOUvL+P0nC3DZerj3jSU89bM3h7x/WlihbWX9UZ/vaCC5ZYoWlVA2MYdtT+zDWexh0dR8HKKPns4QWmz4wro1K1tySkM6ttFAkCVcFV4WnTee65aOZ09LgMcf2Ul/jT9JJW5eUUvzG/VHnsinGSNO2Evj1OPEjKZKAwB7jpPZuZvIaH+DeZPzjznfPRoIooDNY8c1zmsOeElRJI119o+qyLtkbjHLxMc4Z1wWNvnIj4bklik4q4yMyTmjXqeVXrLmDB/pteimw4n0x+n1hdle18PG7nPYK76HVU3T2V3tI5BweMcrj5Bcl27gdMpkdr6O9Np/eO+SClOyYwxh1QRsmfZRPReyXSI3x4Uoiyh9MZZvbuL3q6Fnb9eI1y17HUy6cAIz3jUpKdt9NLAowXnFHs6fV8o5nld5z1wonZhjrl2WkpIi6d3/OwPpSOEEItIU4O6Xp1NaMJkXX9h2YkN8WcKR76JidiH1SntyePtodmZGoiN4f10PhsPPuIwXOOfsJdS9Xoc+QlNT5vQ8fvD5ZSzf1crTP3tzVLvE4X4/Eu1Sj6oogRhdUpAdO9to8/VjkwTCYYXWhl76EmMorahGlMWk8N6xNLAZmkGgsZfegivInqEQVXUk59Eb1OEgSAL2fDd5swspLMtk//Ka5BzioaCFFVq3tOJvCyby+XHW/XuXyfw5Qiew6LCRkWknHtOOWfpDlEXKJ+Zw6fha/B/5HdnXvMQlF/yYJ3xhejQDNRA1oxVt5LqOKIvIuS7sOU4QRdRQPPnetEM5fZB2CicQ8Z4oL1mpkpPw0KthlZY6vzl45ygNoR5VWf3QDr7/sWup6M9k+y5TtGwkKmeouoe7f7+WYHPfqHbpRxUppQjDWYNn0HVaFZ3ehMNTVY1YXywppmdoBq5xXpZePgV/d4Q9r1abdZxEXeRo5C7CjX185J5aliy9gqqq7Ufda2DpQwGHRWmSW2buVdMoKc2kKiGLPRJ0RSfW2Y8SiCXHfppqt9aAneGvKdbZz84n9h2z1LYgmr0idruErHbRtLkTURa54hqR2HUzWPF6De37u4j7wmaj2hDMI1umnYxJOfz5p1cwaeVnMFQdcdk5PBW8gT8+sJH+Gn9SCiONU4+0UxgjDGdwTmR0kApD0cy6QSiGGj42xkvcF+aV+zZg89gxdGPYXLVl3LWwQn9XmOKZBbRDksI55HtSlFWTCqbDNLClDqWxpKL1mICqm4ZNDURNITbdVGBNZUctuGgiP1m4GqO9nWfP+zy//OZy4v7oiBGDRS1Vg/FkhKVHVVpWN9CxrQ1DMw6rJ9gy7Uy7ciqqqlHzSs2Av4tOG3lnlnLJ5dMozHXx4P0bB/QqGJpBuD9Oe3uIujcbTMG4UaTSDEXDlu9mwTXTuGRpBQuLXfx3SzuvPLefwLa2Yes/xzKjOenAJRFBEujri9GqnsuMj89B6wqTteqHfOzs8xGFc3m2X6En4fi0lM2BVc+4/f8u4JPiX3g0+xtsSvwtL3c9F7dewgMJdd10lHD6IF1TGAM4SzxkLyjGUZRxytZgUUklt3zEWcbDwTJ+cV8YpScy5Jc1dbdvy7TzgU8s4befncM5N8wcNmdtUV1tHjv2HCe2TDuSQzpskP1hSDgNK19tqbKqYdVMPYTVpEOwCszBQBSjsYn+f6zjqkmNo6oF2PPd3PqZs5h3/Yzk7h5Aj6koPRHTCQ1C3qIS/vnpEP/4ogf3hOykXLh7YjYZk3KYMDWfK+aWcOPMPsbPLRpwb/SYSvWKWna9UGne59GysHSz6O7x2DmnPEbZG1/mrukr+foXzsVV4R2zmtVgmXTRYUNTdFqCIvLiSfTX9+F7aAfG5rVMKvDgypDN2kLq+xLEh5w5BXxq3m52fvDxAeeYMFFkTVOm2cNygsgXaRwb0k7hOCF7HTzyj3ez/AObeeSfNye7W08mRFkkc0YeS26ezdL3zMae7z5mAzFSIXioY3Z0h6n2yzTW+s3XiMLAf4lxjRmTc5hy8USmXzKJrOl5ZpFyBIeQuqtPHdJjTR6z/ukxNcmSMhSNyrWNvF7+dez3/YLfvZlt0iZHkNSwOqa9HjvSoOK6NbNAznVRdF4F9lxn8h6Mn5qPsXUN9tYNFE3N5Yovnc26ByWWT/sPjwXv5Y/X7MUuiTy9P4uWOv9hx437wkTbQketjRT3hVn3zH7uWxFAOHMpRmc755XVM+P88chexzF/7lZBOXX2sjVDWfY68OY4sUtmdBZsDqIrGrjdqLqBbg38GfS82Dx2xk/Nh0iQ8UsLk7+/5YlzaHxyLfd8a/lR34OTgcH34n8N6fTRccLQDXxhjXGFBXQfxXjMsYYSiNFQ3Y2eKPyNdTg+1MQ1NRjn2XvX8lzCuFvDclJnAwiSgM3rpHhqLjNnFRJTNNqbAkmWz0gwdMNM+wwYOiPAIEnp1LRMtC3Edz//gjnvIayYRcwUMbbBVFpd0Ym2hfjdV185FHWkQHTYKDuzjE+9bwE//c1bZhe2ZrDj6f184urriGxQCAb6uXpROZGffplnflkPwIXh+5n6oI0/7p9DpCkwZvMdDM2gv8bPK79ez7pZ+UyeNxt9Y4yGqm4QxSPWGAZjKMNnpfos2XTJLeN02NANAyrKKb91BrazZxGdewMbV3biT7DbBn+mhqJRtbWFb3hnM/cr/8X7XTsrtzRx/xMHiN3/1ElLrR4NkhReq0kvED3tnNaJhmAYxqieoEXnPnCi13LCIMqimc/WTsyoP9nrwJ7vNtMuI7B1TiSsjmQ49rkLIx07+f+pu/uUGkHpeRV8+vaF/PpPG+nd2ZHM8Qui6RScJR6cGTLRfoVIYyAplgYkUzxDzZxOHfc5+HeHOZUhDO9ghyB7HVScN57vfPRMntnaxAu/WT8ig0eURdwTs5m4uIzK5TVmEd+SdpDNcZSZ0/MomZTLOWdVcONcN0XSJpa3ncWTK6rZ91rNQLnpMUbycz+G53u4aXqpulOSW8ZVlsnUBaXMnVnIRdMLyXFG2NUJGw50svHNegKJRrZU6QsrfeSuyGLOxZPIynKwe0sL3Tvax3wA1VjCnutk6mVTGD8xh63rG/Ftan1Hpbe2rv3UEV/zjo8UrIdTckpmzjymAWNb2FICsVPmDCwMFb6PBYYNoVPqAYIk4MqQKcpw4Mqw0+e0AYc6jLWwQrSljygMmNaGJOKZmsuXv3o+jZ0hHv3DBrPBKqVYmSw6pwy4H+AMRnAEyZ9T7os93821V05n1o7/Y8Yl7+X1p7yEDviGvXe6ohNu7KMy4fBTX2edR3TaiMdUHvnDBv4TUxFkCTXw/IgSGWOF5Od+lE4nNU0EmPOWZTEZ3aVGX2ooTntzAFXV8AVMllBTYy/tTQGCDYHk55nqkAzNQHKLFE7P59NXzcTrMPhVVKVn75HZVqcKVmd/SXkWpQUedtqk/0kpjne+UxAFJKeEsywLQ9GI+SInJL1yPLBl2ilaWk5PVfewujGnAwbvJpN6SZJA06YWvtIYoGRSLhU3z2bnihrTwOsGRkxNGsfkXGFJZMpVU3j49gYeKTyXj3x7CluXfYu9zxwYwGCBgWyk4dIwI00gS/051tHPqytruP7OT7GpuRgl0HjE69ajKvEhUh1WD0W4vpdoW8icQDdECup0wwCHkHAGkls2SQAeOwCx7kMNgUogRndVN70NvdTuaE9ShK36jh5VD4tQLAM7YVo+E721AGbt4TSfv6yFFbatbWSvy4Z/v++0X++JwDveKVgPq5HCVT+dILllFt46l/uv3MVL/ddz98efOW1yrcOljSxHIMqimcdO7CwFWeKfn4mCr5KPBmax/8UqIGX+sFXAc0gIssSM2UUY7W8xrhycn7yag//XNOy1H82ObSSHrwRi7H9yH5e+mqDdJqiUxzqy06pJJLt6T6PNxkhIdQiy10HZolJuvHYmRR4HW2u6Wf5yJeHGPpSwAgnZlMFpO9FhQ85xmY13Q6RY9JjKzo1NfFcrI9yvsHdlLWrw9B27aUVFgZ0d/9Md2u94pwCgxcwIAcwH9bSEzU5UPb13mMkRmVYeWxSTU8YESSAr1wXBTjB0YhEzjYJoIOg6iCKSUzJHa3pMaYf29hD6ZRex5JObWGXcRqzz6eNe4mi+xIZmDEj3yV4HrgovoeqeY3LIJyp1dyJwGN1UFnGN8/L5Dyzk7OADELfhnfUJ3lpTRzjxusMiH01HdNpwFGZQcUYRteuaiLb0DUytpajl7gYyvU6zdnOap2Msra23y+d5IvCOdwrmh6sluebHsps7nmEmR4IWVtj+2B6urCyir/LVURul1C/3iX6AB1NHU+mKotOGlNj5R/rj3LtzCcFwnNbKA8kCsuSQ8JRmMu/Mcs6cWcTMfA+V3f1s2t/BHzfkc/XnH+OBB9YfToFNSVclJRSGMSrHeg+sSWnvueUM/v3bdSPOmzgSUuXHU5+Z0RoZQRLIP3ccTpdMx+aWE6uqm4gSbF4nV143kzOf/yRPf2E7i89zU/TMRwn3xw/tlIeg9Bqagc1tY9r0fHo6Q3QnmiZTn189qqLJIo98fy45b97D8+/9Lj/62NOHHed0w+m4ppOJd7xTgKPfyR1WhLN+Lw6c6DVWD48SiNG15lBuW5RF7PluANRQfEiZBHdFFp7STKL9Cv3V3UfF6BhSlfQo3is6bXim5pojOMMqklNC9tix2STWvFFLNKokBfpEWSS7JJMFi8t431kTmGhfAd3NuIvfx7ZqkXXrG3jywW3E2oMDpbhTehxEWUQNxk2SQIr66ljcf13R6dvTyX861xNt7jvm41g5dMkt4yzx4Mhx4s1xMeuMYmqqu6l6ufqIOkWOwgxe/nYcug9y9+JLeOHHa455PcOtEQ71kkhuGUdhBksm56FvirPgTAfj7lzAb7Z2E20LDckGSxaSFY3+Wj9bNjRxzvkTKbhhFjv2dbLtiX3JrvDU1xNXcMsSotM24BgDXpPGaYH/CacwWgxu3EnmzRNIbaJK/d1IxzraB172Oig+q5zPfWgx6w908MbzB+jbfWj2gNWodu93L2Ge9ijxgvl88oFc9j9feUQl1KGcXWq+/0hrtQzJ2bfN5Z7cB1EvfD83fLcbVdXJ9DpxumTiifRcOHGfBFFAiWm0tAZ5flcrJQVLiMcX8tarB6je3pos/FuiaEkkdrKOwgxkr4NwfS+GHksWoVPvhy3TnswHH4uBUYPxY5KCsGClUiSnhD3PzbuunMaiKfn4owoum8T44kxaqnyEqntGPI8SiLG860omZrvZueWtY17PESGZhWXZ68CZIbOvtY/Zn/sV9k/n8nxbjGhdz6GRpilRQuq91RUdNRgn1Bvl0+fLZPzlLj46MY8/fuMb/OuHbyQ/Cy2scN0H1pAx+VrC/341qduEbr7fonumHcPpg3esU7CUKA1FG1UYnmowRafN3PU5paRshK7oh7ppSRhTXTvMmA5peI9iF27PdzN3YSkLi/wcaHEOaAgSJDOdklXkYV72WmK/fgH7BbVMmXo7lQ4belRNrnWk6xvA+T9KFVHRYeO6sydQec0rTP+1iCvjGvqDMURRQHZIqKqGmJo6UXRCXf0c7I/TUO0DIB5RiXX2JxuDBg/kARI/S8ljpMK6n9Z4z4984RxqmgO8ct/oZlCPJQRJwJHvYsZFE8w6iihw3YJyZhpPQkUFv19fwbr1DcR8R5az0MIKP/zmcmxuG+HGY49aRlxvoo4gex24iz24MuzsqeqitctFb6CHpWeUcOcFIrt3FdIQiCXTQUOt3dDNDuuwmouxuR1jYxs3/9nBY0UZppNPqPNa/Tuy14GzxIPssaNYTmNQ9JfGqcc71ilkzirgDz+5gh1tAX7zxZdG1YAiyBKSQ0LOdeEqyyQnz01+SSY2m4jfF6bXF6avOUDMF0GPqaY08yBxN8upWL83DdroWAzWe/bsaOPuYC47V9TQXx8YwP0WRJ3e5j6Wt1zAZV/4OJ36Ynb/bh+GouGq8DJhSRkH36gj1nFoNnBqg5NF0RUdNnPIekJL6Eiyx0CSrfOvl/bzlzfuZk3/lQSeWQ2SSCyqIkoC8ZhGPCE9oUXMLtfB+kRJR2fdM9m853pUTaYsLEG+WHuQWKdo3u8hnN2Sq6fzAfmfCO86g1WPewgFe454n8cagiyR6XUCUVRFpzijE+2xVxGLc5gz4wc8/e8dA0aXjoRUSrLVYzPWLBhRFvGMy2LJuePRE8/b7lX1GKqGquosGz+LX3yyhMCHlvCVX66me33z0E5BM4i0BPni77bx77//GrtvJ7v7M5FzXIhtIXRrLyaZJIOMyTksPW8COVlOmtr62Lm63qS2asc2GMmCqzwTR2EGfbs7T3s68NsB71ynUORhincPUXXmEWmoyQa3hEPIn5HP2eeOZ8mUfBYVdaIZMjs6J7K1ppv16xroUnwoAZDcAotumsWtF01hW30Pj/7KnKwm57qQHBJqKG7KOo/C4IqyyIQrprBk6TjWvVnP+r9vTzoyqyPbMq6h6h5++M3l/CLfhRZeYw5L1wzs+W7mzCmifnNL0ikMLn5Kbhl7nptpS8uYNDGXhqYAe1aYev7W+Ua6X3pMZe/zlZy/xgm8khzknjHOy8UXTORAvZ/Kne2Eo4dmM1sGfUCfAodSV66yTN7/ubPZdaCTnS9UpkwI01CDA187mOGy7uFdfPWWK+lcHiTc2Dbi53wiYGgG0eY+Nvx7J4IsYc9x8q/NJdz5/s+go1O1NXjMjBtXhZef/eJKGvxh/vK79fTt7jyutQqiOdvZnudG1w1UTUfXDfqDMeLd5ue/7bE9/LPIw1f3fxvH+lb+9Y/HuO4W34A6QSr0qEr9Kwe5rDKbzPIydP3NJBMpNTq1eZ3MWzqOL16SicvWw+b2idRV+og0BQ45j2O5Jklgybtncfb8Un79tVeHXWcao8c71il0bGzmmv9TiHXWj5hSsBxCxgQvzsIMbDaRRWeW89GzHeRU/4GmjzxJ/ux8LvzxZ8hxXkJdUy89jWYXp5zj4r5LdvBI8fuYkQ8/27GRb37lZew5TlNZMiE9PSqjIInMmFPEudMLOVjTTYuiJdMjL/x5Lh6lmht/6aJldQN6VDU7hFvMFINlKAM7O3imvhelZ6A2fVJB1WkqlTrzXUybks+y6QXUl2ZxcE8HajCeTD9Z6aWhdraGZqBjylcLsoThMFNt114xjVtyX2Rz6c38uq4Hf41ySKguUegfUKRP0UdadPU0Pu77GcLNV/Hhvgns+e+eAdc1kjONtoVY9ZsNR76/JxC6ohPviSJIph7U0w9tZ/vOYlwZdppqEoXXY9A+mnnhBKZ95Somx1Qu+tdLXHfVk8e1E3YUZfD+Ly/jjkV+PvmHIBuWHwQg5oskm9D0KKx4fC+f/8OPKbjhFdb4PCbteISak67o9Nf4TebWILkNqy5n89hZMruInIZ/gKoyc9JHcDiP3/wYmsHmp/ax44269EyGMcI71imowTj+jS2jMsg2t40vfOMCziy1c//KZqaNzyFXeZPYs5tYuyJMyZ5GLvxSAzl5Nmy2Q/l4LaIk86FdPritcCM2t82sO0RNnf/RGDYwDfCbzx5gz442uvZ2oSs6kltm8VXT6L/1Q1Tt7uUzr63n7l1DD5EXZRFniYfSM4po29NJpDGQTM3YMu3Y89xITikp4Xygqov+qEKPP2Lq+aToENm8zsRcBrPwbaV1rME3AIZo7uQNUUCPqdS39uGf9C5WreugqyV4aL6zPqhmMYRxzPY6UfZ3YJ9Tjze31LyeRArutO0rGQJWk2S0pY+aiGKK8kW1JD//aFMkrQ29ZC0pJrLXR1yImwb3OJyCIEvMKM3CWf0wEyZfR83q+uSaU2tX/bV+bv1+LZNnLaOhatOoCvgjyW1YjsEhiSDZEVwuIloO8fjYpMWibaFjnj+dxuF4xzoFGL0wnOSWuXxiK86aV7nxzDsp9hgQ7EUqyqCsFOZcXAClMzjYFsHvCyfTIWoozKdfns/9m26G9k5eaV6MGnolyQKymEqjbagK7usiuO+QNoyhG1Tv6aTwKxeTf7CJr29qNCeQDYIoi5zzycX85vxN+P/vD8QfeIqbbn+VuD+KozCD826dQ3FeBvUtAXztIcL9cRpreqjd0U7cH0XxR9AVsyFp/IUTyMnPoGpLC6Is8sK943ixtpzf/GBlkrJp1UpEzFx/XNF58cFtvPq4/dAUtMR1JzvKh0gbWf+/9o1a4j/6ER2x8fR0bsVRmMEHvnoeAP/51VtEmoOj+hyPFlZqzVICtZyQlfY6FkOuKzpGgkZ8vCKMHW828vGbvsSs2wpZefe245ZciLaF+Mlv13Lwtvez/rXtSVlxGJieMzSVzjcb6XyzMfm744GhGWhRjb11PZx57u0E425e3tFKoDU4KrXc0Rx/KBwP9Xq0sKjIwDtGOO8d7RRGCzUY584/9XPtpR/m3dlrMF56EsPpRDprNudvfReR/MU8XlPCxl0NtNb5k4ZPj6ps/ecOzi+aiS1rAcpDLxP3Rwd80Y72IbQ6hK05w21vNbJs9ywEcTaxzo1DHk9yy5w9vxRj317ioTitISd6TMXmtnHue2fzk2U7UHOm8ErdVHbW+GjrCKHENIKBWFLyGE1H9NjJyc9AVc3dreSWUQwXSmoh0Lo2RFMJNSFlrSjagLTVAHG04RxCStrrxYOLuGXqWs45axr5xR4+VfIslM/m0VEMyTkWWFTWzFkFzF1cxi3nTULRDZ5aW8f+HW307vcd1QCcVByrSN1g6IrO3kf3sG+Mmif1qIp/Uwt/3t5+RFr1WBpPQzdQ+6Js3dxMMBynry9G08Eeou2hE6YtNCTbbhS1vaNFxuQcLn/fPDJcMo/+fM2JbTg8SfifcAr2fDeiLJoMkCEeCEGWsDsklpY5qb/8/1i/2vxgr7i9EOHPD/Gn1SpbN+/F3xYk0hIcoB1vaAaR5iCCFEoe74h8/8TuwsrV6pa2jCzhLPFQOKuApWdX0NAcoHJLC337fCPuQpwlHiob/Hxf/zRNl97G/o8/ja7o2PPdzJyYC6KNiJpLWaYD+7QCdttt+NqC9A8aKqPHVPatqksWyA1F47L3hJJUXEih2moD5xykFhYHOIPEawf8PAh6VOXp5/fTfOZEXn1hNw6Xjf+e8V7WPtJCuLFuxHt5LLAa8FzjvFx7/Sw+sMjAu+ZbUFFO/KxP0B+M01fba7K1RnDsFgFgQOotIeER74mix8wajbM8KznR7lidzFjBigROJqyehq4DPnrbzO+PGjJ7Q4bbOFnfkWOJ2JLv1Y0k/dbmsaOG4gm5m7Fjc4kOG0V5bgq9rmTE8HbHO+MqRoDotHHxxxaS6bbz9D1vDVt0zivIoMy+nkdWH/L0r/yzk5sf7KC+QcJX34syaGediqPqCHbYcE/IJm9iNjabiK8pQPBANwAZ47K47NKpfGJBJS2xpfwx28mqluCIUgnOwgxuO2sC29oCLP/TFtRA1CwsOyTau8M0T7kWWY1Qnhki25lDW28Eu/UA63oyxaFH1aR0tfVFjPvCAyU1BiuWSgMdw3AYdk4Cpkqsquq8taaO/lo/IUXjD3WrUHoiJ1Qc0NANevqitPWPJ3vhmSjZ09m4qovmup5kDWU4CJKAd14ROSWZNK1pQItpOAozyJ6Yg8Nlo217G/GeKPZcJ7++92r2tAX42y/fOi4ZjSPBIk0Ap42Ym0Wj1mKYM8QT35/UFONQ8EzPZ8Elk9j0+N6jdqaiw8b4d02ks9JHvCfK+LPG8bH3zGX9gU5e+OOmZEQ7FvcnXN/LIw9tw+6xm1mCdwDe8U7BnuPkG1dIqLqN5/4gj9zcpB2+G7epvXR3OohZ06Wi6oD869FCdNjInJHHT791MfMKqqj0z+Bvr1WxoboHQzMQRQGvxw4dNZSViEwfP4M3E/nu4c7X39RHSzBKht2W3L3aMu3YvE7znIJKUWwFxPopKJpKdfYcJJt42HF0RT/6lEeKYxBlMdkBPqAfYYh7MPHSSXS39BFpCfK+u5Zxx+J+XqrN54H2EH17OgeE4QNE3GQJm9uGIEtmAXxQJ/Ro6zd6VCXSGOD1h3fx5vKDZOaWEOzpINJYlTRcZudtoqA+WJdJlrjw6uksmlrAz6u76a8x04rBjhBht5ysZzkKM1ik/ItFc6by8hlFHDxKpzBa9VZRFk069dwiMrLstFf30F/jP6Lu0rGqwx4NrEZPNQyEE05+hBGpklvmqd8vwv2rL/D7z97L4z9bg66MvinRWeLhmx9Zwt9erWTnS9V85Ka5nP3Ih7ng6iW8NXMhvk2tGGNEYFCDcfxbhqdCu8ozyZ9diG9v5wmrjY013vFOIe6P8pkHugkGoiNymNua+9jbfxHnXenhzZfNVNCSs2w0xS/A3/n6sLrxRwvJLTN1QSmLI3+DLV3s8XyOvZtbkumZ3v0+/va3LVRecgGhjQr7t+822UEjFOMijQG++01TQkALK2a/RY6L0ok5XDy7mNLuf6C+vA5kEdtV4LTNQ1OHnsM8EobKz1r/b9Fe7XlubG4balhNOlIjJW1saKbzmDarkAaXjM9j59NnNSGEu3n+lR5TzmKoDvFEncVZ4uGTXzmPZeO9PLyxmRf+utXcSaZIo4/mmqyCsBqKE67vJZDg0ktuGckN7sIMBEkg2hYaUn9Kj6q89MBmlnvsRBrN8aJxX3gALdLQDPp2d3L9X6YQjcYJ7Gwa/b2WTO0oZ4knuYYRrysxsOgnnz+X2blbWNl0ET/6yRuEqnsY0qlJAo7CDFxlmcS6IyZb7QQ5h0PHHdp5W/MctJiW/I692ZTBdR+9gc3/GF5OfThEGgN89YevJ+/b/f/exvQv/JMav0648/Xk6060Q5TcMm/+Ox/fHXeT/9cvsfTd0bdFMfod7xT0qMqB5yqHNOZWuC1IArGowsaGHj7yx9s579P/xJ3nIufzF/K3Sl+SnXOsDmFwrj0aURAKxkNeGWueaBpgCJWeCMGoyop20zFZujwjpmYSDVRW6kByy7jyXIybkM2c/FrUB9fje6WWjOIMPBcE0O1GsuvY6h4eicGRnLCWMMyCLB3qME5xDqLDRva4LPKLPQR6IrRHzF6FwXpFWljhzWcPoMdUZK+Dqt4LCCsaDVtfGpJdlTy/KCBnOVhY6mWc402mVyzgZaeU0OkRj1ouYYDzEQVKl5ZRPjGHhupucgszUBWdhlB82C9yrKP/sNTG4PuoKzqtb9QN+bcjIWNyDu/5wAKeenw3gZ0dR9z1G5pBlkMAfzPT8xbgynMRrheHbJ4URIG82YVcfc0M2rv7eeUPG09KkXSo76Cc62LGZZNp3N9lzjJQNH7901U8PH0C9Svrjro3Q1f0AY1+rRtb+ND/mQOfYp39J02+W5RFjJXP89ojPm6+5Ckk9xVpp3C6YLgPovySSXz8AwtYvrGRugM+tuxqJzztOi7450fxA2/1Rlj7ahXxnuhx5WizFxQzfXEZe1fVEW7so3ZjM18rmUk8prLntcoB2v66oqMHYgOM42h3voJumINPvA7GT83n4nllONf/hI0/2UZjEyxYGGKKrtMTUegPJqSOR/jCpXZDW2yduVdO44plE3j61SoOvFiFFk55v64j2US8OS5kuw1ffa+ZrpMG6tvoik6o0ocgCsTdMnd+61WUvtiQu9WkzhFmXjrc1MeXf7kab66L9uq3iLaFjpjSG3X0oBvYbCKSTUyws6Im02yEezTadNWxQItqqJqOlCAkwNDXYv0t0hLkp0/sZeHc8+jobiUeipuGSZMOS5cYukE4GEPXDcYXZyJ5HHACnUJyAybqA+6nIEtMPG88f7u5hhbn9dz8vmdQ/BFC1T2EEinVY4F1DkESUANRAntSNhsngIU0FNRQnCcmfIfbGmewWb4d9Z+PntDzjRX+J5zCUBAkga9+7EzO3vlNzrvpC1x1RyW9dX4ObGjiOY+dsok5nDG3mJx8d1Kz51ggyiLf//qFnL31qwh/vY1zrusn0hLkrQe3mfxtq3A9CEd7viTnPiG7PX92EeeW1uH72lrq6s3XKFENIa+Uhj1BIr0mO2ZwMXXAIHgOKaPKXgdZ47285+IpXFy8geD586h6vdbs2tbMfgyLYRLoCIEkJhlMg89hOZiMSTkUTcjBlSFTs63NTCEMofRqUTxFSWTpLXPIy3Hxwm/WJx3ncI5AkCWyFxSz+Lzx1Fb6qF9ZN6ySrK7oNK+opW1dk2lkRZNVlNRiOgVF2/7qbv7zo1XJKNXSxho8KMdK3dk8dtoae1kTiKInGhcljwOIHSZTbWgGgW1t/LO6G8ktJ4dQnUhkTPAiOmwE93UdeuY1Hb+vH7zF6FHbgJrUWMB6doQR5nafKBiawT2ffJZfuTPQYo+9bXSZ/medgqEZfO/nq7jqprtY+8t6Ym1mEchKJ/XX+qnbYub6U3fyR4Ioi2RMzUOLKITrejF0gwPtfZztdkHTbiRPAUoghhIYXeQhuWVsmfbRMTASksg5hRksGZ+Do/UZdr7enfxz8bwCQpkLqWnwE/dHD1PAtIauOEtMaQNL/sCR7yJnYg433zibuKbz9z1zeGX5gYH3MyGWF20LJWs3yZRbilG16KDeOYX86IvnsYjHMA7sI/ShT/C9p8NsfbEqmaMfDJvbxo9vEnC1rWDVjPH0bmk9rP5gMbuySjOZvbCEL12WT/6+P6Jecw1XNuXSt7sz6ehsXiey15Fctx5TD0tfnUoGj3VPB6japsz0sOiu+TPymTKrEK/HzuyJuXjsNrpCMdbvaGW/ohHVdbMhb1C0YMlznMgIIRX2fDfzlo5jbXsoqc2lKzpdG1q4/Fsl6NHXjpm2eyScqs/RivzfTvifdQoAvdvb+W9l94Bh69aOQo+qZvPSUe4SbV4n131wPl3+MCvu24geVfnPX7dQeNd3cBoiWui5UR9PdNrIXljMhKl57Hxi36hkoQVZwpvrotQTxahuIZQQSy3Ih6xl5VT2VdDTuTl5zQPmJyc0oM69fCoZLpn1axvwHfBh89gpLvdy88x6NN3BY8EiIv3x5LAWA/GQBHdKDQGG7k0wNAM1rOCPKuDNAFUls3cdFy66hj2bWwYohaZCDau82TyOZeUXoAarDh+CJEt4pubyoU+dyTnjc8l1dmAT+hBmn0lV72yUQF3ydYVLysjMdpLpddIfjFG/ueUQHTfFgcleh9l8dRIkua0oLdXoW8q2YDYMpkZdgiwxYUkZ93x8BoWbf4ZwzmWgHQQ1Tm/xfCKxQprr/Ch9saMy/Cdiqp+hGUTbQnS1BZMjXa1j61E1yeA5EbtpMaGxdLrQdE93/E87BUM7/MueGl4fC/SYStXBbvqDhyQEAjs7+MEnnkkqp44WgigktZaO2BAnHhIeKyjykOuoA183hQXg64Zld07FdvO1vHGgk66EoN9ggy05JSbNLeLTFxbgtvWgquNY3mAaaEM3ENCxiRFskkhhWRaFZVl0tvQRajWb+lJz+8Ot2UqZBfZ08f1vvMqvJ2UzedbtTJSzWbNqB6FK36HB8IlUgmUo9KjK3Z97HkdxJmpfFHu++5AsRSK9ois6vt4oLbkxNjU7eHlFEw1b+1ECT5osLs1Adsu869Ip9PRF2b6xGUk2FWgHp7lsHjuXf3Yp0ZjKG/dvPqFFQiul5p6QjeyxE2kPEWkOHpYuMrRDhXfJKXHmknJy/vQpHv3yHuAFFi4QTJLB55dw+cW/ZOM2D4HW4MCUU4LZZMs0ZUnUYPy4O4BHM1QqXN9LZaLXZzBORD+KIAk4y7L44S+uQNUNfvvXTbSvbkg7hiPgf9opnAiowThb/rEdGDSpKqoe9YOvhRW61jbRtbbpiAXh5Mxdt408rwtZ7MHIymTmhYU4C90477yRSuFGtu/aQaw7MqQuk67oNNb08OzeUjLdWezfd9DUu4+p1Ozr5JvPVFCQ4yLTHedvN9fQ982/kfnRczgw9dt8/kevmxPiRjmP2OoTiDQG6HyzkfWD7pezxMPUiyYSiyocfOlgcoobQPa4LJadP4/+qMLaN2oJ1/diy3IiOSWCB7p55Ptv8Ghixz3U7lANxXnigU3IWQ4e+sWllAsr+MCfK6h8ej+OwgycJR5C1T3ois6eHW1oqn6YcR6M4zU0liMsm5bPJRdMpK61jzee3EekaeioSZBN2nEkpmK/6QL4sqksu227AYRZJm6h/JqdOFzuId+fMTmHsy6bwoHdHTS9UQ+YTYTWnA01GB/QyT4cRKeNsgvGM25yLtV7Ouje1Drsc57aDHkyDLPklrn0jvlM+/Sl2Nwyf3voGa7d0DLiNVlqwlpUG/Vs7aPBybr240HaKZwAjOWHPtpwWhDN4qjotOGwS0Q0L64pk8n+gIowcyaV9tt4bkcLjVXdqIHoYZozVkNX784O/tNi7iytDm5LMmD76joqZhbwwatnEvj6X3npb+2cXfUiM19YTGZuFsEjzK0YDsPdLyWuEeiJHNrBS2bN49JLp3LnGTvot0+lan8mbcE4Cy6aiM0msqq654iGzNAMwnW92DLtdIUNyvMz0XUdQRSYf/0Mrlk2kV8/sIGe9c00Lq8x3zMopWNzJ0T0EkNwlMSUssM6txNzOqSEhpMeM+daD3ZWhmagBGJUr6ilvTmAzSZiqBqiw5Y0TsljJ4bWuMsyOXd6IYb/8KaoYFs/cS2DWCR+aN0p5+qv8bNxRQ1q2KQFZ07NZeqcIpwumY6WPhp3dRDr7B+g9DsYgiRw/deXced/Po6yR6Xw0R9x3m2uIzZpnWijmBq17NvVTsm3LgW3i7/ti42otWSNui2ckE1HjZ/gvq4xXWvmjDxyJubQtbdr2BTp6YC0U3gHQZDMdJOi6oSUIlwFExDcXkJZi1m7u5uq6uF7LpJTvhJcbjjkkJwlTirmlxAKxuhs6WNrTTcXfOYiljU9R/kPruCtwMX4G14/6ma4kRD3haldWWvu2BTd/KInWE7+YBTVVURvZBzB3hbi3WH2bmtFTTQ/jXR/TFrkoal4X//FakrGZ1O/phZDN6jZ18nKDDvRtlCSdTWYbGAVqj2Tcigu95KZ7aRmXyf+PV0mmyxR0E1lg+VOySU7z03AH6Frb1fiHh8exWhhJRn5yDkuBJtEvDuc7N62jivIEt4cF5Oz4xhrqw+71tzJXnyxKQQD27Bl2slfVEJvVbc5FjTBqgpV9yC5ZYoXlnDLTXM4uyyDiCrxwq5WWuv8xLtHHlgjuWXuvMDJK5ebPQG3/nwXhlYwqs/3RCE1DWYoGo1rm/jOzPcTV3Q2Pb9h5E2WJOLKdlJc7sXvCx+3VHkqRKeNi26ew+JpBfz14R00JQYRnY5IO4V3CKwipa4bBEIxqv35RLMuRpVFNlT5eXN9Lc01PaZQ2yDDaeWyp59ZTn21j96dHcmagyBLnHXdDL5zjUSVv4IvfuUlnv3rFt6adi6FN19B/VPdhOtfTBqb0a51MIZq+kptpko29wVivPH8Aaoq8wkGNuHb3YHSExlSTz/VQFhigwuunEpZcSbbt7XQtKmFvj2d9Kaohnavb2bVplYAKt41keuvmcHGnW1s+c+uQ2ytBCtIjWm4Muyct7ic8WVeVokCgbpe4r7wAGaXrug4nDaKSjMpKMkk0m+mZqwUjbVG0WkjY1IOt310EdfPkvHaW3i6qpx/P7yD3oN+dF8YAzE57c6b6yLT3o7eezi7pejbV/CnPX66GgPklGTyyNccSLrEz1eP56mfvQmAe0I25141jR8s3UL4xz8D3cB19QwuXPBTljsqB0YnQ32OosBeXzbXf6EC180L+WP7jcR9y4d9/YlGqhS6Pd+NGjQbD5ffu250hBFNJ1DXy67e6KjHp44WoiwiSyKt/jCh3tNbIyntFN4BSE0NaIqOrzvMjgY/NRky/r4Yew900nSg65DsRMoXxJKOKJ9ZgCtDJtI+UFJBEHW2b2jioeLZNLbXJcd2tjT30cJAHf4jrjNR4Jx86WT6gzE6d7Sn7ICHlmIQHbZkjleURbLmFjJhah7NdX6CDYHDlDZF2UyhyTkunCWe5NB4QRLwjMtiwcxCSrJd1Nb5aZYl830pBWZLp0cQBboO+HjZUW0ODdKMAdRQNawS3NfFrsYAVVtbkNyy2eSoGYeKtZop/BZrC9IQiNK8qSXZDW6tWxAFbJl2kyKb5eSC62bwsfynCX3lWVRJ5Npf/ZoX8zPoawiYRi9B6ZWcZvd6b2wcJefMYek5u9myUWHhEhuTvnIme8Z/jZV/3US4qY9oZxhJKMV3+9187TPLWLX4AtSwwsM/OxPPDz/CI9fWJq/roqY+nH+TKCzNwm630bm5JblObVAkpobi/N/XXyFv2tfo/mM30bYVp56LL4l45xXxi69cwAvbm3ntkV0mNXyUDaDR5j6izX1j3puihRVe+OMmMiblMH5aHnpMNbu3T8No4bRxCql0vLG8USfquCcDo2F0pMIqrAZ7ozS292GzifR0R2ht6CXujw5gHKV2K6vBOI072qhX9AE7btFpwzM1l3B9L4/+YQN6VB2xYexI1yI6bDjLsnjvtTPpDET4b3eYaHsIXYky1NEE0RxHWjo9n9ZEB/QVV89g5rhsHnlhP6GmvuRuzuqxcFdkkZHrZvy0PPLz3Kx9ozaRMjMINgR46ul9yA6J7pqeAZpJqee0EG0LUe+PpDjIgRGOVQewZM+B5KS5wVRdNaGzlKSXJs5p89gpWlLG5JkFdHf2k+m2g9ODY2YeUomH7d0T6Gp/MynDLTpt2Dx2JJeMqurU9kLpzLOY+JUaSja24lxainD9+3nylUZ89b3mFMCwQk9sIj1VPWRtqaF0/PWcvaSc2E3XsOLl0IBrUsIqHf0xbrxiGopucH9zgJJZBVx84SR2Hehi0792Jhl7hmYQaQzQ0tx3UpzBaIu0OXlu5uVvpWPaHFZlOY7qvSfyOgzN4O4vn8c56kNsvf7D3PmBx05L2YvTwilYYfN5189g97bW5Bzi44E1pF5yyyb1NBTnZOvIHyssKp27Iou4L0x/fWBU98O6Tl970ExR6AbBQNQUBgtEkxPFAOQcF66yTPSYSrixb8hZE+d/ajH3nPEqj+l3cN+3Xks2HB3ttVjFVpvXiT3XSXVzgGjcvJ6RptMJskTx1FwuvWgSr4sCgZ4I0ZjK9oM+mvZ2JnVsRIeZLjj75tncdPZ4anvCNLYH2bevk3B9L0BSSryvOYAaNlk1yeJvokAsuWUyJuWgRcxmtlRlWslpdgfbc5zoij5kesFkgUnYUnT1retLdn4PimpmXD2NH9yxgPKMrTx7cDoPP7mHYPgcxi+7nObOEBt+v5b+JtPo2rxOPBO8lI7Pxm43z/Hmvg584bksvPR+vFc30adm8/z2CGtf3U60pS/53Pzk+R5++dY97O2/iHEbG7j17x/i+UEOAaDklhn8bnMTE0qy8Aej6IrON+9YzLS/fwD7zEK++tE7WfOHTUnjaXUMn2hYKrB6VB25mVTTadnezpcfm0Fd5TbCTQPnmJ8KCJKAq8LL3T+5nIayM2kAXK4/kP+l3xyRWXgqcFo4BUe+iytuncvX57zJzqW38JkE8+FYP0hBEnCWeJh20URcGXYObGqmb59vjFd9YiBIAu4J2fz5t9dS5mngT2tlnvjFm0d0CoZmgK6jhlXCnWGi/uihHWogiho+xMMXZAlXWSYFE7Lpbhk6VBYkAbtdArudgC9+1PlV0WkbyNDRTHVUJRBjxatVxAMxou2hZBplKOgxlYa1TfyrvjfZXf3i3s7k7jc1/eKZ4GVCSRYHOoK8+vpB2g50o/gjZEzO4SMfWsTVU/x4YvvZH7+Cl3a10h2I8NUrMrl/dZRXHtxOrC2IozCDm+9YSGtXiK3rG7ny6hm8/OIB+mp7sbltLLl6OpctKqfFH+bf/9yeFDK0ZhCLDpvpoHKdFJVmkZ3vJivLQU93hJr9nclub2vtkltm0YJSDETebJnLi2/sp3l9M81rG0EUcZVlctMHFzCr3MuuBj8bNjYy94wS3rOkAresUNers6uxlzXbWni1v55oRKGns45gR4hoS5/Jckrc2zUPbOG8J1x4Jq3m5S938cjVLYfd70WLRHy3/o5Nn3mdt3zh5Cbih3/dxMNf+zqCECf6b9WMik6yIZPcMud+YB5Ou8SKv2wdUvHYeoZjbUHWPbjddFiDIsFTAUGWKJxVwEUtv8BSP4pEYPaiMtZsbTsqWfCTgdPCKajBOBvXN7Ju5nt4bl3tqAaFDwfLIXzvF1dySelm6iIX8Kk9HcMOTDndeMOSW6ZsXhHTeRa0TKLxKUnWyXAw8+BmQZOwYg7O4VCj2OBdqiDq9Nf6iTSZu+ahHI6hGbz++02srygn3PjaqMNcyxlkTMrBW+RBU3V6m8xIRImpiLKIK8/F0sunsH1DE4F9vmSxdag1WEqkqb+zkNqfoYTirFpdi78tSH+tH0QR76x8PvmRxVzPQ8R+uoaoZjDz7jx2FEyjtCCDnNAKCnIuSNx4kbgvzOMPbcPQDZZdM51PLu2iuaOMzQkHe3BfJ6G+GH3+CGowITYnJtYjimSN9zJuch6hQJSZswo5e0YhF5bvgGAX+9VreGVPGyteraLvYA9aVMMzNZer55TgsXWycleIvc8fEkcURAHbjDzeM99FgXMPk3KWkJPlYFyOm6nO16G3nTKXi2VLCvmzbTr/fXDroRShomHzOik9exzddb1EmkzZEFuWk5tvnsuWsy8Z8n6Xrn+Kj/16F5HmgUOd6l6q5rw1dgRZGsCuOpmQ3DK/uLYNY/nTzP7Z3fzyk88O2xwJA0UwUyMzOddlkgROQod68vyKRtcBH82f/w6S9BSaBld/vIR/bGw6rWyPhdPDKYTitG9s5rsdoWQx9Fhh89iZcv4E3hX9C8aKBrIvnm4WAAfzx1OE3wR59C3wqVLSJ6pOEeiJsF25hj1Nfax6ZfQD262dkQZJET9L3jp1rSYlVUFj5LBaCyvJiXCjgei0Yc8xtZMqZhagKjqdrX0o/kiyFiG5ZRacNY4LzyjlwO4OAvrIO06rOG2J5R22YdD0pJJpxowCXBl2qmv9ZsieYcdpkxCcXhzziqC0mJ2+RWzdd5DmOj/1C85kxdOHdp2GbhBpCSLKIru3tfKXvKlU7T2YjASCPRFCvYd6PESHzby/uvmvfGIu5y0pZ/mqWto6Q3SUe801+tuYVHaARZMmUTU5jyq/mZaZOCOfifozGNUHuXHJF3ntr1sHXHukJci/NgYpzpuMP9iG22kjquoExalkFmUSUErpjxUQCHUlZz5ITgmcEktumMH3bvTwzL7p/PvBrQQruymamss1M+28XnP4fb7yw0X84HmF1l0dQ/awHI3+14mCsW01+7/5Bre8fja/dg8/MGs4gURHSSYf/uoyalsCvHbfxpOWzzc087m68+dreF55AGPNC2yZ/j2CH3/qlDjYI+G0cAqGZhDviRLvaT+u4wiSQOasAj77njNQn/wttivP5vFd4mGDW8AM6Rz5LuQcl6nL0tI3rGKpBYtznjk1F103G4DivvCY5QRFWURXdPy7OvjS119OUhZtHvuh3PtwjigxM9mS0E7SCbWh50CMeTFflpC9DpwlHlzZTtqbAoSa+gakS6wc/e4trezb2U7X7g4cxZkULCylt85PpCV4mHP2TM3lr7+6hkJXI39eJ/HEL95MGigrn23oZn3gjutmEYpr/PSNOvSoSqA1yO76Hq44dxzk1yAUFdISjOLvDtOyvX2AVr+l42RdS29TH08/vhtnhkxmQQayXUJMUH5jEZWoUznU9Ztg5VRuaqa1oZfeOtMpVe5qZ+vScSyaeQvxfRqtXZ2E++PJoTJ5BRns168jXqzz33V1hxnjWEc/z/xxI85iD94iDwXFmUiyyLocFxmuEjp8IT54UTEfOsvDqhVZhOUQH/viuXT6zdpLhs2H2zUp+dmcc854CnufPezzu+L2Qh779L/Z+Lv1qIHomD8fYwElEENYeAFZ5a9iHNiDnLPwqHb7giiQNSmbD2c+CnNsbF44jZ71zSftOvWoSvvqBpbdnIGccw7RlidPC0c7FE4LpzBWEB02Csuy8EcVwh/7MT99McLaR988bEdg7fbteW7KZxZgk0UOxtRE4XJoaWWL3XLZxxbx5XdBT2wiX75vrSkRMAZOwTuviCWXTmbtY3vRYyr5U/P44h2LWJa/FmPdCoQLb+CTf3NwYE3DkMbT0iYyNMyBM5ZuzXFGM0diQKUWkkVZJNZpSoMn8/6D3qf4I7Strkdyy1zw8UXcdUUBuY5avvRIHpv+tXOAmJ4oi0xaUsYk3/2gqsys+Gjy91ajndVxq/RE+PEv11BQ4WXBjTPpbOmjPxijND8DQ/YgzD+bJuMyVi0/iCgKzL18CnWVXQRTOqBFpy1ZkJa9DrJyXXhzXbgy7Lgz7IiCOZ3TSiEF7GFiERUSDKVom5nLtxxN3BdmXY2fDU7bAB0n63xrO/vZuq6RuC+cjKRsHrNnRHTaCB3wJVVSi8d50RSdfWsbD7GhJIGlZ5Tglr3EQ3Hi/ih7a7uJRlU2Pb6Xlx+yoQYq0aIa7oosKoo8IEosXCCwbbvBkrNsTP7FVfxS/QSvPLiVyz4wD4AVj+8lXN97QmQeUnE0wntaWOHdP5f4zWNrOagaGMqTR3UuXdHp3trG7668iYoiD5GWlce05uOB9YxYzaH2XCfOsiy8pZn49vuIniYNbe8opyBIAp0tffzjqT3c2xnCv719yBDRSrPEOvtpxjQGw+nsJ5GYe3zG5Dw80TWodkdSE2csYPc6mFSezUaPHSnfxdc/soTyT7yLR57vS7ziJX58Wz6Z//wdd/wqMORsgORaUgbaHM9DZs91Mvva6dQf8NG3u3NY52r9v2ucF8UfIdzYN6RBSaV22jLt9AVirKwXaO4oYvtzGw8XJ9QNqlY3cFfOxQT8EarfWoEWVrBl2plw4QTyizPZ82YDij9iOvhp+dx29QyWlARZ3zKBfz6xm+0HOvEHy2ls91JftYGbb5zNzeM2or/8NNqPPs2df8uhZlubqckjS0guU6o8K9dFYWkWZaWZ5GQ6yclyYLOJqKpOdyBKa1eINrtEMBAlYEVwioaugCCaTX+2TDuFs8wO346d7QMG9giikIxMPRO8FM4voaQ8i3BYYdHsIvIynfz63jcJVfegBuN4PHZKCzwcWNtgMqMSg4/u/+lq8yNPRJRv/GnLgH4CiwosyBLNXf20lt7E9JdhekYOr3RdwE9freTA8g2IssiEkixyMux0XDgBX3uQhrVNx8Q4OxJSU7fmECBjWJ2qVDSvqOWDVd14xmUd0y5bDcb51/+9lpQmOVUG2NAM7Pluvvubq7ls21f473vW8e4fTudLl3+H7Y/tOeURxDvKKVi5u8b2EEpPZERDb+hGsjBnFdBGfFA0HT2qsmpLM86zLmJ3fQ89B3vGrOuxd2cHj/giRFv6kHNd1PrDTM13AX3J16x5yseNH/8XN13/DX63q4NIYyBZKB9Nl/DRwj0hm1sun84jusG+Az5SrzR5PmsYjyyx+LzxtDX3UZlgCg2GZQwyJueQVe6lclMz+9c2Eu8OD8smGcAkSTB2bF4n02YWsmx2Mbk5LlRNZ+6UfMZ5XcQ1nbXNHtbsbKWj0kfrrg42iwJ6TDXTMA4bBLvQ2kLIWjeZ3mIcOeZsZjUQRXJK2F02Mr1O8vPdlBd6KPK6KMqwY5dE4ppOh9uOKAhEo6qZRkxMsRMkAUEXQDfvjSibO3yPx46/uS8h2RE3ozhRSl5nTr6b+fNKuHlhEaKgsqk1Tn1HMOnkI00BNr5QibMwg5jPlCkRAcnrwF2WiSvDjjfHxaxZhaxcXo1/ezv6oKZZQ9GoquvhJYdERd4N7N7vZ8WrGwnV+pNG6KGHtpGR5SC/2MOChWV0dx4+bnQsYPXH2DLtpjR5omZhRkvDfwd1RSfSEjw0vOkYYKYcT30eX3LLXDFhF8/MXgfAU9+p5CfRPG7elX/YnJCTjXeWU0js/tH0I+b5rYcj9eEa6YOwnMimR/ew9Zn9SQbDSO+xdmnW2kZakzl4pwswQ+Xf3/06XV94iM/+aiOVF9+N5JCY/O+P4C+7mcYNwcMG5JyIhyjaFuKB/2ynfVub6TxTIgMgudOzzn9wfxeR/jjo+oC0kqEbOAozsOc4cWe7+Ms35lFo28Hdr01n89oG1L7oAOG3VJj3TEXOdZExKYf551TQ1RakqbGXnW47E0uz8GbYccsS2+p7WLmyhq7dHcmmMguCbHZF/+HBraxZvJRzrrqern1RdL2TuUvKWXZGCQ8/tYeAP0JGpoOcfDcVJZnMKfFSlhkn37kHG2E0nHRnTsEtZ6NqOqIoEOmPo4YV9JgNQTaQHM7kDIadL1SaDieYuC+igOiQ8czIx5PtpLepj67GAHXFmRgLSyh1b2dc1mL21vWYNFdZTOoUhap7ktdj6BK6ojNhaj6XLpvAjVMrEVpe4/alN/Pz55tZ/9COQ42Guml0965t5MD2NrPLurP/0JjZRIrRv6kFP9BVmEGkX0G05mWcoPrTpPPG86Xb5uOWJX75+E72L685VPQfzjFEVZR3wFyEuC/M41WzuPauKTz9o4MA2MQYnmwngTG+50cLwTCMUZ190bkPnOi1vC0w2i5jURZxT8zm8vfNo6I4k7c2N7Pz2QNJTf/RnMcyqvZ8N6LDhhZRkmMvj4e2ezSwHJslxaBH1aTxFmTJZLuI5hwHdB01FMdZ7EGQJabMKeKa8yeyfGMjs6bk45BF8jKdXB26H3Sd+snf4I2DXTz++G56d3YMeU1WE6JrnJeSGXlMmpbPvp3t9NSYBjJVfkEJxIZ0LKmaOHKOC2ehm4qZBRSVZNLd1U+kXyG3MIOafZ2Ioog318WU6fmcOb2QxSUR8qW9GPW7wNcDngyEibPoEM9jfYtBdXOAA5VdtDcFkr0hpdPzyc53U7Ovk96dHYBZMPcWefA39xFpCVIwv5ipc8whOE0bmhFEgcypucycX4LdLtHW3EfjjjaibaFhR4KKThuZ0/M475rpfK/sCVZf8R8Azv78DF69+a/c+4OVRFqCoOnJdBNwZNIC5k7Wckhj2VxlfZ7OEg/fvvsSZn/ucrpr+5iw/Rlu/EoVfQmK8tvd6I8Gtkw7OQuK+fqdZ9MbVfjDHzcSOuA7oemjrWs/deR1nbCzv0NxNAa9dE4h37yoEWP/Rq583+3csqeDwLboqI5hvkZDTShaJo99EvOhFh00a24hBcWZRCMKvupu1JS/WY5r6oJSfO2mZPIVl00lEIqjajoTs91cuLicmKrT2B7E6bAhzFiEYc+ipTVKm6+fSHto5FSfZqD4I7Tu6aS9uodYZ/+hprdh+k+GO44lXR2LqDTW+ulMsM5aKn0IkkBGrhvJJuKQJTx2iUxbJ/jbYV8l8X1dSPluJE8GWeMmUeKZSI/XiTfHhc0mIk4W6Q/GzC7yiELcYknppm5SpteJEjsUMdZW+gi0BpP6T707O9irG5x70SS8uS6zh2QEg6xHVfpr/bz1chXcdxHZ3v+wvxL2P3SA6z76AiuvnMfmx/cm0y1ayv06EgFBCyvoxyiFPhoYmkFU1ZGcNkQRJCF2SCrkCLD0rU5mr8GJgBqM41vbxDe2tydrTKe60Q5OkVOwmDyWDr2FkYaYwLGnSAZIJh9hh3S8sM5l7cqIBKC2ntzpe8nMdRE4Cjne1NSQIAnMvGkW932qjJZQER99/39P6JdCkAQchRlc++kz+fi5TvrVfH77chX+5j5sHjvZJZnYbKYRdLhkxo/z0uePMHtOEZdP99IblfjV4zvp8PVzx0VTeGRtHRtersbmsfN0YQYBf5Bwy6tJ5s1IDsFMd6hJ1kYq+0b2OsibX0xuoYfO1j4C+3zmvIjBg9oTo0Jlr4MLbpzJ3efsIuKZwR2/VGnf04mhGcheB6IkIEoCLocNr8OGQ+/A8LUS3dhC3Qu15EzIonhKMa6cAyzN7yDffT4A180SyNv6O3A6WFv8ZX5431qz5ybRONi3u5PKGj+SU2LcmWVcctFkdlV2sWlza9IYaJpO3BcmwynjKs1it9tGLOFQRDkRoQ5KQ2phhb7dnVx2l8SP3tjEbbZnMNqbQHZyzTkTaKjuxrffl0yrWrIgNrecHKIz0r0f6fmwnvMjkjQGQVfMiPLp16qY9/fXyRP7+f7zbUnZkiPBUZLJebfO4a3H9xJpDLytowpDOzmjXo8Gp8QpeOcVcfE1M9i8sYmm5TUDCqWHzaVN4dofS/dxMv1QlmkqWfqjCdG3kYtNotOG5JAOU4YcCZJbJnNGHqLDRqTFZG+8j3HMmH0XdX/poWNb7XEVpr9023zs/3cTMxYV4Sq77qgay44GlrGdfcUUPrnMRrZUSbXfS3Odn0nzixlXkU1ulpOquh72b20l1BrklZoeEEXmnlFMc5/BxpoOqlY3YCga29+oI5wQZwPo5eiosqkdqZbKqCAK2PPdfOPnV3DF6s+jNgcRfvh93vtDU9kTzEHxkltOSj6gmXTQHn8EXJkAOF1mmkTHzPfLdgmbTUTTDZL2SRSxlXooWVCIsyQDPBng9BCiAl84TjSmATb0hlaMfpUFH2qhuNxLQ1KV1hz3qfhVVFGgaUsbz/bFCXUdUq210luSW8blsKEbhnletw3P9HxKxmcTiyh0t/TRX+s3R2jKZmrRUDQCOzv4/O1P4CjKIGPcQiom5wJVxBOsJPRDTX6y18Him2aRm+Ni/eo6utc3H1WKyHo+pl42hS/eMo97/7OdqheqRhXBWh31elTliosmU/zPD2FbOoPaygvNesIwkZ81rlQNq6DrFOS4cRZ7TEXTt7FTOB1xSpyCzS0jigKxiGkkkg4hsfOwvvxwaGdk5UGPxTFIbpmK+SWMm5BN1d5OmgPREYtVoiySd2Yp884sZ+uqOlNvfxQ1hPwzS/n6p89mfWUny5/cS3BfFwefr+LgSweHbSIbbY3C0Ay+/M1XuPHDD9De3U9/zfqjuAOjgxWWWwZXdth4dIfEwcYC2pt3suTMcbx7YTkuWz/b2g02bW4m2hY6NPvY6+C1Z/ax/EmT525FANG2w4XXjha2TDvl549nydJxvPjgNtRAlNLFpVzdex+PftTsBL71/W/gzT2TyKwCMrIclE3MwWYT2bW6PukYlECMLY/t5dJNXjx5XTicNrwV2YSDMaaeUczdt1TQFfbwwo4WmvqilHrmUzBewza3k+ypRZCbjTB5Jr3CLLa15VDV1suB2m6+uTvOhAnfwllqo+Y/fjRVp3hmAY6FpQBUr6hNDjiKtvTR1hYcsCu2HMPkecXcubgSbHa2bi+m6YDEF+88i6sm7KRXmci+7jz+9txeDiyvoWhhCQ/cNZd+xcsn7n6N0AEf86+cytIzSnj40Z34d3WQMTWPi26ahUOWePHBbSg9EZwlHn5+Mxg/+RqOD5zFzZln0bym4eh2rKJIXmEGC+QX+NR7r+QbaxuJ+6OMxB5KvVYtphEIxdA6wtgam3G6ZLTY8FF89uJS3nvbGaxcVcvB56t4/N616LGR02tpHBtOiVPoq+xmRVihv/7QSDqro1SURSSPw3QMkplnI6phaAokJLCPFoZmEIsoxI/iAXJl2MnLdiE6R3eLBFmidHw2BW47/r4oSt8hTvpw6SJRFnGUZCLKYnLw/UgIVffw7++ZTTdj/WUQJIGyiycyc14xbz66B13Rqd7TQd2BLhwumTMWlvKJczQyw8+gOcfRHZpAR2sfaiCalNIwGVSxZFPZcLDUa5PvHQUKlpTyr6/l4dz6D+ovvoFdL1Sa7JhxE1m4QCCrPJOOkg+h63tZfN548rwu2rpC1Fd3m2vSjOSGQ5RFkETOv3ASH14q0NBXyJ9e3M+c6QUUhl4hO3c2MSWD9t4w7d5ccnLzkEL9UJiPMGEqavYk+iP5hOIxAqEY/cEY7U0B6nZ3oCs6kltm9pIyZkzK45rZeXRH4AvbWs20ltWFPcTmQFd0utpD9GgzkYwYotSF5JbJdsoQ6sblzqEv5iUWMQuxnkwHheIWcMCkWQVUBePcd3Mnxup/4LrjO9z7jVf5xTcuZH7Hb4nOvIZXHpZQZYnMggwc3dt59O4qZj1axeeXf4Yf+sIEdnYc8RlMMtB0nd0bm3lqwbvYdbA1uaHTrZrFSEy+RL3sv//czrnfewx/VKHppRUj1of0mEo8rqMnqMlDUZjTGBucEqcQ94UH8J9Thc0kjymV4Ml2ItlEAh0hcwei66jWAJSjiBYMzVQKbdnaSkd1j6kREz2ywFzbuiaeS1AbjwRrt99Q1c0PH9xE4/rmUT20lhZLZoad+3/5FqFK3xG/TCeKYy17HTz9TR1jz5NcM2kpPYnGv6zpeXzzY2eyRP03yl9XYbxrEd2Oi1ixuppQdY85E7ooIznMJnX9lvG1oiQwu86vvuscrl5Qzte+v4Lgvq4jOgZBEnjgG+fwZtESunvgO6Gv8e7H9tC6q4PPvjqXJX9fQV1rH2u/vQ5PtpM8r4ucLAcHa3vorulBC8UOpWgcNmSvg6JxXm5eWIR30/eZN38phYWz2LCpiUDoLPzBGN2dfuKKhkOWiKqzWXjlB4nrGfTFywgFPYzz7GVm/mx213YT7I0SD8UH0GCrXTZKCj2UBx+mvHj6YbMYBsOqnbS+1citvVFkh0SwwcyX3//fnbwx+ww6uvrZvWqVKXAXVanb0My985ZQXuTB79uHzW2DcACiMWyiwIIbZ1L66Ut49KlebmvIArEMZ4mHkopsKLRzxhyIx+Gc0v0sOm88a1v6iHX0H9lRSyJ584tZcu54Xlx5kPamQFIfSlfEAc2TI11vYGcHH73jMRDFARpAVsoXSNYrAjs7+Gf1yhFnRqcxNjglTiH1Qx3cFSs5Jbz5borHeXFn2KkFehMS0IKoDYgWknIHR+gBMBSNWEc/MV9k2DTO4PVZzTSjZQpZed3e7e2jrkFoYYVdlV3YHTbUvtGxkk4U1LDK33fPoiJvCb37XwTAPS6LL31yKYve/DzND+4mb34hwfG3cd9rXdSua0ILK8y+YQbTpubzysM7Dyl8SgJyjotLPr6Is2YVsXJrMxuf2EvMF0GURXoDUfa0BYj7Dy8IDwVBFNANG4UF0N0D29pNZddocx+b/7mTLdKuZCQQzbTzQlMfgiSYn2EgOmC2MYkcfvOudj7/mw1Mmv5+uv4Ronl/JVpEoWlPJ5JTwpXtRNcMVFWntauffe3jcbtkdF0jrvQwLmcyLb1+WlqDyeY1y7DpMRX/rg5WhOJMr7iBdU+3E2mpSd6bkQq7Wlihd3tCA0zTQRKpea2G2pW15t9jWjJ3H2sL8vTvN5hRV8iUN7/+16UUj/sI/Qf384EbZuOtK+SGSdk81PNuRHkzM88ex/hyL49XVXDp5pfJlNt4eE8FOzftPOJmaTBkSURVdOIR9VA94SjYYNY1Sw4RyelAwfxOiA4bM6+dTl5hBuv+uSO52TjdCrInCpbSsxbVRk1hH9Pznw59CoM5+dkTcyhMdGo21fTQ1x46pL2foo/unpBN3rQ8fAd8hOt6T9j6ThRSWVEni5stOs2dsqFoh8lmiwmNHpvHjqvCy/XvmcNnp79F9L7/Isgijm/dxUf/JHNwXZPJfwcyJuWYCqKV3ckiuiAKZC8u5amfTiaj/gX8427hwz89QE9VN1mTslFiGn17OpO7wJFYZ4Jo7hrHnT+eez97Fi5bDzd9Yi39NX7z74miZ8bUPM67bAo7trTQvtEsnFrOOjltTjzUhZ26EbGE8BBFJKdksnM8dpw5TnLyM3BlyGR6neZ8CUBVdXTdwOm0keGSsUkie/d00NbQy+wlZUwZn8PjD2xC8UeQPA7UQBQ510XxnEKCgSjdm1qPaojUcBpBqdPzLLaY7HWYCqzzi/nsu+eyIH8TvcpE/rJOY9WKg9hsEvklHtqbAoiigCiK9PeE6a/xD9sPMXgtVp+BFd1YzkxX9KN6jq3Ng6sskwlnFOFrC9G1zezmPfuO+cyYlMe/frV2zDWBjnai4cmGq8LLI3+5lpf29/DPn68Zk5qchbdXn4KmmyyNmEq4N0InIDskQr1Rs2nLomem7Czt+W5mzC1iS2/0bUlNO5kt95YDKjirjJnzS9ixpp5QdU9SDsH6oogOG97peUyeVcgF0wow+nw4LpuNMHcR960dR83GLYdSY5o5lwHMaMwy4ACebCcerQajvpHcydUUj8tCkkWWLB3H1s3N9KZo81iOEQ6xzWxeJ47CDARJoHR6Ph1NAb7+p00ASYdkGaiMqXmce8lkPrxsPH9SNDp3tIOoH+LmJ9IZA7ShkuczqcOiLCKIRoKbr6JJAnGnjWhEQbZLxOMakX4FVdWIxzTsDokJZUW8a2YRs6XnCV8wmz++VcIls4uZkVPF6ytyad/QnKTRFk7O5dZ3z6E/qvDn+kByFOhoaiqHNa0l0nKGoiXTrnKui6U3zOSqJeN4ak0tvvagmW7tbcfr38FXz51FYc5c1mxopL0pQDhlFrel9DpaRljJOeP44K3zeHHlQfY9V2nWkBJ1paOFoWiIThtnLynHZbfxj2CM/upudq6up67Sl1RtHQsM3nycaOcgOm2jUlcYDNnroMi1j5ys8SdkXUfC6eMUOKQgGW036wiCJJh6MbFEF+0gOme0LcSB3cc3pe10xFg/rPZcJzlnFFE6PpvvvG8BkhDns/u7kqMqZa+DzFkF5BZmoOsGt998BpNz3BS4e4hnX8Au1xSeX9PEm89uByB3QTFRf9R0KomUieiwsfRD85k/s5CVq+tQFY29/Rcx/sLJKIqLcxbb2FnZRSAUw1fdDZKI5BSTOX7Z6zCnxAXjOEs83POdd7HA9Sor/Rfz1r52ohGFBQvLmFzm5ZdrGlEUDdFhw1WWydQzinHIEv9c18jmtxpMefMiD6qq0bvfh9ITGWDwBElI1hgsckPynisaWuJ1ksuMEObMLmL6uGw27e+goc6Prz1IPKLi94WJKRqzz/bg7lrPJbPfxwFfiM2N+fjrDiZTPQA9B7p49tUq8gozmHhWORMm59LRHmTvKweHfH6tCMjmdRJtCyUjC1d5Jj//9TUUZdj51HeXE6ruwZ7vZvbFk7jrihIK997LvPd8jFu+1caaA50smRkl9o+V1D//Z97/6QXc8YH30iJcwr0v1LDl+Uq08MCpfNa5RYcZNQ5FyZ69oIQbp1aiaFPZ8+T+AdHY0TyzVjos1tmP1+PghikNBG85gycf3kFgT9eo6k2jwWC6e6o0y2hlbo4WstfB5Esn01Hvp2+f76hmN/TX+Lnt5146972R3FScTJwWTiH5ZUVPdnEKYjyZf7V2IoMfvFhbkFZ/5LjnOZ8uOExbKIHjeVhFWWTKJZP562dd2MUga1qiNPnDZOe56ZQlRKeN8RdO4EM3n4HHLhFWNC5V/o4glLM1cA3dERdrdjeyfUMThqpx7R0LmVru5cGHdxCsNPskBFHAXZHFl66djU3UWbupiYYNTXyxfSXTF5TwjRvHMb8MXl9dR9OeTuK+MI58F+4J2TidMpIsMml6Ps11fnxNASbOLWJKdisE+qlq6+OVP24GXWcjUFucOeALpsU0erv76e3up3l7O4aice6tc7n5nIkEYio//8M6/FvaDit+CrKEs8TD/Cuncu7CMrxOmWffqOHA2oYknz/uj9LZ2kddlgOHXaLHH6HPHyHSbQr+dbSFeG53J6887qRk6gzisU30tPSZNN1A7FD3sGYQaQ6y/8l92LxOZl45hWsXjyMY1/h9e4jWtxoHpNJsHjui08aCG2dy7sIynn+lksb1zSiBGPmzCzlH+QdGY5CKmRezL6GHNGtaPkXaapi1mN1d2SiBGK88t58Fk97NRR/qpe8/B1nz3e1MeaKSvrZv8quV3+DDvmm01PkJVfrMvoeUZ8+e66RsUSmiJFDzSk3ynhuawet/3MzGN/KJ+1abrKnYsTeD6lGVaFuIh/+7C+/tC7HLYfLKsghWdqOOwfd6MN3dWeJh/MJSgoEoPTU9SYd7rH1Qw8Ge7+Y918xgzbYWNjb1HZVT0MIK9S9Wj8k6jgWnhVOAgY5BTxTYktAOdwhAon/h+ItPg8PKUxF1pNZVBFkCXU/OyD2u9UgiHq8Te38taBoH2vqobw3QdKALLazgnVfEne9bwMRsO8/u6uATS7tR/7QZ+eZCAjGVyTluXgkrhNtDGJrB9u2trH2rnvYNzUlNHTCn533rLxvo7uxPpKXMbllN0dnREeWtXa007jCF9WxepymOl2FPLrO9uY/uRIRY9VYjN1V1Y+i5hA6sTBawG145SAOHPh89ppI3LY+/fiGPsJrDbV8PEOuOcNmicSwSnoC8HP5VUUDvtnasO2jdZ0dhBouvnc6vLq8k9vvvowdiXPyzH/MFxlO1pcWcCRGK0bvfx86DPexxy2aqZQjdIEUSuPSiSWS67fzlwS30+cLDPq+KP8K+5yr5v/1diE6bKTOeshuWvQ7O/8hC5k0r4NbQ79BmXsuq9U6mXzKJSH+cpk0tvPtfsxFFAZstxmd/fjmvrqxh5coazp58OTZRYO3+FtB1+mv8/Oy+tWy+8lq+vkom8rsXMRSdzNIoODO49tKpeOwS/352H5UvVGHoBja3lIzQAc5aWkHbvq4BjZJaTEOURa744HyWTi/k70/upuqFqsM2Z6Odl6BHVVrfbOQXXf1kFmQQ6o0m6zzHo2KQ/P9ENCjnuLj9c2dz+9avIU3IZN+nf82nPvucuRsfBWPqaBD3hXn06b101feaDvc0r2Ok4rRxCjDohulmjnpAg88Y39DhCpwne26ztTvMXVDM+Kn59AdjtB7spr8+gBYGkWPvSzAUjertrTy37CLcsoS/z0dLY4BwYx+iLDJzUSkFbjvVPTG272ojtjgPz7lz8GW+i3CfRo0/TOWudmK+CJJToml7G2oobq5HOsT716IajYnOWKvJUAsr1FZ28ffWPnoTnadWzUENxQmJAiWTcsnIdHBwZxuRlmDy2JaQW+p1D/eZRFUvgVgeSp/JUslx2jCa6hDy+7DJRQNeKzpsuCdkM+PscYwryQIlhhHTENwyhiGyYK5ZDK5tCZoRq2agRxl6pyea1+4ozGBGUSaiYI4AHWm9FrMtsLNjAF03VdJEVXXiigZZZtd1a0MvOfkZFJZm0Sy30/xGPYIo8PU/XMu7s56j6IZ38/1vvMo9D20hvyQTX1swmbqKNAVYs7KGBZPfz2XfnwB9nbiBdtu7yHdLFGXYmTI9n4MrahLGy+ygjneHadvTyTrMZy9Vol2UReYtHcc3L6il77Of5OIffpBL6wvMPodBz+loVYL1mEoooWsFjIqVNhyG+l5bjmFGcRbN/9mHrznKohd/j809iRMhP6eG4jSubUqmvR2FGQBjOqnxROG0cgow8It0PIY5VbZ6JOXMo5XUsOe7KV5Sir/OP6LMhCiLeGbkUzo9n4ZNLcQ6+4dMc0luGc/UXJ777TQ2V7ybtna44OpM5Mef53v/bWb+7CJsksCDP19DpDk47LXC8EYosKeLX3zjVXPtU3PpqPGDruNI1BDue2YPtZVd6FGVx/eMI9vzKTa81M6kMi8HG/307vchOSXmXjmNztY+YhGF0vHZHFjTwIzzx3P5+ZN4ceVBDq5rQoip6JKpMaX4IyiBGGGnZM5B8NjNJiS/Kdks57hwuGx0tPYRSkxAO1r5i5bVDVy/31TWVHoiyLkuJnq7iN6zEceiYiL9C5LRlui0sfC2uXznlmmUurZy75pcXgldwxU/mEB7ZA6v7YtSmuugfEI2dYnP30xlCjDIJ5jGEQRZJjPXxeNv1dFc56drd8eo1q4r+pBNjUogxlt/28Y6WeTFc5cyY04WofZWevZ2USeLSXE7A1i1uYl517yfFeur0WMqDavqaUxEbklWUFQj0h1hw4FOxnsvwe4W6YkoBLtVzi6pxf7i/XyzpY/i7/6Sv/3fa2hRjSlzirjqvIks39DA5v/sOkTpTTCcXBVePG4ZY+1yXvxLG/zlF/ysfQt3feNlwnW9uCq8gEkIkL0O8zmLqabTT6GVWt9B6zNXg3HzOyKJx1S0Tj3m4GNYKeiHXtrPfSseZPzeF2gp+wxK4JkBab6xgqGZDXbWhm/uVdMA2PHEXoyTpHB8rDjtnMJYQXTYmHHddKZNz+eN5w8Q2NkxoNBoac1Y/zU0I5myIaVwNuCYssjdv72aSyu/R+CrX+aK61cNyZ0WZRFneRYP/fIKxgX/zc/PuJAX/rqVSGPgsNe5J2Rz8x0LidzxPtoS9PTVLwa5LbyC+26fQvyLH8E+O58X5n6MxkFOwaL05cwpoHe/b9iBKHrUFJNTAjHqGgNm163T1HXas7I2qatv8zp58sk96LrBlVfP4JOef1N72ZfZ+MRebB47SlzFZhP5zueXMS/yd35ccRkXzSnhnMJN9IZmmKyWTlPgTsccLWnPcSI6bRSXe7nximlUNwd47oFNxAIxQgd87DngOyp9qcOu3+sgd1oe8bhKYE8najDOtx/r4QvfeoYdHX3UPbY86eRtbhu6rrO6PkJ79wSef2grL7lk/jEhm5z8GsL9cXztQfpbg4cUKzVzxCkwIKVpGRld0enc0Y7vgJmXT1W6tD4fR74rOaJ0NMbAeqbqX6tF1w0uuXk2b71Ri29t04D3b/jLVrY8tpeMyTnc8uVzefH5/fTt7hxQi7Oc88FKH+qSCryOfnRDZlKOCw0ZRJG1P9zJx5/4A8+eeSG+Ta0c2NDErZdM5YbzJrF7Vf2ApkrRaePCK6bS3NzH08u+yTWf2oGhGezRdOQsB6LTxtIbZuJ22lj+py3IXgcX3zCTCSVZLF9VS+WLVcnrE2TJ/EwSBBPLCR/reFvrey25ZVMTSjdQA2YhXZRFsiZlM2NaAXf8qpGOypnE/U8nO/BPlJG2rqm+2oeekPc4nR0CvIOdgiAJzJ9Xwk0Ly/AHoqzZ50vSPy1ut+iwISV2sUAijxobsXO6LNOJ3h3AJsaO+OGG4oC3mA5f/4COzVQYqkZ9a4C8T58DjzwHwCW35NGTcQGyGsG9pBjp4mX0fLvnsPcKskTGBC+zF5WxvrZ3xLVY1EM9lmgGk4SkzIR1HVooRt/BHtPRZDnA6WR3Z2LeclSj6q1G7Plu+hUN7G6cdhv72gLI4lICoS5y8jOI9cUwVAlXWSbnXDyJmRNz0XWDcdkulhkPo10wjxWvZBPr6EcNacm1HS2s2kD2zHxufe9cuvwRnmoPEW7sY9sT+/jEqjrUUNxkHiXSHmpYZe8rBzmwpsHsbA8r2Dx2OnUDV4adnHw37c0Bs5YzVCPWELtXXdOJJ6KJwVLegiwx5eKJfOD6Wfzjyd3Ur6on3jM6iqUV/fUHYwRCcfSUTYqlUQWJZi9ZZFqZlw2FGYS9TpwlHhR/hEhzEFumHVuWk+b9Xdz39G4mTcylojiTWXlNuDvWwoL5XPCAjjBtFuX7cwhUdqOG4vzrpf2Mq8hG9joGDNqJ+8Js39KCEtP448712O56jPnFmfz7id3Euk1tp8qd7bgy5GTtZen0Qi6p2M15E5fyob2dBPd1mZ+JaDpNXdHHtFPZnu/molvnIttE1q2uw7fJlOHw5rooznMTj5uMJ6tmd6Khx9TkXI2Tcb7jxWnRvHYiIEgChedVsOzCSezd05EshFnGxOa2Yc93Y89zU1iWBYDf10+wIXBolOcQO4isuYXMOreCfWsb6dvdOez5rWjB5rHTX+MftqlHdNqwuW3kzS/m6mtm8t55Arm2Srb3nMV9j+8ydXX2dA7ZhyE6TUqmPcdJYE/XqHfbw7GcrJ2wzW0jY1IOJZNyqVldjxKIJXOyNq+T3Gl5nHluBZPKvFw00Y5NjLCjw81zb9XRVNNDSUU2d904h8n6MxiN1Qi5uTTmfAyA9U29/P4HbxzWkCS55aRcxmg6V63P0TM1lzMumEBPZz8HV9ah+CMDXjfUPbd28J6puUmdpkWXTOY71zhY25LP7/66Cd+m1gFUy9FigMyH08a8W2bzvffN5c+rGlj16O5RN1kKkilKeMY101kyv8SU2X50D2ogirM8i/lXTmXWlHwefWAjsY5+3BOyibaHEGWRcWeWAdC4vhn3hGzmLCkjGlHZ+dwBAArnF/PbL59HyT8+iNrQh+unX+HHK8exbnUdNpvE1z+5lBc2N7L+uQOooXgykgSS0tupGybJKSUNu1V/sJyknOPi27++iiuD90NjM7/xfp3//mQ1WlhBcsvkLSrB4ZJp39g8aoc50j0TZIlF7z+D+8f9C7Wynf6P/5xrP7QRxR9JNsrlFmZw+3vmohvwm9+8NSCL8E7H26t5bYxhaAadbzbyzKZW8+dE8RNIauA4CjOomJzL2YvLcTls7KzqYmtENY2SpA3JSOjb3cmGEZyBBV3RR2UArPGC3TvaeVkUKc1bwOyCZexq7aa5ykd/fWDYVnc9qhKu7yVcf/T88KEgSJhy4VGNwJ4usxjKITqf5JZx5Lvw5rrM3Z/9CbTHViMWZLL00i+xsSCDD186jQU8Ab3rqPZ+gjpvmL11vSy/fyV9ld1m1DEojSJIAovefwafvmYmv39mD9v+ufOI12M1/gX3dbGuumfUTUKW4ZhwfgV/+lwJYTWXP6zspLa6m6ByBjlOAW+uCx+jL3YOt1Y9qrLzv3u57fXaZGrJgnU/rbGdQ16fojFzWj4fmbQW5hfw0cAU9j5zAC2sEOiJYJdF5CwHkeYgfXvMZ1IQBepX1SN5HEhumQ/evoBrp8d4qzmL/WsbiTQF6GsP8eS2Fr708Q9h27QKuuqYN3kB9fV+HC6Z2fmd7CrO4s2wSqyj32TFWdF0TBtAm7XnOE1F3JRrMD8b856ogej/s/ef4XGU5/s//NnZ3rTqvdqWe8XGNsY22BgDpkPoLUAgQID0AgkhPZBCSEJCElqAAKYbsMEY4967bEmWrN67VqvtZWafF7Mz2pVkY1NCfs/3fx1HjmBJu9Puua92XufJP58/QNpd32ReyYdM6ksmbXaOPD/iChIcDGIwypThGtfo2fepAj+0eoFIdSf9G5vJunEPOpuBYIebYIebUK+P0+45nXPe+BpNr1Wz/oMfcdZ3k9UJ+c9iphwbeodxCJL8/6j9/61TgCEuGcXiKQ0Ek46UNAtjSlKZmJ2EFI3SnmJBZ9QmOI8vOoJQqCUAvP0+1u1sYl+Kmca6fjkdP07ZSbH4Pol6zidRIx3+Oa1Fz/gLSjFb9VSsrY3RIIMxy8r4JSW4BwL0NbsompLJhUvHcU7lT1h54ccIAkyfChNnz+H+sxfhv3E5jd0+ij/8Dfc8sB5PrGcQDytWjqueg16LoNXQ5g4S8EdO6b4PnwpX+gyCUSfraA9r6sllC4meNjft3rmY9QJStIvm/e189eFBfvrthXztqhk8vKdNpRcYDaQw2s9HNVHuU5lybLLiW7eXaFjEWprG+ddOw24x8J9Htozq+CPuEKv+c4iM+84iw2UEqtA7jIRdQY59UEPN+nqZXmJYFhp2BYm4QxizrJw7zoRj7cNcqNMx4fd/4ufP7eXGy6ZwfspHvHRsMSl581hh+IClGR0svCULdzib5/d0suo/+1XRG0GrwVKcjMFhxNPoIuIKYC50MGl2Lj+5Ip8Xd7t59ZebRs1Uo1KUrt2tPNDl4fZvLOR64R+ct7Sblgce5Ybb38TXOECw1z8qukt5llqbEdETHEG4OOJYYhQQOfJRHR/97Elm3xbl72Vews5t6tqTfGG2v1aB4eXvMib9SZBkWLOvceAzvetai54Jy8ZgNOkpX1/3/zmF/9dMKYWkpFsZV5iMWSdwuN1FV7+PSDBuwvELlsbTaDVy+SfdIqe3NgPtTQN0trhwdclcTycLX9PZDOjsBsSAqFI0n/R56LWYCxxce/EkGrs8VKytVcnYsmZkc8tFk9lf38d69zHGjEllcWGIj874mGgURFFm2kRvxLb7aWoO9VNyRiav1J6Gp2rtCClRBS+u0DxEpSimHBs/uHwqhe4XyLrmOr6xvv6UqZEVtJkh3cKMFaXYbAZ2v1+Dt6ZvxL2QwhLuyh5+8Pg2rEkGuuqcau/BqBXIsOiGoJQnuI+fNN+iBB/jlpbwtSun0eUN8uSfZN4mnd2A3WIgLdmE1qQdDm5SmYPDTj9vv3cUk1lPR9OAzM8Um5lQ7t/wUqDy74g7xPtVPm6dOoljVz1FweJL+OfvH2dnuwZ0BrqdfrbtbWXOdcvRi35Sulfj8Li564xz2bZNjp6jyKCNwimZjCtNY/+eVjp2tCDoBYryHGRqDzBrzHzetOhGaJSoZSQxKkuoihJdP32H+gMuzliVgjFzpqzJHNfXGn4dluJkiqZk0nysD9eBjhNkuUMlq2C3l2dXluG9UqYVGW6BtkFWPOjmggt/hVgdxdlw4DMHgFEpSmuDEykQ+X+e1vv/plPQatDotFjtBtLMBpyBCLsPddDRPCDjiAORTw2JOxUTjDomn13CmJIUmlpdnDEzl5dXluFpGVQboTL6ZRQKhBQzIOOhBb1A0dnFjJmQTtmeVrmx9gnzHYqSldZmBEnClG6mutXF1i0NapagETR43UHWHWylsbYfq93IpOJU0sNb6Ivre0/74zlEU4thcDuz3ruN7bav87dvrpYzhBjkV2vRo7MbKJmXz71XTefVrfU01vTRdaQbR0kyBQcfovfJHcz6sxG9w5QQOZ+IME8xnc3Aoq/NZv7UbBYXhmgZdLDnw9pRHbsyQ9GxuXHEzx/49QY0giamzjf6ZxVTYLb6FLO86cVkQBP6CkYdFy4vZVH1w2Cx0HHjHbz+15040i2yrrOgwZRtS6Dd1ui16GwGJiwfy4+un8UE43q6OIO7Hysj4g6RND6N1Ewr3e2DDNbKUN54qgqFIE8w6Xjp6X2EbvkK1895j20vNrOQbyF9ayW/2DYJn99Lc10ft/yil998exGO7XuJBiIYrFamzjyX1p2tSMEIWpOWGy6axLKMbTTMX86tde/iaxyg6lgP+yctZENZkzyzYdQlZLY6mwFTjg2dw4ToC7NjXys3/3QFGeW1DEz+KsHu7TKtSPj4gANzsomi4hT83pDcwztOkOSYkcWcpWPY+1Ed7soe/N4Qc3IcFCaZWGM3JFCJRMUoPVuaeXF7S4JDVdCIp0rqB4AoyZPzsWdgn5hGUr6Drt2tx+2RjVYW01r0pM7Jwdsy+KWRfP7fcwoKrFCS6Gwd5H2a8HnD1JZ3EerzqRQHn5epPCujlHSiYZGq7U3UlncRDYsM9vsZrO1Xz+F4SAXBqGPKhaVkZNnY/WGtjP+OSHR1uPHEaKOtY1MQAyLBDveoTmXWjdO56YKJVHUO8torh/E0unjj8R0qDl6Julzl3WxudKGzGcgqTcUfjOA0zOHad88iuKcN0wNf52hgGXavRM/pM/n103voPLBa5q6KOQP7xDTGTMhAI2jQ6QVaBgM8dKmV5sFx/PLpPXSUdfHy1d9m6p8f5hfrqgl0HFLPM+G8415gJULWOUwYUuVNJxIWaWgf5KNt/fR1H1NlO1U4pV7AkG7BXOjAkW6ht6YPf6usgDbxkgk8f8k+NHofW7ieXzy6CXdV33HLd8rGnTIpnbPPGUdZWQe1GxpiFO9DpbKIJ8Sz/95P1r0/w6rXsueVQ4i+ML01fRzMtnPT+RNYetFEPgpW4KnqBeTa9PTzxvHXqat5J+82mKhh/JNXMH7Ktezv8XLhRRO5arrE/s5JvPhuJb2dbhUgEZWiqi5JxpQMLr9kElaTnvXfe40rfvke0fLDzMiU+MMTdfJshyuIFIyQZNRR/+d9RMUo6df9ms2PHEygtpidPUjwsWcoLHqdhVf8kI+f3EvVxkbqzxrDitkF7PygBn+bW9VsRivf6ylnl1BSkExtfT9V25tYfmQWGv0c/Ku3H9fxxj/jvkOdbGgdVFFWgsOYAGFWMoQF55XywPlh/pI0hTcrN9G7p53bvv0eUSmKr3l0ltX43ofObsBSnMzMJSX0dnpo3Nv2iSSbo5I5xtbGWVdO4bozirn/kY0493WMYCN2TM0gJcdOT00fnpp+omIUQ7qFnz5+IeesuYvK7zzHHVe9/KUMuv3XnUI88uWLxAcf12KRtxgU6Wpx0dftIewJqXVN0RceQWPwaU0wyc1srUlLqD8wQmlMCkt4aoZC7sHK3qFBmhMcPxoWcfX7caSYZailJ0TrliZaY9+ZMT+PpeeWsndPC/Xd3hHRldai56YLJrIwZQsdnnmyYppz9LquWqaIyCyhZTW9eAPJjJn+CJ6JEZoPePAHW4mIEi5PiN6aPjV7sY5JYfaysTxwYRIpQjVlA2ey+mArL64sY8+0LDpaD+HscDProvHML0zhtT3NlH1Ym+AM1UGkYaZBVji7+N55nDExk+dWVbDz+UMAnHvPXJ68tpOwsZhltzbgrXOqjKqZM7NZtLiEkhw7b6yuoiGGrPrDneNZaZERUl/560Zuuv1PPPOHbbIGcHwvJHY+WqPMGxX0R2jpGCQ924Z7dk4izXtsTsC5u40HjqzCmGUld2omOoeJUK+Pyk0N7Bufjk4nDNGbAKZsG/Nm5BBaewi/AqZKduCqCBDo9rFtRxM6bTF2a5iLlpcSCokcqe3l4K4WfM2D6Cw69ClmBEHDVyb3YDr4BuLsC7nnhelMn7SMi6OyVOnR96rlmRWjll3NTi6clMZAvQsNkqp1oRHkrGp/ZxLnzC0mXN7GLSvGsvX1CgIdHl55/QjXXDkVW4aVUJ8PbapJzXqkYITOFhdBf5jOFlk/w1vnPOl3S5n+jrhDmPKTuP2X55CdbOFvT++hb2erTFeSZUVr1LL17UraWvOo31+nzjqcioa5oBconZPLHyevIdxyAMOzd3D21wU8x0ZCwSGRliY+w4j4ZB6lzW9WUFvdK2/48etZq0Fr1DL77BIWTs9l7Y5G9sWG+mylqZyfvpGaFyqw3Kj9wsvXx7P/ilNQXkh9ipkxCwqYODGDvgE/h3e34qnpHzXt/iJNgSGGnX4iggYxKA417KTo5/IwlIefMSUDk1lHR2XPqDTAidd8chhmKSzRtqeNnpo+gr3+hBRco9eSmZuE0aDF75XLT8PTVCks8dqmOuqmnMaqdw8j+sNqOWpUxxAb1PK5g7Q3DeAeCFBl1WMy6SjOddA74Mdo0HL2zFwObm4g2OVFa9Eze9lYvn9BBo7VDxLVack6dw6iFGWgZZCdtf0YUkzkjEllxYJipCg0NjmHSijDtA+GT79GiTXnA2E6BgMMxpyaRq/la2ePJfjnBzEsGIfesSjhugdaBzl4sJ26JjNdjU6ZutlmxBmwc/E9eQh6LfrrLmH3ex3HpW1WSm+OkmQmTM/musVjmZDaSpdvIdsa+njv/Wq6jnQjeoJEfMjN5qCI1qzn7MVj+MAbxtngRJ9i5mBZB35vSM4wYplRxBOioq4P4z03c6X+JbRZFugfwJFiQvQEaT7UwWp3kDMXFrN8ajaZFj9zC0p5N8XC9m2NWKwGcouSqS7rZHNLAeePm4Iu1IfJnMemzfWMy56BI9UsK6UFIohB2LSzieu/fwFJ5dVUe7OH7jcCUSnK6h2NzLvyHuwTPiYkytPwoV4fnbtbeTks4emRyzP6JCP6JKPqGLuOdNMTyx4UR3kqpqzbwtm5fK3gY6LufvYtuoAP9nWgsxtIG59GcpqFmo0NVKyq+tTkmFJYIhQUCX94gDe/X8EFlb9lzoq/sKVhzwmjdWXeSVadi/2dKPNO1TQPjihFKeCX/Zsa6GgdpO1Yr3rOwW4vmwaWc/YHfq5/ZveXBpP9wp2CYNJhK03lez9YzAWaF1k55mcAFAO/e2MBq+58lL89vh1/i+sT0QXHs1PV/FUejPK3Ci/Lp6UAPp4JJh02u/Gk//5Ujhns8o46wazRQ3NFN80V3fhb4jSw4x2DKFGxXebVT8+28fZ9vRDycesbE6l4vWKEoHxUHHKiHYEIXTHFu8mzc8lOMVPfOkD5oQ6OVnSrutvmQgeXzCskw/MO4Q4PurNm8FFtgP07Wwh2y05jzLQsLl06jvOKK9nZMZ3OlkH5JYtNmCvNY61Fj6AXVGeuPDsxKLLhX/vYGGtg6xwmpGCEVYfaue9H32Nnx3S8dW+p91b0hfFU9VJV048px8bYMwpoN+nwNQ7wvce2YC16iN4WF8F7vAR7y9RykxSMDNWFY05KZzMwaVYuXz+nlKKVt9LyUiUZE1O5+fYFLL73p/zz42Mc3NUiBz2xzTDQ6WHTlnokMcrSa6Zx6ewCZqTvpc03m7fL+njrhYP4GgfwN7vY/loFF+5LJr/k+/zzomaiNeUEArFItMtLb1iiKtPKium5ZEW3k1m2le8U5HLL965BQMKkc/Gfgok8+ptN/LMgnRlz8uhs7aa73snfXzzApRdNJOO++WxaU42rrIuqjY08M/sG5i1JZfX+FnQ2mcNJEbY6srWJhyhi1qRLqGttRBtzjMFePx3bmtUyKcCss0ro6/ZQta6OYMewKfxPYAEeDdmlETTYHSYQw2gMRvqdciAUDYt4B4PoDdqEqWjle5S1IwUjnzhNLvrC1GxsgFcfZOFHd2JMMzNveg7bLXqkEyGJpJiwUFiTMMsRFaPH7X9IYbn/MHCwM+GcfI0DPHjPOyAIhHqrjn/ML9i+UKeg4JnHnpbDitxd9Hz19YTfD6yqoWSRWZ3O/DRmSDUx6cLxTJ6YyVt/2Umw68T841EpCmERCdSHFs95BJ/dISgLW/SFadjRjBSWPlWU9Ek2ap00LMoc+6kmzAUOwoNBuXYbHuKvsZam8fIfFpIlbQWdjw1FP6N4nJ6iH79GxSjHiIZFJEkiLCVCfMucfip2tRAeDBLq9anMmlqTFp1Ry+HmAcxjriD15mtYdaiN1Sv3qHQPxnQz9142lWlpeyEcwKgVMJrlCXNRL4BedvZJ41KZMD2bgD9Cd/sgfQ0DsWwurGL87ZMzuOqW0wBY+Y/dHKns4rttNvavWUvEk9jkk8ISGiVTDInqZtK5uWnE4FnWvHzSc2w0HOpUywAaJKSwLPVZW9nNxqJkbj97FvmihK4gGdLTKN79fR6ZO4V3p13JE//Yjb/NrQYcTdtbyDoth/uXGLE+dSuv3HcYgNu+U0Tx91/mD7/agK95ELHDTU+Hm9497SwrS8OcvADn0Uq1nBOVotQd6OD98RlkzT8N26H/UHX3aooWvEvS3WehKSjhjtR+IrddyVsvH8LjDWF3mOgEsnKTuGVSGVHjYa7++be49WtvEnEFWPnvA6wvcCBJUbJLUxEEgY6aPpm3KyzR2uDE7QrIpSBXEJ0thnbzhNRoN9DtY0yeg6sWFPNKipkdzx1UWUKVoVFFk/lEUX18EBOVopR/WMOt/imEQyL1G47IjLMxYsFBrWbERLRG0JB8WjZnnFVCR/sgZW9UntAxKAipc2+t46qH3yQrzcI771ef+J0VZap/jRDnDE5hYnlEj1GMfuIA36cV7jkV+8KcgpJ+SsEIjVW9rO1YwPl/uYNp5Y9wpALmLdCT8sJv+fYTZXjrnPKm+Sk2Y8Gow2w1IEVP8YHEVKuAz9UhKKaklcpL85kpsE/BtBY9P/zNeZxT1MpTu5JY+egWwi5RLXvo7AY8YRt2aykh0coZNxdjWjGZHWvqE18CUVLLB1FJLtiIcfdYDIho9Fr0KWYVAaNEgkFngN37WjnW2I/fG6KurBNf44A6syCFJTIsQQh62dK7kA2HW3A5ZZoEBXZpyrRw/bUzuGHKUXZ3zeHNnU0MxCLP4eUwrz+M0SA3f2dMzcZi0lFmaxz1/kTFKCFngIatTaMO08EQQMDV75cdS1yvh7D8THurennbH0Z/1Q3MueZepGgUm0FHcf33iTY3MWWyjYmzcvCPTyMv38Gxo920HuxEpxNINjTR+n69erx3Hmviul/v4qnCZPytbqRwbD0GIwwe6cZjktlddXaDTLcd0yHYvauZ3IxJXDt/PJ2/OELjyk6W6LdiKCzjw19XcfcHnfiv/DptXW70Rrn2HfCH8QhjsHKYbEsz5jy7LHDkCdFV04/eYaRofBpmq4HutkE1yAkHRfzeEKFYqStrQjqhEpGOHS2IPvn+RFwB3L4Q41L6+c6FpRzZ0axGxIJRBgbok4yEB4MEu+Q5CA1xG1wcc6zK4SRGCXZ5qVoj03vHN8AVIMBo71bEHWLQHdMNH22Cf5R14Wsc4JU/bMOQYhpiAz7O34Lc21K4sT7vPWS4CXqBpMnpRMXo5yZANJp9ITQXGq0G24R0ciam0VHZg7fOKdM52AyY8+xo9FqZm+UUSMKOZ8pGB5zUmPyJ4I2fm0OIpa7pc3NJz7ZTu7GBcL//v4IkEPQCc746i0d3/4Dqj9qZeezfLL68BkEvMP2iCZSOSWXV0/uISlG5SWbUkVbooKdOFltJuI5RNI3jzVKYxDV3zkWn0/DyU/vUprmCOtKa5Map4jASGm56LVkL8snMS6L5WB/jpmbh7PXSFhPKMeXYGD87j7+fu5/ubz9P5ks/47ebiln3WjnBTrcKwVSaoVqLXn62gkDx4kKMJj2125pl9NUp9qvUqNZmGCJJREaoKE5EuQb1Wi16tcG75LxSxhUmY9VrWZG/l67rfkbZpgHOXX8dN21aSsAf5udfn8+Ed+7g9dv3q8e9dt81fLPqUvatPDJiRkUw6chfUkxKuoWjH9Sq/Q59qhnrmBR+cN8Clu75DrWP7saSacGSZubD//Twlb/N4OMLnuS3D69XNZQFo47kcSksPbeUiCixY2sj5ywbR++An20fHCPY68dSmITBoMXdOkioPyBnfzaDXKb1hNAnGTn7wgksm5bDT36/hcEj3WrGXbh8LH/71nQyP3qA3uW/5IqvbiDQ4ZGPG4veB91B9q85JpdAFdROfM/oM5Zy40kvAVVIR+8wEhWjI4YaR/v8yRz7ZDUjPg/T2Q1c/J0FWEx6Xntky6cakPvSaC40ei3Lr57KrWem89z2Xt5+ZCsRtyy1+HmKUEOsQXQKnClKrXr4zz6NncjBKL8zGLWy1KQ79KnZH0/JtAKDTj/2P3yTOZ4+7n1Jj+gL872/Xczl7ifQTJnL2/+KMvaMAu64fCobyzt459FtCRA/xdTBqFGYQgW9gClGvd3c4ZEHdlQKYoh4okRcoyOpNDFq7a6tzXTFkDzG0/OwJ5vk40tDtOftydeS+69kXq2dwf69FYSVbEJMRHFJrqC6mTdualQ/r7XoEyLLTzIh1i9RaB2Ujfn0m2dw+3kT+Nfqo+x/4ZBaKogiZ50RV4CQXoumzc3qeieW4mTOWDqGC8KH2fDWAABtP36Ph1/+IR8d7eLNvc0sO/9Jrl31XbpfOELynGwGp91E/5YO9Vx0dgOGdIuMgAqLdB3owF2QhLXYQcRnxVsvD925AxF+99cd9Nz6W677aBPR8gMgSVz3x6lsCl7Gmx9UqXV1BPn5DTa5eO/lMnInpDNnfgGSFGX5zDy6Oj0ceqMCd2UQBEHttymfF4w62RnqIuzb1UIwJKIzauWyX0AkKkLHvnZe2F3IvbvbiL50BQ/9bjW//OFagr1+BEHD0um52A1autvdNO1pUx2A0qyVAhHEmOCP4oROJngc7X2ML1HpbAbO/8Y8JCnK2r/s+sRy0snYqczSfFYTfWE+fqtSXtPBk6+KnKp9IU4hGhbZ+GENTneQiv1t/7PMgF+EM4BYSavAwYKzSjha0a1O7/43TCNoMJp17B5cgjcsUb7hI3m4zWFGk1TIqpa5hPvX8Ow9EtWz5nLvnGx2LXhArakPd5oj4JixzViwyayi+8vaaTzcpQ68JZAAhhN1kZWJZmBoDkMSEUWJPS8fVjchwaQj7ApSd7Sbv28w86uLsrjGWobr3Ek8v689QZp1hMXOT2vRY8mzE3QG8De7PnFTURByxkyrygwa7PMTCsokimOLUsixhTCadbJjlEYOXEXj5iJ8jQPs+LCGjdPvZOHyV/H3+Umfnwt/uZq7r1rA4XH3sbe5n622H5D9kIVgWGLvv9toPdypZibL753HA+eHueQHLbgOdBBxhxBMOh7+5kL0goYHf7sRV1kXoi+Mr3GATTubmHrZxUw7I53oke1gcSAFICXdiiHNQiDsQSNoMKSYyJuQjt6oJSXNwqLJ2byxuY6y8k68g0G1gRx/P6OSoK4PrUX+VcAfpvJwJ5GgrJcdFaOIUpRwv581Lxzke99byKqpL3DF9Ftx/eIpfn/Pe3gaXWwq76C0IBmzVebSUpyORtCo0a/WqGXqZROZNjmLjRvqaNvQcFKRfbxGynDiRyVrMCtoIeHksoETmSZGATL57BIOvVHxhdJbRMVoAjX6F2VfjFMQowwc7GSbIpzyJUGrhtvn4c1P5js0Wg1akxaDXkvAL9NO/7cwx5bCJH5240wyTVXs7hyjNrhf2lTL7sJlvP7sVsSgiC+SCsBAvYv0WXa64oa8RsumgIQ0X9ALhIIifd1OAp1yI1sw6pi6bCypaWY2PneQoFJmiZXTbKWppBU6CIdEeiu6VThtVIqq/Qgli4gMBohGRLo63OB1gruX/LTZCY5JOdf4/9YIGnW6Ni3ThksnqI1SzXHKSAogwlKcrG6W/d1egn3yVLWgF9i7t4WmNheV+9txTM3A3+ZOoDNQ7pkKZAhECPb6eWtzHY9/8De0W9/A/2YZO15pYXp5LzOeyKZ0xhye3GbmjTfLCfojhPp8CeUUo0GLXhgcouWWophMejIsBiz6MI4sGy5tD4jyzMalS8cxzbIB2huRymvRZmajEzSYDNohBJcoiw3NmJHD0slZ9PhC1Ha70ekE0jJtzJudzwagcUODWnKR7xFqb0kKSzLqJm49yFPUQ1G5v9VNVc63ycp8gbrXqrnqW9v5c4qJiCvA7q2NNBU4cPX75dIbEOqPJkDCBb1ARpaNlCQjWt3IOZXhzy/eGWhNMZhobH4gfhPdvrF+aN1oBbWf8akDREFDckkKFywuoWJD/efuFEYrY33hZaov6oulQITQ5yC8/Xna0OLVqGnlqdaaT8aksISveZD3Xz4sb0ifQGr3eZmgF3j1icVUjZtF/urreL/xCnXj2vHcQbaLQ026y75Xy0Ord1OQZKLunlUjnNYnpcVSMEJXWac8ERv3nHs73erMgGIavZaic0p47dt+ohveQLNoGV9fOZbDbx1FVKgZYi8vxLKIWLmxcm0tX+nNxWrPpPnwZnWoKv4cE847VtYR9AKpmVZ8XnmQ7njXoQiyTD13LBefPQaLXsuxTjdrVlep8zM6u4Fp03OYMTaNxy84Rui51zn6k+f59kPrMKeZ8bQMjiBUE4MiuAJUbm/mZ8nj+fEFN2H2+Uld24Kr0YXjmVUIvje486HHWPtumEDboLqh6B1GBL3ApjXVbPlYFwddFOmv6uHFbfWMzXdgMst9DIWBNSRKIEXAaEXITAZHJk31XvpjdOLycJzssEpyk5hZ8VOk1h7E67/F4ORsolEtYclMJFJC59EeAh2ehLkRFXYqSSqqyxUr9yANPceoKK+Pe374ARv3foPGm58h8srrLLzhATY/tR/n4S4G6wfQWXQkFyVjtRvpcIcIdsvT1Yp40fY3K9mpFwh0eEbtx6nZgQJJjvU8LHl28ktSyMt3YLcYEAQNzsEAAzHkVH/bIDq7AY1enk/iBDQbn2RSWKLnQDt/dQc/99K4ArM25dgIdHhOGnL/We3/DM2FRquRB46mZjJ2ciaHP6wl0DoInNxiON6mMrwBqzTbIq6Auqmc6Ls+T69vzLLSffpi2tqh7/cf0Xf2eeoiksKJ0MyBg51875Y30Bq1J2y6jUaRoUBBI76YM4hFXNGwSNPHDfLxgkPaFcZ0M1ddPgXfgzdR+U4Ts/8UwWq/W703gknH4jvnYNAL7FhzLFZ6ks9bDIo0r6uTz+UkG4/6VDOX3ziTq2ba+MbjAwkzKfHXobMZKD1vHDdeOpnllnchsIv21JvZWxvE1TygNnuDXV42fHCMH/0xmT1jH6auAa676gWKps3gjLkFbN/VzNHhlAiihBhERgitr+PXjGXF7N+yYPf7RDsbIRSG3j4aPAVohJqhc08xM+28cZy/sJiLKx6AzAyutJ9D6/p6pLBEoMPDuid2q3MESqkp1Ovjjz/5iDfmFzB+0iQWT7mClnof6zc30N0+KHNJxfoD4cEgh471cHnUS++qGlLdv4NtbYj+MJkXj+Pq639H7fmlHFxXq1JK6+wySEQw6vDWO9V7qqwBVZhIub+CBm+9k6+vm8s//tRPaO1BHrloF3f0TOPIW0cRe31IdgP26SbGlKbhHgjgaxxQsxPlvQp0eEbAipXnp2QHijZKemkaYyZmcNn8IhakbiW6fxUMuiE7E838eXRF5rD2WJAtu5ppYihTFaXocUW1TsZC/QFCu9tO+XOfZDqHieLFhdz2lem8+G4lNZ+CKPJTHfcLP8L/kBmz7Xzzznmcb3id32YvYdXvthE9iSh+NIdwPIjbcB6U432PEt0oL8HnMRuROjGDI6/J/069vJTGbSN1H5SXSecwIcQ0f0f7m+PpW8eXSbQmebhLGQxTxFZEXxiNoMGUn0TJvHy87iC7D3fwlT88xJwHG1k7uIL9D69XMwzHjCweLXgNdDr+euPNvPTzjYkQ0FMwZdDuSGUXvQN+Ova1j9AFBlmd67L75vM907P0/uiH1LcMUvKrc9nuD7JtU0MMFqo4VJlVdWXlHK59+wZO21/FH2uXc+zjnTTsayPUnxjBRcUoGr0WQ4oJ69gUDAYtVUe6qDrSxVulkxhXuIDCDCu2NB1vfViVMLQpBSOy7KmgofuFI7SUDfDwzh/zzbp+PMdkjhwFtDH8mQW7vNRvqKdpTxtb0s0yTcRgcGiNxSJi0QcHd7fAL24iIxQmfKyfj16JIc9W7edq4Yc8dvNt/KN4Li/8ZrNMlZ1n55JrpnPZzFx+vfIQR96RdR0U4SqF6TQqRdVsPG12DqGgiCa3gIZXXyHwfBU/2HWIW9bUyFFvIEJ6to35k7IIBCN0721Tn7elJJl3/jmLtXV2nvjZxwn65CoFvl5ucBuz7RROz+Ly88ezpMhF0ppvs+Gu7XTFln9GOpz1cAVZlzUwM+9mjqT10hITCpJvyMlF3/FcR8og5Rdt+SWpLMhr4/1MK7X/hWY2/B9zCgBJRh3RpiYKs+2fusdwMphntQ482u/0WhxTM8godNC4pfmUqa6PZ9YkA1MmQcVRaL/gCbwvvJF43DiHkH16LoKgoWNfO6FhjtGQbiFzZjaegQAD+9pHHEepSxszrSQVOfAPBBADBiyZFjwtg+rLYi9yMG9OPuXVPRzc2MBdrhy0uolU79kiD9TFIkKTSQ8+P9is8vd/AtXIJ0V0IWeAI+8d4wiMyNYUmOLUFaV8L/klVp4mTzwX5MOY6aex7s16+o/1jQAGSIEIz/xjN2VLL8OQqWXDE7sI9fqOG7lpjVocE9K4+7bT6XMHEKUo+w53cmhLI3UZPcw9o5DTx2cgCBpEvzyMprMZiHhC1Oxs4Z9tbla++k9m133I40e7VGesQGCH61or9yPik8svoifm7AUBY6YVS6YFZ3mPDEkFvD0+/nNkGpdf8gOs5a9S9I8qmppj9+9YP7p//JO77r6b13JseDwhrKkWrpiZSe4Hd/HLGx7lyo8bEJWJ+lilULnPisTtgrNKmFScCsYWLBkWDL4w3kjcoJcUJS3FzJQMM87xGWw16SCWtepsBhz9m1lafCFPZVpVp6C+s1pBFSoypZspGZvK6bkmHM736Hm1SnUIAD29EA2IoNXhDkXweRM5zobfw+OZRq/FmGmVn9NggGCX9wst5yjcUQ2u02is2TkqBc0XYf+nnEKgbZA/PLuX2677Lu+9eeSklboS/h3vEEYhagOGKIxHcQwK/n3pRROZXZrOIzX9eDyh4zZBh5/Lico8rQc7mV7xL6aLIZbc/eGQQHoMWSMYdUTDIpbCJOadUYhzMEDXke4EJlGNVkPWaTl89doZbNrfyrZROOwFvaA6BJ1eS1SU8d8g1+jtkzMIdnvxdXr44P0qBptc+JtdHKzuGyG2A7K4UN+8b+OPpLLrn3vioK0j6Q8U0jiNcHziwOP1szRaDcYsK5PPHcs/Mp5m5Wlb1d+dft8knqheSNXHO2T5yWHnKIUlXGVdfFzWpTpW69gU2TGMAomWwhKCoOG0bB09Scm0DAYoKUrmyIe1+BoH2DgYpKvXS0OVzH0z+8rJ/PjyQm78yS5cBzrwNQywZHcrjhlTychuk+cwBA1Ziwp58ocL2dfh45H7Vo+kZRYlpNi9i0pRrMUOHvnFMuYJb3DzyvHUbW5ECkTU8tPKw1Zm5X+XBVtSKLjzeZLHODCdUUDfKxWkFbzCnOX3srV5P4JWQ350La9cvZNzrrqMqef/mUNvVIy6UelTzKSOS8XpClDX5uK3TbO4+o0dmHRhnl7fIPd4Yu9RTrqVAs06LhlfylMxPiUAT00/vz96Fi3t7fiaBxOzbGEoUxCMOqx2I6lJJozaQYhGsRXYcTj6cMVYXi79ThGGO6+lLnox72+qpaG6h5AzoJbATjYb1Rq1TD6nhAVz8tl7pJMDr5V/ZgnRE5noC1PzYS33Hu6Up9z/P6fw+ZpS4mjb3MSjR7pUTpdTajTHDXMl/Dv+OFJUncpU/iaeUtda7MCWa2fv7hY2rZc3CI2gwZhjI9jrP25KGs8tc7xzDnZ5uf6xKJKoI9Qnv1waraz1mzMnF783hPNwF4EOD+vXVKupv2DSybQRMchh96FOnojVeKNSVB2tVyJ769gUzrhkIlVHuug+1Kk6V61Jy60/XMzFk3S0e+z8+pk9tO9rH+Kyj/1dPC9NNCzirXNyyy+PEPJH8FT1HrecpkBGNVoNN993BrdNr+JfByfw9PfXfqKDVzQoLrt7Ht8tXc8r+UMOYdYMOHTT87z3+DYVbRSV5KbsaKgPjaBhztVT+OmVWbxbGeWfP1w34oWVghG6d7Vx6y+2IwgafG3yEF3YKT/jgYOd7IzJnWpNWtLTLGSZK8ktScFd2aOWZgwGLeMmpON1B/HU9JOaaSPf/TL54ybwp0zrCKcgmHSqzoMypfzevhbGLFvBtOkeklLNVO9rI9jtZcuuZkJBkb3mds5bfB0XvX8mhtbtiNv34ViQC0l2FuRmsyvVzEDTANWRC3E4fsxA/QDnLiymYkO9Srmh3BfFSiakk5FqYc0LBwn1+lhj3IveYcSSbZMdXCyYSE8yET28G4u0k9wJF1Jd2QPIG+Ibv9ki3/cTwLmlsITbFeBYQz8fp+UzNfM6Jv9uAiu+dwwiYXBk0spynj3cw5HKMuore9AZtZjz7PgaRRiltBhvw9eh3qgjJ9lMZoZ1hFb1521RUWaJ/W+ruP2fcQoQiyqDMlTwZOqICdjnT/ib4ccZ7hhAjjQKZ+aw7KwSmjvdfPjCIaSwhCnHxrIbZ7Dx9fJR6X6VIaZgl/e4PRAVZ2/SI8U16jSChoL5+SxcWMz+g+307e8g4pMjYUtxMqXTszi2uSmBOybY7ZVRPmERnU0+tkKvrbXoSSlJIT/Tzt7+RrkerpQNLFbOLEkjvfYx0m1Wxk1aRsfBjpHnqtdiKU7Glm3F0+7G1zxIz6421fHEQ2LjN2KtRU/W5AzMVgM37/0+r8w+yB2rl/Bvx4Lj6lgr90aj15IyNYP7F/Xjuf819XezZsDEjx7k1wc7SEmzEHGH5Gt3+pFGyVgUy8u2k+76kPMnXMnTcQNy6hqIUTA493UMBQbxay42EKjU+je8eoQBVyk5+VraJ2fIYvJhEU+7m6ryLlztbhAl6ne08NLZF9FXFyDsbEi8zhhCyJBmoWBqJqFghI7ybra/W41OO4nbFo8h5UyJVTPm8O9/7KF6SxOCXiB3aiZiNEp/sIRs3T5CB+Xai640SJHDjDHTir/ZxZNrq/jTc2ciuYJs8wQTApV4SGjEE8LZ62NcYYrM1RQQQRCI+CKkZ8vIoOrtzfhb3Ri0AlJDK+FqJ2NOv5ljcetWjeDj5kLU+xu7b1JQQ6g/QEttP5vCEhWZVgpzish0TMSkE5B6oLm3n7LyTprrZEbmKcvGkpVuZcuGOvriyn8JNO2jZLRSWOJYWSerBQ2dLa5TEuP5f8n+bzkFFYd/8g0irUWPrTQV0ReW1bXi+H3UhtdxRuKjCCOcz7w5+dyUsYaou47gtTez7ondOEqSuWlBCeWHOkY4BUEvcP7981k6PZeHHvxwVOEPjVZD8pxc7r5rHheNbeZv21OoWSerjplybFx+8STMei0f9/nUzctWmsp3757PlAw9Xz0mk56pBIGirHssmHQULC4iLdNG1fYmwjFo40DrIG+9fEgVoVE2ca1Ji0UPRCJokrOpPdozgvlWQf1MPKMAe7KJQ/5moo2uRBESvYAxxw5AsENu+Gr08mT45OnZmI06Qu/IjdGoT6ZgiOhHRvbq9xl1WAqTuPu209Gu+j7dh7opyIczfjmH2kuf4n2nj4tmmZg2Jo212xppqO7BHRYJi3IQMRr1+NqVR8i973yq97QeF3Ks3MfhpY8RfydF8dY52fn8IWZ+ZYqq/BcVo3gbXTS2udUyh7/ZxZ+/9b78uXAiYiYqRUEQSMq189AtcyiNrmJ3YAV/f+MIZqOOgppHCK7ax43nTyN4+928+sJBAp0eJDHKmflGQpIJMWcaIecrlH3QycSmQWa9eoBJs3Op1gtU7G3jN+f/gNNnZbDutcMJWYrWosc6NoWiKZk0HOqkbmcLXndQpZaYsGwM82bnc0fnrzj28BYmvHs/C7+VhC8sEmkapPbNGpZ+LZcP9VqIDTAKRp08DxGWkOL5yWJ8SVJYQ1QKExS99HtCDLa6qI5pHJiSjJROzWJqaTpjMm205zvo7fTgax4kK93KDWcUIUWjvLuvQx06VBrXyhClPDU8tKakYARXWRf7YuSIX1Q5R2vRyywIMaLB/7bQzv8pp3AqpkSXWfPy+e4dc3l/bzO73q1CbHUnOgMhDgMvRNFIEhJxyBklY4hFIG5fCEx2SE1G55Z/1neok2/9cQs9B0Y2dTV6LROKUsizG4/bGDfl2PjoUQO+H92IdnYWHabvqy+sLsnEwapuKg6007tfjtpT5ubxw28sYFpGgCM9AoG2QVV3IeHYMTlOZ7dXdhrIab2npj8hqlcs1B/ggaf2UTjmSo6+10n71oZRXxwpGKF6TyvRsJjA4Krc95R5ebz5qzGEJTNXfe+QHDXHYLCVhzsJh0S6zvw9y79dyN0f16BPaY/RDftGRG+CSXYIkxYVc1ZBH5reHEoeuYCiMy/jsc2ZeHc2MmdCJmMcbaSZ86jIS6K/24PXpEPjCY3oCwl6AX2qGX+Li7/94EP1npyMjcolFcfQG/GE2P/S4YSyphSIIA0rW6uMt6M4GCkYwecOUmrZxJaSn1Ew9rc8v+anEGnhjaxXOO10PSXXL2JWcgqOe+ZzsKqbHauO8stXj5GTa2fqmFIuv30ByTveov9YPxl7PmTFgu8ydXwGgWCEd14uYwNHCTkDCVDRvIWF/Pzr85li/pgtFy3ll49tpXW73LmOilG62wYJTRdpeGQHBw5GEVf8GesFj1Fe38flM/MQXqlibIoxRi8iTzoLRh3hweAQD9Qo2YJyP6SgRtaIjv0skmLCMjefs8amMza4kjOXz+KN/Mk8176bvgE/Zq2TjBTL0JfFGteGdAtas57wYJBory+BAFIpQQ8n4VNo3T+PrEHQCzhmZHHRZZPZsaOJll2tn8j8/Hnb/5RTOFkSqv/GeQhGneytIyKbyjso29OqNpXUEfpYo0s977CIFNYgMDRdqzoG5EW87s0KjtUUcebchdxztobdW3Po2dVG+8bRx/ijUpSXV5bxQbp11AaooBdYctNMAr/9Ea2bWxj/4E3s/vZRudGpF4gMBtj59lHCTr9Mmz02hXU/j+C85xKSb5vLqtbrEQOiSuqm0WoSJo2d5T2JUVEMF66ohykT61FRrpcfW32MY7F7Mer1iEO6BsebO5hyWi7W9/8IFjMFE69VSykhZ4C2PW1oBA2udjfOXh/LFpcwflw6Bw+207C1KUE8XslKMkrTGFucQqsnl9CYB9nf4uSdnx/F3XWE5PwkBlwB+tyZ+IN9NDY5ccUw/cPXhNz7sXPR12azf28rjR/Vy870ePDkWNSqMMMq90/QC6owiwJtVPU8TrLPFT+IGRWHCOSkQARf4wBbui8mPQ327wqS9+xKtvzqCOEw7N4RJpp9Py++f5Rlcwu56PRC6qt7KXuniqOpJg6XplF654+Z9mcPod1N0NvPeXMreU+cSHXLAFIwgj+WucT3mVacP57Jtb8mCqSMXYot2YQrFphEpShdW5t5+XA3Z72zi2u33o/m0hvwXdfJ4QPtaH50JcXra+lDnsi3plooGp+G3xuisaL7Eym2Ff1vTbxgVlgixW5irHUb/fc+g96m56YHr2T3mfPZv7aGu2v66G92JThYBQSitxnk7DTW0B5RAYj7t3VsCmPm5dNc0Y0r1iM6kSlBhUbQyEHMKFmA3qjFZtFjMH452/P/hFMYjixRFMi+LOegETSkzsmhZEIGNQfb2fDqEVUvQKMdyhAEvYDWJFNHawSNrOTmCSGKcnqrkRKjzKgoC63UekLcf+V00sp+w9jJV9K7px3pOPQLgl5Ap9fKsFFp5ALSWvTMHJ+BUcyidEYW/6hdjL/tI/X3YVcQQR8me14+FqtBTukb9xBwBsAiSzbaSlMJu4KkFDnwuuXGliTKMo06u0Hmw9dLEBYx59mZsnQMJUXJvP/y4QRmVaVc8kmmOJH464y3usoeND+7iaBop3V1y9AvRFmXQmc3kD8pQxaTT91A97hFQC7N+9sJ9/vV79To5fO3J5sIhUU+ruqi8livXB6q6ZednhjF6w7S2ylPo/Z0utVnrVIhaBlCRIVFXJ4hfp6olAgAUHsHWgFLYRKTzyrh6NZGWVNBwfHH+iM6mwGdRY6GFdnJU5muVSZeNVoN4X6/2vSNuEM883Y5/371qxQ/+TH6mUVYLEfUz5V1uTm8uRFnr4+JEzMwmmXyv1B/gL6GAV7f1cT482/FMG4zDLhg34ecf5qZQ7VWFfLKsHJOc6cbzZxScGTy4pp6BloSZUyjUpSIK8A3vrWaSWffSfvDAwR7/Qx0uDk6sJyJiwsJRDQUTMxg/Ph0ppSkUt0yQGuDLKU6Wg9QI8jBmyHdQnZpKpIYpa/TQ6At7tiD3ex4pwe3G873vcryh67h8Ie1tO9sSaCfkWlEhoR6FJjwJ0Gjc6ZmcvaZRbzV7cV13L8cMkO6hTGLijBb9Rx+6+gIAZ+oFGWwtp933jnKQINzJLrsv2BfulNQonKd3SCLdvjCqnj85+EUTjX7UGCLL/9sMinBPXw9UsjBV8rl38UiB4Xv35BiYtxpOfzqhiJCkpXv/+MA7eVyk04MgEaIjig/RNxynfD9Q23kLryPoy/vGVEbVs5Do5dREucsG0dtk5OmYdegtegxZllp7fbw0YxHWX+gjS0PfzxE4RHjqXHMyOL1B834xVRu+FULH1ru4rw/GkCn4/HSY2w48zze2FCLxaqn4kC7OoeQt7CQcZMy2L+pAW+jC43WwEO/PJdz6n8Jg256LrifTTV9n5435jhw367drSy50wFSN77mQfX3Cq+Qzmbgxksnc07776m69C0m/PkiFk74KauN2qF7J2jQWXSkjE3lX3dGEcpeobLw+0hSlN5ON64YnUIw7CbU58PXOADEEfUhR4ELL5rAlLFpHG3oZ9sHxwg5A+xcfUymaJiRhU4nIAgCgUAYg0FLKCSqFOKFM3P45qVT+KtWQzgYQavTcnh1NaIvjM6iI60kmWuunEqe3cSqXU3sfPWInI2ehGNQHN6ZV09h8YxcXl1TRfWaYzJgICzSuLeNNSvu4KJHpuDVj2VB4yWYJtzJlJsncNlz+4iKUZoPd9Gwu1VtGEdjOhFHDrTzB0MBiybfyvzptYg//gmu36zjp2/9nvX/GTmcGRWjfPz8Qbo6p+DzhqhZd0CmShfj1PNMsgZ1sMvLwf8cVj8f6PDw+p4mfnrOCojAgzecRql1C4SOssl4Fts2HYcIL5Zx6ewGzr1yCj9Keh7N+Gk8cXQ+bzy1F9EXpqvfB3oj7tjc29oXurnuT+v4W14yzljZUgU1iDJFerDbm8AO+0nWebSH11wB+g92fuLfglzqXbigiJQkI5Uf1Y1gE4iKUQIdHjpiWhNfRmD8pToFJfVLmprJuKlZpKdbOHKgna79HUQ80c9MNW1It2CfmIYUiOAq7/nENFQxwajDG05HY5xDQ1Xl6Oc8Jpkrr5zK+Cw7Gf0rIS2f1MxsepJcculGjCJJEoRJaEwrMpLv/WUn7z9rJNjtVek3nAc7VZUqc6EDQ4qJ05aM4drT9DzeZ1CnRkGOEguWFDNmYgYbN9TxxrE+gl3eIa4araxpseyqKVQf7aHdN4uKHj+u5iOcV/8LVi5bC8CiC2yc+e54XpeiHPi4Hn+zHO/YJ2fw9HdLsOp6ubM9naagSGqhgzPzmgm9XI++JJm+Ac/nQvQXj1xRLD7aG45E0TuMTE43In7UyIALsFlpcwdVygX1+/Raps3JpXXZjezY6Ofa9U5S5v+cifkOngyJdO1NpCZQaJtBXjtX3DyLb2ifwv/PvVx95Uzeuf/7bDnQhs1qYOHUbKZnglXXSyRqpD+QRaHtCJGogfufTaVqYyONe9v4TreH4GCQl393Bpn+9TyYMoMNT+4l4gkRDopcOLYb84d/Y8Hl13FFZRade9uJeKLHJWpT1sa135jPuBw7OkFgSUE5zXMLqdvcSCgWxUc8IY7U9zE3dx7Huo38641+sh95nfamAYKtvax9sgRjzz5e6b+YP3/3A6SwnBnmzcrmsW/M4umtHbz4/lEqZ+Ry1zevIPro69DbSP6sInrSXPjb3CqlNcib+4FX5GwkgfdKkIOstPFppGZaqd/bJku2SvKGHPGEOLSvjdaFyxnn2If49N/p39KCY3kxGSvOxe8NDRHliYlEjUq555tLQqzUv8np89/hKx9v4U2dFikcpL6qh/bzlgE/Vj8Tef09xkz4DgfLutR+gXqPwyIRZZ2N0jMbblExiudYP94650lv3t46J6//56DsIHtHR8wNz6T/2/blOgW9FltpKj/7ziIWpG4Fo52fCXl8XNFN5DNyS2m0GhyT01m6vJSGpgH2VyYKyChRhhgQE9AjShno9l9uVukNlJ8rZSO9w8iE6dlcPElHp1fHWvdVdFX5EYQuLMlmNUoiLKHRSuhTzBjTzQR7/XIkEiuDKHV/S3EyF1w4kdcbXXJ5xGZg8TVTcdiMfG2BnhTnWgYHZ42ocztSzaTYjfTX9o9AJWkEDZZMC2dMzGLzulpuum81of6APGQWkl/akmLI+9uN/G1PClXb98mKXsEIhnQLsxYW4TjwFJqCAsaPP4dFZxQyLtPO9jaJvK+/wkeVnRx9actnyhKUzVsZZhJMuhH1dkXwXQyKslbvxDSSsmzsafdxxe1fY/7ycnbov8pbr5apwjOKSYEIu9fX8bP1T3Lt0Q28Y7iDbe83MntyFqmZVnotegxpFjKKkykcl0Zni4uWw53qYNP+g+0M3nErjsJiIlnT0DUIXLN4DPOMq/H/4T/sfb6ezi7IzoI51xahu3EB+smnM3niRJqO9RHo9NAXa+6/tNfD9XOWIwhy3TnsCtJf1cOv1uRw77JHqG8Hk/mQqiksgVy2Goao0tkMTFk6hntOryHaUs59mxexSrBQU56orR12BVm38jAV5Vlyeayim5rYmjPn2zH27CP4zGqu+NEcnrDo5elkvUB6jp2cY49zwxk/5Ht7tvFBWzV9Zy7mx4/kEn72BR5+6TDjf76Y5/Ie4pXnD8j9HgX9FB6dDVhnM5CebUOnG+qvDCEBo7j7/fgjWkKP/IG3HpS1iS/NtNCxOEiob0jmdTSLhkXW1GVyzSvzES68mF9s6Ub0yzMefXX9vLirm/t/WMKqR2X4rugKUDjLQVmMOjv+PORFk9hYPhk7lXcg7AoyEMsqvuze6fHsS3UKgl6gaEomC0yriTz/HtqF0zAbrxohovJpzdfmZuf2Jlzt7hEbqjHLSsmCQtqqe3FX9qi1XmX4RylhaS16iI98YpGKs9dHRa+JgiQtBq2A3WIgJ9NGf7cXb78PKSggxq4xfVI6OYXJHN3erKJ40MqbnxSMEOz2snFDnQr5BPB4QlxzRjHJh35D1Galt9M9okZbu6OF5qM96ncO10Fwlvfwp6d2q8NQSt30vdKfc53rbHr0i/jDLg/rVh2WoxZpKAsRNKCZOB2PbSbXJhVRIrwP1jT+ta+EVz6oonZHC2FF2EYYYjcdzY6rKxvLDhS6Ap3NgM5hIiXTisGoI+AP42wdVOGYxkwr1371NFq7POwq7wSmkWw6jVffP0pbZc8I4REpLOGp6eeC7wk40ufTU7URjVZDxYF2/LEegi3DyvjJmSyflUd5nos1vV5cQZFwv5/abc183RuicNx80hwmzpyoY17WPnzf+Tfv/LlZPU5bO7Q91sQV6WaMuQUUZZ9OUqpZbu7Hmp+rnt7H3r1Z9LQNcSqFXUF2vltFa+MAWp1An/IcBblB7picTqDbqxIEarQaufxwej4NvumEks+kYssHMgpIksteCkspooS/zU1jbI5EHdaU5PLE810r+MoPz+Slg3Y1O5ICESq3N9N+xXfYVtOHN9brCEckOq7+OZvek0t5By7ZzDL3X3gzNhWtnLMmBieNp+RQnnFahkxhEj/spqxZQS+Qb6tm8x+GxOq1KSaq2lwq9fuoEXVYJOKL8Pbqo4SW/5Yj63sp29OgHiPsCnJwfxvm715HzvO/obcP9CXJGPTauP5l3Pf9lzbp/1VnoNiX5hQUZMjUyVlEG9YiugLocoqp2tQzYuF8GouKstCJUiseXq83ZlqZP7eAXUBVdZ/cGI7pDZfMz+fsRcUAbNjcQNOeNkRPMCGq6O10U9U+yIxMFwW2XsSojkxrMX0Dfvq6ZcphuVYrYDTp8LgC8pRxzNnpLDqZErdtkGCXl9aOevX7RV+YQ+tqmXZlF/63D2D+9lV0VPaMqD3K1xe7ptgLKDc/o2pqPlyQPuIO8ci31/BYugWNsA0xKKo9DeV7omKUYxXd/Cv/TCbmJLGo5gECG45hvG0ZrV3p1O9tU8tMeocMI5Rr4SOdgjHLyr+euoJD7TK+XpmiVvozWpMWncOEOc9OcWkaUyZmsmRiJgAdniBrdzezf80xomERQ7qFwjQrx5oG2L++jrLdLTJzqEI7rQgAxaRfDekWgt1eBo9044obHvM1DKgoKm+/j7ZWF8dykwAZ+VRvNdC2p42w00/b/nb62gY587xSZmc1Ev3wzQSHEG+dHzVReHYt2UVGTGb90MYjSvgaB6iN3TNlbUuiTLFe2+1VUWyK7nXx4kJevrmJaPoYln5NLjsocwgTM+0EIhK/fn5fYkAgCGi0ktz8FqUE6dD4dSP6wvztu2v5p82gIsuUkoWnqpdrv7aG5HEp2JJN+PUCP1weYtWFQ70djQZe2d2Mq7ov4T2VJ86T8bfIWat9Yhq549II+MOMK0xmRl4yez6sVSGWGq0GvcPImAkZmPa+Sl9/3Lq5dQVbXmxQg7P481d6AFJYg+gJ0rKvg6djQYFyzVJYIuwK0n64i6ebl3D76joiO48inL0E997QSfGX/V+1L88pxMoxXX1euufch2naAH/fJVC3c2/CdO1nseN9R1SM4q7qY+XfdsklhxhaRIlaktMtnFGchs0APU4/nfX9+Hxh2XHEzlsQBPzBCEn6TqJP/RUCERbecweH8sZTX91LyBhEo5XT9bb97YgBuYmnRE76FDOZY1Jo7fWBO7HZpEiMrms/h3N+8xD/2JuPr3n9qNehONeSc0q47SvTWeZYh982kWf2ONi2rZGWXa2J+tBaGbGSXpoGwECHjIpREDBKyabvWB9brI2cefNspKZuPHUDGAdcdHW61azClGNj3lem4POGOfTm6Dw45jw7kzsfZ8rEOfzNohviJIonNMu2MWlmDlcsGsOivCOw7UnIzmSawcCCK5ZzzeEk+rq9eKp6+dVPPlJ55VW2yrjMUpkt+fsP5pMXfI9bXirh2Ac1svOLDzQkkYhbziSq2tw0VXQzf/k47lhaSsfcQn7vjyTMjQiCBgFJBhloQRylopF9bhGaSTOoqh/E1e8bEdzEQ3AVptloMKZdPWwosqvOSb99CWG/GYRu9XPeeie/f34fF54/nqVnldDV4iLU61P7VfLdjajT2KO9BwpKLDwKfYQUlgh2ezFOy+SMBUW0dbmpHRjHBbdmse6FLk5fYOTovzfwzjdl3qWEwTngrMsn4QtEOLK3le/eNZ+le76DsHgRW8Kn4QpGMKaYEtCGpmwbs2dkE9lZq57D+TdnsjrwFTrL1x8f2ixFQYrK5d+wn4grTt9Zmf0QZUrx1187QvrX7mX+bVra3AbaWsuHoOKfsm85YiBRK3xu4Jgv2740pxCNPdCyPa082OXB7w3RVtZ1XEGNz9ukYESNdlW66xjXSMX2Zh7zhjBbDbQ2OFWpSRiqhWv1AqlJRoStb7HyroMAXGV6jsJz/orBoE2YXQjHIheNoGH6VZO5avl4Nhxso6/nxEMpq7c3sqMyhc1v7xt1alYw6TCkmLj+uwu5/eP7eau4mldiv/tG/V3kX34Df67ulaPoWPlBKU1kFzgQY7wxof6ADH0Th6iiw64grn4fPb4QE7UaDDY9msmnU//vLiKeEFqLnl//8UIWWz9gi/cCDr5WPuo1DFb2csv6xfS97BnB4aLMeaRmWpk8Lp2p6YNoOo8SHXSjmXUGvbq5rDos4W0fwsUrA1OjRXoKIqd0aiZ5oTVEq8uBogSKieHZVlQKq4i3ra4gfT0+NIIGd5dHvRcRT4iGun52TpnM2cuv4rLfd7DnsXJaWuXvKSmG0x+eQ+TG7/J+cyEbNlcy2ORS9aSVDdOUYyNvdi5NmxrVe6E4ByQRlHUYBndlDxdds0mFm8YPanVV95Jy5TQujDxD4Tfv4B8vHUSMSISCETwtg0Q8sVr5cWr88dc/6s/DIn0NA9TlJhEMhPnOLz/GMe5h+AX8vaaPwD3vDukeKHMSsQxkZmk6l1newn3REjp9Zhof34f+6cMsfsPBTzZNJOQKqmI4USlKSo6d4nQbujw7C5dbyfvadLyXPsBTvz4wgoVURUnFN4NFhmDBo9CtS4EI7qo+nvr3fj4oSUFv1NFcJ08kf5oStaAXEvpgOrsBc4GD1EwrbQc7ZYDE/+OO4UvtKUjBCP5ODy0xDv7wKENDX7QNR75EwyKBTg/HtjWr6bxCs5uAUBI06LQCYtUQgmVwWyuW87UIcXV2SJx8vGnFJBaLz1N09h38/Nk9KrIi4ZxiGYvfG6LDH07oNcT/jc6iwzo2hStnWKm+vTrx98Uz2bWqUx1EU85DmZxtqe1HkuSMJOz0J5yH0nsIDAbp8gQR5s/APnkM77fNw9+2FkQJ2+R0FjmfQNpWQ8qyi4/ryKNhkap3qxOai8NN0GoQBPBFUknJnoRmSTb73UtYc7CVbevrCPUHhmrlxNWvSdwA9A4j5kIHdUd7eHbsQpLTzqFx78YTBhnx1Cf+Zhdlb1eCIKiT0UIsUGhvHmD9oTYCkamcf99dnLlwM7R3gsGAZupkejMu4439IgeP1NIec8RiQEzIYFInZnDjldP4o+KoiSuHDLsWIOG5JzgzKYrNoCW6t5Lpl4bJzE1CjIiEgiLBwaAqcBSNJW6nStoWFaME2gap2tWC1qjFW+9kMAbUUKPwUZxNNCzS3OUh6q/ANsbLEfEmLn9wIZGGPjDZSXPIesyGdAvjFhTgHghgthqQolGYOY38H9jxLb6Tp3fqcCobd8wUqnZln4i/XwpSa7R7qKx3d5OLxoiEyaQ/7tDYJ5kCE9c7jPKwnE5LWkkyl140kSVjHDz0fBkVbx09qVmd/2X78jIFUZ6+DLuCTFpUzOwZ2dQ2D7Dl34c+s7qQEhGPNjE7Gg+NOqGsNEwDEVVfOH46Nv7fkhTFH4qgnTMekDOFpCWFBCKJi234y/jW1nrSln+N1Qda6azpl2vIgmbE3xrSLdx16VT8EZEHPj6+aHnYFeSF3QN8/9DjTNu6FgJBDs/9A+d84yN8jY0jcdBhkWCXl17l+mLNuvjUVyPEMNt9fvaWdzJu8V2QBKs/kBuBGr2W+cvHEdn8Erpz5/DK9oZRMxljlpXx54xBjEiyYxj+Ikry5uIeCFBZ20coJGEyFtPjzOLg/n30NA4Q6PSosyMg90QMqSZSSlLwDgbx1jtlh63XMmHZGM5eUMQL/z7Avx/briKXjreJKc9VARhExaja2FTvl6RVG9Y7XEEO7mrhnbFp5OTegDlJhz8YoXuTl/amKgZaZYUzBS2VmJ3IUpovvC5LtCoMsfEwY82wYEKhSImPyEGGf/7p6b2k3Ps31u3qYKDPS35JKoJGlkONeGIiPIoi3qfoz0U8Ibx1TnkDdJiAgLpORruHSsDxzstl3PL4/Th0zZSv62Mg58dMOS2JonCEb5+2mZ07UnC7Atxy0WQEDTy/5ij1XR5ap3ydXqvIMyurObrz2IgswZhu5syrp9DaOMCxd6rUxrv8jEaWxxJNRGvUcv6FE0lNMvLMH7adEmW2co2CUYc5387UpWOYOTmTTIcZKRrlsuKDRNe9zTUrfs0v1tYkTNX/v2hfbqYQw4Wfu7CYy7t+T+OfPuSRt7/P4m8mj0r8diKL3+x1NgNJ0zJxV/WNgCmOMCUV1CeWfOLrk6NJbophCedgkMCiK7jmjRai7hDaG26m9YCXUHBo8EWj1aCRhmrF5Tua+dauFoJ98gSqId2CpTAJd2VPAo1GenEys1O24dEUJ7BRqucQi2Aj7l7efHQrqyx6NMLpcmT0+Ksj+FniP6fRajCkWRD9YYJdQ2WjhJcsLBJxh6gp7yZ5+QRyrdUsW1DEsf1tQ+iZu37KQ+9F2fLs/hHH0Vr0FJ1ZwB2XT6Wqc5Dq1ceGnpWgQRsbNBN9YTydXo5GOmio7iUSFvEPBAh2x2YuYiIx084uZvaULAC8/gj5GVZ2HOlgT4yfyOAwYrYaONrQryKaIseZElfuga00lfOvn0Fhtp0jtb3sfLdqFMy5XNYJu4KIPllL2VXdR7nSRI4RtikbfHx/w5hjp2R+PrWxbMff6qahw4PeYWTiJRMY6PXRsbkxYfOzjk3BlGnF3+lBo9PKGVucVrJSpunY1sy9VT0yPYlZjyRGMVsNhEKJ6J8on16cXqPVkD83j8nTs9m5uQFXZe+ookXx5qnp57dr/CyYNp2O9gY2v1uFYNJRPDGd5WedibNjF+HBIM+vrqSoOIW+bi8Hj3TQ2O6itXGAloMdo+qai74w9dW9OLuHSq6nAhmNeEJ09XnR6wT5Xn6K0pHWpCV3aiY/uyqbtCP/QNrWgPaWO+n0z8F6bjHr3m7+r5PXfRH2pU80i0ERbyBM4INydm0Nsiv9V/yieRcP3vveSWcMSlqnmCHdwrxFxWztj5F2SaNEN3FlI4XhU+F4lwDNcQZIFGchSRKRiERvYDwF518KUYnm4Fl0OxsIB4ecikavxZxtVwd9UvOSMFsNNA22EwmLpM/MZv6ZRaztl2v7ysbscvrZ27+Iqm73ce+DUstV6uJqxnEcTiHFLMXJzFxSQvXhTkK9PqJSjMoBhoZ2JJn6WW/UMjb6DvQMkm65Gr3NgEarobG2n0fWprF95aFR+d6TpmVy3jnjONDYz8fr5SaiMnugTzUz9qxiWg7L5a3IYAB/RCQgDOk/i76wPKiVZ5epPCZlcsuMGqK71sH8FbxxbDyDriDWDAu5RclkZNmwWwz09PuwJhljnx86r/jNS9GEWPvPsWifexitLpe0GQ+y/c3K0csiUoyVU5SQwgKaUXDzWpNWdd5iDBpqzrOzeGERTfvbVYcfFWUEUU5+EhargU69dkhnQtCQMzmDBWcUsWdvK0azjowsG7tjwjzxBHTRsEioP4A2IKK1iPTpB9HFoNRK9qEEO0iSSpdw0pP9gowMuviCCVhNOo4d7SEQc9QKfbuSYSnaDco09dFDnZiMOno63QQ65cnhijonx7Y1k1TkICXHTv3eNpqPyjNAQX+Y9qYBPJ1eNbMdfp4Rd4jWna0nPWk83IJdXra9dBid3aACKk4p6IyVLJPTrKRH9uB/cx8dW1sZs7SMNuNpvL0nzKGNDZ8JJPO/wv32pTsFKRDh5VfKuPHGhfDbegDG3LaU63/+Fs//aN0n3iDBJBPXmfPshJwBQr0+wq4guzY1EOx0H5czRfl/FSOfZFI1hpVGnWbYKL+66UZEIhFZWavXJzIgLMMdEqns6Kat1YXfG1LT7MyZ2fzk6/PZ3+zkP3/ewenzClg8MZMXk00ceKMSz0CAphZXoji5VsDf5ubB321WI+YT1YVHDOCc6H7pBUpmZnP61GzcrgADR3sRRJne2JhpxZpkjE2Uy8ipMxcWE/zXX9GXJLN4mZ0Ni2awvqafpj1t1G9qHFXHQDDp+M+v5mP+1lUk/fIm3v5PKqddN42ag+14avqZdfkk/nS9xLdfLuHAG5WqE1CuQSkNWIqTOeuSiezd3kQoLBHd9C4rl74PvMW15TfjnHITp03L4pppfuzU42Ic6xpyZKTSQCDhfHQ2A4JJJ2dnaRY2/CuTN43XEQ7DV/4a4e26upEDgHEw3YT7rfRoYlmkzmFiwvKxlIxNxeMLc2BjPYOVvXiqe1n57wMEOhInMcNOPzvfPprwXcr3ddb0U5ubhM8bIrvAwbJZ+QwOBqkIRuRJYMSE8xB98v/7YyU0tSQlRTEXOHjgx2dTkGTml8/toaOqD9EfPqUs3OkOotMJXHHhRJpm5/HBu0cZLO9WBy/HnDuGx++ZxFNbnax9Zj+BDg89B9rZPuBX9bqVpnTEFaBgVg75xcl0V/fiqelHa9ETiJ23Rqth4vKxdLcNjoBSS2HpM5WVpbCccTFS3uOkTHnWBXlJoDNgWlRMns0AuZMoOzzAzg9qVFGqUzWVXFMvyA7xUzq+z8u+dKcA0LezlVuyF/O9SS9QcRS6G3zcerqPlx3GE8rdabQaLIVJnHZ+KSvmF/Hqh9VUvFdNxBNiYF/7qA8onr5Y0AvyhpFkwpZtRW/UEQ5G8MRS9OEMiWqWEJaI+MI0tbjYbtYTDIkEQhGcrgBpGVY6WwblFDgsMdA0wKvbG2RRjkCE08elMy/yItOvW8iKTWYGj3RzIDZcppjWKIu+R8OJOryn2jA8nrkHAuh0AhPHZ1C7u1Wux8/N555LJpNhCfLAc1U0Huok2OkmM8WMLseGZnIpeJ1IMciqGAyMCsFTmuQ2fTfdVf3Ya48xZuZl3HT+BP7S68VT00/1vjYey51E+YZDic5QMVFCazJgSTMz4ArgahhgzeqjfP0XVwCylsDKqS9wx/puNHMX0X/743R6QmQ/fgN2w42EQ6IasWkteuwT05gxrwBJlDh6qINpc/LQ9B7kkt9MwXDXjfzoo3Hs//OuhBcx/kXVCLJ63RmXT2LulGwOVHez+eUjBDtkUh1jppXbL5vCwvTtRFur8F18Ppc/oMNV1sXAgUROHGXNjTY/ExWjuCt72Fknk8D1VPXSXNtHMBCRZwBiU/HxTomwiCgNlTnj1/ykMws5t+uPRHe18dUrH6O5z4vLHeLNP+0AUKG9IGfXgl4g5AzIa04rIIUlduxs4sdfPZ3JjY+CFU7/9nf4+e82o7PoueqqadyW+yHR9S9z9aI/s2ltDcEuL2GXrBJnLnRgKU6WuaAkeaOr+6iOxlhGo9FqYrBdOQAxppvJyLLhHQyOyk76ZZsx08qPTE9TOfddJv1yEfX3rOStDc3s31Mt61J8yixBMOqwFCejNcnUF6Fe30nJ835R9j/hFKSwxNE3K/nj3c/w/A1N4Hdz0FmI1nYYTuAUBKOOkjl53HfBJEp069iWP44KSKD0HdWUspFeFhi3ZFrIL0nFaNbhdgUI+iNyGhsWVVHyoZOV68fhwSAN1T0M9HnR6bRIUpTcomR+c04NB884lx/9cQthp59Ah4etT+8nKsnpvEErEHlvG1rfRsaf8X0O1h1GCg4tAI1eiz7VzMS5+bgHAjR5ZCWw0RqGeocRwaSTS0BxC0hnN8g1dV9kBN+TMcfOtVdM5YqUD3AWn8UHb+qJilGKi5KZFn0TegZ44s5lNA7O5LHXyzja2M/g1b9iXb2J9e83ULn2AGJQVMkLpWBE5aCJuALqAODP3xO59/09/PVQO7V7D/Jom5ueA+2IvjADBzt5M6aRMJopG4KrYYB9DQNEXAEGap3c9nc7f7uvgHf+KjOndj2xk6wH7ejMOsx5NsL5Z7Drwy66GmUYsd5hJG9GFrmFyRRm26lvGSDkj1BxoJ1bWsfS0Xkbg1/pRvTtHJEhKH0PY5YVfZKRFVdO5Vvu39N63x4uvWUKf7n7Z7zx+A5Vke6NLfUUXnwOBb6DWFrXMX3eEna3uUdAFI05duZdMYndbx2VdSyGmdIzADmLbur1kTormyuun8lNs4M8v8/Ay7/dnFiyEyUS4srY3E3Fhnr+OenrZJ5mZuXKMsIhkYA/zNxrp/L45e38dH0J657YjegLk39GPkuXjOWD96tp39iAzmZg8vnjuOeyqSSbRMSyWkKHe1j4y/VMmlvCmaflcXX9z3hl9kYK8qHwqAZbsolBvZZoMILoC+PItTP/zCLee3KPOmQXdgWJeEJo9FrS5+bi7/PLfZwYAGLri2VDswb/YyboBcL76ik7AuM7Pfz2xf007W9Xr+lEYIbjIu/0AqYcG6dfUIpnMEjN4U55UFaSwQlfhmM4jvL8f9+iYpSjq6q4+l85/KVhOS9urAVppPBLvGm0GgSthsFghAHtVJoanEMN3riMQP2f8m+GIlqtUYsj1UxOrp2CnCTSMm2YrYa4CdFhpYNYpiAGRILOAH3dXpy9Xlz9Plz9PoiESLdoMRiGIJOqgxIE6no9aHOTENs9FBeljLwevYAp28aiOfkUlaSgjdEaDyeME/QCeQsLmbqiVBVhB7lUkrOggIzTchN+rnz/1HPHcnlpNdEDe0kxNCEGZJ2CphYXJKUTrapBePh7lP7nFh6+8TQ8nhCvHIB33q/i6Lo6Iu4QxnQzhWcWYMqxobMZGLdiHNf/cBGm/CQM6RYypmSg02r49cpDvPvqYXyNA3TGaDGUenE86mbEWogNpCmMstYxKVgKk2it6+fQj97k3OvSmTIJkqdnoikoJumnV2P+2b28V1dMVXkXwT4ZYmtIMVE8Lo1QSGTv/jYOb2vCW+ek71AnVe9W49zTljCAlWBaOaI3pFlwZNlw+0Jopk4iY34uwrQJdPV5Vax7yBlg/7vVPPZeJa7x1+MvWEZ3u3tUqnONVkNhThLGdPMJp2qVdSf6wgQHg+RnWLF9/GfunbybtJnZsipZ7Hkb0i1y416UhkASYRF/m5uXHtvGk//YjdlqYKBlEFd5N0tPLyDwu39y15I8jJkyqkunFyjOtJFdkKT2Qx66fhYzK35KurEW3cXnYb58Otgy0OkE9pZ3ojn7fLIyYeysJLwhCWOMu0q5rsFODz39PlmnYxhEW9ALTJqZQ3Zp6lDZRIqisxmwjk1Rr+9/xaJiFF/LIJ67/8S1689n4JY/0HxIboorAeSIwEI7hGoU9ELCz5S/UQge0xwmDEYtJqsencOk3scT7X/Hs0/zmXj7n7rzUiBCw/s1tGxpQqPXfqKiVVSM0lTRzeNiGZIUpW5z41BkrJU9cMrYVDw9Xhm6GEuvFYoFwSSLxeQWJjNnfAZJRh1VnYO0Nw3g0o/uEDSCRi7rAGFXbDgt1uSu7fNze6QQV/9OBmqHUCxKw09nM/Dhx3Us//qvycz/G1ZvTMA8DmmhdxhZuGws15TsY71lAbu3NqoLRPTFbTJaAbvDJDuwOLEVU46NX31jAQ0Dfp7iQAK6RSNoyMi0IkZFdPMWsqFlOqG+1bJD3trIS7PP5Kojz7Aq1tu5tO4ixl37FJ19XmbMzMXV78dZ3oMpL4lxkzLorndSck4JL989SHT7Y1QsvYm0DAuXnl6IMxDmT//cja9x4ITP8Xg1fK1JiynHxvSzillxRhEbDraxf1MDP/nFx5x989Pc/Uwyoq6fisFidrb1Ubt3gIoDBxiodaoIGX+bmz3r62SVMFfghDw6yvETYMqx/w4HRbauq+WCzaU4UqbT95wHT9X+OD4pkUDbIHtePsxtdfkYDFqat7eMWhoLtA7y1jP7Yg3+kaU3RZhHn2rGnGfHW+fEXdXHX/68nZm/fQybrpvMvFYGUvsI9vpJmprJ1NPzqD7cKetcS/HMnyJhV5CsGRZ+ctNsttb38tLT+3ju5UMsfeB3PP2x3DvSCBoatzTz5GCIwXaZY0sw6bDrOwkfasY4pYwnas/G7jgH984wjTV19B3rY/luK7dv2kxOVhLbG3oxGHVy3ybGQRXo9GAx6xkzL59qV1B9LgocveJAOyFXUP17jaAha3IGE6dmsbFtEP8XJHf5aS3U6+Pi6zdjSFtM+MlNCc9wtEwzfshNeT+Vfo9GGHonpbBET7+PZIeJ3KJkQiFRDYhO1cyFDlLHp+Gs65fpXD6F/U85BRiCWsIn19CjYRFvnZPq5sERmql6h5G3nl5I0hP3Y7j/cpb8wI6/za1+r0avRWvWY081M3FMKvNzfRi1biJSLrut+oRNIeGY6ossO4aIJA0NUolRqtfXx6QD48o9whClQ1ejk5+tbOCui79H69Z6OUoKDx3HNiaFe862E/jtP5j5wEwMBq0aacVfnxSIULmqCq1JS/6ZhfQ1u3BX9xENi3x8tItgWCSvJIWeA0PIFykssfm1ch41zKAwu5ANWytJn5bFBSsmsGlzPWvWHeP6eWNBLsLRfbiHmT9MYeHpx4ge28eEr97B73/4Id6aPja3DRLs9dNrM7DfvYTChaeT8XE/vzjrKNHuD9lj+Rq+NrdKZ32yz16JnhxTM7nvjrlMy7SwpqKHxpo+0vKS6Ov0sPHNSg7uSSIpxQw46W4fJNDrJ9TnSyB+U3S1le8+kcVvyIo+sEarIdTnUyeT/b4wrmBEFmeJmxZWvjvUH6B1ff0JKQ+MOXZyp2bStL1lxPG1Fj0Zp+dy6WWTyU+1Mjs7xCv7/bz62HZ8zYNc/9U31GBJgVVGPCF6Oz2EPKERA4LKJuTq9ZFpaeW23M1Y77uIP967mmU7WlSAhtaiJ9jlpXNHi3re7soebv5VFd++42lCXol339opD40JggxCiLHpGnUCYx2VZE3JRJKKaCnvVhvLUTHKscpuvG75fRZMOjSCRgUx9O1sVdelOd+OKdtGZ3k3/QqX1X/BRouqTwToCPX61Ib3aH+nfl+cQqHOZlCzdqXUJHqCKvurFIxw/wUTseh6+cv6KPVHPlnB7XjXkjElgysvncz6LQ1UxMgkT9W+dKdwMqia45kyrRjfYFM8NIAU1SPYDWCyE5VC6vFUzp10M9n5Dmblp5Dqeg1CfoocX5OVqITRK2vDMewSJAxlKeiB+Ig0GhZlzIjTT1gQOLq1kb+EIqSkWZh8yQTq93fgrekDILcomXTfZrqP9hEWkwj65TLIcAZQ5XvzzynhtZuOsUm6hoe+9z7BLi+vPrYdvcOIIc2C1mZE4xoi8wt2e2luHuD2hRkY9GPZeaid2UUp7E82Ub2lia3X/JjLf1JJ59ZWin65HK9JT3TXeujtwzBDUJ224mgG9rVz351vYy128NHjSfi++Q/MSwrZktxNsNv7qSbUNYIGg0FHICKxo2WQ158/wKQzCjhjZi5r1h2jZU8bvRUBehna+KTgkKTlyOd0gmMp5Hwx0XZjtp20kmSmzszBbNRRWdlNf7eHwGCQoFIKDEvqtPBwk8LScfl0BL3AQ79dztKP7mXbn//OQz9Yq1KpK+vXajeyZFwGKcYeIlEjKUlGzrplJoun57LlcDubnt6fMA3tqeqlOkaWN9oGEA2LuCt7+OO6MXx/+SJcLfJ7EHGHMOfZGT87j95ON85M+Vn5mgdVdldPp5c/PbUbX59fzviCQ4OWWpMWR7qFy8YdJbppFSkmE1fM+gZrcu3qxLFGq6HtYKf8bIIRTDk2sidlqDQfyvkKeoGbvreIRWPTufPutxk80v2F9xSGs7jC0LS2cm9Hs5NZVyqq0WbEXuQgtyiZaZOzyEgx09nno6FlgKqDHWoWLQZEml0BBoMmDu4ux9cyeNK638PPrXN3K891eVSgy6exL5UlFYbS9E/C1o9mSmQ5YgHFGCLv/XMFF57/B3a92k6oVxbLUfQLjElGsgscjC1OoTDJQ3RfFUgSxjmJje3joSDiMwbVgUjSiCaZ8rJqYnVeGXEh0FLbz1XnTWB6ppa/5yXx0V92y2m7oIGkTNIuHstbrbK8p85hQhoNjqcVGDcpA2nHCxQsv0WmZwhLhPv9GDOtTJ6dS2uqk+YY6R3EuHwiEjrBD+io2NXCX7u9NO1vJ+IK8P7eZhZ//UIKp+9BM/dsdD4NDLohyU59p3vEUJEUloi4AliSs6GzBsFhRDPnNHa/2PyZMNvuLg8r3yrH7Qrgb3PT3jTAXp1AT7MrJu6OOlA2Qh7yFI6paHHrHUbEoIgh1URxaRq3Ly6mwLKTg9PmsvVYD/UtA1TsaiGgOHitMOr8y4lMo9eyPG8fe357gLO/dghLYZJMpxEWY8RuEm0HO/nj2+Wkp1vw+ftxOf386dZkrGsf4PwLLmfJarvamwH5/guxunRolLo2yH2Jza+V0+8cS9OxBtVxhl1BOpoHALj0K1MZk23n9Q+qqVxVhSnHxpTFRaSnWdj8ZoXKphslVvLQavB7QxAFqakb0Rkgffo+ktPTGYg9H2VqG5sByRbBmGll8aISXq/uHXpuMWvv8VCdbEqQyPyicPvxyDIlIxyCgmpOSRL1RCboBRypZsaUpHLB1BzGOfbhF5OpcU7gRYOWQzHafNEX5vHn9+N2BfDU9Ktlyfj7cLLnEnYFP7NT/VKcwvCHokyFyovk1Dru8RQBMIQnlsISTR838OSmRvXvtCYt9skZvPizOUQkIwDJxhYsoUqikgQWM/6IkfBx9JDjj5ngjMRErLmaIcRxCQ1/SMFuL3l2I7nGnYzJm6h+n9cdpMx5BmOvzeedJ2R4rd5hTBjLV0oNUTFK2Z5WGn7wJA89vXtIqwGYf0Ep3zw3m9cPpfDCxw1q9BoNixzb2MBd/X766vrx1PSroh9ai56eLg/kTkCYL3HQtZhjfYNMWHEN/cGxfPy76hEbvUYr92bGTs6AbCPCz37OX3am0r5zyylHKsozNKSamHveOJx9Plq3NxPxRWjf1kzHjhYM6RZuuO8MJucmsXpPM5uf2n/K2YFigklH3llFfPXaGUxIs/LrF/bT2eIiFBJJNx0j+s5LzDqtnPHzllE/cTy/7/bSPBgcsaGdig1IpUy/YRz7u+cwdlIVmWeV0O/001LXT2+FnF3t+/dB+Y+1ArbSVGwXH6HjqYNk63TYsi9J0MXWaDXYJ6Rx/lVTefcfe/C3DpVIlTUiBSP4GgfY8+9DCfcp2O2lY0cL9glp3Fv4Ab0/eIkLfv0VlteN4+avnsZN2euI9rRz39nnseeZAyNKU4P1A7xUcRbXnzkTdpVBOIAj1SxPWVv0ZOTZMZr03H/VdHSChof/sYuUJCNjTs+jJcWMq6xLvZdr/7KLdXpBpQ5HlNDZDSrrweeF21foKhT+ImOmFZNJTyQ2eySFJZWqJOwKqhxYJ2vxM0NRKYpOpyUt2UypZROhPz5FuKqP6ReO5TsrHuORkEj14U48Nf20bmkausbRZqu0mhHHON7xP6sz+687hXiHYMy0YitIQqfT4hvw42tRaolDjSdI3GhPxpQJ1CiCupEqDigrN4lMaSfi66/j2daKdnwKXLsUzaSp4Mikpt2HV2lIjkKupZxX/MMfHtHEszgez4LdXh598QBjSnPZueGQrDOg1yKJUfY291Pe6aCrpVadXI2fWLZPzuCO+87g2X/toW9/B1+9861ErhitgLPPz/5ODXv3tyWcR1SURVaaOmpHbY71d3tZVTcDk24mr685gnsgwM5DybQ31dK1t23Ey6lMvhoMWt5vmMJ7m+qp3LT3M9WEBaOO/Cy7+pJGw6I6JZw1OYPbjvyIt87Yz49uziJw0+Nsf3LvqU2nxjYGrUXPxGlZnFU4gEN3mNzCDLraB6k62MGvk4q569y/oBf8NPcZ2Vnbjavfj0anxZBugf7ACMqHTzIpGOGanx5l3qLfYSxr4/tXTKO44ueQAtJ1F/HQe9PZ9noFAaUWHJZ1GH5ftYRbX1vBhx1mBv69dsS1Bjo97NzelHDPNXotjpiG9MDRXoJdXoYTtUVFeXo82OcnGg5SvrGX+c+uZ9Lsxdw08TANy/5EV0uQq7d+Q3Yow5696Avz9ntHWXT/fRSe9wp+20QkKYKgF7CnmllwRhEOm4EOT5BARMLZ4OSD9bX87e5M7JFerv5LCfXvyfQnEXdIVkN0mGI3S2LM0jF43UG69neMOiR5qqY8d0O6hfRJ6RSVpjF7ShZz8lOYFHqZaEMdmonTebVzCe+8X0XjpsZROb1OxpSeVk+nm9qWAQamT8Bq0tJ3tA+9RU/usvXMnjIf90CA+g7PUFM57l0dzlAQfx3wxU0+f+5OYTTEzmgm6OWUt2RiBulpFtpaXdTGqCCU26IIuETcoYRBm5O2GF5bMZ3dgNmqB5+L/b/YR10DLLrAQ/5NJsT08bhCBbQ7fQT84ZEbfPw1xfcvhl3j8TaJ4T+XwhL5xclMK01n99ZGuXSk1ZBfkoLdYiDFrMeRbiHQJktk6h1GuTYbiDBxfgHXjT/MpmlZHKrsTXAIGq0sQFJzsJ3/OH20Huw8CcKwGOLHoicUjLDjSCeewSANh+R6cE+dk8hgQKVKSPhcTMXK2edj7c4mqrY3yb2EU6jpD7dgt5e3/3NIbUjGn3N+SQqvX7sfgA+e6+JPz3iZ/6wuQZt6tOuMRxZpLXpsE9MJO/0cq+jmzYLxpNqnkZI0wIx5BRza0cyudbV0tA2SkWUjFBJx9voQtBpM6WasdiPO1kE8cZQPJ2NRMYqrrIttriDX3j6HEuF9yu94i9Y2WHzbfu79xWscq+imtddHVAqrMwvvPbOfLRuSZU6oXv+I7wz1+mjb3DRCG7m4NI2c3CS2e0IjZlniLdTro9x+B2c+tBPdWTNwbwoQ1qbJTXcNMovpMFN6c4P9frY29HPD1DG4AzkE/TJyzWY3csbYdHJsIs/v6GLv7hZZkN7Wj10fgc5GHKmnj/hedcbGHSK/WEbi9B3rG5Up+FRMnT0xaTHnyfMTiyZlsSBjF6E//5NXvi+DK1bcvoPpv7uUNTrtCWHTJzIZpSiXsAPdXhqP9bJleg6XXHMRRakmhBQ72NIQBA0Go3YIrhrjqhoeTCbAeaXENf1FOIbPzSnEs00KeuETy0FKmmOxGsjPsiFJURodJoReP1ExrBKqnX56AQ0tAxx4++gpbTYJ5ybIEYKjMJkFc/KRtvyTugaw2yFzaRHO1OU096XT5Q1S29KO1x0csSBO5BzijwMkRuYniCQdNiMpJr3cR4h93mLW4/aFaO50M9DhRgyIWIqTOf/Cibz/Zjnu6j76uz0ccZ1Jc92WhGPEc0B5amRBcRXu9wkDNNbSNG66ey59rgD5mTY2bG/E3+waKluNJqcZ9731R7pUmhGl5j+aE1E+k3C/hpkUiOCtd6roGJUcD5mdNt5alt+PMeuH+JtdaPRarMUOdDYDgU6P6iwVzvuMsSn0xJg/v3LNdDZtqadxUyPPHuggbUom7/wkSr84iW+3DVKzvp6jzYMcs+hl2djZuXzz1jkEIhIT0qyUdQ3y+G824W91o7MbEqg6TmSiL0yo10ffgB80AuWVEI3C6j83cdXC73DXDX/gF5U9BDo8aAT5nvubXar2R/wzVFXvYprS8RaVojh7faRlWEdITw5fCxF3iHu/s4Zzrv85kQaJpiPVPLXnNO556X4K+jq556OaERuVUoKJhkW27W1lavZs2twBVVI0KdXM7JRtRPdu4pLTfkpFeRc6h4nwYJCb/6IjNXMhFWtGanAY08yYkowMHOuj4kA7eqNuCAr+GTZABUxgzLaz5LxSfrikheiaP1D10GYOlg39nW1hPs9vrqVpf/ungoQqFpVk2G2gw0OHL8K/IxI1C89k4ZLLsOi1tDQEqKhrx9Ufc3Yx1Tz5v7UJ36OaKCX0X+GLcQyfi1NQ6pd6hxHbGHkgy9Moi4yIw9AnCn5aRE57D25ror6qh3BQVKMBc74dR2Ey2fkO7FY9yQ6TCsv8tDdAa9JiTzZhtxgQ5s7mqn8F0F2wiNbkm1lX4SQU7sM5GKCt2UU4pnkb31eIH7AZzXQWHdYxKXjrnUPkYydwCNGwyJp/7uVDu0HlxhGDIlvfrkQw6gh0eoi4Q2i0GmbMK+DWeRrKKzNQhCB/+vedeOqd6vcpDkFnM4AkD9dFRVnXOHlcCn2HOmXs83EkMx//zXlMfPoGND94iIq+bLYadEPNxRPg+kHe6LyNLkRfmKTJ6Zx5XimHD7TTsq5u1Ghd7SfFIIoqhjuGINIIGubdNIMHLi1AL/i59bdV6rzFka1N3D1Lw4GD8vcabLK2s0bQYB2TwsM/XQrAs2+VU/VuNQJgHZPC+VdN5aIZefz13Qpqy7vYsLGOzqM98rNyh5AkCTxOnEIG3e3lai1ZCsqKaB53kIlpEtnaXbi+8TtWTMvg6PW/ZuOHNTzzs6W8vLuVN3+56YSOU7GwK8iWDXXkZszh5o9X0PWX7RiTjAT2drDs3E38dWyqPCcjaFR95tHMPjmDr1wznS3bGql++2jCMaRAhNbtzXRV9siUEnH3XZ9iBuQMQblOX+MAa/+2G32KGb3DyDurKmicNxuLSUf5R2UjmFF1dgMpJSnY7EYaa3r5y5uHCQdFWQ9dkoO9aEslrmd2MuWvHzFpykRyi5IxGbTqFPVo6yriixCxyPM7roYBmWQwBvv+JOqH45VV1HfDbqBwehZfX2Rm4Gs/54PnhqCfdjss/+kUPj77L+z9ncxG8Fmatco5KD2TrgMdrG5ysSXXjtEsb7tuV4BQDKKq7DXDA6YE8ISgHSqNf4HorM/kFJQL0NkM5C0sZNk541g0Lp2N1d1y+n8c2ur4wRpPVS/eONrqhbfM5NGslwjvq0N71be57W9emg93jTrsM+o5xU8yDztP90CAHWXt6GZdA0uuYd+hbnq6K+VFHhO16e/2JJQtAGylqVx6/Qw6+7xsfv5Qgh6wcixjppVll0ziw9fL1bH945nSh9Ba9BjSLCqKRoEEarSaOApmLc21fbxzNJVIWOK++xYwN1fgX1u62dgyKG/0QbmMY0gxYSlORvSF8TUOoNFq+OXvzues2l/wh6X38PbjOxNqs8ombSlOZkb6fho+aKDkrhqe+RAqNtSf0CGYcmzYS1Px1DvlhlwMmy4GRbq7vbjjVOWU+y8Y5SzSkG7BVpDE2MmZ5GTayEqz0OcKUFnZTXe7TP3wp9yXWGldTUkxfOWdDfx1WzOEJdzVfbS8vYN51y+muz1M9is/JfI1j4wLtxsIRCSae710trjUZxTxhKis7MZs1BEOydFf6542Qs6hnoDzaC8/2TaTPZs/xl3Zo0aJiqpX5+5Wnvg4m18W7uf9ZzqBTh7o20dFeQGdnghe/+hZgs4ua0WH+/2IQVHOogMRBsq6+HfvbmouuZ3L//ELxiT3YSp/FiIhsguSyCtJISpFOdjmRgqPnnEFu71EIhLJ6ZYYw29iZCtTq8u6CvpUM5biZLIKHFy4vJTOPh/vPLcfX/MgUVF2DGJAxJpu4Q8PLKHHF+LZNw7TsqdN5lsatg4MKSZmzslj6pg0/vPaYer3tqn3WmczYDJo0diSMWZbIRwgxW7C5QkxECsDHw/Rp9BmR0V5ulln0aHRadX343jrUWvRYylOBhgxMKmUjQxpFubNySdl/99Y+VziLIDJCPoZeTj94VPuYarHGVa6VEvQQVn6VJmbUUpvSpCpXJc6wSwMsS5ExaiMahSGAlKFDv3ToJNOxj5zpqDRazHlJfHA7XOZHX2VaHcPzqK7eZsTR8oQw++LEmjlJqKlMInfzd3GKwWrALh28krcrksJdrpPHrc7HHfMEJbd0+Olprybvm4vwUAYd4xJ02o3Img1hIIigcGh0pHyoOadN477i9fC6UVcsCuNvj3tIw4b8YRobBpQeyUqlfBx6vkaQYMx00peSQoNfXEDMWFRxcDrYhlSV3Uvr8UcrNsfJsnQx5zxOWy1DD0+rVGLMdPK9Hn5dLYO0hCjLE4x6ZGausmcaVapnRPq+FqBjGw7eHuJihJEQtRVdp+wVCeYdExaPpZLzynlyWf30h/rW2j0WgJtgxz5sHZEY1DBbuvsBmwFScxbVMx184spdewiWrkDzeRsqmdex8dV3bR2u/GsPABAQyPotEN11mhY5NHHtvLiR5uZbzjAvw5OIOLaAKLMgvnsq2U4O9zyBHsMiRZ2+mWCv0AYSYUeDukeKLMXW14tl6Pn+LKB4lh8EXq6PEgDQ7oQwX++RnL+Qzzw6w2j4sI1Wg32yRlcc8MM3v/gGINdHrLHpFL3UR2iL4y/xcX2VUepPdrDmAnpfPPc+whJVrzufZitevzeE6Oc/G1u3n79yHH1AZT7rzUJFJ1ZwJ1XzyDHZiTP1sSa2pRRy3dZBQ6m1/8GIiKBy77Prz9uSFAdVL5TbzMwc1w6ZxUOsGNCOrsretT7KhglfP4w4fRpmC6uJWQfh9sXomx3ywlnV5QeinzOWnQWHfYMK153kFCfT72no61LrUVP4XRZb6Mmrtwo/1KeSzKkmhifm0To5aoRnw8EASlKls14vNv9iaYMP4pBUXXQw7M3JROO73Gpn485BKXHAIAeGSbLSITd8FLS52WfLVMQZL3fO7+1gPx7lvHKWwOcdaEd49PfIDw4si6vNlOG48klEfRaZiwbS/tdjw79/YJz6P5nZwIu+4TnE5PKM6SY5KgjrgErBSIEOj2E+nw46/qBIURSwBtW6SvCg0GVF145zwFnAByZhHUZiOHukQcWJYK9fqp2trDkysmYjTq2bWqQJ0TjGpHDexRhp59uozah9q4cU2vRc/G985g2Jo0/PrIZZ3kP5jw7ZTW93DDVSUny2LiReZnF88wV4/nFik42tJ7GLw53Eujw8K0HP2TG0u9y8LHtiegUYSilXjC/kGjFWsL+CKQX4m3pGpWdVSn5ALj6/ZTV9eJtd8v4/nQL0y+aQPWeVjw1/SPrsVpBJSDMzE1i6bQcxvU8ge+nH/LOX1uw22HFv7Yw4Ypreb/1dGyTV3CuaxVp31jIJSvLEtaMq6yLq+/8CGOamWDfDjUazpiSgdcdxFXek8AkGvFFiLYN0uIJqcycCoGZiveP0+wedW0hyc3mKRb1Z10bmil60MHup0aKDIG8Hs8+v5Sv5X9E5rWX8MaaKgrHpNC4vVnV1/DWOWlsc9O2v53meid6g5a28i7EoCiDK05Q15YCEQb2tY9YWwnnIGgw5dj4w10zyVn3HSjMRzNjEdsP+PC3uUdQd3vdQTlS7e4kr9Q4hN6LZXmKopwjxczSol7ML/2K+7/yDDe+U0XYGRuM82g4vLuV54qns2Laj6lsCdLYVIenpl/Wmz4RpDJGBy7oBWxpFopL03C7AtR0y+yrx5sNkYIROltdaslPvX6tLFtryrZRODaVCWkmvJV9Iz4/ZaYRzcRSpCifirpaYWxOHZtK37E+mUZ7GIRXPlFZtEnJQBUHoVDhKHuSwv0UjYgQiA3JIqKRvhhHEG+f2iko+HTr2BSuK9nLK28NAJAyPYO/7Gwk3O9PiF6UDUWfYlbH9JW6ouIsvO4guS9+l2s3fYRmxZWc+4B0akgWQVbTmjGvgEhYZN971aoeq7yBhpFiKBuFWz9hCjYGI1M2WyW9O/haOUu2JxGNNMo48GGNZMXjWzIt/PS8buiuZVrxZfzySBehEyig+ZoHVVWt4SWdtNk5pCSZaO72IPrDFJ5ZQEq6lYA/zKbW6Ww60pgQnWZMTOfH5wfpuOxHLH3hu/w2xYq/1Y2nupcdsWnpeNSUgiW3FCezZEImlPkp/fEZ/GPPGCKuJvVcQEEYQdrcXGbNL2D/jmYaP6qn8aOhEpNhTArjxqRybF8iBFYpkynzKBF3iN5ON4ebB1g4YwLa/O1kZUJ+gYAmTeaqd/nDPN53BdZvX8OGjXX07G1IuHdK8zXQOqj+W6vXkpJuwdXvJ2VODmMmZFC5qUF+OWMZaYJE5nFKBPEQ44S1pdfS2zhA37d+CpwDQN6tU+k5ASomGhbZtKaanPTlvL/2MO2726jd0KDWuIe0D8LobAYKx6RwtKwTf5v7pLH5n/huaAW0Zj06IYjmrHNo0F3Jtso+6ioPj1rX9w4GOVT0QypNbl7+8zYZKh3L4vOmZuHs9dJ/sBODUYdtYA8bfriPJSU/xpS9RG22R8Nyf3DDxjoa2114PCGa6/pGZM7GLCuW4mS8dc6hTFmKqsNjdoeJGRMy6B8M0nSsj0CHB+k4Wt8RdwjnbrmElaB6qJcz6BkLi5g1MRObvhtzsQPoSfh88cNLaEu/lTder1bLiqOhC09kglGHzW7EadSNIACMN6UvEF/ihqFATWuR+2RKszoqRomGNUQFAYg1m79AKfvPlCnobAZyipIBJ5feV4A2x8qxO15i1/ffHyILI+at7QYcUzO5/roZ1DQPG4Hv6AABAABJREFUsPOjWlxlXUOQw7DI0XV1nFvlIOK+kOCzPSedISim0WpwpJgZX5SMJMEhm0F2TgwNkGmNWuZeNYVxhSm89q89KlcODJWZhtcuRV9YpaFQbPjUsgaJ4GCQ7sBpZCZ7CLkltTl+vJdbHv9P/FlUlMswZy8bhyRFeeP5A2gEDY/fO52WQT1/f/MI/3qtjK465xDhmlYgu8CBsXMXLeWDZHc0kFVwJt6aPrk+Oxwlpdeic5gw59mZs6iISab1DL5yEOvZBew92KaeA2FRpgPJsSGFJR74xgIW29ayavJSfnvgvYQU3Vvv5M0/7UiADmu0cgbz8GMr8IREHntwHRFPCOfRXlb5y5mYt4gl5x1iyewinGd+lw87rFRscbJ/fzVddU7Cg0HC/f5Ro+XhQzqiL0z5m0fRWvT85omLWZhXxd2RQg7FdAsM6RZMOTYGj3SPeB6CSce0qyZjMOg48MoRlQ5cqfsa0i0Uzc2js76fh15u5++rl9DzfBmRq79N4x96OZ4pWc2/HvxILVdlLSpk1rwCNq08kpCZRKUokhQl4A9/rsNaiBKBTg+PvNtOVvrpVJTvZUxp2ujnG2NWfXFjLeV723BX9qibY0ZpGl/7yjQEjYaf/2Yjzl4v2NPo6gbX83s57eJb0J1VTNmeVvoOdaKzGXCkmjlW0Y0rxhc0/JqSJqRx9rJxrF9TncAnpFQTtDqBojQrWQ4zBwsc+FtchMTocRvOo90zQS+QMzmD71+YR5a4GaImopfMYt6GJsrLwtissOjhGXTM/znPbG3j6PZmNXPPWlQoqytub/nEfUhp1tf3+tT3UkF9aYTjN4aj0uhByPDBV5l4UUr43Rdlnz5TEIbgj+3RxeT+TqBLmsdvn9wnD8oMO3Gdw8TZy8ZxU8rbMG0KvzZM4L3qPqTwEHVxqNdHyBkYkoQ8xeZJVIzi7PZSWduHIGiGHJMSuWrlWl1aihm7Va86AUVDOSpGE8pGJztzoFigw8MTH/cyqeQ0dh9uwZhpJdjlPS4XTkJ2EF+zFSV2bG1EI2gItA3KcEpTFV3eGbicfgZaBwn1+rCVpqK16OWNToxCaj6lizJBp2PWrFyZ0ru6b0gBK4akUfoemXlJzJ+SDdpmbOeVoJk5Ff8qmeteq9eCJEdZ4+bl09niQtAAehPemOgLMKSYFhYTOG9AXiOpUzJYrnuVSOEs/qTVIAUihMUo3nonL75Xie7S+5FSo7z0QpWqmBaMlQqiYVGuz57kWlDOZfvRLiLSBBorthIVZaGdzJnZnD6vgPcaBxKEmzRaefju0a8WkmJoYtn2JLx1TnlTm5xOxBdm9tkl3L6klIf+tYvasg5qf/4nxo1/gkHJjsHoOd7pAKiZAMiR5Kx5BSydkcvWd6pUNJ3S09j9fg2hvkRAhUIV8WmdRFSSB9TK97aRtnwceqOWg7tbGawfSFh/ynkEO9zseb0iJqQ0FI76vSEiUpQJaUZyStPoanTSJi6hIB8MNgNpyWaMei1mq0EuNZp0LJxbwMGj3Ryo6RtRrgMZobhre9OIsp3yd8FAmIgUxaLXsmB+IT5viM4DHQS7Tx4qqhE0FI5JJbPt3wTf3o7h3JloJs6k5Efd5Ff3osu3I1x5Pav2DVB+qEO+/2ERtAJF49MxGLRs29M+ook/msWrzCnvmWDUDa3j4b0UcWS2oOxBYozVRmm6fxHzCMezz5QpRMMinS0ufvNWLd7BFFrrduGp6k2QVlTMmGnlq2eksG3CXymeZuP77/2TD/5lSNCOjYrR426giikpoUbQjBhBV1hT9/f6ZIbL4dGJKBHxRVj7zH6Z7THWvI0nN4svGymfSbjmEziKUK+Pj589wNYUE0n5DibNzuVAs+uETfJ4Yi4YiiraNjSo36tPCfGfw0Vs2l5GT0UPxnQz9tJUPnjQR7S7jmten0V3+yA7Bs5iwe96QNAx25TG6ePS2VTeQb/Tz+HNjSoqSum95Bcns7jADQOdCBdfzVuNs+nr3itndSXJlEzMYFxRCl+b72VN3Rje3d3MZttE9mwvZ9rF4wkFRSreOpqw2OPRXxpBQyQi0Z9+EW/sh1C/rIEcDUaImrRYk4w8v7pSZpZVFr8UTWwCn2JwIPrCvPPoNt6NrQ/5+Yr01/WzFxJYWxXnJQUibGsxMC3zNMSgzF5qzLRyx61zMGgFzilqxdz5HDr9VLz1Tr71+03cfssteKvCdNb3n1QUqVhPt5cNZe0EO90Ja1MKRHBXJpY0zIUOzrx6CrtXV58QmvpJx1a0tn98ZhXBpYWc+9VmVeBHmSJWMjxFtlIBBURFGfkzcKyP1TsaOf1KOzdfPoVHf7eFf25s4edPLIL0NJrqXRz5qI5AhwxwCLuCXD5pkJvGtXB9ayaNmxpHlJOD3V5ah4kQQWwNSRLugQC1nW6KM21cPDUF52A+H9b0JdC5fJJptBoKs5MIPPMx259pYFFIovfb30FasgLDOV46vWbWbmlny4ajuJtcKr06ksihd6qG+JtO8l7HA0m0Fj2WgiQEk45Ah0cufylrclh5KioMcaRFJCmBT02tXgx7F4bPK4yYE/uUGedncgqiL4y33klZm1ulgpWOU0OPuEM0ugwUTrSQlG8nJFk/lRiEYNSRfFo2YydlcujNikRBdGSJwfjoVf2cSaY1EH1hdSr0RNTYykO1FjvkGnaLi4gvggZ5GErnMCEFInL9Ma4nEe6XeVMivogcXY0mNxlnyoPUp5hl9bLY5HB8CiroBf7zwkF8jQNknZbDCz/M4997TWBrRgO4nH7CriArN9bSP/9SdIKGF94qQ6fTEomIZOc7Rj22FIWA6ICMYjoDMzlQ3YHoC6M160lJtzJxTBr3nF5D4OePc9W3rsVx2gq2lXcSiYjYHf8/6t47PI7q+v9/7cz2olXvtmXLvRtjTDMd01uoIYWEQDrpCaSSRiohPSEFAqGFXo2pNhgb9yJblmXLKlbXaqXV9jLt98fsjHYl2diY5PP9nefhwbJXszN3Zu6595x3cZLKbUbnKE7ai50UTC9mZF+QkYYBrvhk2MTEG2EvdfP1K+bTF0vzrTfasJe6kaOZvJ1i7n09lhhbblIlldgBncyXtzvLwnitPjt3f/s1swENkOqJsGrNQWbOKMVpnUwkXU37O68ihdMMbe/jtwdfR0kph4VdT3heaZndL+03dwbGeRzuOgWbQColH9HV62hCUzTC+4fYGr0cKayhJPbqZbFiJ65JfhadWcf2VQeIt47yXkS3jaKFFUyZUcquZ/ehJCTCw0n8wztYWVLIH0u8bH6ng4E7f4nP1s/wpkEywYT57qV6IqQUH7bf38cvb3uMT3aMEG7QYaA2v4OZF81g2dIaHrt7fR7b2rwvpW5UVaPxwCCd/RFeiqRp2tA5zu/6aK69OxDFeckClvbFsZ87jzWtUbbvHUCWVUaCCfrbhkn2RM3dtHEux/JdY1FRxv2aPKeMRfMrSUsKr73YrO/q0/noNg19EhcAVAtKFrIP5IlsmotVZXw5yniWT7hqDqcsrqZ/KMH27T10bOg8ZtLv+04KBiZdlVTI0bCHiR9wKZTkyfXt3H3fJ8Hl5/GDRaae+OFiIviZRbTg8TmYMsnP7gncmXIbVbkTvLPKS+3CSvpahojuH994HTvI9lI3006dxOevWcCe3jCP3bedZFcYJaVQd1YdN1wxj+7BOI/+Zn2+2UZ2JZwJJlBi6fdmRWbhcsUzS5gys4Rgf5T+LBtZkxSsbis18ysYCugP6LLlk/B0vIDTcT2f+psNq7WWyJ59WP1ODh0YYlVaYSgQo78xgL3IieCwMtAa0m0hpdEHTUlIhIJxeqJ2oplT2TUQoSuL7za03w90DMP0XkYaB6lobmTlslKc1lPo6Q4T6I3qbMwsy9L0vHZYcdYUsOTkSWzoj5HojJDui44b38xwiud29RCKpBCcVi676QS6+iK0NA4wsi94TCbtR6sFM/bfrV47V3xhOctnlPHb+7fS8/Yh83NyLEPza610Hhhie3m3rvGfRc6oKZl0jjLr2N3e4cqfmqIvGox/M1bjRnlv7OelUJKdq1uyukXHVz7IBBN851dv65aSWX9k39wylp0+hYuXTqKzdThvJSs4rZx+1jS+dJbMTb019KzvZGQoAeVTQUphtYlEDoV5bk+MmVXVREfy/SHkaIbn9qrcPLOYWs92qqeXEG4Y0N/f+iI+ddV8zqjZyYszignlIJIMLa3q+eXY7FZGggkiw0kGenVQxrGufFVJpePgEMkvf5yiybUka85k59MB9u/uR07rZjaGAN77kXk3wjXZj6Zo+X0iRcNf5OK0GWXMKu7G713Ew4F3zd3U2DB6BxZhfHLJTQgThegQKZpTyi+vF3Gu/RnUVjP0uY/xRUmh7dXWoyp/GXHc5aPcR/VwD66maGRCKTY/tZdbQ7reSfueTYddRQs2AddkP2WzS+lZr8P3jGMrCYn+zd2sbh3WV5VjvmciKW3j5/JqH/GobiqeB8Vj9GUG/YXw1vk57eTJLK1oIpqZZZY1RLeNb990IvM3fAVqq1l/yjm0vd42Tr7Z0JB/r5fZIliwFzm54oo53Dy3AQSRd4Pn8pM/bmCkYQDPtCJ+fuuJrDk4zD9//jb7mgKsrv8kj/5jXV65wRASa20KkOwKc+GnlvId/79RW7u45uDH85qGSkohHUzS3xXGKlhoH0nwxjvtdO0NIMcyeKt9FJa66e8K0+u+gopr30De2cbwPW9xxp9vpXnpStq6R7AIFvqzfSXRqWsgGTXUtgPBI+6S5HCKx3/2NqCXam462UnnwkvY3wI3vHQ25764klhzfhN3wtV0VunUZhc59Gb7hKU6wSbgqPJhL3LmjYNvdgnf8D5I+m87ue3Wh/nOu10mA19T9HKgFE4ThjzwQa5ngpEQrD477rpCfGUeXB4bgz1RUn0xE5ef97vGOVV4OPOji+jpDHNwXYepcGoct2RxJTPmV7Dp4Ya8PsjRhAEdNhYlqqQS2txjLrQsogWf30l1qZeEpHDZxbM48TMn86tHd7Lv6SZsfgefWeGiddH5PLXjN5y6WSS4L8gPXl5IdZmX2JCuTbXqpX3sri8h1p/fR1QllQfv3sCCe35HVdxBaeU+U4zux98+m2UV++mKLyczvDrvvI3S5ux5FYyEU+zb1YecVTsw7E+PNkEa9fmehgF+8Gwh0ydfSeeuCLvXt5pwXBOZeBxy2VafnU9943QCoSRP/vRtEzGkJCRSSZnpRf1Yf/pNbp5SQO2P/8A9v12fJ289VrxzQq2jw0jnGPdSdNuYs6Qa699/yrNfa2D+fIEZj9spLj+DtmO9nmMegZyTOabPZ425G5/TiSO5N2LcSfnszD1rKpedNY1ftQyNe9GlcHrc9vu9ItE+wqaHGyb+3jHZV5VUwk1BHu3fxNPlHhKdr5pmKBbBwmMb2vnWhd/BYlEo3DOCs8pLZjiVpasf+8NlsYlcMMtP52Xf5903E5x7XQn/vO8VPv7NNymb7GdS8knOm3EVD5V76Gsb5qdffTmPHCbYBGqWVHLJhTN54+12WvYHmVbjJ/XQDgY29VH/hbK8HgWSXvZIDCUpclkJp2X6uyKmyXxiKEl3e4joYJx71/bwo6Xzabjsfva3wIeWvMCiT13L6tX7ifTHsPrszF5ZT1VNARtXt+iTkaLS2xjQZZBFC5o08W7MmLCkcJoSRzuvt+h///RVa5n0m4/S3BpCS8u6jIVNNAmBuWF1W/nCTUuZWeLm5p4IIzv6zX+zFzvxziolM5Tg/A8v5PITarntmy+bZZJUX4y2md9lyo928eCf9064sj/SCssgRBnPVOW0Ym64fC6XOp9C27IFqitpmv5dvvzD18ejnkSBgunFfPtCCx2RxXxvKEF3XyzvHARBYNqkQrYXuY4JiSe6bdz+58uIpyT++NXVeWNmHENTNHrWd/J4cxBnlZfv3nYa85QnOGfF+ex7Tm+Cqwjs3QdzH30Ue/GVpPpivPWfPZx1wwJe+10xzx88hXt+tIbEUNJ0p8uNVE+EO37wBgvOqiPYH6V6xWSmzChhcXknkubi9r9t0SHDuZOcpC9YNqxt03dkQ3qp91jr4wbu32BJb31xP7v8DpNVLCfk9923GhtKQuLhf+80G81GqGmZ1n0Bgsn59N3fQlc3nHr2eTz7yuNcdGNs1BXQgKiC7tp3FP3MseerJCT2N/Rj+96nuDT9d2xnzONvwWvY/dI7x7wD+p9JZxtNGC1n9Xi4GyFHM+x+aT/NGw7pNPycpkzeMY+hzqqp2tHLOav6pCmHU/k+p1kCVsfBIXYPTmJFwx385cqz+JJtBo3vHCLRMaLjqHNgZu9Z0sieVyxjZf/GBJoGbzw+xHWXf4HaOZ8h0Buh1X4d61uGuPz6hdSWe/ntnW/ml1dEAYfLhs9lw+2xYyty8Y8/bmTjiruoOtfL5n9uG/edSloh1R/j8a1dhGNpwp0jZhM22RMlM6Q36Zt298McKx1Z0SU1liGtaAT3BpDCadx1hVx/4SxmFHs4sDeA3WEllZQYSsijCTuHkTzuPooCSkLi6rvSPN18M/Kb29l99X0c+ORTJlqq5vTJLDyhmndWH2BkZ3/emMrRDP98vIHJ00vyGpCCTWDl507i+xeG+OpjVezfN8gbTlueLlWyJ8rHP/kUgk0gM5w6Ju18i2ih5swpfPS6hTS2DbH6D5vo3R+kOxgn9eoqnr3TYD4/ze/mwat/WsVzf92slw6yCLN4b5Q3D5XTPTiYJwsC+nPTt76Txw8MHVHhdKIQ3TYuq+9A0lz81W0lc5gSpmENmeyJ8t2vr8JdV06sZS2gl08HE8Vc/et5WK+6DGGLPlVkggnOWFCF+vDPufQjX+BX0UxWakWfZHOBIKBLTux86QD2Iiff//ZZCBYLN9+zk0xGn6hEp87XMBYNmqohh1OM7Ogf1coy0FGqdlTvvOi2cesvzmdmRQG/e2Ab3W+0mbs2GL8gPd7SnKZoJkdi7N9Hm4e4762D3FRmoatb4921SXBczlVrV/HEXW/nNZ5tfgeOco/+bvbFDg9qmWDxoiQkAlt7uOKnNcw74YcMbI3S/Nq6Y3524P/AT+FoTtBA8hgcg4n0jAAzu/5XcbvZ5qmRmESnyORpxZxRuIbHLl3Ludc2sPD2x2ne2Td6Xtlygq3IZSqNHi40SUGJpXn7YJBLz/Lx9iq9hKDFZZwuK6lgkvveOkh3xwinnjwZr13M2x0ZbMjhQIxtzQFcHhszT59MsD/Gvi3d7Awk8pKhWWLLarFs3HAIKS2TGR5tmBsNN9ChiJaSGubN1UXonGdPpz0Y00EFKd056pEX91FVq1uHOl22vO/KjYkSAuj3r3d9J+ccmo7VN5f4p58dlcK2iXz02gVcOWU7fypYyL8bBvKOq0oqHWva6drUnX+dqkZwKMFAch79XTvo2dJDx9aeMS+JksdjOdZwe+xUeh30+116kukMs/rl/XzmupPhzlE5jD174Ysbv07l9/7KH7/5iolwSQ/Eue+hnSTjmawG0fidVGoCdM57hRzLcPcaP5KiHlap1ggt29Q00DGg18d//JXTmb33TtIJiYRvPjZ/J4LDihzL8MAzjcy89Z/c/0obcixjol0g++y7R4ETmSG9t5ZRVTYfGERWVLq39OAo97Ds/HoG9w6ipHRGvFnbz3IRDNi7RbWYifRowuZ3cPV8FZ9tH/+p9dOV3R0bKMPj3RkcS8ixDNveOcSPP7OYHZ/daf791884xLN/cpAJKubcUrGshisvn0NL1whv/nUr8kR9h8OctyqpaLEMga09DDcPmiCI91UOO+bf+C/HuHJQdlLOXTWA0XjRH0aLyIQd+eOKbOPUVuTCUeoya+VGyO4q5s2BorMm0Ts4qrWiqRrOKi+f/8E5XDung4u/NURsfxAlpUxY79YUHUf+5GMNXPf0E1x55+eRw2msH76W5H06GmZ9FjfevW9Ql4XOvrzGFtlV42PG/ApOn1/FhdWbIBllc/Iint10iM0v7UcKTbz1VBIS/Vt1mYTcvo2RECw2kaJSD/32k5j55wambjrA4Bnf5637D5rXIoXTHFjdQpuRBON6w05JSiZyYqKxhTG10yx3IXdLD/rzcPaUMNI//8XHbrmLh2ziONiynF2tjh3XLQ/s4pqnmg7rxXE8+G9N0Wh7q4M7u7JqwNlGcd/bHXyi9Ez++rW3ef6eQ+bnn/lOM5e03EDLl+7llT9swjujmJlLa9j3TgfxjvAR9YAOF4dtcEsKz96l92uOhRUt2ASctQWs+fcUnhRPMmvRF3d+kZUfvY9V4d3EWoY58Hwz17x0wPw+NeeeGVpos0+exIWn19HRH+X5RxtI9cdY9a8do2qtTiuqpl+Do8LDrd9awerXW2h5fn/+fZEUNFU4pvdbCqf5yt+7kTIyHetaJhzDCQljh/mcoWkkum26/Wwsc0RxvtxQUzLhhgFe+/yfgNPMv4/ddhf1Z/6YA6tbkGMZRLeNh79djeXrn8B19SI21a8gPGYB9F5hoNpy3+X3E/+nSeFIJZY8RIvhpZqFZ4L+sKtpGUuWLKLCBy4pa6CWVl42m48tL6bStg1CvaSLJ7FveAHBVzbxq+YB1r3YTKp/FBmhKRqyoiJaZC7/0DxWzCjjyU0dvPa7TROzc1WNaNMgN/3sIJ/81L+ZWuhm494h+g7tHoVJKmoe6xMwlUFnnjKJb19eSWn/vxn53LPYCxws+c10tlaUsFkQ8urIed+raKNcjQmShuCwUDe9mB39GlNmfo+ihRK/W91Jx65+E21mQUWVLOakKMcypo5UrhfDRGObKwpmlgZySk2g3+efr0py+6d+xf3vjmdnw3h1SvN3U/JhSyfvFUdjf5gJJsYJ/6mSyr6nm7j6lK/wz9jp7KxaRjTbPw7sHuQbf7OwdUMVy06bwqfOqOOHKYndLe/NdZjo/IzJyoBbA2YpZxR0MbFE9YTHtIk4SlyIe9/M+3vXvFJkRTXfRVUZU37JuSdWt5XyaUVUVnpZXg2XSY/jveWjPPx33R1v3hlTWDi7nOa2IQb7dBioq8bH2dP8tM4p5+CLB8Y/r+rRl3qMBv6B1S1HLBeP3bVOVPI1Grhly6o5/4KZXLOkmLVtCR7413biraGjdoNTEhK//OGbvJ26h8ecXwNgaN8w135tNr/ZPUBsf1BHZSX3cnBrH1NmFumL0ONYsBxPfGB+CkeKw2VgZ5UXZ6U3T8AMxiSErG2ize/AUeTEbtdPOZWS9OZuJJX1DpDGScoeT2hZg3Y5nMLntlMZeZbojx7hpXtHFVJveOV81mtfIB1MmkqVVq8dJSHx1++/yQM1Pj7+6anMLDrI5Mriw5rKGDXBgc3d/K5zBHuJ2yxHvJdksGATqKn1UxZ8mszT7xDuiFA2v5R3e+vZsrXRZGgeadt5pDHYvLadA3sD+AqdWK0CLdt04lUe6zs7VqqkYndaKZlZgpSWGdw6Rk02Z9cH5P3Z+HkcAkNRWffALnZsKCbVnw/ly50YgSwD99g8vicKw7YxV+32cOM00Xepki6N8KErn6Twc/fw9c+dzLmTdYDFht4qfP5+3n56L++uaSO2P3hsoIQcmLZRpnRWell+Xj1z6orZ2zbEwX06Km3RCdW8fO/Wo6orW0Sd7BdrGeavsY/yOfVMLIEDkI6Trj4d3taVUQ3fZ8aQqUydoUofcxdWUl/jZ3MvXBYc5splGq/UFTLcE6Gm0seZ00uZWenjhXd11n6yJ8qdD+/Wnf7GjLOR3A431rlhJIRbv7WCZ1/YZ/p5jH3GcpWUzZhg8WLAY09eUccnT5Lw7vwVly75JC9Weo8onjhRJHuiXPfbMp6I/xr5oUdBsJAqdlMxo1j3YEnI/GDdPL761irW9vmI3fbiMR3/g4zjEsR7P5/NvbHFs8tYesokXmkLIYXHb5+NGr7VbcVV4qK8ugBfoRNV1YiOpAhaBRKqCmRMKvn7vp7DwMCkcJq2njDSiQtxn/oW5CSF/1z4Oj+Ir6R5bxWdG7uRFA3v7FLUlP5yRfcP8Z/Hd9Owv4o9mxuO6Pdq4N8NLLZvip9EthRw2FB0M53gUAK8JYgVboqmF2KfV8obu3roagyMMjTfR2iqRjzLIB0qcGARLboLWkrJm8BHuSE6gWbpSbVE4xnW7eofR/u3Fbmwuq2jTWFDO14A0SbqUN4s/d/md+jM12DSLMGNDdEh4qzyAmTlMY5PKcz0mJhcwGlXzmHL2x06jPUYt+SaojOJQ5t7+FHLy/x+Tikl5V5gD0M9EdLBJInOyLhnwhAqnKjkJdh0XwSD6wD66t5X5uEzZ09jEq8Qmz2HllOWsbF1iPmTCnmjxD3aNznM+RtSH3JCRklIPPXgDjZtKWPBwjP45pmdOML7mTPlPJpr/aSy3gpyTANVyUtSNr+D6cuq6eocITAYR0rLXH79cmRNl6NWEhIHW4fILKlhbmmG7RU+rD47mWCCA2vbD7uyP5pxF2w63wdBYOe+AOHe6LjP5C42jfc9r4lt9A5zFpaqpHJgf5C102ZxxuJbeL7JTqAtdPRS/jnnl4xneKb7ZFbePANvvIGRpITLo9uPKgmJt59opLmxjFBf9D17Qe/1XcaO+7/OaH4/DOQjHWOkPcSunCYV5Gdyw0nMXupmyoxSFs+rYFq5PgG0BWLs2jtAu6qRArNU8X7KSBbBgtXvNG+OoZmkqXo5ZO/2Hu6rmcu0Fb/nhvW/4j+nP2f+rvzQo3z5xr9xr9PGwfWdrFg5nURSYkNIRy8Nb+vjnSMIauUlzOw5L7xgOn/6SJjP3D+DXY/vRT3MA2ic3563OvjT1JM5/9IrKLl2mG0BDxt+9IautjkGUWOU34zf1xQd9eCdXYpgEwht7skrg0lhnakuDSfN1aCr1qdD+3I0rswdQ0ohFE4Rj2ZM/2ZDPlx026hZUsnchZWsfbIxz3CkcGYJM+ZXsHv9ISJNOkzyrBsW4Pc6eOpX75gTRu61GKzzwimFAAyG01iE46un6icqMHlxFbdfYOOX1PF2V/g9mem5kdf3UvSGciCYYDDn2Z5ItsAiWjjl5iVcePIU/v7ITjpXH8w77rSLZ3DXZ07msz96g/COPnMHaLUKVLoaUR5/luF//YQiSeVzf7uRN5Vbdfa9zz7hJJM7mZ91y1IatnQT3NJLvDVEj2Bh3vwKtJZtqNsbOe+6+VgvmsW6ah/b32on1jKMAqbXgsUmMunkWu7+RCnffnSEXc/rO6M/zT2NcCzEcI+OIpw0uZAFifvRDgX52PIv0N41jaYNnTpyLyUf1Rwz9v4avZCpy2tRZJVtL+43FXTznMxyqw9ZXo1xPDUtj/IWGAWxSMNJDqxu4Vdvd3C306qjEqPjdZyOFEbSnXdCNcFwil+8olDiX0Y0oVv/CjYBBR2p1ZHdgbxfrStjLBzlHtKBOKnuyDEf66iTwgeREMZGsidKfzht1kPHavgb2d9f5KK+roizZ5Qxo+BdUGS6S04jIymMDMUZTCv6Nl+YuBTxXmGxiRTNL2PWwkr27+4nuKXXnMjUlMzIviDPq3ux2638NnMmPxv4HksyD4G3mF7bhTQ0hRFEfVfTuKsPKaM7bK24ZSkNm7sY3tg98fdmHxZ7qRvBYdXd0gQL5WUetNa1LJh7DXvcBw67KjGQI/G2EE/8ZTOv1xdTP7eM/bv3mLT9sfXRoiWVeHwOFp5Qze4dvXS+1sqlXzmF70x6FkYiXCysYHBdZ9536C+MLscx7aw6Tj+1jp17+tjzzD5zsjFIg4mOETY93ojVZ6d0QQWR3ijxliEdBpuQCLSFdNG0bFNSdNtwVnpZcGINddV+WhoHSLityNEMOzd3IQhC1rRk/L00jjlyaMT88wfSU1JU2tYf4nOySvfu/qMmjhkvZMnMEga29uRxC8zm6Xu8oOHhJG39UaLD+ZLcFtHCkqU11Ftfpai8QCfUqRpKLM1wT4Q3Oxex0iay4Q2977Rx9v1ce+9OQp/5PY89uYeBHX2ju8YxsGnR6+DDp02lssTDk20jZu/K5bCiNTYz+OR+KhY8z8VTZrL0grP53mCcpi59sskdbVlWScrFxKMDpnvhU//YisUqIkdSOGsK+OHKHtrP+SeaolJ7zV5uv/UhfhjPsK8ngnqYYR5rmpVXQssmpKL6Yq6+aBahWJp/twyRGvv7OQnB6rNjK9D9rW0OUbcCDqdRklL2eZb1lJAdJzmWOXo4+xHOf2gwztBgnI7mIHI0Y5YnjTge4IMZooCz0svU2aV0OsQjCnIeLv7PGs0Gk3fxFbPxeu3s2dbD0Pa+cY1YwyrT57FT5upDO7QbUikqZhZRXVqHx+cg5Ejoq1LDxAdhVH4hJ440YRSVejh9SQ1Wm8g7O/tNSWtDzyjcGDAnsUkFYbT9QZ6Ifog/3/WK/rksxLM72KnXMW0ig33RI+qOWGwiJ924kN99qA/pHw+w+fv/4Fuff4G3X2jmnO/eSjjWrz844dSEKxPRbdNrwSkZ0WXjq7cs48zeX7Nxxe184zPPojD6Alm9dipPruWR71QiIvFOTwXDoSSdosDMKUXIb+5E6YtTVnlxntK8uerNjp0gCMRTEqExYoO5yKVMUEFwWqmfW0anQyTZFTZZnsnOMAcCcdOgyVHu4cyV01k2s4w3dvRQO7WYG29YxL2/XMfAu91H7IcYvZh4R9i8Bx8E5lxTNFJ9MQ5kV7tHuyq0+p3ULqlk2sxSArv63/PzuWH0MZqeax4nMmic16p/7WDP7mo63zo4OvaCwIwl1TitAsKFlwIbzd958rM7ueGtXzH90z/kx/duIrg3oAMXshpexj3NBBP84Zk9hIeTWN1WrHWFeqlQUrBYRaSEDKkUxEeo8G/E46s1x8UMRaV3cw+fu1slkC0bAiS7o4hOEQSBZWfW0fehm9n0jv5yRYYaWXzrK0yaPJtmm6jvohhT17fp5UF7qdsU2zQSmplwVY3oQIzXNh4iHklPKJhnESyj7n9eO/5qH0WlbvxFLqLhFP1dYRJDyazzoZLnWXDcz5SqIwwPrO9ETcumV7ro1HcqH5hMOvo7EG8LcSCUNFFSxxr/d+gjUa8vn3fyZIpddiLhNKHdA+NWC5qqIUsqqbRMSvFT6C0GZ5qM6iEtKagToVGMxGDEBMSpsQ3NUDDOvo5hBvvya5HGAyEnZCyCPuk81aBwWv3XeOA368xt6viQOPBmWx7zOg9pkz3u9ClFKE/cw1O37eaGJT/HWbUcKZLmwEAUSVZHVSxjGXLZtYJNoPCESgTBwvC2PuoWV3Jm6p+8euHTXNg4GdHtQ07IelKJZnBWefnYDYuw//sriLMm8drAR9j12kE0SeHxpxs566u/x2sboPPWUXy9MVEZL6Aq6SvnQE+EZNfEMMpcuGt3e4hkPIOtyIUUSlIwvxyLaCHWMmyKnpVWeTlzXiWnV20nlllAbzDO6VP83Od3HFUzT1O198Uiz73Gseee++djOaaalulrHmKwMzyhw9hEWl5GCA4r7skFpAPxw+5Mkp1hWgbyrSYdpS6uP38GK2qaaBi6kAs//nte+feoO2DkoW0s+f2bLDhhBhv6Y6SVOEJOiURT9Z3gvtdacVZ5mX3aFObNLmPNmlaSaRmqKymZU4JlUh1U1AMC4eGkee9zOURKQmJge1/+6teUhxH52Ip63rpSf1/qp0LdqRXg9k/4DpvXV+Fh6SUzmT+jlH//cSOJzoh5v817l7VibVyjy81I4fRhF4BGBcLpsuLzO6kq9+J0WgkPJ3UHRmNxqVry1JPfb5hKvJJqsr41Re8Vyqp2TBWNowkTlmqUuN7HsY/LT+FYY+xErKZl9nWE8HnsBHqzJJ0cgpohFBYNp+joCbOpwssJVdcjWjK0B1Q6egeIR9LIRoNZEBCdE0Avs9Z3RkMJyFuRWEQL6Uiandt6CE1QgzPKNBp6Jn7gzjd5ACYUMcuN9IC+YjEmdmeVFymraGqgip5/fDdX/ewvXLH1Q1jmLUF0iCQ7kzz6r+06QUxSWXzVHJo3dRHZM/qy++aW8eCdJ9MTtfOlzz2Hr9AJwWHda9amN/b8iyr41R1n8bvHG/AVOrkq9Dv+86ntnHVZC9ErrybZHUVTNA69cpArNnbpcuJZy0oAW5EL3+wS/EUuhnsiZEIpUn0xEu0j77l6loaT9DUMMPfcqUw7p55XHm3ggktnk8rIvBFMYCtyMXNRJVMnFTK3JIK2dyMnTj2Nu7d28dlVzcRahvOelSPtFt5vWETdJ9s12Y8mKUSb8yVVjhUVpCQkYvuD4343N7lOhGQSbAK+2SVccu0CmpoDNDy+97DGQmNLielgkpc2HWJw4XQef3ozd/5mNTd8/me8eenTDAZBSshoTdu4ZOnZHNw/SF8Wyq0pWh5aLxNMUDKvnK9cNZ9ZPM9wZLH+BU4nrnOnEi4+k82HiukYjHNozza96Z+jFWaYSR1ONdbqtTNz1afZlf152dMfRll0Aet659B1aK8+TmMXc9mxcWfLy5qSVTawiflKulkW9ETw6onGUJVUMmmFdFImnpRMdvXh4kjJ/GjCSDTG9WADVbQcUerneOI9RTjfI46t0fw+EsGEv59ttqlpmTWrD2ARLGSGEqPln+yEo0kKckImFUzS0TKELKvsr/RhFQVC0RQ9nWHCWaEs0SEi2JxYrKKJpzY68Epal/RWEpIOX5UUVCkf/qhKKpHhJFJkdJVxuJWjKh1b09Fe6qbutMl86JLZvL6+g4ONA8RbhnSxtYYBrr3xOYrmf53099PEWnRTnETHCAj6ZPHVK+fzZ4fIu81Bc0Kx+x1Iqou2Eb130PDqQf782U/zifDH+fwjMaTwHqaeWsiSgrdZumQuHT1hiOlJKtYfx5aFcRrXlBlOYfXZqT27jmBzkPRAnFkr61l+Yi39Q3EClT5WnjaFfz28i771nWjSxA9ebrlJkxTmzS7nxhPtvLHKyQv3b9fvsVVk+vwKPrlyFvWFg2iopOZcyra2CP1d4eyOUXc/c08u0HsVnZHjftjHhui2cdK18/jqJbOIpDW+9P3XiDQGjjkZjK15j23sW312ihZWYHdYGdjeN14BNrsQKi9yUX7KFBqfaz7qa5VCSdbft4PNRS7sRU6+98d3mbP4Bm7v/jSFbY9BRsJSPQW3RcTndzLotiJl1YWVlKJPwqre9A53jvDcjm4uXXw57a27mDmzFGnNLmwzyzkYqiSWSTIYSuTtBCw2Ec+0It2HoSdiCgrmjZFgoWp+OXt/vhWAS26tYlXBF1n1QBuD/dsJdY96O+QuNjRVL+Ot/ddO3rYJyNGMaWqvpBQTFps79sb45xH7DJKdpGLJks/CAzHSSV0pOJNRiI3oDWTT/nKCd/9Yw1gMiE4RW/b+CE6rKbkvhZLmfPT/Uhx9o3mihDBGdmJcTERLzzZ8DH/gyfXFxKNpBrN1NwN2aGx91LSMIlqIDsbpBqIjKQTRgpRWiIZTKJKq1x3L7fj8TkorfRQWOSnxu3A5rKiaRnAkSSAQp69zhNhQgvRQMo/kA5j1NzmaOWo6/dGG6LZRPaWQOaVeumeWUlLmZmNKRgrrK3/RKZIcSpLsDOc1wwz5gJGURCadv2WOdYT55bNNtDcP6mqMfTGevm8bb75RaNZ0uxoDPNO5grfe2o0iqaS+/0lmzXiFKR+eQyCLBskNW5GL66+ez8tvHOTg2nZOO3kSyyYX84edPURHUlgFAYfLatZmLTYxb+U6FoygJCQOtA/TN3u2CbcVnSLuukKmTPKz1P82WtM2LIvP5t2+xWzZe4gRA1MvCohOkdmnTcHmENn2xF6kD6BnMDYEwYJoyeC0Okyo4rGgSgw/jFzsfu44uCb7qVtWw4pTJ+OwidzfFRlHehJs+g5t9RsHdcfAY4RWa4qGs9zNnJNqGQ7E2bern7tklStP/RyzipOompWW7gTJuH6vjF6Upmh535Xqi/Hqk43s3N5DoC2Ev9iFtcID5aUMxNPU+BzY60tZW+Q0d8Gi28bS8+rpPDhEZyAOZJ+HnLlBcFqZu7CS4ZD+c8FPPsaqVW0cbNSTv5qWR43qJQUV1dwVaIo+L5jAE69+nwinkQ8DPzaSi7GDUXJ6xJqky7NIkbSuMZRdBBpOc6Y/+3GWdIxnQ3Tq1rcFU/xMnV2G12snFstw6MAQIVUDUsg5JdD/F+LYykfvlQSO4vOGFaSzpoDTzp7GqXMq2HpgkJ3ZlUZuGNh9I3PLsQyRgVgebNVT4KC43MPSRdVcuqCSydKzaAf3klnbSOpASJedmFSA44RKLB++ipbkSp7a2snWzV0Mtw6byUGXSuCIXAI4PAs79+/HkmXkWIZ9O3v5F2AVLUyr9bOzyEkEcNYWcNWnl1FfXcCvv/8GFQvKqZzkJ9gXxVfopHVHHz//5xZC7aHRxrKk6sqP/24wm6tKQiKW9WEwdhOx/UF+/ZVVunGO28ZHfiHw8807eezQMJ13rhnfzJQU4slR17zugRiVhW5aN3eT6ovxy4YBvS6alnFN9jP/vHr2rD6QZ0aSK7ugpBV2PNXEl7OQQ/0B0JNeUYETgp1obYewLJJ5Z98Ae7b1jDLDs4nZ5hApLnIhOkXkY5iwjyaUhMTmp/byqR29qKqmS6ofLWLNIGuVe1hwwXRadvfr5b3cMRUFFpxfzw+vraTQ3kVcLuU/5W5i+/OPs+iauZxzWh3//MdWwjv6jrnxKNgESmoKuPCUKRzsjbB+fQfbX2tl/+5+aqcW43DpNfPB/iiIAoVTi0jGM8TbQiaCyHyGmoPEWoYRHSKN73Zy6K6/YRVU1r1+EFlWWTa/kplLa9jRMowmgXdGMbetnM6fLdC1qTvvnTcWks5KL1edOAmtCOacWshzkcuIR/cjRzOITr23ZEeXp8gEEyCoJtTVKPlaBAuOSh9l9UV4fA46dvTqC5Kc3YLVa6fq1ElMn1vOpmeacNX40BSNSGMgO4+gF40TUlYex5KnkJArpf1ByOZYbPoOoWCKn8sun8u1C1WK7O0E0zN4YmcJq19uJtw+gioldJb4B7zgeb9x9ElhjF7N0cgATBRmPyEl0946zHAoSXtzUFfpzIHMAaYjkSVbilDTVoRYBgQBq1vXZp9UX8zSeRV8dOEhtH/cwUvf3GnKCozGANACvMOkWrjj7+cS+NqP+OtbgzTt7iewP4gUTpv13iM1qWxFLn1HkUNmspe6qVxWTehQmHjLUB5jUlP1xk9wex/rdwcQ3TY2eu2m0JkczbB7Tz9iFo2TTkok4/r2vKbWT0dzkP6tvTjKPcy+ZCa+QiftzYMM7da9DxAF08h8om2vie+PZehe28HNO3SE10T6KOlAnH/9ch1KQkIKp3nzwZ28U+I2Sze5WHeLYOGUE6rp7w7Tmx07Q4bEeDaUlD5OsZZhHQ1mE02Dn7buEfZOu4nyi69iY5uVPbv3Ee+N5nNEohm2P92kryIFgYIF5SR7ouYq9XjDQBkZSe1on2PDq0B0iBTPLOGac6ZzfyiZ9WrIf08a17Txu0Inp86bQSieIT6GVGURLNRNKaKu0PW+yEYGn8dT4ECwWIgmMiTjGTJDCYaHEoTbR/QVtsvGtMWVlJR5uOrkKbzVNMDLD+4c10PRFF2MTkGHjH//vi2UV/sIBRN86dqFLN76TXxn/JTtj+w254RNPVH27ug1S165VQXBJjDrpFoWuNcQXFxK6a8/RpXg4NSTJ/Nsb4SiEjf+YheCIGBziOx5q0P3+s4uHo0+lyYpTJpfziUrZ+B32vhzfzTriTA6FoWLKnjmuzakv/6U13/8F+qL3OwfivPr775GyrhOSUFRNSzZpJC7LDJ7jsfp/Je7S7CXupk6u4zrFsp4//1dIlv7KL5gKldc+Hsa9haSHEmNCn8eZ+/ig4pjKh/lNUuyYTZ/OHyDJ2+iyikTtQR08lPeZJxbulFUNEVvFOu9BgnVUE4ULQiChdISN/Or/Ah73mTjzyZKCPnR1Q3/ufhNLv7UXn547/d4Y95S/v3cXjp39SGRhYcZzMYxN8liE5l82iTiUX2SNyZcm9/BtFmldAgWUj0RrH6nLgmsjApU6ZNdxjS3N8tW4RS9nSN86dqFvDujmM4NXQzt6kdwWEmnZORwCv/cUj5z84lcITwEwyF6r/wW973TQ225l6vnp/j5qiRv/nbjER8o/YWXybwHxDPX6CXVFyM9ENeRQlnfAKO5nuwMc/8fN+lbf5uAs6oQW4EDu9fOeRfMRFU1nvvbVt0eNT1aElQlFSmSZt+ufv6WkLDbRQK9UfpahrAVOJi8uIquxgCx/Xr/JBPU4canf3opd1xeze6Aje9/7vn3jRsf17c6xv6Bs8rLTd9awfaGfhqebWL4wBC/+dsmIgf1xrjoEM1dBOhaRBtXt3Bgb4BwKGkmtFxE10t/3cJqt+0ISLb3CFVlOBDnpfXttDQO6Lo82fExSi8Vy2v5yUdnUpl+jbZLb+T2F7/Nq0+6Dn9MRb/XPY0DDPZH+d3tZ2O7ZBn/2SQze8Bhrt5dHjsbdvQQzoIPcheNBrnwpgtmIj9yD6qsonV3MmvxEG3DLpxOG3UzSigpdJGRFGrLvezb0o0c0xcXhVMK8fgcBHoiZIYSTJ5WxCmTCgGwGa6L4mizPNkfY3P/aSy/7Awuqt1H+oe/ZNYtF/LbgiowEr/BWFbQE0qOmKARx5MQ8kIQsDpECgocFNoPEdnaR/+OASZXefFeNoDDZRudV0Xh/5kS0jE3mnP10jVVA0ED9Qj6OWq+dknuakRN5yOCDlvLV0adiQSbANm6oJxWSKVl0ooKqkrqGMypXr6vnxuufZ4V55aweU4Z/VmrTUtCOiwUzSJYKC734vLYGbKNIoHSgTjbX2tFSUo4KjwUTS3SPYyTEoMtQ6Z0w+EIWJnhFDu7RxjO0XtXUmlGuiIIDitXXDmPK/2r2HLy30kk4cxH4/zgpBNBSpH87hP8+Bd3sfYv1qOi3h/Lg27wLWZdOpOzVtTxzsZOmp5rNpN3vC2E6NBrpjNOmcS0qcV4XDa+tGgHJMKsmzmJob2BLAxv9JhKQiI6EKNVVhAEC8mRFJlQiplnTuGmS+fy2rRuXvtdCE0xej4KQ4E4acVHkVNBdNved1Kweu0m2ig2gRDd2L5I3qJAsFA6r5xb5u1mduXpNDzfjBRKEtqtk9SMPovJmM0uYOoWVuh8muwiaCwMcazQYS4L971QXvo7KODxOWhtChBtGsw3kMkuquLDCdpGrFSEO9j8rsTUQy1oyoKJn8mcer4UTiM4rMxJPMBjm/SdwO5eHSps9dm54MKZ+L12dr02yr42EoLVp2slLS/dRMs/GpBSCmUZibhcSktXD3L2/tfX+OkNxmnpGkFJZxnSooVMWka0CuaYpVIy3ZE0CUkhHh1//5PdUb77s7UsPuN07l6+jo7nW5h1Rj1QNX7MjDjMRPxBkMgAFEklkZAYTtdTeMFUJtf6cJw5k65ELfHoTnNnKDpEtKyiwv/1buGYGM1GQrB67SYCQKfrZy3+xrYQVHXCLZGZHA6TDMbuOCyCxfyMmv3ZkvVBbtsfZEOBk+Vnns9J16zjxb+MN7s4XCRX78c9bxMLpl3LnvI+ArGM7qssTZy1NUlh/5ZuszFlhAFFtBW5OO/WpVx10mRK3SLDSZW/rdrHntUHyGQT4URjEW8Z4r6fvoWSkLCXutGcIlI4zczlNVRU+phf6yfz7xdpbdd/J/rYTmyvN+P63udwfetGXmifAjT8V7afziov//58AuWRO7ju09/j4o0erF47Nr+D0OYeNFUv5S1dVM0p00po7I+AtwwSYabOLiUxkszKDWtmcjca48auSZVU1JRMf1eY9mCM1BjkjaZo7HuumY9s7kZ02cbZsB5L2IpdnLhyOhXFbp75w8a8UlQuYsXc/Y6Rowj3Rlk/dA5PrWvLY1DnMmW9ZR48BXasVhFV1Zg9q4yMpLDf0NzJrgrNmvnYxJRdYVv9Tp1sdhjpbyOsPjtnnF7Ha6+3MJQlRhnXAzr8Ot4a4u77t3LnZ27jhnXDvFn8JaTQy4ff3asaZIEemqqhhYapKIfT75jPBX/ebJIPBcHC3rahPD6OYBOwl7q57KYTaGoOoL18P9u2KhQVgmPhj/njC/vobB0mE8vQ1x1BmllGPCmxd2efmVw1RSPRHyPBKLmro2WIp1SNaDiV18cyxkyTFCJ7AmwJpeDcEuqumIHlnA8h/bVLVx1Vj6wl9kG8O3mLClXnTHS3h3ixuYyLL/4ZniuCdKVm8NzWLgI9EZSkzo248AsnIssqax/albdb/7+IY0MfCTky1gYpQ9RvBllvlfxSUU6yUHM010XL6GpE1cbJJY9dSeXxG7IlJQUglKR/3yBvhVNYxZnc9se7uNL3I1b/rp30eywkRREcJ1VCcS3RVglZfu9Gj6ZqRPcP6X8e83AZiJzyYjdLbC+hrn6V2gIv1537E/Zv6c42tCc+riqppAfiZu3XWu5BlUbwF7vxeew8ta6N0z9yIae92o6rxEXBH79Jj7yCn/6nmYMNGlJkrV6uUie2jzyeZCFHMzx2YCHn3/BL/vJmFFuBg6Xn1XPGomp+0foKmWCCdCDO6pf3s3tqEZFQku1NBZxz4hUsmZMik1bYG9JdzQzpABXQlFEjHwN+PLiph7/tHjB/zhujlJzvgvc+I9UdYePje3CUe8bpARlIImOC1yTF7DWBfp+iTYN841PPmM1Io49i8zvwTiqgvLqA2bPLqM1qdPUG4/T0R/VJcDill5XSyrhnPO88bCJWn52KBeVEhpM6TDYrgW1ArQ2Agabo2kpPPtag6weNYZkb8iOqpBJqD/HLf2+jevJH2PXEOlOSfdz3iznsX78Tf7WP8MwbOWf/dL61Zi6Jl7ea3IZH7lmv82myLnkAZOXa+wZjCIIFvB6KCuGUqyv55VsHadrea157d+swD/dHKa30UV7tIzaSGlUGVvMXj6HuCJFhnalrwGJzFQyMUBISTw6uZPZtV/DXB/dhL3XjritECo2KEP4vVuOaoifVkWCC7XsHgArcrnIGhvpoagqQiqSxl7iZemINs6YUMTCUMMuO/5dxzDsFBEE3T0EwHxztMHISmqKZRiuqBBYBLDnGK0dMDLklKmUCmFiWEagNxJHCaVZF0rR3TeKGLz3O5T9rQnzxPlp/sZEdW2WUMYuDMy/xUfX1FSROv4WNvVVs2N7KSF/0qMwpDAq8MSZjr7t/KI7W2UL/g43YCxzMvS9joobeK4yEWTWlkO6ExPoHd5n6SL+pOoeLH/8obfE0f/9TA907X0aTFJw1BdQurKR3f5BUT2QcbFN026g5cwrDrcMk2keOuZEph1P88Y5X+ZNNpHBOKd+94yysgoXmvkheQ3hgczfBPQM4yj0IgoVFFW5qp+2jrGAOBxsHRj18c5zscneKBjM5V+X0g9j5jD2GKqkku6OHXY0ZDUJHuWdUHFEZFfXLJZAZvS3RbcNe6qZ+bjmL55Rz6Rw75dZdyGIBe4LzeTEt04m+ojeUZuVoRkfOTFS+yUqmRLLMYUOiwSJYWHTjAopKPWx+bp/ub5w9n5FtvYcvBWUTQyaUoqdhgN7GgG4/asAvJ/g90W3DUeHh9A/N5cOnTmUoJfBM22lseXFURkOHcKbMJGLMDxZR5yBte/kApTNKsNx8Kef/YQjxyivp/KeOS9VJXAKCYMFqE1l+Yi1FBQ4G+2PEshwmo+eCqp+nkpT0/1KKOXcYHKPcxKAkJP55/zY9IQF33HEmiytkXj+o8PdfvzOKhPsvhzFnOlxWli+s4iNlL4PNwb6yq9nbPEhJTQHf/uQyFu7+Lu/4fsSffvjmBwaiOJ44+p6CkI+osQjG34Fl7FGyN1ETNDTVAigI2Z6Alp2TjshUzU4cRrNWlSx50DPzHFBR0qMkl/bmQV5w29hQWMqyE37NKe+0Mz2yD23fbggOgdsF5WVYZiymU13JyzsGaG7roHVfwPREMLa/Y0k4Y9UWTaq9YMnL7pFIGktlDUXzSxG8djrTBe8JbctDckkKXr+T8mlFtGVRO2pK5o1XD9DaESIeTdPTMEB6II6jwkPFJD8nL5/EekmhJ5weV2t31fq4/VPLePDVA+wcaEQ9xlq81e/EVeNDjmWYtbCScyo3kRHLeOQVOa/+aaymlYRELJomo1iwyAkKnTYcLiuxnOfH6rObCwarX8e8azlQYItNxOZ36Ois9yidHGlMc++NATc8UpjcGEm3sdTk0Qb5uOMLo8+DxSbiLXQyqbqABdV+ysNPoG7YgDiznprp0yj0OnC6rBTNLGHJwio2be7i0KYuXc5iIkc4VUNOyObkZZy34LRyxsmT8blsNGzu0tE3ymiyeq9QUzKScb9y3PXGelAYqsHV88v52vkFFK76IpbF80lN+Sz/KXGTHojrtX+jxzgmIQg2AQQBW4GD6XPKaE/MZOqH4uxLrySV3IjNISIIFgRBQBAtuoVsVQF20YLTZSWdFJGz0GuLqOS9//l9l2xTX1RGiXjZ3l28NYTVZ6d+eS0rhUdQntrCRz7ySf5dpXsh/Dd3CnnoK4eV4nIvH5nVwGOOX1NUCBds6cdfdAGJeIYa3wiZLR1MWuY8Lpn7DzKOvaeQ8xAIOTXSsbpCxvZWTcuo2WxuUdWsuMT4h9DcLWR/tvrs2EvcqGlZR/BMQFQxEoOqqGhuGxddPJsrFxbyUlOEn/1+AzaHiMdXRVFpPS6PHRKQ6VGIvZUiFHyL+GDChF8a29+5l89CVTSanmsex1mwCDo72WITdeMSVcNR7mH++fWEgnE6N3Rx6MAQ7559Daf8fCay6uC5dd2jq+QJwjAQMrRR5FgGu0PknLPr6dneS6ovpjMwm4IEfA7KKn04yj2k+mLYi5ycfuoUbl3WTUXJXB4Ip7ICfKPnrSkanZEUgd7IMZOiBJvAyTcu4K6rLTQP11PhUdBaXkabdRFtTYOjFqTKqF+CmpYJ90Z5aEM7J885kbb+UN7zI7ptXPDpE4klJIp8Dj5+ahXfuX83TU+OSh14phXx+W+cjs9u5Y//3EJwS+8xbfmNZ9RR5WPKSTXY7CLdB4JEmoLv2Yw3eDFmkkuPyjmM3e0Z74Ho0NnCteVeJhek0d7ZRezVdnyCBeuMNFZRwF/kZub0Eq5f4sRuq+OhLT1HROtpijzagM5+TpVUnnhyD+U1Bdjtem9POloDekVfQBlQzOkXTOerNy6haSDCP+9eb+46DAb++Tct5tNnlFPw0Bd5/NM7OHnFduY9WUh5zQzdKSznfR+bEIzycu3MUq49dSqbukLsdZ5OQ2snQhaxZLXqCcFqFXF5bMQyMklJweG04fNryLKKlFbIZGSUrDSHwSUwACeC14qj3EPVlEL6Do0QbRo0F4lSOI3gtDJ7VhnJe1fT/cYhps+fjttzGqEjPgEfTBiLBdFto6KmAPnBPwMQGoHMU+sR5l5I78Ehbn9A4Nob7ufvf1h/zB4N/6046qRgIiuyN11wWrE6RKxWAZvDitU62mXWb6iMLKvICV362JKWUSULFkXTtUvIf5hza6xWnx13XSELltcyFIjTtTdAPCHlrSbN31VHJ6SrF3kob/0TF8/5Co8E4sRCSUKCQM8EYnTjapaKiui2UVVTAMC+Cco9gtPKOZ9YgiBYeOvJRqRwmhU3zOecxTW8u2+AzncOMdIe4t4nd/PytCJkWaVhS4u5VR8bFtGCp76IUy+ZSSyWYeP9O5HCaYYDcZafN5PXFlXSNdxhljFKyj1865qFAHzyyy9g89pZOKkQ4c27ufa8DxG6ch4P7B7IKyElOka456svo2QJO8caZcVunC3PsGTKPEjHSdz/Nu6vlYAyiuiwiLrPbtmCCkKHwkiRNFs3HKKvN0ImrZCKjyYPTVLo6Q6TSsoM2QTW1/rp784XvhNsArNLPMwqaoZbTuI3yXeJ7AmMS9JHnARFAWe5m5uvXsD8sgyr90/h/ns2kOwMv6eLmpaVCods0i726s+/VUSTFbO3YZZTBQFV1YinJILJAipOO4eCOTOhfBrt4SKs1hBl5R7au0a4o2mANkPq4j2Y87kNY4tNN5saOTg6pRkyCvZiJ0pKGSefkbcDNaCYCHhnFPPwR1oJfuXbnPDlM3lx7nl0BROmlaq7rpAfnN1G6mffpH9rHycssVB7w2zixScTHenJO35urzFvfrAJBHoj/P3FvThcNtxuG7FYRjeVEXTlY6tVRLQJOJ1WWnsjJFISngIHTpeNTEYmnZTJpGVUVUORVWIjKTQpO96CXlY96cw6fnrSZrSRIHe2XMrah3aRDiZNqHvz/kFcd3yS6Te101XzZcK9h2+uH29MhFzTJIVQMI76qa9z6mO3UHXxNEa+8FcO/n4vqUCCfR0H+dEL+3V5+PdAmh3tOVhytKHez/GOqXxkvBiCTcDusuLy2LE7RGx2K/bsllBVtazYlC40ZajCa4oudWXWZ4WJrTMNVEPd7FKuPG0qBwYivBbPHLEOqKkaSkph54DAhfNOYUebvuLWJTMOAznLJcllz0FJK2zKQuuMFWPueTnKPXz/ojhxuZTGXSUEmgaZVuunoX2Y7Ru7TFPvnv1BhgIxfaLoyrprHWYCcBQ5OXluJW6byNYn9yINJxnojWAVLEyuL6Z3c4/ZeJNllTJXO15Lt1m7H0lJUOiHeIiZlb6sXMBoiUhTtPdt5K1KKuvWtHLdHV+hL5RmVnESn/th1Hc2ctoFt/Ny1ljcGJvpc8vZOZxEjqRI9MfoVDUEwaJvi7Pfr6QU9r5y0Dz+wXe7xiFJ0oE4T246xCVLZ2AVFHzFLmI2wZyojXt2uJ6Dfk46H6JrOM4UfwmSMpjHrzlcjL3nzpoC5p0xBbfHTpHPQTIt8/pftoyWzlQVTVZIJSUGhhK0FDjxV63EWT5CKFVCcyBENJ4hlVEI9EQYyBIlRaeoS5sfxYtrlNPcdYW6E11SNm1CbX4HFYsqCY/xi87V/srVB7Kg7xQom0bJxxaRWnod03oFnC4bLa8eRElIui5WOorFKVIyr5Sar55K8uxP88hOH5HeqLmjgHxUYq6BjeCwIggWQsEE/mIXqqqhKhpOl9VcRNodVqyiBasoIGffD6/Xjiyr2DLZBaddpKTcQ12NnzVrWomNpMzrs9hESvwuoj98mJfu7eXHHU4+d8Ep7HhsjymR07lvkAfbTqXCfy4NmzuPW7/tmELNOiP2x7h/20yufOlN3h0SeOWVLoZ79Hkhdwd0vGHs8oSsTtSxGEPlxjHtFAy/ZKfHhq/Qib/Ijctjo8DnwJV9CGRZJZ6SiMUyxKNpoiMi0ewuQEmBYNNAFXR9EzW/t2Cs+CvmlvHFqxawsPlHnLF4OQ7bKdy7peeI2ys5luHXv17HA3WFDHas1yeiI8HPJlgtaJJCuGHAPJ+8EAVmnj6Z6Ce+hu+Uas444xf8Z2MXTz/VSCoQJ9UXM1cGSlIiqWp6OSgHIgjjZTJiHWHe2tHNNy+pYfn181n/163EWobZ2DFEVbkXR6nLLFUdfLeLn1X5qKuehduznxnzKzjYG2Fw6W10Rdy8tadLlwwodetyFzkll8Mx0N+rmTu0sZtPfPoZLDaROWfV8edaH7t+sIkfvr2e14tdpvtaOphkf0O/Xu7KkhPlhO6kZWjUG4k4d0VrwFJz70smmGDtQ7voaB3myotmkYzrtVZDIM/qdxJtGjRLPBOdvyqpJDoj/Ov37/JEtY9MLKOX1o5ylZj7PFqtAguml5BMKxzsGhn3OSWlEB6IsW9vgIHBOPvKvQiChXAsRF93hHAoSXQwrr+kgsCJV8+lqtzLzu09dKxpH21cjy3BZq/L6rUz5bRJ/OIzJ1PhbOK+rcU8ef92lISky10vqKDj4DAj23rNe+qsLaD+lEn0d4cJNwVHSZOqRrR5iLNuzmAruoglSYFfuu6FlZO4PLiEwKYeMrEMa0bOp+ozl3IonKShbYhNPzvESNeBPH/u3F2CkQiM+cHmsOJ0WXE4bdjsehKwOgWsVgdOhxWbVcBpt+KwiwgWC1arvtvyue1IskoqI5NMywgWC1edNJkl/nV09k+irXkQq1XAV+gkFEzQeiiEmO0b7Tj/L/yi8WIuedlBJqR7t8dahrn/ng0UTPGz6KRayuoKdeb5f6GnkJssjfsnR1KMHFJ5/rm9vPa6nXg0TWY4RWYoMbp7Nzkl7/+c7MVOpp0zjcsunMmLrxyg/Z1DaO+Xy3O0HxQcVt0UxWWlqNRDcbmHqnIvRQVOqovdFDisCBbIKBpDyQx9g3GGIykGslhtXTM9A6qKKglYBA1NEBgLDbLYRM46cxoLO37Bf854gTMvWcvHXvw19xc587xpx4YmKUT3D5n6NceSeY/lZjjL3VjnTaI7oGv0jBhJRNV060OvnZMum01FsZuXn9gzCnvMMRDJJfSlA3F2b+6m/MS13HPpVFY84yEdTPLGm63MnFuOrchlTtzJzjBr/7YNq9/J1JNrWTqnnKGRFGs7NCq8MmctqGJqdQEnTiriW/esY3BTD8ZOyej9CDYhT77ZqP8ejjSjSrpWvaPcwxnLJyPNuYMlk/8OJZOweiN6UlA00n1R+oOJUZ1923j9mrwxP8LkbCSZvrZhRmJppOxOxze7hNc/3Qid3Xy48nraX2+bsKRonntKJt4aMss9YxuVxafUctWH5tN4YJBtj+weB1E1IKhb+2NUlXtpax+m8eWW0RVYtimtJCTSQ0n6JJVAT4R2lxVV1XRHr2yfyOq1UzilkFkLKvjFyja0TWuJfOWLXLk/SKIzYqqpIug8DjUtm/7WNr+Day6bS9nPrgKfnekfvt/cCaQDcTa9dlAvmRi7BIeVK245ka9Z/orlI8v48aZlrPrNu+YiQUlIxA4M672sUyahJZJYsk110W2jbl45DzzbSM/+IMmeaPadzYdsG3Im5mLRZcPqs+PxOfD6HDiylQSny4bdJmAVBRw2EbtNxJP9O5fDissuYhUEBAuoGsiqiqRqpNIy0bhEWlJoHowRl06jxB8gM7WI4iIX5yyoYnNLkIaGPnbc/hRXOq7HNrOYkOLV/TuyngpKWiHZE0UKp9mUJUn+t5u5+vutgzRqllRid1jp7wozdGBo9N5+gBpLgtPKWbcs5YeXprEL+3n0P+nj8ng+6qRgdes32VNgp7jcw5QaP3MmFTKpwEmNdwCfrQ/RIpNWfATT09nvstMzktDLSRkZKaMb4hiIAlTdyAI1X1LCIlo4f04FrRc9C8Dbq6Jc/9SD2EuvJd565BaRJikcy/AeU2ZWVA5u7SX+hwdZ1Smw8/ktOMo9ZtNLdNlwFjmZs7iKz5w7g2LnAAPD9Wx8ci+asa0XRPOBMR8GRSXVHyNScyl+DmItUEgPxOlrDODy2BFzlDtVSUWLje48OnojtLUPs2heJdfXrkdd9SLJq7/FU3shOZTMMxcyml6+2SW6J0K2sWgvdlI6r5zgvuARTW0Ep5XF1X5eaBF4J3gz8X+kkUID5r8bGlVmGBozY0AJqmQ5uoStqIQbB/nnnW8iJ3QpjeKaAuS3G/SxOIYV/0T32V1XyCsf38XmS7/GLXcs4erlN9PzRtu4zxkckud+s0F/kbMTq0W05JHxDE0nwSaQNGDbWaAFgsCCi+q48PQ6gpEUaCokktgFXULEUeHBN8XPkpMn4XHaaNjZy0DLMMmusLmalBSVeEcET10BCUlhwYopbB9KkOqLEWkK5jXDLaKFyxfXsHbWS9TPe5M7Xv8nbz1XRKw5mDcWSkJi0+ONfOv6LzO0Lk5w+wEcFR4uObuep15qJtExkr87zwJBjNKNWTZyWPGWeaicVKAnAqcVn8eOz23H6bAiZKt2NlHA6bDisVuxixa8disuq4BVsGAVBFRNQ1b1/+KSQqpAwW0TiaRlVA1uX9HKnsgKXmvsR9XAYdeb1Pf8axszT/0102oLaX6hXweNiDk8EEX3eYg0ZT4Qd773CotgwVHq4pbbV3DT5LfBW8wPXpvK2kd2m6Vc4x34ICQ1bH4HkysL6IlX8MTWTgY2H1/T+ujRRzYRm0PE5bFT6HdSW+FlRrGbSncbnsgOtP5ONFnBUVJKTU2YjHIKqqYR8CYJOm2IVh2TbGCLNUEAJmi+ChaqPB28uGl0BZja1IvdffykjuMZeE3VSAfi/Hr1IL2HdJGxKUurEa0CFdU+/F4HQyNJPnXuTOqVZyDj4PrTLmDP1m7C2UnDOAdN1UznK6vfSeX8cp5udFJacCJK8k0QsyieUBI1WzbJE72TFGLRNKqqER5OsnVHD8xKk9rah/v6YR7+10F90lfzV3ZWn51lp0+hq2OEfTlwxqrJhSTiGVOkb6JxSw/E+dWjO4lH0wSyyCM5MXHj13ghjcamkYxAb3yng8lx/aRxtd4sos2UUlc0BpoGafrNvwilJHq/uuq46rA2vwPaDjEyApqikkod+SWaSFYj9xqVlIKgaKgp8nZHmqJh9enPbn8oya69AxT7TufU807jme06Ucs/tZCzzp3OZ09LYxOiPFY2g9W00BmIo6ZklFiatzd3cd23LwKrSKHTxsJZZex0tOjnYezOckqTuwYinHF6Ib5JBdiEJPNXTGFLx4hJgjNCjmXY9HijCWaQoxnWbOmip2nQbH7mIY2yJTXDYtNI+MXlHpYtqcZltxKOZfB77RR57HjtVjKKSkrWn3+nVcBtE3FZhWxSUBAsMqJFH39Fs6FodhKSiKpBtbeHaKaKvpiKZvOSUTTCsTTb24aIJjLUTSmirMLL3p197NnWQyYpT6h0bPBg/ldhK3KxsNqP1teBpUYkFs+MLxd9AAnBGP+NW7rY3tBL89qO40YxHXVS0OGdDnx+J9VlXuaWeql3r0M7uIPkQ+voWat7E9ecXI3rIycxeZkdWEpfOMnAcIJIyKZvp8Wss1fOeecijyyiBZc4nPfdakpGtk+QQHIw6P8LhqIcy7DlxWaK64tZedEsvnh6BEemG6LNUFbHI3vnMHvP93nsrJdwOOCye57ghuvv4V+/f3eURKSMlhzUtIzVZ6duZiltPWEe/rsuIGf4yGrZRq3+Ejqw2ESzhDZ0YIjQ3HJcHjvdB4K8Er6QC3/i4/6ddUT3t4xb4VlsIrYCB9Nq/Pi9Dg6sbkGTFDLDKVr3Bd5zu6kkJPY93TSueXk04azy8qdvn0ON9yB/XT+LZ/6wESmcNstpnvoiHvz9ZXSMpPj5n99leFsfotumSz147ShJCWk4Saovxmc+9sQ49Nj7iVjLMN9f+SUubPwVX3+rldC2nUf8vIm0mSgMln3umIxh2Da+0creNW1kggn2rD7A77125FgGwWHlrHOn8/XT2+m+/A5Eq8BNz/+KQKiWnp39uqNYNMPul/bz3aIrqCzxcHBHG/1dYbNBbzKxbXpy0lSNv/52A0X3rKbMbWfgUJqKMr3RbkyLBmKsYHoxiUCCTNZzOx2Is/mBXaM9oAnCXurGU+0jlWWqi24bJeUelk0upsobpydaQqlbpMLVhK35VSx18+jlLEIpG1bBgtsGdiGO0zqCXYhjtWSwCnrSVTQriuogY/cgaw7cYoiM6CWUsvOfpukMhYOomkbPQJRzltZysfVRtNZ2/njObbzw+G4yIR3pZy4+c/of/0sOQCaY4HePNzB37rV0bB5hz8t7Ta91I443GYB+XVI4zYHVLXk72eOJo04KdocVt8dOgc9BZZGLGu8AWuNGUo9u5Lm7O8zPbdvaxZVeG65psygqqMLv9uG0i/pOIefFOhzDV1M0+hKLWLQAGvbof+e5cRmZR/JXav5FFfzr5yt5dlc/T9275QMjpBxJEA1F1zIpKnVz+eIatJ99ldhAHM/nzyVefCoLqwrYefVLAKTTsPpbDZw/4OWZyYWINgG3x46qqsQjGaIDMTLBBNJwkvUP7gLgqq+cwjdP2c+64On8/cndLFhYyaGuMHvaQninFXHOyhmsea2F4IYu0oE4HQeClNcUUDWtmPsfb+DJwlLatm85LPzV6rPTHYhxcH9wFHGVkBjZ0f+ejGuLaDElo49F+12wCVTOKGZqwS6sXVu4/sRP8cqkAiLRIJqil6XW/qOYx8RFALy87XrOaJuFxSbin1rIySvqcNqtrHm9hcjBYb12nuMPbDBajzXkaIZXf72BVzn8y5lLgDN4M1afHatDRM72EeRoZlSW4TA7FyUhmaU5Aw1m9Hg8dX7qawrQuhpp3hqjuAiqklEES37TORNM8Nb9OxHdNnNVb3BrrD473lmliDaBWFsIJaWQ6Bjhzq+u0vWJHFbTM8TczQkWppw8idNPncJrr7cQbxkala6ZqE9jcIhEC/7JhVRPKaRt/yCSquHI9lBaQwkqPFYWlu5GDOxDfmINq76ynbM+VkP1XSk8vqVomohdjGOzJLGpIUhGQZZA0lFFVtGKVbDicPnA4SOhFANQ5XWgaqCqGumMQtiSxm0T0YLDJJ/dw22/72HL1mJ6GgdMEqpFze6cxshgfFAaYWOd4oz7C3pS2PdcM/ueax63iDreZGAuTsRRL4gP8vqOOimIVl3v3OOyUei0UWjvQmk8SOvqjnGfDe8bwpUMYy+KYxUKTLr50YQqqbx2IMQn/3gpjee+xMWfqWFo6W1k/vSOObCCw8ob3wnwmG8Jt71yPpuWXMOB49TFyZ0UD7ciNLDPoWCCfcEY08+diyORoGvK1+kLplletpFdOajH2bMFeqICM+aXU1HqYUatH1XT9XB27u6jY/cAyZ4oalrGVuTiqwd/wGPn7ODca4s545uP89ElYYKpBdzSOIAUy1Bd6qFuRilDG7t1uYZ4him1fhacPpU3tnWxZ1sP6f7Di2mpKZnAYJz+rvzegfESHelBsggWSpZWMWVGKS07exnZ2T/h5/OSi6iXjs44fSqWf3+H6OZear/noKJuLrGWYXNlvTd0MgAlxWBZtAJnjW5V6PLYue6kKczgeZZMu4D7n95D25o25Kgul+Gq8eGs8jKyo/99bZnHnr/otuGs8pqS3ZqkmBIWSy+ZyYdOn8ri8j68/W+Ct4R3kxfz0tZONr960Ky/H01JwJyYUZETMjv2D3LquTdy7sOtUF3JKwOnsX37HpRYWt/h+ewAJszQ5ncgum3m+bkm+Tn9vHpiCYkOv5PlJ09m585eDjzfnIf0yjsnUSAUjLN1Zw/B5qCp+WQkGyMMIIJRDrMIFhIjSbqzYm8WwWLyEBRNw2sLIDS8TubN3XQ/e4BoFEIHR/C0NOJf4AWrA+Q0ZBIQH0GLhSGVhlRKL7Farfp/BT4snkLc/hgORwSYhmApwGnVew8APSNJLPOW0/TyY0zq+QbX/OJF/hbQyZ6KojG2PP1B7hZctT6+/8sLee6tNnY+0ZhXXjT7WO9jsXKkyJUjtxW7ELOWuoY0f65F6fEkhqNHHwkW8z+rYAElg5ZSSCTGf1Z0WEG0o6h2M7vnYqXhCC+NqtLYEkS59hou/8EBnJ84n1Xt+bLQotuGtkP3e2VyDcHXYxMf632ExSaag61K6jh5DVVSGemO8NrGQyy+6kfYhTiPbDhENJFBWXYSJ//wZPZ9eBMAM+46l/8MxZk+uYiFkwpZWNaLBZVAZT2SrGvgZ0Ipc5VpvfhM5s3ZQdkXTkWWVVxdbzDZs40pM2ezd1ULz69qZiTnJbfaRGZNKuT8Kc1M8S/hpVIPL3SMHLYUJCdketpD+WJiyntPYsa4LF9Rx6fPKOeJ6SU8chTsYOM7aks9RNd10b9jgFltrbg8i8wHXFN0b+RH4+uJZLw81DTMxVemePHRBqLhFMPJDFhizCy2UVtXyCG3TXfscogUTy9m3pIq1rYMH/e2WXBaOfvzy/jC+dN5qy3E33++jnQgjuC04q7x8dVLZjFp5AHk+9ex5gc78XrglAd3MPOCL/P9oRr2RtLm83IsOxclIdG0u59HCpxcecrd9MXSvPDaAQZ7dD6A6BQpXVCBv9hFx9Ye5GiG+jPriIZT9L7Tae7gRMFCIp7BV+hk0dRiuvoi7D9SeU1RiRwcJtYVQY5mKJhfDuhlNVMCI0sQs9jEPEhrekhHVGmqhtWrs5M9Tht+hxWvpRt55wEGXu9g22b9+bC5rdAfgEn94PSClIZ0HC0cguERPSEkkmiygsUqgt0OsThacQoLIHokChwuJKcLVbMRyziIJ2VkRUWxFjASBuveEeqL3Lg8dmKCAIxqlH3QZSOLaKFgejErS98mdfoK9qw+8L6l3I/5u20itmIXk5dWM31WKdVlXg52jbBz/SFSPZGsdMrhS39HE8fkp2BAS2VVQxHciLVFTFlSSOuYVXrR2ZOhdBIRqYpwIkYqoyDLCnKOsmNuGBcw69KZ/ObT03lgU4wHdpZw9e1/5I1uL8++uCdv9aKmZZ6a/iOuVW7i8jvDjGzrfJ+Xnx8Wm4inzs+v7roAwWLh1w9uGwd71CSFZGeY3bGDfK55EKtVJDqgr062vt3BLbf+kg/Ht4DNwUudS+nsGObiRdUs8L2N+vQTqOE0dSfN5poTvkXPQJRIf8yU8ljxNR/eK35L/B8R5p0TgOIMWv8BFsw9kz3P7KPjdR0do0oqgijg8thYXg3KH3/L7MVTmDN/IUM3LGHNn7bkNdUM5I9FtJBKShOXB3LHwVDJzHoPG2WR+ho/lUOPccPSa3my2El6zAQ4drdlvJQdA1EuuX4h7kX9WJadSXhDMtuk1H833hbiymteYsYF0/n6jUsIFbl5QVKId0X4y1N76LvwcsL9I0TC+soZMetdfWiEJsFy1Cb39mInjkofciRl8kqMc15w7Vxuf+4LvPOxAB99ZAX/rrqCdJ++6yoqdTNp5AHU9ZsZebuLgYDu5Tf5nrepuLuSZYuv42BDH9JwUkdcvUevQ3Dq8G7Dg3ugoZ8X2kd449UDCIKFSfUl1M0uZV9nWEfjXTCDFTPKuK/UzZ41bZRX+8gYktaKDoBY92YrmSwr+efZHaimjFdVNe+TKCCF07hq7Kz8zIlcu3wK/3htP1tahs37Zyt2MWdlPcH+GP2bus3f1zlAOurIIliwO6x4XDaKnDYIHmLwuRbWvzYq7Nb0bhj/9EM4y0uhtERPArE4BIIo/VHUWAZ1JJ2FMAtYHCJCsRNrTQFadRxKS3CUypS4wCrUkFHcJGWFoZEUb3fP5dwXPgSZDP8Z0O+XYBNQxRxkozBeSfV4VtKaohFqHOSO1xez/a13/+cido4SF7dcs4CzbE/TffNfifXGmPXsZ3lW+gh//OXbJDojpi3sf5XRbGiRJNMyIymJ4fQ0yhYvpvwTMufZGhlsGsJV6KDmqhlYLz2LQfUEDoU1AqEksUiaVFImk1FG1TGzkD3jpG1FLv5V/DeecG/lG+su57vdH+fnhzQ6DrQx0DSYN/koCYm7v/gSd8MH0lgxJkF7kZMf/eh8wguW4XTCQx0PceYGW17TTVNHTb6l4WTew+Ws9PL25i5eWaMjbVS1mZmzSqnxDqM1baX5Z5vo7IKlF3Qy6f4TmFa7kD0+O0LICtFMnjVk88Yumq+8jfrpTSTf0mvHeZOfoiJLKh5bkM7/7GNSWsZx6kpdUyZH0M/qtTP13KlER1KkkzIl5V4GElK2sSgcfgITBTzTiphzyiSktExb0yBPPNVI2Sc/TPP2MKXzyplxfQUbHm4YJ69gHsIp4qrx0dETZuNpd1G0zMbr2/oZ6mwwJRpyDZq6dvfzk/hmZs4r59pblrFpSxcen4NdLUEatvUQHYzrpa5ssjGw6N4ZxcTbdLexwz0LgtPKiTcs4IdXl7FjwMsPv/4ycizDnMtmYbUJLFlQhbZB48SzfFgu/wjxfx4yFWB7GwO8cc0NzLnso1Rct5frL78XuTuK/SMX0ltwHU07OnSEWFYW+0jPmXdWKV+9/Qzqi9w0BWO8s62b7U83kegYIdUTwVlTQMEJ1UTCutxL7cJKAsMJNhwMEh5Okg7Eefffu0wvEyVr4SkNJ3W0kKSYCrCi20bB3FIQBWLNOpPaIursc9dkP5lggpr5FVy2dBJWwcL+3f2ju0ibfu9mzyxjfdY32+TXqCqaIpjPiUXQWcl2UUCLRelrzneQGwjAwNZ+Jp/cp/MhYnG0SAz5UAS5O0o6lCIVSiFnDXasDhFXiQvHQAJbJIVQPoKmqjgqBIrdaSTvPOKSg0RSoql7hMGiLwOwbmMn6WSOqKWi6XyoMSz1XFBLbhzLPJIJJnjj7neP+vMfVGiqhhRJo2qgbd/GO6v1+WLntHs5+8rHGP7eUzz4q3fIDKeOyOE5Uhx1UlAkFVlWSKRkQrE0wWQxZZUzsJwIpXY7xYERBK8dFs5DrlpE75CP/liCUCRFMp7RRa0MQasJdgsW0YIl28i0zJrLwfsHdTONgC6NPVYm4gPXRBcFnaBV08B6J9RMdRDKTAG1yfxI3vep+gtpNHtEh8j5l8zinLmV/PgvG0mMJPGVeZCyUDxUlVhMF8RKBBKQDOPMakflCg0aD2y6P8ojG9o4a+E0ZCUwoc56OJRkMDmVgkkFiH4n/dKJNGzZarJxjZr+osXV9AViHGoZwuOz4yxwkLCJWIRRXkcunNGQibCIFq45q56zKrcQkE/is7/Zw5//tZ1MRuaMc+r54pnw0YYK+tZ35jVZc3X1/RVeptUW8sLmQ2QyCr2HRnQLz2xC0JTRZl0mlCLQNMjHr1vIZfXNTKucy+m1AbxiL9fsEkgHkyahy9jJ1EwtYthjIz2UPOwW3iLq0ikLZ5dRLG1hQdmZesPYZ+cnNy3CJiT55Yvd2O//B+HkVG68Z5OZYNS0TKovxm/u3URZpY/CUjdnLfs15SvsNPdGaF7fwWB/jMWnTmZzID46qY5hkBsS6D+681yW/f56rFMKmHfLTTjE5exa3aJP6pKiu/i9cwglIWH12vWSWXuI7Rs7ifdGkRPyeLSdpKBMgMZy1fq48Kp5hKIp1naMYMminWadN435cytY9eQeBjpCPL+1k0g0TbgxkAdvVSWVAweDjBwaOWI5QlM1VE3/z2K14XSO/0wmlkENpxGtQ6ihJEo4jdwXI9oVIRVKkxxOkslWPe12SIcz+NIKbtGCVVIRvR7w+LFa7XisQfyOctwuG/GkzMGuEcKxDNFwSodwW0UQdIkbi2hBFPV3x0ikec+GIdF/HCvr/2koKpnhFG/s7Oacc1cCa81/WvtcmGsfT/N4TcG43tCxxFEnhUxGJh5NY7WK9A7G2ee2I1iWU1w4m6LzF2C1pFA0O6HMFNoDBTQHwvQOxgkGE8SjaZLxzCiTVlXN3YJ5/GCCG9tvYuX2n3D2d7eQ7u/EYhN1nHZ6jGz2B3zjjEkQYDg9lWXtj/GHd3y88vV39ZfwMAgDQHfQEixYRCuLphZT60uRSkl68yfrPTuQKKV41mIWfmInU5uG8C+vgqJqEvvlcSQso6ehpBQatnSzckktnzvDzdoXC/K0bTRVI9kT5cH1bfzw7g+Dw8PuAKZXLqLuiGbzO2huHgSgsMTN5MmFpJIyIwdDCCkZNa1vtx1VPgqnFzHwbrd5n2Itw+w+FOLMbY9TsOMPPHLnXVz21Q4SHSPsLfdycNESHK4eRIeInIMIAkyuxWBzkK1+J4HeCOlI1rbSYcXhtpkQutzFgpqSefbVA1gvmkP3UBxP42/JtA0zuf67DDT0j7JAFd1Detfzzabm1OGeC1uRi3NuOYFbal8nZD+XP78eML2nN/bEKXLa2LW2nZWPxpBjG/ImXU3RdwtDG7sZzhK2tj2x10SeAExdMYWqUg+QLdVlfZo1Rcsq0ypYvXamnTONU567lafu7mDeHFh4C7y45qAJVdQUXRolvCMFom7cs+mFZl2qOtu/GduvOBw5T7AJTF5cxcULq9nYMcSarC+Ds8rLHTcswWdPsOpJiO4f4s2uiIloyj1uqi9G0+utep16ovcmS76UZYV4UiKUkqG4mskramjYk++A6CxyIh+KEHzxII4CB1a3lWhXlOGOKCNhGA5h9iftdij0J6kMJilJSPiGUzgEC4LTgUVTKaz0EXeXEkrZTVkdXXHDgt1uJWMbXWghitSfWUd5tY9tLx8YFTO0idiLnFSeUEUyniG0eyAPnfX/Ypjlu1iG9U/u5TODddzbfDP/mX0/AKed58YthqiY5OdQVm7mv1s+Sisk4xKCkKIv24iNpyT8bjuFzjlYBQsZRWUkJdEbHKY7EGUklGI4ECMaTpmZy1QmzZncjD+3vdrKva+2mt9pEUb1csYOzAcdmqoRaxnmhu/tNv17je34YX8npyZt9TtZUduFgGq+XMXlHipLPBwKJ/GVraT2a+Ac6QeXj57kMroHOnQJB2MSEgXO+9JyvnR+NXev6qKlMcDSih7cTU9TXncG4YYBHbvvsyMNJ5GGk7y7po2XZ99IodXGWw2deolJUfXmo9vG9OW1fOu6xZQ4B3mr08m7Db1EQknsRbpPQmx/EDkh463zc9HFs3nswJBZfpCjGf7zy3VYv/MDbvyeSkbyUL8oxb5Qira3OvhHkYvymgIGq7zEW0OjiTtHSl0KJTm4rgPRbTO1cUoqvaZ2TTSLw9dUDVeJbiR/cF0HP1vbjq3Ixdwf/oqy0+003rXGJLIZ9wtVGSemN1GoaZmhwQR4S9gzWMjGNXvMJHL3F1/C5ncw4+ypBEpcBLf0Yi1yITpF0gNxcxLWm8jZ5zCaydsJtL7eSvs7hwBwTfJTMrWQZDxDIpAg1RNBIVvKKXJhXXEyV9wWwvG7H/Gpv1tofLpp3GRsIFfSKfm46tV9h0b4w3ONHGwcMMEHgk3g3Y4hDvVHTcSUIXGSC3fUVC2LajkyclBTNWRJJZrIMBhPE6+ahedDC7g4rbD6/n40DZafaqN0TglaQiLYEqZsViHpSJrhjigdnRAdA5hLp/WSUyQKdZkR0pEMZU4Rp9+BBlhcBfg95ZS5J6Nq4LKLFBU4iMUyJOIZXXrDpiupgt4LjefalNpE/Isq+Pptp3Kh82karDfylTtW62TMDxgx9F8JRWfZ73nxAJe2L+SKLa9z5vRSworK4+v6CPTsPy5i51EnBTUlk4hnUI1sJamEY2mdtu7SvThVVSOayBCJpAkPJ0nGdVE8KZYZp4c+NnIp6cbP/8ucbZQKDFGxY2EbaqqGNJzka//Wt7BSOI2j3MN5Z0zl4pkZhlNu0gp0iysRimR8tgHUjJXQUMJUczW+b9HMMiqHH+cjZ36Mr758gHs3TOPihd+gr0nHnNefX88F59Zz/+/fJdkTJd4W4v7/NFBS7jFLM8Z5a4pOfqt0d+K1BUhL09m1roN0MEnNkkrOWDGV555uJLSlh+FtfTzRHyMdzBeoywyneODbr/Fw1mzH0JVSEhJNb7djK3CYnsmmARGjTEuj1i44rLhKXPj8TqbNKqWsyE171wgjwQTh4SSyrLB8RR1Tqwt49LEGwo0BUj0Rvv2N1VhEi2m2835QFXI0w/Z/72LF6z6U2HN5KyhdEsHJWadNYW/bMO/s7MdR7mHOaZPZu6btsNIqY1nBVsA7u5RZS6pYtqCS7XsHaE73kepB9zJISOx7p4NbUqcg1Z9E23XtJmEsN5xVXormlBLaFzyqhHe40FSNaNMgu5qDJpPWIlpI9cX41+/f1TkyOT2YXKVTA35q9drxzigm2RMlHYib162bZ2kmEVPKKEQiaQaGEvRWTWPGCSdT4HZzVd1elFAKscKNWKQn/HqbQPTgCIP7h2nrgPgRcl4yCQfboDadwO4dRix1Y7NaoawUr7+fElc5bpsHvz1KT6yYg50j2B2iWRKy2ETUtEzbWx2mYqmxg/7qF0/hvLW3sekn2zl5T6n5nR8Uh+G/Fea5SQpyTGNoex8PNA7yUNbdUVM0lFg6b0451jj6pJCWUW0CKUCIZleBGdmUzYYssSQpkYzr7ltSWiaTlHUPVylfVEsX1BIhIaEYonjvoS//Qd0so8k5ti9h1tOP4cEwPq8kJBqeb9bla0vcFBS7WFztpyj0GEUV9WhYScjF9ManIWtTCKdk4lk1UbOMpqjc/8B2Uh++nPVbGskEE7zy7F62btHlpQWnlQULK1k53c4zUwpNc6Ch1mEiw3pN3Zw4sw3xlm293OlzYLX52bN1p+njGxpK0D8UN5OIkpAOa9eZawCUO2mk+mKmC5c5tsJof8RU0HTohjD+YheFJR5K/C58HhvF2YkCIBZNExiMYxMFs6SmqdooFFLJXzQca6iSOqG2k6ZoZIZTPPqY3jBXEhJSKEk8mjZ9Ad6LOW0S3LLy8dGERDopmbwFA5yQ7ImyL3DA9DSe6Jjliyu59qp5PPF0I93ZifhYmPu5TFej/5L7O0pCItkdHff9Fpt+jyyi/nsWm8iM86ZxxQUz+dt9W82kMNH4yZIulT8SS+scAimFpbYG+7nojoeqqnsgRJNYnFYysQyR6JETghGSBIFBKO2PU9AXQyh2IoYjWEqjeKxBfLZ+PCPbUH3nYreJWK3iqM9FdhzGuu4JDiszij0oA3GKiiwMW09Ejr2D6BCxeO3v2+3vfxnGTlnNAg1Mwyv1+N4TOJakIOlEG0FSiUkqmbRMPGo1NY0A0wwjk5aR0vqDb7wAxkOoqZpOuKnxUVbpo3d/cJxOz5Ey3OEkoI8lLDYRe6mbdF90wmO8n+Ma2217kZOiKX6WLqtlsq8b7VAIWl5G3nMIayzDjI9dTL//at5piermG9lxcVZ5dWLc5h7+vLnHZLtqqkZntvGoqRqbN3ZizZZn6s+so2tvACmUxF7qNtUsAROZEmsZZmNnGE99EcU1BaRrCoi1DDOyo581raE8zfUjvQh6wpRNbR+LYMFV56dwSiGR/pipTlt8YhWzFlay551DZIYSOtGmyEXlJD919cXUVviYVu7FLgr43HaGilL0Fjjo64lw6ECQ/dt6SAUSeTX9iXaRH2QoCYmh9V3mz+lAnAOrW7DYRE761AnUTyniuX9uy/P0yIN3oo93oifKvoTEpOoCzjmtjv6uCNH9QwDZRdF7K1cOtw7zyppWhg7ov2crcpnPQTx7v/Im8+y9cFR4WHL5bObPLKN/KM7Gt9sZaRjIu7+HI1UJTiuuGh/uGh+ZcJpkV5g5F03nvs+kofMxnipfNLFbmar3BzMZvbQciabx2FS0g61Y6mZgWXIahHrRgnotyJLKoKVk5ISc2058z4jHob9bpqArSoHXjjhlECqG8JV268dv2o148pmomoZo1aXO5WxfAdVIEPlfuLqxj5u/8QtqvgGf+HULzpoCrv3wIqaVe7nrx2/q0vNjxslwDsxVGf6/iNxnz0gOY9+I/wmj2ewHyDq2Wk3JZLIY6DwdeClnVyArZskod5dgK3Cw4MQaLj+ljkdeaWZPX+yoXhjjpli9OsMzE0odNUY971pS8mHF344nDETM5PpiVi6sxjf8OJrVSubt/bz92/0MDYPte/u4/NevMfuqf7Aq+zvuukKevGcprSOFfPnWZ0xdoKq5ZdROLWbr6hYc5fpDOLh3kKe39uIodVGyvFZntzpEzlk5g6amAPs69NWwmG3kGsnBIliYu7ASeV45bz24i0xQ17uxl7pxTfKTDsTzGtlHCgPdVDW3jLtuPZnhpMS3fvQGsZZhyip9LJ1XQWfrMMNJHUFTWuVl1pwyzp5fxcziKKW8C6KNQMlieqIlNBc4ECwW3WkrM4p+yZv8D5MQPohFwkTXJ4XTuGp9/OmsTaT+vprr//oIN3zmFdO+Ndfy1OBNGGO4fWs3PZP8RHqjpmfw0UbswDBNrSG99JedrOecVEt0JEVL1prVCMEmULCgnFs/fzJnfudy1n5Uv/c337uEn515J6uzJki5kVsmMq7VVevjnOsXkJEUdm7qItExQlGJm4TiI1Z+A9071+rjL47S9XPLSKqkkojrpdOX9g5x9szvYBcFCi39FBVbIBjI7hYsIKnIaZnUxL3rw0ZvH1R2RXAU2LEPhyE6jMVqh0wSy/zFHBguQlWjWG26eU86B5aaS2QDfRHw3MO7eHW1y+z7fOon5/Ip/gmNAR5ffhO7OyMI6LpccixDOpjEWeXlkXsvpzWU5ic/f8v0Xvm/iv9WmeuYdgoC6NhfUdWTQ3oUeqh/aLQpZzaUDahcTuNDSUoMBeL0hJOkkmOUNo+0S7CJ+OaWMW9ZDcl4hsaXW8i8TzG8/0ZCMP6vE/xUsDuwuAtAtDCU1fiTJHj6K3u44dL7eWH+2ew4pNtD7gr4aOwMjqqCqho9DQOEs1yIEy+axU1n1jOUlPj13zYR3N7Hwc3d2EvdVE8vYSicMtnOziov1952Cm1dI7z7zx2oKZlIU5C1oRTOKi+Oco9ep49mqD2phkVLqtmysZOeNe2HHZexgnCaqtG1pYf7Zh7E57abZaiDa9rp2KojT2wFDlyFTqonF7JibiWnOl9Cfe41+h5tonB+KeWfvYiS2qU4rUvISArlxW4kWeW11fuJ7B/C7ndiL3LqLNvDiPCNJdl90Cu43uKPUnWzxGDCSv0pk+hpD5mTQa5NppGE1ZRMx5p22o/jfIx74Knz89kvn0o0nuGV11rGwV0Fp5XLr1/ItU3f5vHnRktjYl0p77x8YJzzlmATsPqdlC2upHpKIdFwip6mQc6+ei53nB/nsT2VbH6jFVVS2bm2nU93l9C7v4VUdz7vQFeHHT1XTVJ0DlNcoqM3zDtWC9VFbuaUVlLka4fObrRoErKlOCWtkDlGVRJFgciQjCeQwD0QxzoSRpNlyEgo886lr1X3wrZadZ01o69gjJeW832qpBJvDengCEnvMzQdHCJz9ZUIi2Xav9KLJin4F1Xw+m+9xJRqvnDvENFwCt+XLqS+J8Zjz63m0oue/3++zPR+4qiTgqZoqKhYBA1USzY5GBNFDjrIqGEa5LRsQshFG0nhNJ17A6zKKPS3DR8TnlZNyWYT+4OwsPugQ5V0+Yq9fRGWL6wEwL64BmjO+1zyj6+w5BPX07CmncxQgp/8ZA1yJJVX6032RPWauiAQi6SpK+hgXnGQXRfM5MmDIZS0wqyFldx03kwda55dmQoOKydOK6GixM1mR4MO682KsknhNGd8YjEAG5/dR6AtxHZZJdQ+cUM1NwzNFYtgQY5lyAynePvhBgSHddRkXlKQoxmsPru+0vXYKSt2M7skjfzvF3n56zv1WvKLEa5fuB3xXD9lvin43HbKCpxUeR20HgrR2B9j4Xn1fPL8mdzxm3WENvcc8Zw0RReNOxwZz5jARYeIklbec4dpSBk4xQjy5NN4e2MAq02H2WqSkudJbC9146stQJZVUsEkqZ6IWc9/vyHYBJZdMotri16ms+bDvPJaSz57POuPkZYULCcsBHQi1SlnOgmsuJPU/a+NP6bTim92CR+6ai5ul42tewcYCsS4aHEN9pHnCYT8eulOUkh2hWnvj5kEwXF6YKqKlmUMa4qGLCtk0jKplG6OE3XL2AQZAm3g9WCxWsndHhxL+ciIWBwyMQk1Iel6SYV+LE4ncbkUVdMhqaJtVKIfxhPUTNE/w7VP1eXPd752kK8m65AyilkKFZxW6GvB6+xlytQTWP/SfvyXTceyqhXJcnzy1P8vx9EnBUk3xtEEIas+qB5ROM58MXOSA+jJRUlIJDpGaOuJjq6mjiDHPPqS6+5q+9pCJlro/yWkgGE92d82zO5KL2r7o6Te7sL9iy9x6Wf38dK9veZntz3ZyYU/c/BUpYeRSErvq+QQhwzMfialG4Y0vtHKU4tPZ3HNFKKJbqxuK0paobTEzfySFlZZXaYeTbInyo9+vx7I7xMYvIClcyuo8DjYs62HwU09xFqG864Bxu+kjJ/nnFXHzZfMYbn/bbrU87j5u68T3T80Klcsjprq2F1WPD4HddUFlKfW8Nhnd+YdM7y6jcKpNZSeNBnBMo+2/iipUhVF0hPb3OmlLLG+wPIVi3llW984PXyLTcQ12c+JK6eTScvsXN1yWLVci2Bh2gX1/Przy9kTSHDXN1YfEe5pyep8tYeLiEsFvPXWNgb3DprWqPWXzuRLHz2Bl7d3MdAX5ZbL5lJbYGFPQOJvD+2gf1P3+/bIBT3ZnTy/Ei0+QlM8zmDLUI6rnb47cVZ62bO7n68HzmJJw3WUeB187/kmOj/9pumIZ4RgE7AVuZg2q4z6Mi+v7exh5/pDOnRT02i1XsNrz71mWpZOSATMmgoZjVzj/VclFVk2egsZEikJQbBQfu/Hefmne7no2YthZj0caMWSlVwRhGN/b2NxSEfSqCO6gJ7FWwglk4mkahAsMRw2nQxqteWe4+hzCeCa7MeVhR6bSL1sv2ZbR9ichyw2kcieAJ96cSF2u5XmDTqJ9XbtK9R9qoBXf970P5Xi/l/G0ScFs9mnJwcga5QzJnLMZHJ/L4+XYBwrPYo6eu+EkN/s/F/GUaGRsuxhm9+Bpmj0HhrBMs/GwK4AXssyCv74G2a8/mFasjSM0hIodrRTXO4l2h3BEk7nbXFzQ1N0K857v/M6Vr/TlEEGWPtkI5HoDLa/0qi/0FkiXmRPwOQ0wKgcspqS+cuv1mH12ol3hE3TFGPVm0tiGnvNcixDa0M/9svnseuEb7JvP7z0s9m8ets/+fmXXsrTrrcIFqxWEafLRpHLhjbSP+66bF6b/qYno6RllfmTCvHYRHoPjZAOxHn0jxtZv3QSndv3TIimsAgWKmcU86WV01Cx8v1gggPBBJZs+dJYDRpaPzd+aD62j53FGdVe1t/0e974w2bzOGNLPZqqEdjUw5f3PW/KXeS6ri07aRKnxP/O3JVX8/y+Qk5q/iHt33udpZMKePyRP3DZdzJE9gTel1Ca0U95dV0b9VfcyqOP7jS1jAAsNj0xVM0o4bpL5zCn1ENXJMXfn2ig462OPF9wwSYgOHUSo+gUaW0K8JvuMMG9AZSEhKPcw+8f3clAa0j3vT6MllXumBt9PbNPmAU4SGmZTFYKp8bnZNsf9xIOA5NrsXiL0ZzdWNw2bG4bdtuxj0siAZmUipZWMOtP2TnIKugNZqtVQBCyu4UJdgm1c8qYPquUV3YPmBwooy9iNOB9s0v46rfPwi4K/PBzz6OmdM+I8z9/Et+/KM6rHdXvacr0/+c4pvKR+WdjO6lMXL6ZiH08UdNwos8f7jv/r0JwWvHU+bHYxFEVwjFhTKz2IidVc8vwF7lJxDP8q+b7XPdmjLtfD5GRbNzV8k/m/+RXxJqHKVpZR0iqxu7oMoXF8o45JhEZOyxD66dymq4dn+qL8e7Du82yhhFWn53SeeV84aaldARjPPDzdeYEFe8ImwQfR4XHhIxWTy8hGk7Rv7U3u8pVxp1DZE+Ar96+mrde/Tz76v7Cqh81c9X87/L85Z9g36oDOQM36p+RUTQsxZWccqaTjW/r41dSDJ4Lp0N1JUn7ZHoH47R1h4kmMoy0h3RjpWiGAy8dOOyiQVM1UkkZp3WE0tDLPPjZKXxSmElRqVuXN39x/ygxTFF5+Kk9XP67j6AlEkS2pbF67Xjqi/AWOhk6MKSL5OXIsIxl+eaOwzN/2MjBS88kHu3hovOm0/ebd9j8rgQMMWvHR7jlxXX89bcbUJqDx1R3NspcmqKxf0MnjxS76WoM5JW7DJ6ILCmcO6Ubx1O/xXbfbh752SXcPvU6Nj3TRKo7onMN/E6K5pdx6plT2bc3QE/jAH3Z41lsIqm+GO19sVFXsDHXOXZiNVRbVVUlcig8CkCRFGRZRMooZCSVnmiKa9d9nlNFG3L1EqyJPvB6EHx2bF4bXm+aweBRDwug9+MyGfTJW1X1naOqIlhkrIIFwWJBEAVTzdkYz9zr6dzVR39XGMFhZeY50ygu97D5gV1597mg1s8FdV04xDA/yarykpDYubmLzhVn4rQmKSn3ELKJ+YCD/6P4oLkVx6SSOg4KdRSfhfeXEP5fCavbyoqr5nLe4hqe29DO+r9vn7AebREsWP1OZs+rYGF9CcFIiq27+tixV6C9eRBBsHBf7Vxu+f43cPbuA7ef9pECMrkCaqJgupFNhLKx+uwULazgkR/Mwv/yT0nd9iW+/rDEzicaR9maBk7dJrLghGrO7bgLKst567RT6N7djxROoyQkRLcN96QCrv/4EsLRDAfbhjlj+SSSaZmHuyM623WCno2maiTaR/joM0t4+NAXkN/YhGXRfGa6Szngbh9lHasqqqIhZWSiKQmpoJ7Jn12Mt/ogsd4YtR+eg2XhPPBXMJiazcDQAfbt6ic+nDDLYO8ZikpkIEZKLkTbvRsttpGlS35AMi1jtYkccOukSqN82b2hky9NOp3SEjd71+nlAG+hk8ISN2FvVC+lKPk73cNFJphgx2N7sPrsdM6vMNE8APtb4LJpwzw9rUgvzeXcmyPyHUQLzpoCnFVekp26s9q7j466iZn3IFtaHOwYIZhaTlVCYsMbCZYnnuMrr32DO7rCHAgmUFMyjnIPy06bwsdPncy/VI2+lqFRLkvWRxtFPerEJbptFJd7CPZH89QJNEXLqiirqIpKKi3TP+mjSKqLIuUQXtswOB0IXjt2rx23672/61hDECzkrq0m6iukB+JkggmsfidLl9Ywq9bP9jGs8sFd/dz+ZCludylSWN/aq5LK4NZevnbPO4g2geHW4ePiAnxQYfXpJkofJLfimMtHuRr8R/N5MyYYwCOKbL2PzGeoUNbMLaN3f5Bo0+BxZ1BVUplXX8IZ6r9ZdvUZXLK2mMiewISfdfscXHZCLUukR8ANc6s+zC//tplI2wgATz6xhwOHJjGt5iKKChzsbe1iOBAzSzuCTcBa5DT16w35AfP6bCJTZ5fh+cft/Oe23SyYt4G/bLyL83cWE24cNElURukklVFAluFgOx+65JOsKXXTtKGTVE8E74xiHrzzZNZ6TmVaOXy98TtsVWbjtVt5qbaAdCB+2FUywP5n93HK6z68M67H3+8lnWzTER/SaFLLZOQsIiXCjuJZnHDtFyi9tJvS2DAUVhIVZhCXS9nQHqKvO0J0INvYNFbrYyROxp2LqpHoGOEXzzZz+1W/oshxiE1/6qKvZQjBaaV8cSUuj43BnqgJwd38wK7R44oCgV39DHvtTFpSRd0lM3nnyb0ke6KM3SVN+P3Zpvr6t9q4/Xcfgef+Yv6bN7KNmXNP4NBbHQAUzC2lsMrHQEN/HlM5d6ElOKxc+4XlXDCvkl88upO9T+4ldRhvDEOb6pt/2cxdn7mPK/ddSSaUwi+u59wzF3Noey+pvhhWtxW/1wFAJJpGSUr6LtFtnVBcT7AJ2IpdZrksL7KQ1O7WYVLZ3YWxQBRsAkUlbvxFblRVw+eyIVoy9CXsOMVCPM4CLAV+xFIX7jIXBeVOXB0pkvkE+vcMpxMsDt0fGssE5WtG+0F5IQigZKHxaQ0lFeeFh3ZhL3aOK/Flggk2/FX3a8ljrkcz9LzRdti+2/86rD47K7+4nMoSD4/9boMpB3/cxz3WXzjmlf0xJgN4/4Ndetokniv6O6u/u48rHlvBecIlRBoDxzVQcjTDX3+1jt5PXkJqvzyhS5lRk5RlhUkFYaJffZyBXQFO+V0nJ532cV5tHUaOZvRmVjhNg9+Bx+dASsvE+kcnX5vfwfQz6vAUONj7VrspsWCsxDLBBDueauKhO+/hk00PY6lfzP2N80kF9Kay4LTiKPfopYVYhobNXVjuPBd11TOcMTnDjv1Ok/ykpmQyqi7iNhAAbSTA6tYebKJAdDhpchGONHZyLEO4YYCwODjq2WAbNSiSExLRkRSdXWHW20T6YnUUu2ZyYmUXmiawc6CCkZTEzv2DBPujo7aWY5vcOc/LWOMUOZph2yO7+fDzzQhO3YzJXuKmqNbN1VfM5YRqPy/v6WPr1i66tvXpKCmjHKUqSGG9jPSjm5dR4uxj81q3/nLlfH/uJGAi7kTB3B2E9gX55cGL+NaaDvp/ux5PpYeEfzGyouKo8FC/vJazTp2Cx2njr8GEWfPXryF/N/bm6wfZdyBI2+bu93xPlIRE++tt3NwY4Nwbf8clS2rp60nT0tWva03ZBFL9MV5Z1czWrV30NAyQCSaoWF7LbTefyMubDrF91QEzSYlOkbqz6vjyjUv46V82MvBu9ziEnxzNEG8ZyrlHOvTzE7cs4yPzW9g6MJuH3mxhd+sQ8ZSfEm+GEncRCbkYj9sPxUXYqoJ4Q2kqK1K0dxzxEvOipBicPhsWtw3sNhBEEK2omhVVy4wTlzxSaJJCvGWI2PsoXduKXDjKPaZ21P9FGKq7p8+v/MCPffRJIXdyFyfO0If9fE78txKCRbSwYFktb9+6j2QSuv+yA+/J1xE9yp3NkSLeGuKp372L4LAeluClqRqyrCKrLuT+OM17ZWpfamDJJ0t5w2UzV16GEUrGpdsPygk5T6fEU+CgtMSNrcgFYjgPcaMpuuzDP+98k8fnLkSVZFI963S9IkVF9DuomFtGPJpmeGc/yZ4oneqVTJq9G9AZ5wb7NRVIcOeD2/lX/7fAIvDMyCVMrZY4sbaId9e1E1ePQWdIUVHJSpeoOkJFU3Q8ejKeIRSMc8ghEk9JeJw2hpMV2EWBuJTGZRVRFVWXVjb0sXLBCDlhNjl9djLDKbOeraZkZMBm2EbKOm4+HMsQyyjIymj5ZixmHfQE9nZrkIwk5qHAQC+XOCo8yFlNKxiFg4pO0dzRvLn6AMu//APOem4HxIZ4o6eGgb5miqYW8bFL5tAVSrBuezdKQmLKWXUM7Ne1jZScfokmKQxs7iawtWfcLvFwoaZlkp1hXv/XDja/04HH5yAZz5glOCmcJtYyTLw1ZMJLy2t8nFe5kakXnsOPA3HaN3fjrPTicFlZsLCK2oL8VbazpgDRqfcf9IZsPm9FcFi5YIaKtuNNCutPwm7XFwaBUBKXw0o8o+K1+vA4fVDgQyxz4y5NUFRkobNLO1xrclwUFIDNa8fisepSqlY7GlY0BIzHRdWyi7T/UlnaIlqYdlYdZ5xex3/u23bYqsF/OzRFBz88+doBknFJ9y7/gHYux7xTAN5XLe1oJpjjuShN0dj22kF+1fojlOdepO+avxG47skPpM6mKdoR4YuaomGxwdc/dzIVe34DH5/PSbZ9CMVOJhU4sfkdZIYSyAl9+2pJSMi2bFlAHdWEkqMZoiMpvv2hmdxZ8xSrPvd57v7pGp1kkyP7kBlOMbS+y3Tw0lf0uqHOR69ZQKHTxg9/uoZExwi3/uRNPvqRTyK0WIjFMvzlt5cyT3yRD/2pjLbN3Zy7txglKWEr2MjrP0mT+t1D3HjD3/nzviAwHiEyESIldxw0Qcd9G81QgGEgnZIJ9kexWkUa9w5gd4jU1PpZPL2UM5bUALD1xf16gjSeg7HPmSjgqS/i9Itm0rCth4HtfcjhlElqvOXWZTz/cjMd6zoZTgzy1HCCVYVOUpE0mVBqwrqrlvUw+Mf33jAhu8a1ALgnF7Diqrm0tQzpTW/0HV3RnFJqpxaTiGfo2hsg3hbiJz9/i3vrCqmeMoPeQw0Esw3NdXv72fxOB+H9Qyy+Yjbf/tBMvvfAHva/1oqm5shQZDWSjuU9MHaRhg7VUNaTJJc4OlYDaf+6Qzx39jmUe/4/9s47PLK6fPufOdNbJr0n23uvLH3pvUtvKooNREVFUBQLKnYURUGUJrD0zgLLsr33TTa992SSyWT6nDLvH2fOyUw22UIR5P0918XFJpk5/Xyfdj/3HWfmzHw82XZuPW8mXcEYz6yq4/N31+Lf24MSlbBk2/jz/edjEgx8//fr6N/WOSoU/YltMWaU3Ublng6mjs/GNxTFH4wxGLQw5LbitmST7czCkJePsbQbU1gksyPA+MFB2jtVZtTDWU6eEWd+klzP5QSzFVGxE5PUYVFJVvSe0Fh2JP3Qw1k8JhGKiJ/4nJQUjLN3ReVR9YSOxI6qpzDWXMKhvqPZoUSzPyoPN7S/l2MuN2O0nYH06FP/1WlDg2BgcWEI8aUaxFt+Rv757SDGaOpML5rq5zpCFEWb9LRYjeQ9+Hme+V4l8B9euamQc3O/pOLjR1wno9VI8TEllE7IYttT+0goCebku5lgeodJC4uo7BjCt6OLR3pDeMozMZoFSlw94B1k/JRpXHbRTFq7A7z2wFbiA1F2Ri5h4bVtNDb4dY4qbUp3rHNWDySF/kBJHPTiScE4gZhEcFAtNWgDRu1NPqore/jpTcdw4UVd/D5vEW+9UEGgun9UWouEqFJlNzUMYBAMOMd7kGMuoh1DxHpD7K3tIzCoZhByWEQKxAknswet5KfV04Hhmro4LBULKRmFnCDcOsS6FypVBycrqkaux8qCY8q47Jhx9IXjPK4kaI2psEWT2YjPG6a/O0jcF0UciPBmRa/KCGAWqKvo4T7BQP2GVn2O4cM8/6kEeJpT0a9XSiCRanFvmFVbWvnx58ooWFzGP96ro2kwzO6GfqrWN6vDWynfre0PEYqIRDWCvmSWoO1bCsZZ+UY1/pMn8LXleWzuSFDd2I/JbMSYfEZispGAWIjb0welxZgliYy+MEVBEZstRGMzh+wvTBgPGWVu7CUujLl2yHCD1UlMdhOVZGKS6hQkSRkzS/goHEJCTtC8sp6W95oOOXT732Bb1SD6H7UdHfroA1xQg6CiZpwTs0goqmbBaA/uR2VjwQg/blNiEp/71g4Wn/kTuv82QPnEEmaMz2Z3dYdex9ccq2A1Yc21I4UlfRhKWwQbdnVhvqQYqATgzUe6uXHbyfzzeytHrbWXT8rm3ssMfLl7Io1rmnl2eyvXHnMqirIPBFWbN9w6hCIqzFg+ni2dHlbtWIbPG6Igw0ZDh19/uP/9Tg2rSy9k1XP7EMwCp91yDPU1fdS/VjtMtJdSVzdn2zn+unk4bCbee2JYljMhJxCsBqafNI4TlpaxZlMLjds7APW+iCm0KOHeMDX9ISa+9h9uP+8c/MH5vFM3MObMRqw3RM0btTgnZrHglAmcuqiUJ1+qoHVzO+89sA1IajHnO1FERUWauC2Uzy8iHpMY6A0xfUER5x8/ng0V3bz/xB419RbltAVWsJn0SfBg7cBBWgPRuExIlJGUBE63lRMunckvTj6A8vbzGObO4PHjr+X5FyrwDgyrxSmygm9HF1t2dB0R42mq6QuxRm+dfBdNLlVBTpfk1JhZDzHVbS9x86sr3RjvvJ7cJUVk5dzFvT9epbPEpjVXg3H+dPtb+jZtRS711iWHKhEEjDYjd3zjOE4R/4XB52RXzYl4u4PccPEsTve8g+ieSE9kJgGxAIfTi7FgkISiYBmKkhOWsLjMmEyDdHbBoF+FngKYzera73BAdo6Au8SNqdQNuTkYXJlIpkyisQzCokw0JhGLy2oJV5QPFq8yGkgkY0Qts/6glqatMcIEmwlHeQbl84toXN/yoejPPyn7YOWjozCD2UjBkhJ+9vVjkZQEd/1xPf2b28d8cP9XLSEnCFZ7Wd/qx5LrIBoROXdRGa2ZdtVJKcN1bW2RGvJF6NneoYp7JC3S6mf9rF8A7+q/u3yuwj+Nw3rK+qi+qNBU4yUiTSO/OEEjsG61CqHr7RgaHiQUZcwZVr543gyWDv6NZRdeyfW/6OZvT+zCl5wJEGwmyooz8LisSENREASK81xE4zKNNhMJ5eCyRuaMXH5z3DYSNVU4b/4qL9y3Pu3vZquJIo+dklIPLclhKdW5DHNjGYwGugfDCBmqhqOQdJoGwaBScisHv71KVCLui6p6FEoCu1Ol1Ej4opgcJhZcOJ2LT5xIx2CYJ/+zB4vFyPITx+MbirHypUoEwcDsPCNZi8vYv6uTvn09unPWghhroVslTRzBSqoNstUf6GWlxYgkq2RwF50yCWnFvbQ9UUnJJQFKLv0yZqsprT+iNbeP1gSzgMltwV7mIaPQRXa+k0goTl+rn7xyD7mFbno7hujY3T3mNQO19m9yWyiamYfzlV+x4g8tlJW2sGRDHu9YTVhyHSpFesrwG6iOQcuQxi8poa87QLDZj8mhli/zyj2cIj9K9OF3sf/oZhrrVIbX0ws34//Gg2R871xMZZPwx+xkWLJxOTMx5EYRCvsxjYvgBqK+GLnxCA6HOougKCrSyOUEk0lVbjPmOzDmOvQsIa64iCtOIpJMTNTKRxo0NqUvNQpLKkbhY4GUmhwmZp48gVsvnMXdoTgtK+v/59a5j90pAEyYlsucxAuAwpwli1i7o+sDi0p/mk0RFXURURLYFhVzrO8Bpp94PW/+K73mZxAMTJiUTTQm4a3yJvUm1AdHDovccfNLbJb/xtPGrwOQNfgeJocJ0Z8SzSYJv7q3tPP1P5vw+9Rod2B3Nyt7w2r0n6Qi0NBRFqMAkkwmVeQWZlKzsk4XWkkoIu++fIDMIreqD+yx4bSb+P652cBiNj9XqTPLag95uDcMZisJ7wCLluTyklnQxVzMWXZsNhMOs5GfndEMJ0TZHj2XFzY3s3NNk86xkxDhpRcr8dxwL1XbBqjY08kvH7iAYFzm4cd3pek/p75csa4AB16toXG7molJgbjaRM938oUzprIg8SzxWfPYPreQtoYBduzrZsgXIdIRYOfLVXzlQC/uTBvB/rDeOJZjKpumJdfB5CXF1MYkdUE0GnDPzGPSwiKa9vcQrBugd08365t8umbE6pIMTvj8j5nwuT20mS/ib3/aRO+e7mGOneSxGx1mshcXqYJU1f16djWWmdwWZl08ne9eMZ8ZiRcIZUylMzSRPT1DrFrfxJIFxRRnOXhnaysdu7tHn/xOIlVc03LJLXLxuQtmsmLaZgDa2uEq5TFO/7mbJsd1/OKpXVS8UIVhROlXMAvYS9wsXVLKps0thNqGMHlsLDhhHN86qxz5yb9jO7aUP+6aR193NUtOGMfQrT/mzUe6uepGL11ZFvyxGE5zGVZHALNggokxzEoCwWMlKyxi1sp6MTWLMtqMWFwWzHYT9vIMzDNyMOTnYsjJBVcOYSmLYNxEMB4nGlMZdsW4hCQNM9OmElUmBAGD8PEEo4LNhK3IRUJOEArE6AvHEWOfbM/hg9rH7hSUmMS25yq5yTcFk0mgas2BT7xB83GZrnwUFqlf3cRPp1xC7cpGtRmafLFAlajcuKoBk9Wop/uaaXXhG/9q5aGfTyPa7OexrrNIyO+qcE95mL5AE0Vp26JCBzX50GjHEEXHleFyW6lf1YAUloi0+bn9x+9ywvmXcElBOXPn9OLtDtC/r1dHVPn39uhoCqPDzPKJWbjuvZzffOMS7nWdwKu/3ZjGNxWq6+ek2zKwl3yO8PMrkaOyjrcvmZnHry+LIP7oKp7+VWPy7H7CLx5ayKvfuJ9/PLJdp24Itg3x4B83YhAMLDp9EicfuBscdmxfvJMf7+pE9Kc/L9r+pWCcYN2ADhE1e6xc/41lzN97F00/X8v47y1j+sS7kESFUCBGNCJiL/cQ7Qriq/ISKXKRUaCWQ0SbipiJD6jSsS21/cOspGYjJ104nW+e6uKpXYX85xdr1H6BhkYyGtjw712c+6INo92CI38tVrsZW5FLhwdrZvZYuerKuQiCgaee3ot3Y9uYi5TRYab0pHE8cn0v/tvOoXZPL1NX/YTH1icIBuP094ZYvaYRQRDoODDMyzRy7sCS62Du+dM4flEJgbDIpRP38nTKfnw/fgHHeA+mO67Bm5zqhmHxIG07BrMRt8OM3WlRNQWiEifNK6ao9k8wexz+xV9h4++bsFiMzJmci8lh5pSLPbQt+Dmb93eTlWHFaTZiMY7DYzVhzZdIKArGDDdOmxFre4BEIAlLFhUMViOC24LgsWIqcqnl0F4vlBYjGrIIxHMZjMbwh+MEwnGiUZVmYyR6TTALKIqCQTkYefZRmMFoYOnn5/PAJa282HkCf/nteu5a20zcF/2fyxLgv5QpxHpD7Htqv/7zx3WhNI4XJSp9IM6ZD2parVY19YUSfRHe/M0GvQYs2FQVLzmqLtyBA+qwmUYGmGoJJUHNG7WcP/PLkAHBu95Fjsm6joQUVKNie4mbiXMKmDo5l9ef2I3cOqTj6z9/1Txm5bn4assg0Y4hfX5h6/pmvn+WwII5e/j2Qivdwnlc9Y33dISTdm9iPSHufHgHj/70R/TFxhOJ9WO0GdOaawazESkQ15Eqqqmf6e8N0jR0CpNPngS6U4Dw9i5mXOYiK8dBQk5gthqxWE1YbSZiUYnuNj/NX/gdSiLBy69WpvUyRr32KTMDZo+VfI8dw7TTGH+fC8Pi5czvy2JioZtAXOJy+woSosjvWi/klb9uVRvgQggpLOEuzWDRseUIgoE9Ozro3tquZx+CWWDtS1XUVuXQneyJJZR0uVglCZedfupEHry8FQa7aci4ia/++B38FX16QzDui/Lk47sxCIY0IsKRz5PmEL509XxQ3ifjvElk3HYGv9+zmMrdTSw7fhxN1V46NrSOijCyZNtAEPDMzOWqK+dyw7wmeiNmXquSSNRsS9tf1l3n8aR4Aw9/9VW9Bi5YTRhtqrSl1v+Ie8Os29JKa1Ufclgk7osSlxVo76TjwZ14xm3jib/8ke88Hqe1O0DoV49zoM/G629UYbEYkWQXTqsJm8mJaJ9MnkPBUgjYnQiAxd1PIi5CkjYDOaGWFV1OEoNDrLhULU9e/lCU0A2XMBAR6Y+I+INxQhFV7U6MS0j/5aDTIBg4Zl4R8qv3c8plC/m7x0rgQN9hv2f2WHGMzyTWG/pU9R4+EPfR4WCJn4QJZoHJ507m7i8sZUe7jwfvfu+wqflHYdoLbPZYkaOyHnWnXiOtPGHOsKqljmS5Q5/aHcXksDgs4pGCs7dk2XTiOkemnQtOmcz543bT1jWJnS9X6dBZJZFAMBiw2E3IWXaWnj4JQTCwbW0z69ryONfUR/j+1/GYH2LZhb9hzT926CR7oJbCGt5t4JrYONyZTbTW9h+E5nKMz+T0y2dRVdmbxlEkR2WCjT5++Z9dXH/Bz7nq1Tj1P9/AuGtnYrnpGh7e0UksKnHOhTPIzrDS3hvE47LSOxCmpzvA3Y9swz8QZrDel0ZqN2ZEbR2+vm+sbaR5+jymFp/IjJid+fkNyIqFiJxJ7PerSIgKS770RV5BzQo0Liuzx8qUskxOnpDBiy4rT29qI6EkMGfZKT++jEhIpPHdxkPqRFvznSxbWExiw6MgSWSd0XfQVLZBMOiSnyNV1LTztJd7yJqUzTHHlpNhNbHSewqupaeztrKbd57ciSIqbBBlBmv71WFKsxGMAgkxORlvMzHrgmmYTEauPWsqJ5heILGtAWn2PJo7ezCcMDFtn53l3+DBa17WpU8Fa5JAL6n7q8q8qsfcsLVdnRFJCjhVNPZzyeQJrH9rLRDkmH3X8fVXtvD0xib++E6Unq4AipzAmWEl4IzjC8bIsJoQDBasxkJyXUmodywCJiMGSZ3CNwz4UHwRlTkyw420r334GjlNhMRc/DGRkKgS8MXjMvGYjJR8RvNK3EiiwkDHEEoyQPy41qaEkuCV16s569u/42/v9acp9B3KshcUcsN1C9he0c26v2771GgzfKBM4dOYEpncFv59WwZtJy7higsns+acO9j31P6P7Vi1Rd/oMLP42rkcv7CEF145QOt7TWjZgr3cg6ssg2DbEJZcB+VTc/B5w/ha/PpipwnESMF4GiJFo+GG4eutsTVmjsukd0834UBMjdQG2rn9guP5i9XEtteqiXvDPPL4LgrLPEiSwqSFRZwwp4hFhQnWTc3jH4/touSWLzJz0gYG3mth2U2FbPRY05wCgOiP0fRmXZpGcKoVTc/hh6e00HvifC7b0kbMG8HkMKkqZN4IVa/V8KN3GrAVnU3mhVdAACL3xhGDFRROzOYLxxjINNcQlItxhbYiZ5SxzzuXv79aSdvuLuTg6NleWlBiFPQmaOnUXDxZNgSDgQKnlbLIcyTeWw8mE67pUzB892aa4qfz9LN7VC3i4LCsYrBugBdeOUDVvEIqd3fputPO8R6+eMVc+gIx/rypLe0apN4rULOA99Y2MeXyX9EdjPH8Xw/o3Pza57IXF/G9rx3LP5/bS9N7TQfRYU88dSJPXLwT9rxD19I/8N2/76ZtmzrMpkFoAbo7VOEb15RsZi2fQFN1H73rWwGw5tr5+sWzWZC7jeCtl9JSNUD5T04jLJopzHHSaTkHuEe9fEb47av1iL6Ijrqyl7jJm5KDySzg7QrqAYwkSkitQzo0N6EkWPdGDdvu+jpO56OEQrB1k8i4RYv4aeMTXH1fgEgojtNtRVESWCxGVQjHKBCVFCCLRGIqLrsHe4kNMn0gxkhEAsQ31GKwmTCOnwA2J+b5/RxzXA05M3KQrvg2rb0y/ZE4/YPqPEQoEEeMS4hxGafbyn1fWUqurZYH1pfx2iOqIyV1IPMjbDIn5AQtK+u5aEPrEWl1aJaV62RxsQeA9WbjmIim/7b9V8pH/w2TAnF+/paFX7z9EwYsy2j8xtaP3SEYzEbmXDqDPwz8msgf+8j50Yvc/X4zieTfpp5QzqJ5xTz32C5MViNFJRn6xGm8P6wuZHMLEQQDLTs707QARjt2KRgn3DyI2WXB7LES7Rji5bdquPSbEymtvp8fX3Axv7HMorqih45tHQzW+5h4XBm3XDIHSUmwtzfOcaVWqo4t4/afrWLZmT/mzPtLefxRNUsYLRofCwudkBM0r2nmO6XzkKR25KjM9Aun8cVLZ/P02zXsfrpC17INNfiIdgUx2lTOGkuWDafbQpM/j1k5Azh3PE7P71bjLstg/ldO5fQTv0hzXb9KER6WDo3YkdWBM9Efo7vdjzvTxtTiDObl7iT26xfZ+3A1ggCTjq8k6zefZ8egHyU5g6E5QYNgIGt2Hja7iW1rm4m0+fVFY+iAl1/+9L20wbaRzwEkYartQ9T0hLj97Xo9kk5FWQHEfFHe3NpCx96etMa2Z1oOsxaV8KuLAzxn+TsA50U6aNnYpsqzpqrepTgjS66DjAwr8aSCocllYeIJ41iQsZbgrX9gy7MdLDw7j8Flt+KUYkwuyuD9xjAXfrWYvn19THz6Zh78aYNO6Jg1O49zzpuO22Gmod2PtyuoM/Cm8p8Zk2SDoQYfd/9+PW9vvYFnZj8OQEsr5B37eS546B2eWbGPSEi9zpGQBZ8liskoEIlLKIkEcdlFjiMLtzkTh2cAq9GPwd+DZflMDBMmQcEUpIQFTp5MydrrGYyXUd1noTcUo28ggj8YYygQIxyKE41IRCMi0YjIprYh5hdOxTfUMDzIlzIT9FFbQh5Dg+IQVv92PTfXqb2roxEa+7jtM+MUFFHhvQe3s21tHqJ/u84b9FGb1hvQBqF+ft1UXnCq/ZIzHogMLxSyQtP+HgKDUcShGAajgcHBKLGIqNNNWHIcXHTuNErcNh6xGqnsDY0K/dRMm3oONvsxGNUyRHtVH1W+s5kubMEl1lFaMB+vN0ynYECJScSSddewKLNubyf+WQXYrSakYJw1j+1h0xu1KvldbFjgJ3V/hzLRH2PzY3t0Z/KLm5ZQtvcneC78EV9dUaliwWUFBCMmt4XC2fk43VacGVZOXlqGPybhj5eQO+inZfcgrrpBpi2qZOKZDtV5JhFW2lGMVULSmvvR3hCRUJwCpwV66+l4vYGGJvUzvd5ezrlmNxPnX0FWrlOFvSax/0aHmXlLSynOcxGJSWze2EJ7j9oHUWIS4abBI3o2EkqCRExCGbE2pF7TcPMgW1ZU6AuIxlc1bkoupfkuEoQ45iQ72dOyeGSrHSUq4ZqSjdljJdIRSJKeDSOaAtX9bErWpBNyApPbQkm5B3p3MdQyxMKz88j+1TU8sDOBxxWipsVHOCxy7Y+vxhX0s9V8IzHvKxjMRjwzc7n9K8s4tXALW/uPo6FdVepLpWExCAasRW4mLCulvzdI/84uQo0+npQ/z9UPVfDczbsA2LFd5rJZAV5zW5ElhcIyD2XFGfQPqgu5kkioojiCgbisIDsLEc127IoTe4YN0+Is4kIOEdGDrFiJK04CcQdDMYn+SAx/SG0uh6IisYikZgkxCVlUkMMijz+5m5c8Nrxt/k8tsEUKxFXSzk8ZPP8z4xRAXaR82zr0GutHmY5psL5LvnM8hTkOXnq1ir79PRRU3a9/pi+crf87oSTRPAe8KvohKlGzuwuDYFD7DkqCjGw7lxevJ7F6JTO+8CMu2dp+WGemiAqxroA+bRxuHuQnD23hhzd9g9yEQjTmpammT+cR6tjdza97N6p8S94w27PsZJZl6LXtYLX3oMlzndQuJumLAIoyKgujHJOTcMcsMsyd4HLSEYilI0CS8pW337iIY0wvgxQDeRttmZ+n0gvLl53IjLOqkGMyQnEOACaTkBYdp96HkabtSxEVVfHLESGx/UBS30A1vx8CL1QwaXkfpfkudjvMSfy62vjfvroRi8tCTr6LoZ7gQds/GjvU9L4SlYgnp5s1RI84FKN6Sxu1OzvYf6CAOT97kb0V3VTdtw73zDx+8M3jKXBa+MNze6l8uTpNZEpjfwW1r2YryWByWSYkEhR972TaFt3LW00DuB0KTz29l2CzH0uWjX9OPhtJSvDWk1uRw6JKrnbKRE7NXU+iZh/NpgUc2NdNrDuQtqjaSjO44KZFjC/OYP2OdrzbOpECcR761To2nHYbf9+1kp2XP43DAc7WN5m78FzmTsrh4nE7CRls/PQ18HrDhCMikqQQE2XcDguBuIzHaifD6sZuHofRECeREIjJRuJygmBcwhcNExZlBgIx+v1RfENRgsF4Elmm9hWUmIQSkwi2DRFsG9Lh0YCeUSZk8UMNr32U9mnpI6TaZ8opgPpCal39YLU3rZn3YShvNQz8hfNLsBgF1uU76ZUTxOddzLEnv0L5V+dz0R/XjcqtozBc+tEQR0pMwt8TRHYWISgKWUKNyrzYNHjI4xNsJjJm5iJHZUKNqvB427oWfhSKM25qLrKoEEvy7ytRiVivyh+vQUVjvSF6ugPqsSUX0zQQQXJ4y+SyqNGsonDvb89hQX4PX/hdO81v1KUdj3NiFld+aTFfnbOX3f48/r79TA68+3Z67V1R6SL++doBJl5/JnlDb9LuvoaH1zQx6I8SPvYMzv1bMYR9+M2z2LzDSyigRtJGmzGtdHE4EwQBizEEAwc7V2+ll3HmLjyuceqCnHwe5JiMv6IPZIW+lKGmg5xSks5j1EU/+R2jw8yUsybTXtVHqMGXjtZKQUoJVpN+DFIgjjgQQREV9tcNsP/FKh1KmpFtV2vnkTjtTT6dLgPSFxSDUS3/zFhUzOR8NwO5l/CiF9b/ewdnnzoJMa4wVNOvTj0HYzz7tCrMFOkI6Aunzx/lxfZlRFjMU0/uxl/TnzZYCWpTv8cb4p2XDxBq9uvC93FvmP2vVHP1wMn8ad+tFEZXgjOT2XIORS4rEaGInd0l+AeqCQXixKJqxhwTZZx2M4EMKx6XFY/VhM1kxG4SUBIyIVEkLiuERVnNDCIS/mBM/c8XJRoRCYfiREJxfThSo/J2FLqYMD2PC0+cgMtiYl/bIG+9WUN/Za9O0Q6fzh7pJ2mfOaegLXKTZxfQaBbw7+1BCsSxFbmYcsoE2qr7GNx1sDTk4UwRFcKtQ3zjx++giIpa/1cS3PmCgVMfeY+fv1tL3/bq0RtYSRbRRCCd/CzU7Od7z5Vz8fF/oKs+ihTYfMhjMBhVGOr995xBVzDGT779hs662re9k8HafsxZqlazGolakMJq5GQv9zD3rMm4XBbWP7EXcWB0ohltsbPkOrDmOwk1+piQacFV8xzXXX4zv3ynIW0xiveH2b2/i965x7CzzceBdxtGJQ9MiDJ7n9rPxSvryZ5VgqKsJ9yrOqvuNj9bZheQlVGKbyhK7YF24hGJgpl5ZOU6OPBeE9FkY/VwJkkyMdkN2VkH/c3kMJNgDIZf7b6l3D+T24JjfKYOv3SUZeApcKk9oWCcWH9Ep8JQRJULKH9JCY9/rpIG14187efvMbi7W6XQSBmiEsyCzrIKyaHHFPx80XFlXH/VPBYUZvDH1yr5+/2biPuixHpDmFwWpp05iYA/Sut7TcOABasJ9/QccnMc7Gke4Ik3e6h+T0VLPbSnS4WPJvmzpECcYI2XhKxmV0abCptubRigvcmHt81PuHlQdwi20gwSokx8IEqo2c+GR3bpEFhAJUBEhVu3rm/h+o4hJs+bwpL5RfT7/bzd0E9JqYe7Wr7KiVOLuLnuCvwDERQ5QTwuE7SZCEVEAiERn92M3WrEYjaiKAnioowoK4QjKgldJCYRDKnZQSgQJx6TVFbYmDzcx5ETmFwWZswv4tqTJzG/6VcwOMRxy8+hu38Ca9v9SWDHET1S/9/ZZ88pJJE87U0qBlyLquzlHs5cPpGVybLOB4kO5LDI0P5eHbuNUWDP+03s39pOuHlQXSyNQlpjVI82k6LnwxtTkIJxdq9qpLvdjyAIxH2HF59OKAmV6yVlajMhJ/UR5ISufGbOspM3PRe/N4x/VxdGq5Gy4gyK85xs1rKA0bQukttCVsgt8RBp8/Or5yv52vnfYsv6xoM+q0WI19f1E+sNqTxCqcN4qWgqRf18z6Z2jFajPt/RJ8qEAjGsdjOyqBDsC2EwGsjJdzFnRj4Ne7uJdQUOmy0ookIsIuGL2ikoLSYnG/pTRgEyJ3iISNmEItJBxzWS9sBgNuKcmMWJ50ylqzNAfUUPX7xpMSeNdxKVzMTlBH9+uYL6ih4irX5dXCgSikPBJMxRAwuPL2dD8+Do0GhFAYwH/drksrBgaSlnjPfhNleiKG4iHQEdnWZyWxg3IYuOdj+t2rEmG84LlpVhNRvZf6CHmnUtunMWByIHkS+mZQCCgBwRGegYQo6qrLEa0snoMFO6oBCzxUTT1nYirf5RFfm051uOyoSa/VQNxejvDeJ0WxnsDzN+XBYVf9yNM2MfeT/8Ir0dAf2rYkxCURJIScU2i9mINUm/HUtSn0dikj61HAmJelNZjKl8R0pU0nW2tXONx2UCcRny88DhIGYsYigQG9aW/j8b1QyJROKIrs6i4//+cR/Lhzajw6w+EKKsQvxcFp0gz5LrwD09R0fCfJh9eOYVAOhzBNpiZc21Y3SYVd55DZY2UntiBPunBkXUBsFSJ4ZHM8Es4JiQqTJ4NqeXmlIFYDJm5vK56xbgtJt48O73UGISzolZuPKc+qIb80aI9YYOSqONDjO5S4u57LLZvPBCBd5tnbpzHQ1bn7p/7fvWfKd6HUY5n1TiuZHlFO3+wXC2EqwbOOTMiUb5YfZYyZmVz3XXzOOSKY2Id9zDK79vJpGAceVw7ENnUL3kNzy9qYlNb9epRIHJ4xvpcASzgL3Mw/j5hVisRm65eDazO/4Ajc1IXUGk1iH6fvQy9z6zh/pdXVxy3XwGhqKsfbUag9HAzGVlZHpsbHq7jkB1/3A5bWT5KDncqE0+Gx1mcucUMGV2PgF/lIo36/QIP3UmRgrEVVRSsixYfGI5V1w2m9Ubm6lZ10K0feiQ9eqRBHsGs1GncddQY9q9XHj1HMrLPKxZVY9va8dB0q/6vUyen8agqpH1GUxGLNk23r7XAhE/n/tLFn5vGIvdhNVuxmIxYrWbcTgtmK1GTCYBk9bXklXW03hcRoypE8uxqOoUYkmnoLHiKqKiQ08RBKy5dnLLPMyZX4RgMNDYNEBzZS/R7qBOgggfrnwk2Ew4J2bhyHfQt6XjiOGon5Tt3PjVw37mM5MpaA9vX3eAjg2tiP4YYkpEE/eG6d+gLiwfhtbW6DDz1ZuXUpZh4wc/e4+hCpUWQrCaOPGauXz1tCl8/2+baV3fMvzyJGvQKskbaRFpQpRVTqPkZw53XIqoEKwdfRJWm0g2JHl1VvxzB65CpwrtDMQZquglaDVReFwZt35xMXFZ4Y8PbNabzUpUAqOAJdtGuDvI2o0tRH1RNbI8hDNI3b9gFnBOzOKGm5fw1NN78e3oOgjSqlNZJwnilNH44GVFpb5uGhwmlBvRG0r9LIJRhb8OhNlb20eJeybH3XYRl2S/jTIQxTIrF8Pyc9hVO0hX59BBTLoj+wcaICAUiHH6SdOZE3uShCRhOPNCwuZZZJi76e8TMZpUZNUZMwqo8gZZbxYI1PSz2xshb1YeUxeV0JJhxVehTria3BZV1yEmkRANmLNNjFtUjEEw0JCkRuja0ErXhlYVGWUz6seWtbSE629YwGMPb9ezAK0cNdg2xCN/30qowZdCPDhsusNN3iPBZkrjxdLIFrVoWzMlJrHv9RqqcxzE+8MHZYF6n06j1k/eC1AzayUmqRrCQ1GWf9mMYDWREAeS8pjqgi/GBOJxmVhExJIkQxQEA4LRoBPcyUn2U0lSEGMy8bikciSJcpI7TOXccpV4iPmiRLuChFtFWluHaNuiDr6ZXBaOvWQGPZ0Bql6rQT5KptqRZnJbOOGmhVx78iRMgoGv3/oakVb/B97ep8U+M07BYDTgzrQRDsXHbCgbjAZsRS4K5hXSublNn2Y9GpPDItsqu4lMzk1bnASzwPfPdhK//hT+/dSDXOqL4D/g1fHcRpsRT3mm3uQipXmaSi/xYU1nUI1JBGu8qnRiyn6UmMRQu59JWQ4muDbSeuVc1qxt5LjjxrFzdycFJRn85tQD4Mnngh8HCdT0HxWkL6EkiPWG2LKrU4/uR7sfB5VvxphFONLromUYoj9GY62X960mipZ9kQnfLodIADIL2d6ziN3VjfR2BJJsoqNHvFpZS7CZGPSGeWtVPXXTTiIak+jbHsQ/oBVutuFrHyLui3LLPe+m1e0BsnId3Ht1Hpm1b/O85csYDQbkRII/37MaSdMm8EeJxySy812Ys+xqCTE5HDbz4ul864p5/OjPG+jf083Sk8dzfdk6Wi9YwBvNg2qmkIyoNU3tkZmZwagCJOZfNF2VRt3ThRSWsOU7iPaGkfwqP0/pSeMon5TN7nfqCVT369fAIBjSEE6p1OnadU+9B4LVhL3UjcFkJNYdSJZqVAlbRVQwCPEkrDuBIgpq2UhSkKQ4sYgBk8mIkLJ9zWRRQVFUvQQ5CdTQeghahnDpl5by7YlvIxfPY/m1MZ1dQGs8m1wW/L4o7bXew0b0adls6jOWcm2zFhTy26mvkljfxIrpv/yvMCj8N+wz4xTksMj2N2qQwtJBk7mamVwWTr5uHnedk+C6Xydofav+qPejxCQ2v1TF3hJ3UuBdtYSSQEmYGGobIt+/n7zC8YTahrAVujAYDTicFpYeW867ParguZyyEH6UghzaVKr2Moxc0BNygkhHgH+va+CSpUuRZC+nnjKJm2fsoGHOOaxt8JLYvhFycyibdB4961uP6ti0PsO+12vUSdhkk1Xn0BnxYo0Z/R+tyQoJRUCJSfi8YZqbfWwodBMvOxWnWaHfCztb+uluHyIciB10XbTyGIKgl2RMLotKyy0YGArEcDktFJVkYHda8HYFGOgN6YtiuG0orewih0UGekNkyfuIvbWD5bfehMUYpN5XqCKSktmiFJbo3NdDf84QckTEaDUi2KyYXBaOX1bGvNztlE3Kwd80yPYNLTw9cTkb3t+NHJVVfiKHWS2bijIj3ap2Hp5pOdx7pQdPooen60/g0cd3YbEYiftU1TqDkmDi9Dwml2Wy39WqU21MOaEcSVSoeaM27Z2y5DpwTckm2hXUAReamdwWJh1TihiTaegPk4imHpUM2nOQfE49WXaVMdYfRRbVRV+9DWq2AAxTYac80yMdAoqC22km0dGO0eHBYByWSgV0bY39b9bqsqSHK4PqpbWUjAqGs4uoN4KhfArE41Q29n+qBtA+jH1mnII2yHMos5VkcMdZZoRffpezz/krD7/TcNSLsVbL114GLXJSohJ3PtnJP975KTvDZxEMbMWa7+T8i2fisJuoqPUSSeL+BZtKBcGIaOjDOgZNq8E9Mw+n24qvRUWRKDFpeNFDXbDe/ds21r90AEuug4nT8mifcSZ1A2FeeqmS+PnfRYooVG/ZPfZ+XBZ9oR852q+ICrGekB5RWgucTD9tIlm5Tip3duDd1nlQRDuWczgaGHEi2WiP+aJ0CoOsA+paB1Wd4KhIW/MgPW1+ldLBbCRrbjbxiCp05CrLIDYUI+aNYLQZseY7GT8lhxOWlrG0LItpvEKiuxlDfind9nN5uzbCph3tdLcNMSTKeqlSc/BKTKK/tp9/Vh3HKV95mn+vasBkFNi6fn0a8ssgGBAHVA0DS7aNspPGcfppk5ld4iHHbmZDZwZQh7Msg2Czn7/84G0UUcHsseKekk1eoZt4TKK7qk/XrDYIKuDBmmvH5FKdmkeqQn7hWc6/cjL/ikqY3VYu/tJi6hoHaGvoZ/faJjb3hon1hjA6zDz594spefXLGE88htOqSvT+mWAzcf7XlnL9sSU8tKaFlX/cTEKU9PskWE1IooI/RfAn3VSItsGcwJPrYPZ8tflbtaeLaGA4cx+pKKfdX+2dS0iy3jDWgo0nH9jCxsXnEXgvStzbchClhRSUj1jtziAYMFqNWHIdmD1W9T4NxVS0X7IJH6zxcvJtmVhyjyFYvf0z07z+1DoFbVgM1Gjqo2jgxLoD/PYdiW9+/0Fe+MneD3wTRyv3JJQE+1+p5tLuUhLKFoKDUbLyncwfn834TBvxuML2XR16s1CJSsjaZHO2DXOWXa8HfxgzuqxcculsLp7jYn2bxAP3rlHRMWZjGuulFJYINfuJdATYs7+Xq96sVaekozKvKQnmLS3lxq8u5d33G6l/u15X5NIcwvnfOpZ5k3LZVdfH9o0t9GxqP+geadfI5LJw9zULKKv6BYbzjuWaBybRvKZZn+o9qMyXzCxSxYQ4KA5Ov/b64pEsCYkxmdaGAXo7AhjNArKoEB6MEPep9Xyjw8wll86iOMvBys0tlBVnUN/QT92OThVxMyGLE5aWcdWsDkzbHmDVhS/S54VFiwSmPN3N0vJv0NDuJxSIq417s4TBrKhlwSTUM9YT4l/3rOZfgjDc0E4uYFpw4BifiTPPgSAIzFtSwvUnTGRy3wOwuwHDwoUMGa9SSQaTJZOEnMA9LYfjz5rC9cdPoMobYs2udnrqBrDmOzEmF6z8+YWcf+406tsG2butnRsezmLO3J+w6dfNhJr9XH3jQq6aO8i2CZNZcq2Dn74ms+bPWwAQkmy8QlkhsaLjiHZXpl3v7Vvb6OoNsn9N80EZV9wbpu6d+jQZVw11l5ATCAggqNch4I/S0e5XheeHYsiR4WdfL9sIKUANZRhZpGUMqY4i1hOi+o3a9CxgFFnXIzKjKmyUPTmbxcvKKMp14g/G2bqllY6dneqkd1gk1OAbc+D000gceiT2qXQK2jBN8TEl+NqHCDX60qY4P6iJ/hjv/2cfOzdnfqBZhcOZHJXpq+zTGSadbithUUZWoDTPSX2ug+4kIkoyGzEkm2OmDBvTl5VRmXzIPpQpCoXZdgrZyPGlJ/FwvpNYbwhrvhMYVt+K9YZ00XutFq+9OP6afho9Ni45ZhyTrpjLfQNhvDu7hvUFjAYml2Uyv8BGXYcFp9t6SP1u0R+jeTBKWTBEormCU5dfzTPNgwwd8KYtKqkvkdGmMp+aXBZ1GnsgmragaiiXkSykoA5YWe0mokMxwqKiDgwmBXP0WnQgzq79PUgz8hFjMl29QfwDEbX2bDVitZnxOCyYE34SQwGiSeoKk9WIweEmGJeIxmXiyZKBvcRNvD9Ze0+ubTr0MxVYoC1ORhWBNG5OAdOn56EoCc6cW0y+ox2D1UqivJRY3mI2bOqjtaGfeH9Yl0CdOKeAM+eXUOaqZEdnKd3t6gxH5rjMJPZfYvnyiZwxNYee/jDxYJy63fXUr2pQy05mgZ7+MBvai9nb5GVS1gS623bqqLpQo48fPbKdk064ldX3N6ZlNglRpnNDK50bWlUYaAos2mA06DxJIy3NcSdLXbHeEI1J6ngpGNf1OCBFHMc4TK9xKIegqwymfOZDmyCQW+ji9DlFzMlrxWyIMKFoFo8EYgzqrMGjN6sPynhHDDz+NzScP6h9Kp2C0WHGNSWbRUtKWe2t/cguXkJOEGn16wpiH6Xpi6KiYLQacbiteLLV8XqHKcCMXBfNJR46WwYRg3EMRtXLKaJCvD/MQG9Q5+P5MBmM6I/xyjt1FF16sk43UXRcGQ9+dyFbOmT+/PsNTJlbSH6+k6aGAUKBGHmFbuoretT5DVHFqTe928gvoxJXXDabs86ZxpZsBy3bOvSX/h/3b+K5cg+9B/rUadxD1FPlsMiL6xs56dLTwd/Lifm51J86kXWtQzpds3b8qfVca76TmcvKEGMyVeubifWozVSMAo7yDCYsLmHCpGzef66CcOvQMOmZUUj2AgSOO2k8dquJLVtbadvRpc5xKAoJYO+r1VSsatB1s0ETZEkQCcWpa/ezP/NYJp1WyPn7p5CIRjGMn83WgRN4a1c7jdV9+L1hbFk2rrh8Duu2tFK7tgU5mtJwHE0JLcWBmswCHpcVQTAQkWRW7LUSCJ2LPxjjwGvdDHa1Ujgxm3lLS4lGJdqbfAiCwJ4WH039xXR6A6qAjNHAvMUlTCnLpDU5sf7Snm5Wv15NsG4gDT2WMAu8+c8dvJ6M5l/12Dj3iwt5/IZ22s0XcNXnX6bqhQNUv1R18IR+cvhtrOdPBw6knqsWrafO6YgycW9YJ/vTnUbSoWr6zwKq8zQ5VL6u1AG1VIcwqiMYgwn1iN4vWe1TmExGZue2Y3/vH/ie3MNFXz8R8bpv8dxLlbRvbEUKpOt9jAXTVf9GWubyYRgWPk77VDqFhJwg0ubnnWcrCDcPfuiSymjb/6hsZEQgWE2Mn5XPzOn5jCt0YxIMxBQ3SkLBZBR0ZIWGckmIMuJAhKZ31cGw1AVKW2iP5njlsEjNyjp+WK2K+EQ6AkycmUchG5mRezqx3hB1uzspOW8aM2fm09g0QGlpBoqisL+uX1c5U2IS7asaeWBPN/nzCymZkMWyW5dR2zRA1c5OAgf6dCjroY5PK6U0HOhl3Ykqh8+WlgH6+0KgKMMoltT+gqIS3MW8EbzdATJznOqkdiCuE/flT8vl3s/PomjffZz6szv46W/WqmI/okKsN8SAKGN2WfC4rNitKdTfyQVEfyFFGWtJBhNn5lG/q0sve3i7A+yVFNq6hshwW/G4zkNJJPDXxuhoraC3c4hIfyQJ9zXy1jt19NQN6HTfemQ4ciguZZhRDotUv99M0/4efVETfRG9Vm5yW5h16kS+fuFMMm0Cz+/qonJXJ701Xmq2tfPo787F9ZsryLpuPpfHLsHtsHDihGwqnBYefXYfXbu7iPWEDl7YlcRBPFZnzysGcRMH/DFdMeyDvCep11bb12gDnCp02oAh9V6klIoMigGDkEBwmMiZkMnE6XlU7e4k0D6ENEJQaOT+RzqHo80atO1KAXUItjUwm+n5uQzU+7Ct2MHZvxmkflEJvTXeNBbfgxyCNpNiHj7nhKKSaaaiDz9t9ql0CkpMUgfMRjy4qVH0p9XLKjGJrFwnly0soXzwXwTyT2N9ew79wRit3UNEQsP8LKkTpppmtb3cwwU3LSI/y87Dv1ijc7QcDXGWFJYYOuBVf5AV9r9Wy+d6S/C1v404EME/EOHt/gi2QhdGs0DjgT69ZwDpUY/ojzHUHWTanAKOnZSLPxijWjCkR2pHcE28O7v48d3vJHHqarkqdap2pHPVeJua17ViciflH7VsRFborfGytjnCFU3tHJ/9Dz7/pet54I63kWOqk5XDIhHgP3/apAMBtODCYDbinp7DnMUl1FX0UliWwYI5RTRVezHEJCwuNcvweUME/FHMFiNLjinjc4vKqPIG+efebqLJ3oQiKiTCoi6JqkfLcmJMx6CZlpXFelNoQZJwVKPNiNFuxucN8bdXD5CT5+D0+SXsK8+kKtn07QnGyc2xQ2YGQwMRtm9rozDHgT8YZzAZhRsdZoSkkwU1C3dPyyHaG9YzZkVU+MHv15GQ8wgcePVD9+8O6RhG/Jy2MMrD5SPNeWSOy+TzV87jjHGt3GspY2N/OhIqNUs46FkcEaEfzSKckNVrNljbz19ereTGs77N0qc8EA7TI+Visw5itJvVzHLEvdUcgslhwjklhznHlBIJiVRvbFEdroYU08qhn7JS0qfSKYw2X2DOsiOYBR3Hrf8t5eH6b1/YkfXPhKKiX1rr+2leGqXM78OdVUVUOo7W7gB9PUHCodGnlrUXyZpj58zZRZS5B/jP+Ewibf5kvX9sSu3U43HPzKN4Wi5N61t0egPRF6Ht/eY05xJtH0IciGByq01FbQBotHNLKAl6OgOs3NvBto2tRNr8R/2CScG4rh+gXSudeE6TMk15cbXZBSmoEp3pL07yO9GuIE8+tYerfnEzhkAXnj4LRodZRUKJCglFTJYjZJxTVObVUINKIGgwGhg/JYezl5YT8EfpbhtitTeMHBaZvLCIU48fT02Lj93b1KEnQTAwpdTDBPtazPnHY7Ob8CevjSYID+oUrQEl7bzHtJE9Ee1nBB3+GOsN0e6L0O22cMKlM5mVG8VmN+sN6x/9cT133v4s2+u9hJtVttM1m1sQkgy4RoeZqadNJBKK0/RuIwklodJhnDyB/dvbiXUF9Hvt39uTFhh8WBvTMSTPVbORvSg9IEEBo5HcQhcnlA5hqXydSaVfZLN5DO6qlP1oZnKY9JKs6I+l8TUd0Tkoajm2dmcH/5JkxHO+wIR8ge0dUbq8oVG3pZ2PNrU+55hSvnv+BGKyjbv9UToqepJKdiqE2sDROav/hn3iTsHoUAXORV9k1GEyDYV01x/OJcNq4sd3v4Pojw3X37WJxpRhFvjvZRAHIWViEh07O7nPH2XwCzdTFrLR1NlDa+sgnS2DOoHdWMyfoUYf9z2+g+OOHccpZ02hfzDC7vebCNYNHJYCw1aSweqfeInc/xD/+eFD/Oue1fo1HVmCU0QFJYmg0F/SFNlPzRJKgmjHEHXeMLXvNeqzB/r5H4X+QkKUVQGilBoyRkFtDBeoGgeiL5JOQSDKkFJr1o5JiUr0bengtK9lM2lhGYHB/Wl/17afMSWXB+4+jb5wnB/e+bY6XCbK1O3o5NFAnN6OIRJKgux8J85Z+fzjqk6if7gX2523cFOzGzEmYzQJbNrfTad3Gp3eZiRRweKxYrGozfuhzgBS8lgVkTTHoB1ParZgclvwzM5Xv1ujwqhLlpZQPimbrS9WEesKIIty2j2rr+rjtRIPTrcFe6mbaFeQgc3tfH/rc5iz7Zx4/TxaGweo3dCKYBZ0yoxFC4oZGIrSVdGrn3tjdR/h5IyNa0o2f/jV2Tzw4v40HfWPwkY6Bs200qlgFlR0kaKkZc26Cep8QlT2kFlYQue+kD65rG1/LDN7rMw9fxrnnTwRk2DgwUd34t3fowZKRzoQmcwWgnUDVHYF+Vm1l/ySDOIxCb8vkqThHmVbKZrhBblOii1bid//Dx785q/48p9kepLv8qeRNhs+BU7htFuWcu/4l4jPOp9TLtl3kGPQauwmwUBUksmelI3bY2PCpGycdjNdvUF6OwN01fUT7VY5hwSbSUX4JNNMwWZSR+qTN8FW5OLMLy1i7avVBGr69Qh1LBTBIdEFSeiardCFI8eOr8qLFIjjq+jjD/e+j7PYjSAYVCGQ5IOkPxCjpLSKqNDT4GPm5fM41fk6ZBXzA9Mk1ncHdaTLaGYwqvrNiS3v0r2pk8IvO9LhfGOYRnGQer0106JYKRCHEc1FlSsncZCDONQLZzAbMVqNmDw2NYKflEVWjoOO3d1Ychx882vLmJbj5Oktzax8cLuKdhql7CJYTWTMyad8ag7N+3qoeLlan5hNQ/ogIIUl3q/to7nTr6OnQEW+tIVFHCVuTjp1Ej8Q/qYiWMTjsC4qoUdcyORJAypbZ0KduvUHY5QXZnDB4jI21PRRnOdEURI89cxeQpJaEhDgkI5BMAtMPn0St145j+reAP/83QbKFhTxm5vnkmer5fwdGWmMsJoI0Jz5RXwh8CfkgQ42/OxBfnn/RgZ3dGIwGxl3fBm3njmee/6TXooSzAJr1jSSX5yBqyyD/t4QsZ4Qre806M+dJdfB7Jwqpk7JZd+Yd+7QpnEnpaKCxjSjyhBrzbVj8tiIJzO0g+ZWlAQGRaG1tp8/v9vJxNIz2LTugHoPBQHkg4cydT6xpIDVlWdMYblrJZjMrJ43lcEm35jswGOZ5hiUqIpeCzX69KBm9DmM5DskqBPUp84qpP2iq1n/VpB5j1/InN+9wkCyZGgQDGi6Dp+mEtIn7hTGF3sIPbQG57mdWAvPSHMK2sIrBeP85r615I7P5Jhjyzl1ViFLnO+Q8LYhnXQ8u3rn8cSqOqo2t5E3PpPrLpvDur2drPnzFgxmI+fdfhySpCQHbWTu+s3ZLLz9XO564X7Ovs2gE7elzkNoxHMzT57A/rdqibQH0o5bi4IMgoHMGbn8484TKWn6E7cfOI+tKyqAYWH4VP57fap3jJRRMKtOZn5+AOmptzBOKmLGhG+zMckJo+17pCXkBMG6Ae44/VvMeSCHh370bhqy51CmbU8wC0w8dwqXXTST11bWUv1qTVqJRxvkEcwCn7tuAbv3d7FnRWW6VOMYUVxCTmAwqw56wrJScgtdFOW7mDUui3+ERPore7GZBCa3/Ja7I83k/uDHPPvQNr0hmjqIZLQZWXLyeC5aWs4rRW56ugKcevx4dlf3svHfu9Mi7Eibn8d/uVYne9PTe6uqeLbouHJOnlWI+FwH/e+1YFpxF6snnoK/MsKiKbkUOK0IBojLCSRFocRtpDS0ggnHnM+GNgPtvUGsdjPxLDuGJKGhISYhR4cdQ2p/QbCacHlstA1F2VmplhL6ugO8WuFHUfIJ1tXo11uDNrvKMjhmWj4dX1tD7c4gp960g/9MzdEHynoafNz5z700JTl+tODH7FG1kb3dAYbqB0YtD/m2dnDGl1Rn8UEWJcFmwj0th8kLi/B5w3Rs6zgk3YPRamTGOZP52fWzMRlifO0Pe/G1+JEjahCXSHEOCgrRjiG2vFXHdoeZuDesZwoGowmQUEQOdhDJkumKd+voOmY5gbDI7rW71UzpA5RqtKZ7QhEPnsUZZXupJdCOQJR5p46DtyqZcP5E/MH0TDt1H58W+0SdgmAzsfr9Br7w51/TEZlJ7KEXx/ysFuWV5ruYkDlEYutmpP2tmC80MiW/kKICFw0eKxedN53zTf9h2bmXsf6fKu/QOfNLMAkG3rVuQxJlOn1hTpmRw2C8DIPQi73ErZZ0uoJ6pCPYTMw4cTw/+NwcvtHQf5BTSDWL1USOrR5lfw0lxVdhclmw5jsR/TGiHUNIyUnmNAz1GI0vLTJpGcpi/rFzMOQW070vfET8Q3JYZN1DO9hgFsZObQ9hgs3E/bfMJu/V73Lm137E2W/XI4eHa8CO8gwWLCvD74ty2rR88rPs7H+tFsl/ZNxICVFGCsTp7w2SW+iits5LS7ufoaTs4xOvHuD4r12Itf5+Lp6bydaFxbRX9emTpAk5QQIBRVTYsb6FQV+UrtZB/vCtE5ng/ycnnfNFtj5fqSOUTA4TRpc6AKnEJAyjXI9oVKLFF2bBN35E0VU7Wdltob6tjyy3DYtRIMcODtMANpMfJWFCUqxEchbRM+jE6x8gEpOYOiuf/r4QvR0BfUBObeCiN081x4CiUF/RQ3e7n4EGFSoaqO7n2X/vRA6LiAMR1XFMyWbJGZNYMD2faEwiGJco+fZx5O1opWroeLzdG/VrGm4epDUikjsjl8GWQTXISdI/eKtVnp9UTqZUOxTB4pGY0WqkfFY+5y2fRF27n9dqvHovSysP6tmbUc0olh83juLOf2Cw2SketwxBMKiCUyOclvYuqAGFyuJqMKsNeP0zijiqLoIUjFPxbgO1O1RW12jH0IfumRzVdxUVXbZ6WxtLvvYoV035Dj1n3Efzn/eqa5ny6eslaPaJOoVLfnAi32u+h67II9xw2xtjRhgJWa0hB/xRGjr8HMgq4qQlJ2Oe0IxYsoyGvkx6+vqQwiJ2i5FEMIi1SE2j5bDILx/ait1p1h+Kh3/wLq8su43BG9eiiAqZM3LVh9hsTNtnT+cQ79d7CbSPLfCSEGV693Rz7a8NHHPs3bz7QgWWXAcnnzmZQCjOukf3ICcdmmBW8fVGh5lwktBMs9Tp3WhXkD8/t4/lx19PoE5k3erqtOj3UKnmWBjysWxkzddqDCB7wziMvqSsqazXgCMdATpb/QQDMe54YCORUFzXldCj4pSMYbRsQYmpvQB/spauZWjICtWv1nDungwuu+nHFLTHmDotlzOXT6Smxce6FyrT1LKCdQPsqRvA5Lawo8uPtfQ6HlnbjCIqWPOdTFhWyh3XLWSyp4bO8Eye2tLMO0/u1bMnJSYR7w+zf0cHzXX9vOOxYbPPwWpvweWyUJpvosBppdSxGTprSOzcheKLIBRlYVh6PBM8VuaUbUR6ZRWyP4r1ti/zRM18QhGJzdvaaNzUppbllHTcvhyVCRzow59EoCErSP4oQX9UX0jd03O44oaF3LyghsiPvo9lVi6xq+/gHwPfxb80xprfriFQN0BCSajoIpuJ/Gm5nHrKJN55t44BJcHMkyfQ0eSja0PrQSUdwSx8ZPVsRVToaPKxamsrvR1D6pBh8jzs5R4yJ2QxUNuvR+mCWWB3VS/LzroFh1nkC2ca6AhEefzZfaqS4IhSpk6oZ1YwuS1Ysmzkj8/EbDGpsODuIHFR1gcGAdzTclBi6sS+1kz/qIAohyyPau9SslQt+mNUbmzl67X9ZOZ+nsH7duJvHVQp8keUOj9N9onpKRiMBv714rVU5i/iypdO5PrGG6h+/sCon9MoAcweK7aSDHIKXYyfkoPHZaVvIIy3O0hnfT/RriC2IhcLT5lIXUUP7asa0+CVI+GtGn+P9pKMrG1qtdJDNXhH8tKD2rOYd/okZk7OZcW/d+p9C8/CIt79lUCicR9/6ruCp3/6PiaHieJj1QGtrrXN6jZTSjUJOUG8P6w3eLUXzjkpC5PLQrBuIM25HI0JZgHPvAIMZiPBGi+iP4ZrSjbjFxbTWtlLsG5YqEhnDh1RCtP5Z1LQRKkv9qGuGxyMPtGgfLaSDDJLM1hyTBkmk8D2rW0MdAypIIOkcplgNeHMsGK1mVCUBH5fBJNJ4Nl7yglc8QXef9lPSTEc9/NFiDd8nyt+2k3/vl51wDCp+TBlQTFzZuRTmOOgorGfQX+UDLeVWZNyOKlMoKDvKcTXNvDG9/cRSVbjTrs8m+wzxvP6bbv031216VLeKridDKuJN3e0sfGFA8PykCOIAEdOYWvXy+SyUHRcGQXFGeTkOfjCSZOYuO42KC7EO/Nr/GRFO9Vb2oh2DGEwG1lwyQy+f8ls/FGJx96vp6GqD29lL7ZCF3+4+zTW13l5/Ker9UDBYFSfm0nHlHLg1RrkmIxzvAeTx0aorn94sToKS2VT1XoKoJbnpp0/lQvOnspTK/bRs7NLR0Q5J2Wx/Owp3DXpDRj00zX9O9x493qG9vem6U4MTzWrfUXneA+T5xVx2WmTybGbeXNPBzu3tdO7p1ufyHeO9/D+HxPgyuGEK7pUvZDDPIMfVelmpE6I0WrUCQsFq0kvkY3WU/xvlY8+1XoKCTnBLd95gyeHdvObre00rtky5ucgiVsX1aZnqMFHx85OHbmgDRzJMZm4L8rapKjJyFQ01Sy5Do65cjYOh5kNLx7QeftTP6eIChzmJdFf9CQ/PkYVUTF3Wh5fnLYT6foFPPHz95HDCln5ThIbXiG2pp6TbrmFFWYB55QcvnnDIoZiEvdu79CbV6Ivog9C6S9qMiI3uS3c/ZPTybGbuetP6+lZ0zLqsR3uoTeYjcxaVgbAzo4Aoj9GqMFHZbPKCa8N3mhsnBoXlaYxLUdlDLFhxSsFVJx9ykj/4RpompOzFjgxptSN494wfsFAa5ufyROzKZ+UjcVqor83iM1upqg8k7KSDJZMzWN6jgWzEKE3rE6QG26/mPdfVs9h4jwX8g3f5T97swl2N+jnbc6yM31pKZ9bPonpOQqCQWIw6CIYFpFkhXhcRk5YSYTDRCu9+uIP8N5zA5yXaeXYczIJ90UYd9siNpbfwevv1hEKxOhu9+vnblAMeraQdi1GaEEbzEZmXzydh78cZSBWyLtNFnpCcSadfzXdkbm8WRWmoaqXaJc6+V5+bCkPnF1J+K4fUHbOVEoKbmfz0/uJe8PEvBG+9WOVyjstwzQbcRa7KSn1UGU04Jmdx523n8Sy4naeq1jAP36yWqebPhLTs9tknT0NiSbKtFf18bpgYEDrZygJUBQKyjxcsXQcypt7MJ51Jit29hOqS2cZFcwG/Xpp/bviyTlcecYUTvbeD929lC6/m79KCqurvSSSUHXRH8NrWU4skoEivjzmuWga2FkzcvE3JQkuP+TCrM+oKAkMKKp2Cup1z5zgxu4001XRS6xX+kQcwpHaJ1o+CjcPcuW1z+vKSWOZ/mAoCWRZAaOMHDboEWxCTiAnBTcAEhw+zTN7rJy6uIxsu5mdm1pVp/ABb85BD0NEpKc/DHY3JtOwQHzPgT5qv/Irxp9czSNPVqNEJSKtfv6zsppoRNJr4anbhfQ5CIzqROTe5gHMJoFw9+gqcoLNhNFqHEZJjNacFmX2rm4CRTmodKdPXZtVERlLjoOicZlYrEZCgRj9vaFk38Kift8XJRGI62iKtG0dwjFoWeAp18/nzAUlPPJyJTUr69TascNMeZmHk6bn01eeyW6Pl0pFQRAE8vOdTBuXxbLiHpzNr0NrO/mF+RgmzEGan8+sGW0AFL7+AN/4V5zGA3uJ94dVhJFRRUGNK/VQ4rYREqHKG6K2xUdgMIrdaSYQFgnELRS73LomRqpZCpy4bzsDQ9kUKsXz2Lyvk/x8J1GPlSFfhLhZIKEY9aBCbzQnsxwNVivHZNWRGlWq6MH4OHrCuSiKH7fFiDc2hXfro6zd2KJP9xtzHdidFsgsxH7RLAwnn8/6XzfpfaSELOniT2mBkSgzWOVlfXcQKRBHCkt0DIZxZNcxt/iMNGjo4UwwC5izVRZWjTFYCx401Fi4eZCG5BCdngEIAtn5TiQlgfHiy1nRspS3Xt2RNsgoWE1Ych0AupMSzAIl5R6WFHbS88038bcMMe3NhcyYcD5rrcZkqUmlbb/mR3tU3in/2IRpRoeZvLkFfO2Ghby8ppGd/9n3kTInaGuBIqp8ULlFLi45YypbZnSz6Y1agtXej2xfH7V9ok4hISeOSpgi1TkYrCbyl5QwY34hVXu66dnafsRKSgk5QXwgymvv1+N0Wwm1DX3opk/qfqNdQd781y4qK0robtylUu0qKuX2569doUpvBuMkFFWQZveTKWBATc5wxPxD6vyFHJNZ8cu1eo1+pJk9Vs755jIuWFjKC1tbeO/B7aOWmBRRIVgz+sOplQWMDjOe8kxmzC/kplOmUORspi8ygWe2trB/XxdWm5nJU3KIxWXWvVBJpD2gvxCHu6apVADHzSrkBNMLCJd8jjvWNWNymCgs8/ClEzLIefM2DCYj555xIX+0zWLP3i6CoTgDgSiSYoUBH+K+dgxVnZgzPMSu/yHuz03ixV3tfO/OGnUxjcopzXqZaG+YTeub6fGGiMdlejuGiEUljCYBp9tKp9NCTY6D0nGn4PymzMXmt1j/cBPBECw73Y11+WQMM0+gNXQM+7p9lOa7OHtyDAMKf3VaWDMYhYDKNyTLCZBlvQSy5NSJ9PUEadzTndT2Vu/xgfeauLFtiMzcTpxuK3s9Vrrah2jdo5ZBtDKQ6ItQu7aFCzqygHMYemyASKs/rfQzFkItnjLpHOsO8O+/baXu/GlsXb/uqMqQRSeP59G7ppIV28aZPytmqKIX15RsJs0rpGZjK5H2gC6Fq9/vZIAhiQorK7r4t3c829/aqE5Wp0iwliwtYdGSUrZsbKFrk+rcEQTKCzNwet/m1WQWOHXrFsqWXJ7eC1QS+LZ1HNE6YDQJ5DksZOfYP7yeh7b/1HK1koDk9L63K8jy8j7OL6znnTkn8/M7Vh5ENfJpsU8ckvpBzeyxct018zhvUi9vzJzHn6v7jsrTi74Ie1aolMCHGwr7ICb6IjRq1MLyMDRRe/G0OimQ1itIVf7SqK4BlKiBhKyenxZljoqRNhrIXlDI3Ya/0nfLTn6x4tesfco2ppxm6oBRKvuoJvNoclkYNzWHK4+fwLjHrmfHH/ZTMsnOnS/+gL+5ltHYPkhpvou5xR683jB7X1Wb4gnBACkoq9EoSvR9CgK/+8N6VkyfTnf7RhJyApPLQnG5h9yKv/LM5zYBYLev59uhh7ilxUlrwwC+/jC+oTyOn3YHk74Sx2n20h6ZwJZaH1VNDdQe6MVmM+OcU0CgL0So2a9rDhCM0bunG29lL6YMGxdeP59wVGTT2iZkSaHLaqQhw8b8wkk4c2qwnTKZM86ZBS4nhtwcyJuANzaJvpCIoiRYWJJJZvXvYCjAd069FptlBsV5Kt3yc4/tItKmLmRSMM7OTa1qMCQIXPjt49i9s4Ou3WrN3ZNtZ9KUHLZvbGGwVq3za6WX4Z6Euth2HyWxo9FhxjE+kzt/uJy5+fCHlR3seKeet+/fclTvgMFo4KKLZuD8y210rWtj/ucfYf0BlWvLPAZ02mA0YHKYmHJCOV84exoOs5HntrakDXEZHWa+es+pXF++HsxDfKE6j84UOHIgHIfsEqZMAm8/MHcWHYFoio6EIWVa+tABohSM076uhe80Daql2o+TX02R6d3ewa9XFvPN048ly2YmY3I2MW/ksMf5Sdj/rFMwGA1EYxJhKYt4XD6iQa1U0+BuH/lxCQYdCikkoaEY5VHlJq0FTixZNsKtQ6Omutqwl9rAMxzEQDmWFZZ56Lh/M5veCXJFLHBIKN6hIiRN+6Egz8m07GbeuXs/gQC0tEYwX/c7TntiHV5/BIvZSFmGn+MXlahspqIMVkHXBdaaa2PtS2v0N+3oSOcncloQN1Xrn4tEQH7sIcrKfqKyzcZk+gcjPL++EUEw4HJaiIt19PUECQxGUZQEN147nwsnN9A0dDzfvO99/Ae8CGYBa75TRYj4IhiMBo6ZnEtHIMo6qQFJihMYjNLnC2MyREns207dD9+j/MLJ2L5wFmLxUsxCBJsUwCRksrg0k2mxp/D94V2sWTbs+blcufgblJrXQniIvYsnUdEfxlboYvK8Iqo3thDzRhh/Ujm3nRLnUddEnq3xIodFnG4ruR47sYiURhd+qP5Y6n081H22Fjg58aLpnNH3R5RNLVx48l+o2t1JsG7gqBemPVW9fPGq0ylcUEP95l7kmEy4bYgDMZXPaeRQo0Ew4JmdzwNfcmB79wcweQKTSq9hdcrMjr3EzfXjNxL55aPYrj8Rv++YtMn2ju4A7eLJzL9jIbIvQqj0bKreG1CZb1GzjNKlJTgzrBx4teaQmU9CVp9LTa7241qYte1KwThrn9rP0NBUXC4LkpTsvX0se/1w9j/pFLQb+vwLlWwal0lrQ/9RNcg+LjMYDZg8NgqXFDNxWi4Aeze0EKjpRx5lzsBZlsF118xn3dZWdj9dcRBETcW6D2cZR3p+bfUDFJw/iaXhGvYHlyP5nzrq89Coi01WIzkeO47AbgIpoxpr3whw1cCD2K0X0t4bJGdmN1fNEth44ngqVzeixCQyJmfjdFvxNg+qZZKU7GYk6kgwCyRkIwiyDm+VlQSKN30A76Wbd7CoLpdN65oJBmLE4zLNdf0Mtg8dpKrlGu/hjPE+5N/dx+QFZZxz3rd5Q6ni2JMncM+JB8Bi5+tPl1O9pY0/Pb5TXYi9YQSrCR/QXN/PexOyuX7OEkzW14g2+7FKIvX+2bgtCjHZiKRITDO+DhY7mT84F0NBOVLmRKyxAN7EPBI2I93tFZQtLeGqi2ZxTDHc7o/SuLqRvlY/j24fzxuvV6m04DGZva9UU/F2HfGB6BGx5ApmQS/BQcqA5IjvaEpiAIZpczHOWMgzL9UzWHt0Gtza8Wx7Yi9n7i7H7pxM14ZmdRYiyfg7cpE1mI3YS9y8+otcnjddCcDFd0yg+6yL1c8nJVunHltGoupVBJcF78Qv0rNrlZ4ByGGRmn3d/NNj40tXP4xJiPHYun52bm5GDqr027f+/HQ+t/t7BFe38thd/+bJH606LJrqw0Jztd6KYBb0ezZWRh7tGGLro3swOswfWbnq47D/SacAquft3tRG7/YOHQ3zSZtgNVF8TAl//dZcCmKrCLrm871AEXsbfSiC4aBoz1/Ry+qNzfgHIvrIu45IEGXkMCgpPYUjiWgScoLBHZ1cav8iZZ/PYd9XX/7QD34kJoEn/6Dfy6t3YJ91Kdt3dnB7r4uyogyC/k6dwyjQ4ieeY9epGhJyQi0pMUwYpmU/cV/KJHuSMqG7O4j1quPgF8Na2qIIBU4L0ahItClIX6UqQ5mqj6zZoD/KFT+BCy78E/5gjPdW7CPui9LUMADn5ECgj7KSDOocZrp2d6lfEgSE5AxBn6jw0qtVbB1XzhUrNiC7rGwbDLN7dzuBcJxoVMJiMdI1+1QWFxlwTe5FUqxIcQtBMYt/vFfL1tdriPuiWPOdPPn8fh5XEnTvUnUdhg6okNFUzLroi6RC7g8Z+Wu8YfZCFxOm5eHtDtC1u2vUxUkRFULNflY9vJP1L9mRwjFiXbs+8LMhBeL4tnXgSznG0QIXjX7lmItnkPjzTwEoKwX7ty/n7V9U6mVNwarCiptn/JiB8SI/+OEavd+YUNQ+WrDZz05Tq9qQ90ep2N5BpCOgz7m09wQRinIxWjuwWY98abMWOMmYlkOw0XfIIdXRLOfYUn5z+0lk2eDWP2ymY20LCXn0tUirTnwa1qpD2f+sU9Au8NHFOIc3LdU92pTSYDRgyXVw95ePIXHtqaze5OekXy1ixtRf0DAtFykYJ1jtTXsJ4wNR9j93QI2StWgtyTmvcRKNZIE91DS0Zoqo0LW6ma7VzR/oGiTkBAlBhQ9KYZGWDj9bexZzwplONrwzzK1jnJhPKCJiMgssmV3I5j2dNG1qVe9LVEYKB4n1hPQykpaBaOWbWcsnMHNyLtWN/VSsb1FJ3GxGimfnM2duEZGYREXBbSw7cQVb1qulgNMuz2ZfKK4HAhq2PhX7L9hMycwjgW93N49u60w7v5o3ajlpqwNLlg1FrMSeY6f4hHF0NvmI9Sb1B5IltyFRJjgY5be13qRwz7CYvCYyHw6LzDpvJrUDRexpHqA030JFYxO7t7TpVMmRVj+tzYPD91C71ilR+pGUBjVnYC9xM/XYMsrLMzl+RgGLC7v56zoPr+3oHJN/SIlKxKPSR5ZVH8k2tCxhclkm5ikLuPwRK96r/sJ1/6hk6EC6gFbT/h5uaXmfYNtQGkTUYDTo9CZf+fxizvP+gfdnfo/tLx5QS0TJ9+G5X69j5bTlFEy+hMafrT4ihyeYBeaeP43vXDqHR96vY/UD246KOlyKyfhjEjl2sDvNRzSQ9klXNA5n/7NO4aM2rblrL3FTMDMPSVIYaBgg3DR42IdLcyS2IhfzjK/wdBIdEdzQjmu+me/eciySkuBXd759MIeSKKeVljR64VQxEkhZMEYpMX1cpiGdvN1BNtV5+fYjX4Ky+wGwWsGwYCn9a6KEhmL4g3Gk5ACgHJWHnZeMrkWtOQTBqlIaFxW4WDIhm/EFLgZ6Q/Qkm7ETp+ZyxdJyWvxRNjb089Wnvop48V8IBxXyvraMZm9Ql4I8iEfKKGArcuEsdhOPSGTlO5MKWXH975p+suSPYi10k5Pv4vhl5exxW6na2IocGcbUJ2TVoQmCoDsCWVSQJBlFSWAyCQT8Uf69roEBX4TAYBTX8eMozXfhcFoIW00oMHr0OJpM52HMYDZSdFwZZ501ldmlHpr6VSfdMlTO3j3b02RVR7MjGcj8qEx7LzAKtPcEaFv+XXry4vz2zzvo3NF50PlHOgKEmwdVDrJRkFSe8kzOL1hH9WUvcMruc7g7OZ+kBUxSIM7g7m5dbOmIzCjQ3xtkR8cg/X0hVf41hTzzcBY40MfP/7yR4vJM2nd3f2qpK47G/s8pJE2wmnBPz+H5382led45VNXAGVfn8uyv/pM2FTqWGcxGiidkkdj8hv4758IC2nuDXDjTgKTYR8W7j0TkpPLOj4b5P5Jp4aOxVPSRDiVN4fSXgnF62vxsFWUesp/PzcosErVbMGRksTp4Ls21u+lv9fN0xZaDHIJuSSen7UewmRBsJhobB1hlMDC+OINTT55AMCwymBzY29sToNcXYW9lDw8J53Pt5pNx0k5d6CS2P79Xl2aE4SE7o8MMgsCExSVMnpJDvy/CqYvL+H1df7qgT9JBAUhDUTpqvGxMZoe2XDti0IgiqlPP46fnsmRBCVfMlQhJuWztiPLuhmZaG1SajimzC/jOeVP4z9ZONr2tzlfM+twc5uc1UJq9kPaBMM89tx9/RW/6gjGKMMtYaDLtPhsdZpVVeO4qqH+Vobxv8tDz3fR0DhHrDRFuHTpklGvJtuGalovVbqJve+dRU6IcjemT/kYDcW+YLWua2L+rE6NJda6WXIcqxallwGP0I1ItHpfoNR7P1B8ey/O1UxH9NaM24Y8GRWXJsuHJtuOxmzlhaRmtDQMM7urWj+twJgXiDGxux7e142NtWP837f+cQtK0FzJzYBVVKlEl7z7t5WvX/4Z3j7uEjtVNo0YPOg2HWcBkFjDMn8+yEzfhKnYxeNOfWff9rax5WS11hJsG074zct+j/azNKxy00H7Mpr2oclgk7g3TGxZ5I1RNRW0OJYWXIAgGDhw4QH+rX52cDcYOKuOknQcKCcFAQkjoMF1JVIjEJArcNhZO9pFJlcp4aTJDrJLKnHNQlARXz4vgjFYRsU+maTBMX7fKaquJtZtcFuzlHk48czK5Hjtef4TJZZm0tw/xh9+uI9IxnJ3pGUty0MqSZcNT7ObK86Zzju/PKAvO4t+7y1i/qZWEkmDRvGIummXHs+9+MotLOW/iUmJiGc+0DBLoCdJwoI/Hsuzs0EpFcoKfPbCJ5adPZslkAbfTQtQ7LLE5aiSpwShHQajB8PMy5dwp3Fv4NK03vUnJldN5yAR1b9cfBFnVN+swk7mwEDksEqjuZ+EVs/n2hbPY0enn/j3dY9577fpoinVH03dIhTfrFDIxiWh3ENEfY8HpE5lYlsn2nR3UdQylNdMPOXAqGHB7bDyyYZD6/pup+u5bh6fpPsxxmj1W8uYWcMLSMs4aX8NAbCKrSz0M7e9FOQrmmKNxRP8L9pl1CgajAVtJBiaXhWiSM+dQpkRVCcuvvTWfBx5fwrM3bGfGNFDOupboOr+K3x+JqkjhPTKYjfi8YbYbr2Hhmjl0hedx10O7CTX40mYEtO+Y3BY9stVEyaNdB08nmzw2ll41m8rtHQSrvQg2k87t/rFZSl8DJMRk/2YwLBLoCVKVRLFIYQlpKKqrtqU2TEd1dKKMrCSAODFzhF7HEIJgoKM8k5NKe0js3wmd3epin5/LrMU5lC4qxf7YPQxu7sCSYeVEh4nwFx7jD9Wr0VjQ5LCo6iO0DuKcaubry93k7L6fU6/+Jhe/XoNgNWEvc5KQZGI9Ib2MZXJZyCn3MHt+EefEHuaZxSs4+4b3ueqfD1FR66C1YYA1axupqHUzfdJNWDqNmHoM7NjXzlC7qs/Q7w3zVmVv2qI8WOXl1cZB3rAZVebTEYy1msKaJr1pK3KpJa2uwOjZQrKsecf1C2Hj45T/9UrWur7KS7e8Nub8CagN1DPPmUZXX5AtXUHmz8wn29ZDe4+UljkdtD/BgGtKNlMXlwCw96UDowpgHfS9FGeigQtMbgulcwuZNbuAyooeOlsGCfij9HYODXMmHWFvwmQWaG7xUfVW/REdz6HM5LKw8IrZfOWc6azY3Mwzxgl094foqPUexCzw/5t9Zp2COcvOhTcvZsHEHP65Yi+Nb9YdHp4Wldj9bAVfPO+rfKXjr3hFmS/+9QD+A96DopKRIjtmj5VIKM5rO9rYnlNCfWsdrXu6VPqNkQ+9UcDksZEzNYfcQhfHLCqhotbLpn/uOmhRNTrMzJ2WR3ebH2SF8hl5tNUPqHXTj6EunFa+SpaREGWUJNWvEpMQkzMhCVHWj+GIJslTRv8lf5SwYKBDVNhf5Ob6mUES8Tg47GCxYJg4jbjixmiQMJ66GM/EfOI7W/Bt7mReQQbWHJXnSPKrTinuDVP9XiOdLYN8YdksEAxEZY+ud3HBhTPp9YV599+70uZTxLhMb1+I8GkXcu5NK8m480Jeac6hs6WCoSSdc0+Nl8p1LfowoeSPptXu9XNPZi6KqA4XSn51MdNo1JWYpFOzKKKaOZncFsYtKsY/EKHbG9a1ulPN5DCRPTkbm8kIF97Ig1vKeOEvaw7bMI57w7zzVo2+7137e4jH83j79erDwlAdOXbOO3ki8wts3NruTyOXHM20yNs1LVcdBovJWLJsZBS4+MkXljC57wEqFnyN7/z8PQZ6Q0yamc/lXzuWfz63l6b3mg4btCWUBF0H+ug8DH3FkZrJY+P8EyYwx7GaP3XksndbO9GQSLh1KFm6/exE/kdrn1mnAOC0mfFYTSpPjFE4LLkdqDXCymcquO25Sv13h+LtMVqNlCwt4ZrLZhOTFFa8UMHmvhCx/ogqXCKmiJGncBlZc+ycddZUFpRnku+00tMfVqPXLBtGh1kX/on1hnjiwW1IQ1HOvmkRNx5XyuuV/azwqfXXaFfwQ9eGU/sKkO4YlOTxGhQDiArKiLJXWiN8rCxhxOh/IjmBqoghpGCc/WaB4AUTcLZ34l1RTaQ/QtmvzVjm5GJueZ+2rz9FzB+j7KwJFHzrRERnBT/87kl0DEZ4e3UDTZvURnJ8IMpQ/QBvN5g5d8EXeLeiX+cUMpkMmFO0gS25DqYvKyMUiFFX0cMldybImPhjhh6MIPrW6j0LFUab7F1Y1V6IvcRN3pQcLFYTgcEo/tbBpO5uOijAIBiYcvpEvv65OfzrjSpqN7dhyXVQUJxBR42XSEcAk8tC6fhMAEYr6GiMuVabiYdX11G1O0Tf9tVHpA0gBeL0b1BpIgSzwL7Xa9j7avVhJSkVUcHfNMj+xn6OKc5gyuwCure066yvo5kl18HJN87nG6eP497nauhqHWTGvELmTc1jSugx/Pe9zpw/TkARjZx63jTu9P+aFeM2868fTeapX/ydv3/nrUMGbQlRVjW2P6q6vaLQ3BukKedMGra+qtOzfJiS1GfFPrNOIe4N89iP3+MJs3DIh3ksO1xUpP/bbOSSC2ZwwZbv4HuricDtT/PYb9brVNcGsxHP7DxMDjP925JwQVFGHIrR74/QFbSzan8Xq56rxOSy8MW7TqY8x8mvf7dOzQaiEsEaLwazkf17unjVbWP3/i6mHz+Oe66awCuVEf75g3eOCkY31vmO5Rj0jAFG74UcxhmM/FnT1laSKI/BvT1c+wsT3/7S71l+3IvEHn4F4iIYBAxFkzAIBnZsl2moq8fyUD2lZW9ywtcXYJwzkTNv/gY/cpqp3dpBrDuAwWxk1fomtu6zUbGpkvhAlJ5N7TyyU51DUEQV2jhpYRH3XZNBe7CMP79cwb7Xawgc6BsTPaL1Iqz5Tk46bRJnzyvBYTayo93H8y9UMlDdhxJNd5TatZITYLWbmXPqRJbMKcQ7GMU/ECHWG0L0Rdj6dr0OXR1pgllAjsp0VfTSNmJhPhoJR41na7T7MppFWv289sBWtmwoRFEULLkOpGBcJ7cbuQ2Ty4LTbqbFnyAUiFEyIYsbT5rENPNKcEzB8Y/f8rdt+ciRbTQ3+zCcMQ/YjKnUTfwI3s2Pum4f80Z45u9bec5uPiKE4f9P9pl1CsDHMscABy+gcVFG8cdo3uZlQWkWj6Y0FAWzwLwTxpGTaee1A159ICfuDbNtYysdnQG83QGkoSg5s/L5gvHfsKeVdWd9m7eScosJOYFBUOjY2cmLbWpjd/45UygYeoWr553IYx4rsQ/hFMaarkx1DPrvSKETOcrG90GcR9pmYio3zE/b/fxr7lSuuuZflLhtMAghUea4pyNccv/T9G3pZMM7IXp6FfI3tJPhsZI3biWXnX4hjwfitATjmDOsjBufhd1qolKb8RBlpOTULKgDgf6BCL2RcjoCEUKBmE7/Pdoxa0yuBrPaI6iv62dnlgOrWaCycYDw4MGRt4beatrazm99EYKDUSbOzKO1O0Bj4wBDnQGdflwlxTt49kSrt2vlkoSSwDOvAKfbSu+eblXn91AMtMkav8aVdbQmh0WGOgOMn19IYZmH7jY//ft6R5V5FX0R1r5Tz+4dHURCcfIKXeQ7eknUHsAwYSbN0nEcqK/EIBioWdfCt90n83t5KU9VjGfFX7b816GcCVHW4eH/5xDS7RMT2fkgliboMcZL/F89luRikTE7n+/ecixnut/knq2LeOcfO/TJRYNgwD0zD4vHysCOLr2erUEoU2mU//nEFezLXQjA1ZHfs/S87jSu+tSF1Frk5oe/PJO4rPDbu1epTJMfIJISbCYKjivFnWmj6b2mQzawDxLEYWx8/WgNeT3bSOoP20vcqvhI8lppJRtLlo2bv3MCp00U2NIhsGl/FxceM45ji/bBy/8mXt2P5YSpGGbNJ+6Zxt6+qTy3qZntb6gQxeLZ6vR1246uUZu3WhPUVpJBQpJ1jiFrgRODyYjoi6DEJCy5DiYsLmH69DzKC930+6PUt/g4sLNTF/sRbCb9WZSCcaRAHMEspEFm9X3ajLoGSDpr6+jXceT1Nmfb+ftDlzAps4l7Xk2w5q/b0thz075rNJB9bCnnXTCDTZtajqinlmoafcPJN87nl2c0QaCPJvu13HLf+3i3dR7EG6a9myaHCXuZh/JZ+Xzz8rkssL8NCQXsHnql+by4L8pbb9bgbx1UqT3GQE79n3089qkW2fkgJlhN5C4tZsGyMkxGgdVP7dNhnkdrqYM1wDCbZ/J3RxJZadFg4EAfP79jJb8ryyLWu1990LWXVUmMym2viAqJYHz45TIKzMregU6i3dMAOPVj1c2oomYMRgP3/WI15iw7ebPy6DcLRDoCRxwRats0uSzccN0CCpxWflzRe0incCTR3GiLkzXfiXtKNoN7e1Q9AKuRyadM4MuXziYsyuxv9uFxW2jvCVJf46WzxstTz+xl3YRs+roD9DcMsHNNE1lFbqbO+g7jz8xAUcC3O0pb5xAdTVsJ9IV0RE133cCwQFASrZU236EkkIIqGZp2Te0lbs64ei6l+S627Oqks2WQz102i2tmN2NsXwlWJ53jL2NXgZuWun4GekOACZNbwJ3r4JrPzaHQZWVjTS/FuU4e/sMGtU6tL9ogHeX0sv48Jk0Oizz4ehVTJmazd2t1WqZ2UN/KbOSyz83hynkxBoYKaHyz7rD7S7tvZiOWLBtXHjeBwO3fJNwbZvzvhiget4z+ZCku7VjlBCAjRw2IQzEGekO0+CPM9zexfvk/6UgOld/8/HFM/uLveeLVA9S/3/SxkFL+n304+59yCgajgSsun8MNob+w/oqX+clT53Pmiycd3QQjKVGNy6IPlMlhEed4D8//dibdoRK+9NWXjozvXFaQw4qq+paEyWk8RXDo+m1qndSgJFhRPY2iQpAkeF26loT4wvAxCwZc03P57vdP4vRXvoLgsbL//H+wprqXb5W8jMFs5oH2C3j8rnePaAJb26YUjPO3323AaDMSbh06KML/MKZRMvzyT+dzfHEl1/7OTtuWdgyCgXNPn8z8/C42deRzoLqXvAIXSgLMFpUZdrDex0Bln76gC1YT0e4gPQf6WJdcLDPGeVhwTBmV61r0erk138mUxcVMnZxLXJTZtK6Jgco+nak17fprC7OiMnuueaMGV46DYH8Yk8NMZ1+INxqn4jDPoLk9yJ4D9QQGoxhNAuOXlDDQq0KIFywu4aTyOLnWSgajc2jsDuizK/KIBrwuMTkiIEk7ntEsOYm965n97E5qF4+mja2brPDKy5Vs2OSiaUu7TjOSdv5jPJuaQ1VEhX1dfuZ+9RRc4Qi+osvobKk89DOdbNZKkozFKEBbN91qFVSdgl84l01VPXTWq7TgH3eWMNoz/HHuzzU1G2exm4Hd3R9YJveTtv8pp6CICqKsEH+/io5OeGb569xa9wPu+/5KYj2hw28gxYxWFSroyFcVnqK+KN+45VgGzz6TSVfPwDXxehU9dKQPUMoE8getj77wygGe3XYrCCYueWR3+vE6zNzzo1OZfef5vPBkHwBXd62go+RifPe8RP3GPm7Z5OApj+2IhIv0RUlW9Ih5tEbx0TiG0Xj0zVl2TrK+QuKNjVxwzj28oiToruglGpOoGSjl1fU11K5tocFmxGAyqnxLyQxKR/+QhDxm2fEUu/F3Boj1hjBbTSyclsdGc60eccZ6QzTX9ROPyVisRqIhMe34Up116rnJYRF/RR+BJNuoYDWx0hvh7WRTXApLOnDg2MtnceaiUsKiTF27n9xMG3t6HAzFZrGtspN5U/OYd/ok9q5qSDra5P6Tw1yC1ZTGaqpDi1OCidTrqWtcpJTh9MwA4aCMQRuS69/ZRT+MmT2O5iQMRgN5x5eRX5xBa2Uvq9Y2MeHSbyIYDKxc1U6gxT8mnFXrfclhkXB3kHe2tjL3gp9y+XY3NLdiOPk0/lixjPef26Wj6z6uBfpwlPDa8X6UJpgFll04nVMXlPCb369ncNfYA4KfZvvfcgpRiacf2cnV9/8K7r4UgAsnVfDv+YWHxVGnmtYLyCzLYNKMPASjQF1FDzaTkfylhZguOpPgrb4xI27t5XRNz0UOi+rE7CgkdUfz0CXkBO0bW7nOOpd4TKJrU3MaisU9M48T+//MM0mHANDmuoYnH9/Ked86lbyWl0n0dWPNnzEqfl3Ljqy5dmLeiN7TSB2EG4vyd+R5axFu6uKQtbSE396xnN8/tZvat+qQw+IwnURuOYbjBJwDJiZOy6XnQB//vG89oDbcUyP4g/oWyX0pUQklJlFY6iEzx0HjVlWw/S+dAYJ1A/o2lJiEb2sHvq0do0biIykRUs8tlYdKDouq1oKQXrozWo0013rJOWECiwsHEQyZPPPqAXo7hpDDIhddM4/LVt3KVafO5w9FV/HCHzdhtNkoWlDEzLmFnDCrEJtJoKEvSFXTAHu3tROoG1CH0FIqKakOQYvcNaeiHbvWqE4gpCnd6RK1mjaFMNxwTrPkdTG5LZg8NmI9ISzZNt74Vi+JfSt59tQ7+cvdq7h7T5euixH3RQ+ZiSpJHXUpLLHtqX1c/XIVgnUGCWU60qNxpOD7HzvsM000SjPjoQEShzoea4FTnUNKqskdynz9YVr7Q//TZbH/qUYzDNeof/mn8zmpcDuPVczgP0/uYXBH5xGXkMweK+OWjycel7HZTShygp4alcHUUeJmqKb/kJmHYFYH1q664yS6+0Os+edOnb73SMpGhzo3jWI6NYoSzALOKTnc+cPlnOl+k8SOreyY90u+8+03iHvDZC4s5PM3LKS5c4h3nq0g2jF00KSryW3hhJsW8rsL2rnp0WxqVjViK3IhR2VCjb4jelG1ASVrvhMEgUibX3/4v/anc7nsb9fheeB7nPNTgYEdXXpNf/IpEwj4oww0DKjZ3kDksDDhVAeU+nIbHWaMyUlhOSqnXSfN8QH6i6/RS2vlp8Px64yMMEc6KYPZiLXAyfKr5gCwfWML/gNedTDNaqL8+DKe+bqPkHUav33XwJSyTK6uvJMVV29Rj8cI5982Dsdv7+DF+jn845HtDO3vTdMY1/erOYQkJYc1144z24GiKERDoi7RqauXjRKYGMxGXFOyuekby3jljWo6k+9JKlBjwhkT+c3Xj+Wh9+vZ+HIVf//deZS7a/nWo9E0qdgjLfUINhOWLBsJJaFfb/jvsIOOqiKYnGDXhbgUZZh25DClXpPbwq2/PZvZhRnc/rNVh4z+TW4LG96cgfKX3zPw5X9w4QUvfWio+Edtn7lGM6g3LtoV5Ls3Po8lywb06HrHR2IGo4FzvrmMH3b/At9V93H9T/cRbPSpsocxFR54JDMKiqjw2ouVehRmlBPIMUD54FFQanSXFtEqCUKNPn7y9Vf5qc1EQlyMHH1OX0R8Wzu4f28PRoeZCSeOwzy/kOo3ag9qGmd5bNDXTF5BObVGA/ZMG4C6uB+B0IpBUEWE8qbkqJQDvcMR0RN/3cIZ97/FYzu6iXp34yjPIGtCFm6Pjd7OIYZq+nWaY4PZiGdeAZEOtQx0OM4bbQpYuz6SP3pQGUgDIZx6xhRq673U7egk3DyoCrRPySEn30VjTZ+6AB9i8Gtk9mAtcGJ0mPWmsWAWkAJxVj28U19c9AVZTtC6sY3z/Hlcc1UW9yx7n6dzfsaKlO3LMggeK6vbF/L8a3sJHOjTETip55x2zd0WrPlOlpw8npuWTyYYl1lf18f+Az00VatDcKIvgjJKBGxymLjiC4u4av8dnHzLg3z53nVEutVJba2mP2d+EQV/u4qfX3Qsd5x3Dp+/Vj3iDzLfYzCqFBmzTxxHS20/XWubP7QzSMtQk47viKgxNE6y5PVz5znJyLITCsTobxpEGorq730a7HpENrl1Xxc1LT512vkQJlhNKH/5PS98az+nb74Ae8lthBp8H/zEPyH7n3MKmilRSW8uwtFFIaX5LiKvdZF7YwOyqKiQxKOZZkxGIKIvgjlLZT9VRAU+As6UMRcrUU6budAXxeT/tYUuHpPIL3aruPqUxUaJSqxasR/TNWey5dU9yFGZyGBU5aoZBWo66jEo6qLs6wqojc8UMrNQg49rv/qq/tmcqTmceuok5pZn0TIQ4vkXKvHuV9FH9hI3377teF5aVcf+F6sOOZFtMBrS9BEMMQkZ0uggDGYjzklZrLhnPLZ//QjTTTfxs9IZrPzrVkR/jO6KXrwuber4KAAJZiMli4rxZNvZ/1otYKb8+DIkSaHt/eaDautapjdrUQnXZr9K7Zn3H7RNjweUu37JX365g9493frCPOr+k1Gu0WrEnW3n+hMnkXXLGZSM9zDvZ9/n5bwZvCYpNPpjo84OgHpvWruHEOZNp3FQQkk27RNyQn8+GhsHMJd7YChAab7rAzmDkccdi4jq/MaHnD9IBYUAuqDSETmF5HfNWXYWnzqRa0+cyOy+v0A0xrtZt/LoC/tp29FFwhdRJ/c5ONNSYhI7nlXZDca6xppJwTiWL13HnIfvIPu8iSTe/t+E2f7POgX4YOloQk7w799uQPrOo7xxT7XOIfRBtpeQVWTJf0Naz2A2krO0mCXHj0MQDKx5ruIgOK4Sk2jf2EpvjfegtDWhJAjWDfDCz9eojUqzijYy2oxHtABo5ygORBhKLuKppRtFVIi2D6nMo7kOJs3I48bFcVw1D3DCgTquv+sK7ttwDDmZNo4Zl82+riECg0dAspacKTBnWDEYVVnGuC+KxHBPw5rv5IovLKJ5wZnsr4Qz1t7D1X9bxcoHt6PEYoSbBj9Qc9EgGLBYTZiTKl5Gh5mJ03IJh0Va32tKW0AEqwlbkYvy+UV85+wSYg+spLMjpQFsgMv/tZgHp/6CX127SQUxHMmCKajlo5x8J9P7/pLsKfVxWfafiZz5AL0dQ4eEEcthkTX/3MmlS5Yy2PYeUjCuM5dq6LeqN2p54I6fUJ7pYt1z+4/4+oxmCVl9zva3+T2dqIoAAEBkSURBVFWH9yGyBK1c6ZyYxZzjyvF5w7RV9xGo7j8iyhptG/YcO3eeZ6f/lGU8s0mr9T/N785z85trH2LnqzVqpgXDaC55OBM9EuAGqIHXiV+KsODOpwgFYkTbK472lD8V9j/tFD6oRVr9PHz7Wx/8gZUV5JgaOWhRlRKTPtSEbyoaJrVGrpk138kTP5lL5hPfQ8i2Yb/uTl7506aDIk3RH9Mj79EWHT3DEOUkysegL65jTcemDs7p3EWjNaWTcxtyWCTgj+I2+4m9vp0X76qmqHALd2y7FQqngBjjO/824N/VdUTwWaPViKfYjcttRVES9HYMEWnzq5F/VMJgNOAbijLlhhkEH6wi909f4tfv1qT1VT7IvVZiEvWrGkAQVJlMX4TVD24frkWn9HyMNiPmDCtmq5EtHTInfPMBjru9m7CUzbvNTp58ai9/fauP2KPvplNhJLMLs8eapss8fBBqeSoSEolMOpcJ4/9FyVQnlq/cyO6VfQQ7A4cuhyUbxF2b2vS6upJsqieUhP73Z+5bh9FhPmTmcqQmh8WPpNFqMBvJW1jM1z6/iLM9K2kwXsrvX6pgd4NvTKaCke9RQpSJ9Edo9hfhGPGsrX0jwJ+eque8ikx8FSIg6SW4o6EQSbVIq59Nf9v+gb//abD/L50CfPCml/4yo+iU0RoE8Gj6GlpKnBBl5JiMQVCwFrlVFtKByEE1ZrPHSq7vTWr/sQd3sYvjH8znDY9NbXCP4OE/4pd6DCGfkceqQSgVURnTIcDwSygF47Q2DFDlW8704yYD1XR1g7JtJ8oli3ihfgLRrvePeBjOYDbi9tgoKMnA5TDjdFtoTDqyeJIGYsOaRi78zn+Y+51GvvuSzLZXDs8EeiT71rDm2jmPWuoyqqWtuC9Ka1Ufj3vDPGMxEotK+Dtb1cb/GJh8g2Bg2nlTueisqTz57D7aVzUO718r/cUkfN4QT+4ez00N/yIo5bN9oIDSfC/bQSfsG810XYMUGOzIxqrJbcE5MYtIR+BTRRtttBqZNq+Q08obkB57g7Ibp+HKsAIHB1QjLaEkIBmkiP4Yj7xTw5/fuIMd+b9M/1xPC57sJfjNAgkx2bcYQ9fiaOx/1SHAZ9ApeOYVsOj0STTXeml+t/Fj6f7r0WeSxgIOftHGMs0hZMzMZe4J42iq8eKt7MXoMPPig8toGMzkzntX40/yHmkmh0U6M65gyn2VUJjPO31BzBlWFcnzAWQdx/rsyAhHq9fbc+z4a/qJ9R76emqUHf6KXu7++2YuueB2rmksRX5/O8LSRfRGp7Jmc4O+bRi9j6Nf4+RC6s60MX18FgtKM/HPKuSdPCdVe7vp26cCDQZ2d/OVr7ykl5gSckJHcqUS9x0tEmaszCn17wlRRpYVIh0BIh0B/KiwYV3rewwqCgCMApecPZWLc99DvOwUfv9+c1rGqdFnBFr8PL9iH6vfd2KxdpNfHCIcEofZXMfqSyQpRXJm5WN3mvH7IkR7Q8R9UYiqfFAzzpvK9efN4PcPbcW7s4uS0yaQV+jmwJqmT6xRqr0nNouRuOLEccwstvVMof7AduSYjNljZd4lMzGaBXa/VJWGFtSzhSTLr+SPsm9VA1e0lfGo+Dw9p16LFJWY9J0lrLV9Cf/Alk/kHD+t9plyCu6Zebzu/DsvX9bMPbeWcdG82xjc0fmxeO2x8O5HajFvhKo9XYTahnQRlm1dTvY39xDzHtzQinvDfOXXW5g080bibTItdftRYhImt9qA0xAUI53UhzGtdDNtaSk5eQ42JIfGDmVanVr0x2hf18Lf9/fy9rLFLF1yMaZOgc693bQ3DRxxFK/BcwXBQL7HzoK8XeDvYtaZJ7N6ah4vWIz0t/oRzAJZRW7KJ2VTUuDGbBIYGIrS0e6ns2WQcH+EeH9YhXAmIZmpzK+CzXREdNSg9g8suY40JJQiKhiSvZqp50/lq1fMZTAq8fhz+2hb1zJm3T8hyvzx5+/z7Lwiug6sVx1CCqZeQ1wlRJlwVNJV5JpQMwi9KTwaHFXjeCpysejYMiYUZxAIieRk2njlzWoa31Vne9rqB3jijSoGKvuwlWTw/O1RkEN81z2NtX/Z+l+Peg1Gg8o2YDOyf1cn91FMbubVvP3UJgarVG0TW0k2t1w0C8Fg4JbNbQdByPVjVlSAhkEwMG9hMQ5jFx1Pr+PhFysYqo0Q2LiWmDeSdh3/f7fPlFMom53P/vub9Z/j3vDH/kB/kOZ0QpaIdgwR7RiGuMlhkZ/c/HJaZJlqiqjgq/KytztE3qQsZi1SVbG62/y0VfQS6w2l4dVHIoqOxkmkZgsGo4G+7gA+b+iIG27aecphESUqUftWHY3rW9IoRaRg/LAvoB6Fh0UCg1GURAK6axBfWkVu0TtcefyJFFx7MW2+MJNyXRzneR/pqYfpe6Iek8NM7pXTMdxwOau7l7G1ppdtm1sZqB9A9MeQw6RNEB/x4KPRgCXbxrxzp9Dd5qd7V5fOVmrOsnPCjfP5RdvPqD5jP8u+vZAdc++mdU3zIc8x1OCjrnkQYJgkUZui1tBlslqqTOvtaFnQKA4B1HkB53gPM5aWcvnScZS5W3DRSuy+v3LlD2/nxG1WYj0hBnd04tvWoR/PAzsX0t0fYufKKp2w8L9lWo8lc14BJpNAf20/a+uT8y2+iI48CjX4+Pav1EG4QE3/qNtKzRgQBGZNyCax6q8sOcXDT5t8KvxcTC8B/599xpxC654ulu69l8UrX2fDsX8ict2zn/QhjWmjTRwf1GQcxQxGA7mFbpbPLybTZqaizM/KQIy+YByU5MM9gvoA0rHvR/LwayUSOSrjresnISfUReoonKCWNSQU1Tnog2Wk80MdzhRRIeCP4h2KgjWOf0MH4b4wBZVelt9RTHfOYgrtu1BWvMS+3+6iJsn9djrV5M6uYFz+cuoz7VhtSanIkfQOh2iej2ZyVCYSiiMIw9syCAack7I4e3EZ0ppBsse7MJ25jN3/ak9zsIfqxwhmAbPHiq0kQwUxaMIvytFnpQZBjbbHz8rn4hMnMiPyOIkeH2TmYJ6cxWC8jITcpl9fzURfhKd/twFLjoOCabnYFxZT807DUQUEH9YEs4DdaUFOTkdrwU5qc18Oiwzu6Dzo+Eea9vlYb4g33m9g+Y3fZk2Ti1hvrZ4ZjiUQ9b/cLP4w9plyCsHaAY651IzBeBLyX1b8z9zQQ/K0pCzmGsopEoqjJCDLZqY420FWrgOfw6RSdWv15REUD6Nt84gavUne+bEymCMxzTkgKmnIkCP6rjYb0T5EdbMPphYzUDvAzp0KrKrhEuUBCu/+LmE5F8fJxzP3e3Gm7unBXOrGeu1pNGXezDNbmqmp6qOnbkBH+Ojomw+Q6Un+KG31A5xw+iQioTg9PSEMZiNKVOLl9Y14fvgSSiLBi/VeoB5Ltk2n5z7kuRsFCuYVcvZZU9hX3ceOZyvTBtsSoqxPOVtyHZQvKsY/EMZXpep0pEFkbSbs5R6+dMFMlg48QM31T5A3K5esu87j9cW/48F7tqdJiqaen+iPceE3juH7pS/R84MXMK14kQsvX/WhdZGP1KSwRO+ebrWfkizPjXbNjnSWIiEnEH0R9j13gAvXtaBEJbWnMkaGBcMN+k+aov+TsM+UUwD+5zhHjnTGIaGotfX4QJTmXZ086o+Sk+8kHpPpbB1M04JOXfQ1vpyRU5sjP3eo/SY+4BzHqNv7IOU2UWUxrdnbTfuZZ5I58bewcwCAl35Sy1WXbaCl6Ns8t9dEvPA4lDMTBINxup/y09/6FvH+sE6L8UGdQappiJZoTEKShiGMiqgw0BuiLxxnbr6RhROy2VvkwtcwkLzPRoRk9DkaGZxgFlhyTBmfX9DBzuKZ7H27Pu14E6i06Tlz81lwTBnfOt1N9YCHB57eTcPKBv0+ab2E8dNzOSZrPYGfrWLX7gSnjItjyClk9XttBOoGxh7WlBXsVhPiyu28/7Kfyx68DffML+Lb2vGxL5BaefVwk+4fZLtyWCTS6h/z75oJNhPWfCcTjyujt3MoTQfl/wf7zDmF/yU7nEMY2RdQa58i0S6ZLl+UnuRQlV4XTUaiGi0EQN7CYsZNzWHnCweGqXwPUVoaqS/xaTBN/2CwyceKHd1852vL4Lk39b/3/vhVZjw+i96+Uva9XY84EBlG5HxIPqqxLFjjZVWjL412QRqK0lXXz5MvV2K1m/B2BRmo7Vdr4aKCYBZwTckmuySDrr09ah8oBR2XkBMEwnGiciYhUUGwmjC5LWqGmCy/TT51AvfetIhcWy3d4XzWVrbQ1+pPv1dGdeCtoMgN0RYsEzyceM4QBT+7kL2Gy6nas/aQ1DCKqPDcX7eSc9efuWbD/YSWfp741w98ZNfuSOzjyvKPZLtmj5VTrp3LT2e9g1h+Imd/I0qw2vv/Tcbwf07hU2qHop7QYJ9pyl0pWYJgM2HJcWAwGrj0kpmcMCGHL61pHh5MMh7cc9DKEmaPFQRBbwankbR9QjXWhDyMN9+3vxvDN87H7X6TgArEoWrTIPm7NjJ1wteoSM5TfJy0zNoxJeRhVbyEqOppSIE4jUmEUBo3EsP3KLfQzaBXzV7ElGg9oSSorexl1fTZVDb16M1rbQjP6DBTXO4hy9qCyRDnvbpeVr9eTajZr0f9WjAgmAUUJUHcPRnLeUsoOXkmXRNv4aW1rSptdQot+WgW7Rji7794n83nX87Alh5V2e9TEiR83GZ0mFk6o4DIA29hv7CdzNJzCNYNHPEU9f9r77zj2yrv/f8+S5Ilyzu24yTOJAkhIQkJBAijhQKFQCl0MErHr1AuXbelvbeltLe3u70dFNpCaUtpS1mljLJCgBBoEggBspezE8eOlzxkbZ31++PoHEveTuzEkPN+vXgRD0lHkvV8n+c7Pp93O25QOE70dUroNRhky/6S28Pf/TaCJOAp9XPxx2dTXOCjON9LR1LD1PSufH52zSGDqIj4xuZz6gemUlDgpWZLE4fX1ueIz2Vf97EODs5Q3MYG7tuwiBv/eRFrb3mZ/Qcg1Aqp5Tu46CuVvDy+wJKQUIc/gPVlUmPXTATDxMgcxuyctOSTugb/Ml0z222rTsNwfJjt59iwoYE/x9Kk0zp5pXkUlwVoOmCp2BopjQ1vHuK2aAWphM7uNW9afg29pIFMw6ShrpOl+05icvlXaPCneOKhHezLeDsPVB8ydZNEXYS1f1qX8/3sAbiR/hsQJAH/pCLyJxTQsSNEqinmCO7JhT5LomYE5pD0uMqb2xtZ8qlzEGYuIPJ0/5pH7zVO6KDgKfPjLQ+Qbo0fk/bVgdJFolfGP6kItT3R1e2RtXg7rl3d9OJz7le0dvzVlUGmlQX4x8p9bH273rm/nMGr3oqMKZ1kUkPXBufeZt/umKAbpJpjPPtMDYu/8nMWPfdrym9+hHTM6uOfVLCLCVNL6djV6swNDMe12VPdnjK/I9vtFKy7zavYkiB2QPCWWyqrdsHYU+pH8UpED3VaUs6SmHOd6bYk7TtCKIVeZlwwhZlTSnktpdHYmkBrS9KxvpG31zcOKOCox1Xq9rbx5NKdSLJIW3OM9r1tVmptkIJy9nOysX2bPaV+S/YjnBrRXLsgCnziy2dx87wdPFd7KT/64jP4JxWx4icJzC1v8uX51/HOQ5v7FVQ8EtS2BP9+cBO3XHQx4RcTRGsOHPV0/LuJEzYoSH6FJV88g+vPnMTfVu/jhV+v6fMP3DY4sdM2Q2UwxWRBFCicW8Evvvk+lm0+zJM/W9XjJNBnMBDF3LSBarD67TpqJxSSTGiO1j+ikdMBk+1EZqjWgrtl6S5nKtj2PB7K8xvsYmP7Imhxrd/XNMcjAaszpa2mhTuf3Mw1F3+B9z/oR1/+FlJ5AEOMMa6qlB0FPmcRFsSe095DCRR23/y0S6bxzU+ehiyK3P38djY8tYN0tlJrN/8HySc5MuOTppcRbouTTGjMnl1B0O/hpZd3E6oJWdeZ9drZcxmeMj+nz6nktHFFbNjSQCMMvkiuG05R9UBm2FCLpJ0huCPJjQuS9dz8k4o4/fxJzjT5SKbpDNXg+edqmDRmIbvrO4BMB1awDMrLSOw4OsG9/h432RBl4z+2DU09+T3CCRsUAHTDJKkZRGP9i4ApJXn4JxWRao6RqA3n9J07UgZ9/NFki8kN5MlrpDQaoilawz1b/3oNCFnBwLFrVCRkv4ykiJQW5VFalEeoMUJTOAVxFSNLJ6e3wOBo/fQzFNUfg0kv2QVXT6HXMjTqxy7SLraKioie1B0fgH3bW3gu6GXWFZ+i8vIAaFaB1u9TkP0yasbjAqQcDwxrAGwImvyKhKfMz5WXzWBO4q8QKGZC1els7Jayy/H8zsyLSHkK1VNLuHjBeBrCCbbtbaW1I0FLe4KIvWPvflrLfC0qIsUBL35Fwsi61sFcsz1hrUXTCJmNjiPaeLToBoZhIsnioDY7oiI6NawjCUYNq2v58f52pzU5diDMp+6ppHLCEna8sHF4nlMv2N1KJyInbFAwUhrLfv82yx/cZFlC9rEwiT6ZRdfM5suXnsyT6+v4589WosdV5HwP486pRpZFDr1Z53S8ZOMs2JlUgpTfJf+sRdI9PHk7t4f44deX5iwW2d68zn1mgoFjd5n1tX2qkWWRoF+hME+htDyf1tqwk1KB3AJ1jndx1iBPfwxUCO/v9CD6ZKpPKSeVVOnc2drDRMXIzDMIioR/UhFnXT6d6soCdh1oY93zu0g2RIntbWdjXOUOReLDZ15DdbFEexg0vQFPvgc16HFaCysmFJIXUEjEVBp2t1rpwl7SP70hKiJSnkI6rZOYeg6N8Zm8+foqR5rEfn8LZ4/hYzfMp6zQxwuv7WXP24eRgx4WnTqWDwgPQmWQdRUf5cd/WkuoJmRpVnVzW8t5DXWTw21xDNOkLTOtPmgBwUzhO9t052hrANZtLZe+tdE0WjQ9KGN6OeihdF4lsiLRtK6hV6vYbLpvKoyklqO/ZOoa2x/bxrHthTqxOGGDgqlbOumDmdQsKvThlyN4PVYaQynO44xrZ3PnBRtIlc7nittihCPpXrsTHDtAr4y/ugCfTyHaEiOhR9CipqPfDoBuWVXaJwrHOarQckizFzHbXlBQpK6gIUs5J5f9NSFCjVEUj0SoMdK10IoCpijmPG73wND9+vtyBetuKG/36ttpECewdetaMlSD3a/udzqcBFEgcFIpZ10+HcMwWfPUDhK1YSSvxNwLJvOTha+TfuQllCsW8W3fZbx2/wa0aJpkfSfrlu8l0pFk/PgCCvO9NIWsdInolZHzRU5eUMWNF8/glNItyFqM5Q3n88zq/WxevpdEXWTAwGCoBqnGCH/541s84FdIh3YTr+10dqiCJOAp9nHVtXO5ecJLoHjZP/0s9rxtTduOzfeSuPsFtPYkC34eJFhYSVNczZkbsd37oCtFpCdUNmxpRFJEOg51Dilt2b3OMVzYg23Z0uwD3b+nzM8fbjuTqvaH2fnlz/DZG5/o1erW7rTyjc23BjQH4YfsMjKcsEFh0OgGa1cdIK3qbMn423rLvZw6Ywzmrho850x3crXdyT7y24bmSQavQ2Tns/MnFaKrBolDYUzRdHbRoiJ2SSNn/m0v1Om0RmtzFAAtrjqdLoIkIBiCY/be/Vp7vY5+AkZ2ikcp8GKkNGcXmS3Ulh0YTFV3JnBN3Rqwm7JgLD85fxvmoT089Z2b+eXXl4IoMn1SCcl7n+VfP97D+SsPcfHdN7Pq4c1oYQMtbg057d3eTLg9TlFpgEQsjaZl2i0V8OUpTCxoRtqxAn1TDR/4uEzyzPnsr2kZ3JRxRjfHUA2Se9ut55XtC51pAZZlEUonkBAq2LUnZAU7SeBgW5zFp49Fre0ETx5id89nUcA3voCT3zeJU2aW89TfNlj2qEmdxrowRmb+4UhSLyORB3em0weJIEuMrf0971zxV6YufoS5H7qDt+9f3/P06JWZdF41n7p6DrWhGA/f8yaxve0nVC5/tOAGhQEwVIOWN+t5ZUOjc9zXommWv7qX4OX/xXO/201kZ2v/+iuqjhY1iR/osIqmhuXF0CtZpwR7wamaWEQilqa+Oebs+O20hqiI1lyCR0LOnBxEUcAwTEs7RtOdYSbQsN5yDQPDCQzZ6Z6+5hh6pIsy12kHhPHzK/nK9fOZXVbH241V/OSu14nuDFnPM7P7tQNDj4VFNwgW+oj/8H5W/OkgH/7zHh5cdAPNGxsJhROIZXkAqAmN0jzFKTybqk66PYlptJNqjtFS5kdURGfh1hMqu7c28dqcSpbMvAhZFEHyUOCVKS4L0GF3BfWTl5YLfZx86TSuu3Qm9z60gfrVtejx3IVKi6R5+l/bWLuukLbmFkuiITNH8sLyPcz71G+ZVHCADaHxxCLrcp67oEj81/cu5OKHP8tTn9vFq43f4LyvB9AiaToOWn8vziT2u3CBVNsTcLiR3Xth995m7vlTiLMe8+QYIAF4Snz84pbTKP3VJ/AuGMe+D32BV+95+4hdEV2OHDcoDAIjmdsho7Yl2LtsL7/K+DUMRpALQ8/4HnQ7EmeGxvqS7TWSGge3NTvCXdkBQfIrePNk8gIe8gIePF4JxSMjSgJqRoIhEUuTiKnEY2kMRczqKMoKDKKZU8Poc8AtG90AUXIMXsZPLuGMmu/x1KVLWXB2Hrf/7VW+/4MVpJpjOYqkvQ3AGarBumd2kvzLfSz54C8QFp6NvDfTRbV8L3tvf4BrP/4gVEzltqf3dTOs0R0HNiOlIfkVy3daEtCiaVo2N3F3x1qenFjEybOuJrVfp6lxFw0HOwaVpxckgVRCY19zlHBTtMd7bRqWFlLorcO0rmvoeh8lEdMwObShgV96NjJ5agkd4X20N0S6nO4yXgeRhIqZ+fsy31qLp/gytHCSmYsn8pELp/GzX66kc3vv6cmj4VgMI6ZDcZ6d+B0+/M2dPP3z/ZCK4Snz9xgwNFSDUFykcloRVFWSrNGcGQ/75yM9kOhiIZimOahXecHie0f6Wt7T9NapIYgCFedWc/Z5k1nxXA3hrV3mLNAlV2EvcnYNQfIryPkeAgVe8gIKhcV+ikvzCPo9BAMeZEkkkdKIJ1Xaw0naW+OE2xIkYmnS0TRa3NpFZ8tjOGqRdBuO03sugtndVKKS8RA+tZxnv6+wZ/F/Ujq9hI7fvsyX/u9VOvd1dEke99MSKkgCnjI/+SeV4A94aNnchBpOOZ1KVdNKSSVUGrY2k6iP5ARpu6Yh+RV84wqYsmAsmmpw4O16R0NHVEQkv+IshEZKG5QWkv36Sz7J8WIYzPtrv0aSX8FbESCvMt9KAdZHSIfiSH6FhR8/hd98rJlHds9j064WPnfBSdy9rIY1f9uIHPSw8tFq2PgK17x4HgeW7RlWmQXJr1B1bjXJhErrmroRlXDwlPk57aOz+PE1haw6VMzd971F9EDYavDILPSiT6ZofiXvv+QkWjsSrH9lH5JfYfzUEnTN4NDWZuIHOtzAcJSse/2WAX/HPSkcI7IlCLIpqwwyY2IxbxR46V2qK7ebR1QychReibyAQiDopbg0j/HlQYoLvFQEfXgkgbiqE05p1DVl6gqZD72RaVc0NRFdN61TQqbwbC+Y2UJ5BvQdGDLOVqDRsaed25+dzQ9evw8Bg0fWNpJOaF1WkVk2h73tUO3Cf3s4RdieAFZ1TFUguruNfY1RS1+om/SGfVuwdpOyX2bmjDEA1O8KkWyIWr3/GdvTHPSBW1Pt1sSBip45KSFJcF4jPWUF3vKqAmKRFLF97c77eda8KlI//z7Xfe0mnl1WwKcfesJyUktqeMr8xLUSAvPOp+V3oWGXmJD8CkuWzCCdNnhwa/OIKqBq4SQbntrB12JTGVORYExlEDWatlJLGUxVp3NrM0szEiFKoZcPLJnBRxdOIBRPc6+8lZ2ZSWw3KIwsblA4jpiGyc6X9rL/nXprhL9b73t37I4jya+QF/AQLPRRXOpnyvhC5lQVMqHApMq/CWKt4A0QYzw1RdWsy1MQJZH2UAxZFomIAvYSoBsGIiJg1SbkfI+lf4Q1Xau2JxzLR7q1OILlVW3oBulQnNfu38BFzwWQ/TJ6qilnJziYNldbT8hIdvtepgUy+3u93jZTY9h/sAMxkz6y/QhM3Txm2jVOW6hhdZd5S/P4xvXzaYmn+e72FtQ2axr4L39Zx5U/+zGrmybQUr/KOdV4yvxcfMNcAvoefr3mZGIH9g77QqhF06x4bR+KRx7yKeFI5M/VtgS7Xt1P+5wKfHmyUzNzfkc3rZNY0koBTjunmm+esZnET7/ClLMmUH/Rj9i3ts76OzhBNIiOF25QOM5o4SRaONmVirG1Zbp/4EQRQZaQvBI+n4I/ExTGFPuZMibIKWWHye98B+PZ5URXHLSMSk4fy4KPfQxx4oWkVR2PIhIIegkUeKnTjC4bScUySS+eXMwFF0zlylMr8IgxXq8zefzZ7dRtaLSuM645hWkb59+ZYrq9o3aKysOwwx3K4pNsiLL5uZ0IkmDNEhynnWV2YIjta+c3T23ByNQfwNoZt79VzwWXNwNvO9ITgiRwxrWzuV36PdvPWMZ5L7/DIyNgEWkkNXY/vdO51oHI3qTYdafBTrJnS3i0bGmyiueZtty+UomFJXnQVk/iUARlYieeWeIJo1J6vHGDwijCnkkQFdFxnEIUnXkFySch+xUnbVQQ9FJc4GVCgY/8yHrMla/y1rfeZP8B+x7r+WhcZfZ/VFEfmQJAzO/B55Npa44RiatOEJLzPUw6qZRr5vsoW/E19MNhrv7ohwidt5jHG6IkVN3KwffRNCUoEp4SnyOPkaPg2ovG0khg1wrSId153NGQatDiGpuf3OHMcWSn0rr7QguiwOzpZRjbWymfXcYfNlk2mSMhRNjXfdmWoLYHdPa1ObMpdM0WSD5pwJkP+71JNcWcJobeNgz2RmXv9mbeOP8znH3vRMgLsvJfhy1xxhNIg+h44QaF0YQo4in2kVfkI9GRdCSOoUtKweOxuo28eTJeRSLPK+NXVAiFSG8LZQUEi/Dqeso+WUuRbzp+n0wsoZJO6xi9dAAlYiodqSLKqiqRRBH8BaQH+SH0lPmZc8k09mxtIrK9BS3a96TuSDLUPvqRRhAFJK9E/swyissDhA50WAXTrEUxJ1UoiWzf04p0w42UXaex4j93OPfTV/fWcOIp83PDbedRXZ7P06/sZsuTO9DjqhMQJK9kyY5kmh+q543Fmyez7fndA57Ksjvxcr7uhqEadB4M8+dntrFx7jwM02TD6q09a0IuI4IbFEYThkFwTIC5C8chigIrn99JKiNoJsgS/qCXkvIAFVVBfF4ZjyJZPsEYmOk0envPYqGWUCERIeiRUWSRcDRFeyhOOq11zQwYJqaeZs+mBn5pGCw67UaKpnrZvbqDtWv2kmyM5thCdkcQranes06rIhFLs2tfO0RzlStH00J9LHAaA3wyJ10yjb998A3ST76B8bvvc8WtB4jUtPaQObHz7Btf3c+nGsfQ0pggUR9B8ivODhrdyGkEGM7XNTC1mIfuWcKbJQsYPwX+tPFXnPuK1zotSJbr28KPn8JvLtyAuWMbwlkX8s+D03l1Te2gH2Og67XbjBP1EXa8sIedy/c5Ok4jIZPt0hM3KIwWMpo/8ViaQJ7CeTPLOVTbwZ63D6NF04iKSFGZn4mTi5k6vpBwNI2qGaRVnUjaQ1XZeHxnVgEHc+625H3VUDCGZLtOStWJx1USsTR6Vn7W0skxScRVtjfH2fm69SE3VMPpvMmeTu6OnTe//7dvkm6N99DEGezC5RTSfV0DW+/mPLK9yAeCXmjrQA8lUIR0Tq1F8isoxXlgWBPvgiJRNaOMSy6YyqbdIdZnpsO73geBiRdOZskHp/PiK3vY/fTOYQkMgiQwdnY5481laBpMu3Acb7SdS7rtcSfoz7tyJv+35ds8csN+ABRlKWe2beAP6+r73TQMFbvhQO3FRMpl5BEH/hWXkSSnaKubpJpj7NnbSkM0RV7Ag+yXnYG1QNBL1Zh8JpYECPoVNN0gltBoTajohdUI807hshsrKSyEidVw0XVlKGfPJC5PJJzSSKZ00indkoGwu3KMrtOCoRro0ZSjCaW2Jbp68wcodupxldi+dtS2RI+872DVNL0VAcrOqKL63InkjQ86cwX94ehADUaeXBIG7YktSIKVJvHJg75Nd+zXtOb1gzyQ90V23/YkX/m7QMJ2ZpNEgjNK+dgXF3Hhp+fjG1eAUujl0g9M4xMnrefLF09jwswxeMr8yEGPI2fykStn8emKpfzwpkWWKmsvz/FIrrnlQAeP1C7m2sbbeOubT/A/P1ph1bUkkbxxQT5wZjWHlndtOk47XeGFHSFnE9CfSOKR0Ov0u8uI454URhGmYZJqilGz8iCxSJp0ZuLWzud6vBIBn0yeLJJSDSKxNGlVZ79foTRvPuMnFVH4w0Iu/fRukGWoLIdJC9nfNoW6tjZCHQlSSRU1I8bWQzjNyLWOdAJWH1LfPa5f1btaDTMFSfv7zmP0giAJyIU+Fnz4ZD563hQ0w+QX9745oFihqIgEphaDKJKs7+xXtVP0yRTMKiOvyEfHrlYSdZE+f1eQBPJnlPGbn17CcxvqWXrfO/3+fm/YnURGSiN2IMzvb3vJ+b7jpe2TmTKngk+fodOZnsT2zY10hOIk0hq6p5gJkX9y1SWX8fCTWwmpmcntlMmzy3Yx65PXs35/a841K4Veik+tINWZIlLTOiRBOVM3iWxv4c6vLuUuSUCPP5YzW6N2pnjh3/t4/xvPcO3aPyKccxn3vjWFt9fVUTS5mFDmRDNcxkYuxw83KBwjBrVz0w0MVSAdinPwrXpkv+wY0JuqTrgtwd76MJG4Sm1jJx3tSeRM95AoCjQUVDGt+HqCixoASOkF1Lf4qWnppK45Slt7glhninRac+wge51k7qZLNOBzUyyHMaXQ6wjdKYVe5HzLdD4dipNuTwL9FyIbD4VZtr6OhvpOOnaELDmLPn5f9MlUnD2ev3x7Ns9sN3ngt2sGlHKumlbK/PlVvJ6nUNsU6zc1JftlqgsamDOllJfyPUdU4O36fWt4rjtGUmPbsj3c2BxD1w7QcbADT5mfPbUdrB07m4UVXhoPJEjE1Eznl7Xg7npuFzct3Z1j+iSIAsFZY7jh+nls2RPi1b3tDLUsa6hGjxkAO8cfr+1kU8N2lizzIPoWIP01RMF4lSuvPJmm1jgv1nZY71cv92sLO8r5lubRcDuluQwvrszFMNK9lxuGoIiaJR2R7Ytgp0fkfA/5VUEKS/zkBRRSCY10SkNWJGteoTxAYb6X8pI8Cv0eAFK6QWtHksbWGM3NMaLhJOG2BPFIyml5NVJaD6mL3k4JfT0XpTiPM6+fwx3v30i6dA7/cW8KXTP4+OUnM6HAx9bGTh57fCst6w/3KRPheEH4ZGcKuL9OFkESCEwt5g93XE71T64i8oMHuO7rb9C5tbnfhVsOevCU+dEi6QF1/UVFxDs2aLXYho9MpbQ/csyRMu+z5FfwFPvwV+ZTWJKH16fQfLiT2OEIWiTtDBH2dvISJAFveYDA1GJSzTHi+zuG9Zq7X6/kV/BXF3D2JSfRGUmx7pmducOKWXhKfFSdNYFbPjGf5evrWHn/+n4lQ1xGDlfm4hiR44qWlTYBIEs/aLABws5FiwCGJXBtqAbJzhSGYRKLyE5LqaTozmPHEyqxpErAZ+WZNd0gEk/T0ZEkGk4Sj6WtU0JSw9S6NH+O9LgviAJVi8Zxx5X1rD7pZ5z9izOZPv12ZkwsZkn6T7AvwskLr+b1ycWEtjQ5r1VvEhdWIFKdrwdC9Mr4FVBOLuWdBol068C+GLYl5WAew1ANkvWdIzpTYQ+3oeqAhJHUUMMpYoZJvNl6PrYUuRMk+zm5pUNxZ2BvpBZc+3qNlECqOcaGtYdIp/X+C82iSHGZnwWVncTnjGVtxrc6FUq4HUWjEDcoHCU57mpeawelFHod0xQ9oToqnraxSr/BIaOwCdlBxPrQpbEGoZJKlvOaIpFKqCQTKh6vRHvAgyyLiKKIYRikU7qjlJpOa6jRdO7pwDBz0khD0spXJC54/1TMVb8inQbxnEWMacrj6imb2H323wmU+6m6uwKP99xB3b/9s+6ptt6CiNqe4NfP72TuaT/nz99dTqopNqhrH8rzOxYzFdmBQc8U/rvXAgbruDaSUh7Z742dtkrrJq0bGy19qH5Od1o4Sc2rB/jV2CAdHSEuvvZULp8/ju/es4ZDL+4dket1OXLcoDAM2AHBU+ZnzMwy5i8cx6SxBRQHPOw53Mk76+pp2NdG/FBnrzacOUhdDWHZHzBDNSyP5SwHNVERLQMYn4Sa0pEUkVhnGjHLgU1TrW4jLaU78tI56aLedIR6SR31xcpV+6n88P8wbuOPuP7hDcw8JUZIO5lp3z4bZp/Mtvyb2LHxNYyU1pVS62exzc4/m4aZsb3suZtMtyV565/beDOl5VhjAo7HhKEaw7oTdWYPbGnuYciN5wQGI9dCM9vZruvxpczJouv2xxLJr5A3Lugo1Wpq1/S4fY09gnjmZ5+/oBqPGOPtBoUJwWbyArmdUy6jAzcoDAN2Ptw3Np/F50ziC2eH8ex+Cv2VzVx69mxqPnkr/1p3iBUv7CK2tz3HX6Cv+8s2pAHr9w0A1XBaMA3V+r+p6QhJHV0RUaV0jt+xvTu3lFG7pLJt28wBTwmSiOyXLdkD1bILdQrTqs7B1w7wy9cPYao6ok8m3Jagrb2CWdO+S807rezY+G8iNa2IXhmlOA89rvaZz7dlqksXjGXuGeOprw2ze/k+1F52oEZKI9XcM38tSFbBdcYZ49m7o5m2NXXD1scvKBJyvocLbjqNc2aP5ce3vzQsKaY+aycZvwu7viQqorNLt4rCxzY4iD6Zxx//OCXfuYr9D/2LW770DMn6zhxxu17nWHRL8+mFmg4CPoU/37uaX4sCndtDI37NLkPHDQrDiMcjUVnqx9u2ktSza9lx/w6mrm/k5DvnUT/9LDasq7cWEbX3bpQeonhZ5jd2isEKBiAYAqICpgEG1sCJYVjWkdaOMqsYmWk1tbuYsoNNd9G67h9qQRTwTypi1pkT8Hgk1j6+jVQo0eUlHFexjYNMw6RzXwdb2pNse7setT1Bui2JHlcJTC3mtAun0N4aZ/szO/vsFJJ8EnMWjuOyhRN4Pd/LvtUHu9sSdT2vvt6HQi+Vlfk01oVpF4dPFsJT7KNqYRVXnl7N/PJt/Lq6gFRDZET0iByVValrFsNWr9WiafSkPuDmYriR/TLj1v0vj95Vy7Vfvhd/9UxSDZGc0y2G3utpQYum+etPV1qmRRmPZrfQPDpxg8IwYC+2yc4UBw53Ys6ahueUSkomHLSGi9IJCr2WZpHdaZItimYjKqI1qJTvcfLmzjRxNroOhmD5IUgCgm5i6nankomRyl3kez0R9NGO2vUYXcVxb4GXC86YwOLxOt9ojrHrlX3ODEH2gmQkLc9k52e225ooUFgV5JuXVwDw2fpOGv99sOcuP2NgL4oCzbE09Y2RHoJxA74XuknHpiaWH+pEbUsM28IjiAJnXjObX8x7Gf3pP/LU++4itnfviC3I2TMCYO3S7a6kSEeSeGuCVHOsS9Z8gHZfwDEakjI2pHZxeLCvr6EaJBd/kg//11Zekf8fsb1LrdNT0Op2M5IaOvQqWmfqloKty+jHDQpHiambCKLluZyoj/DGyv3coUzjfQt/wdwXt6Iaeaw4PJE1NYdpPtzZdfTvnq/PaMtUnVrBlBllRKNptq46SKo5hqGmncfKxpKxBhQJAZDyFDwlPqvlsjNXNjrnw9/XfEJvtQTdoG1DI79tf53n51VSu605VwG1+4Ji6E6vevbPWjY3cf8bE6kaEyCdtobcess9a9E0a1/cw9sr9pFsjh9R3l4NpwacWTgSZk4pIfzTZ3nhL01Ma8iz/KFHOm2TNWQYLPQxd14Voihw6HAnNRsaiB/osBZ4O4j3kZYLzhrDtTcu5MLpY5hq/IsW34Vcc+saojWhQT8HO0WU99Wr+L+fr0INp/BPKuIr3ziXbfvbePXZGiI1rZgcG6tPl5HBDQrDgJ3a0aJpwvs7eO2VPdTsamHK5BJEUeDgoT00H+4k0RjtV15Y9MlUTyvlzFMqOdwap2ZDQ86O3F5IncKkc0PTmWitqi4i1BihM5rG6F4rMHpOK/cbEDLf1+MqkZ2tbDsUtoq3au8LUF/Py9QtV7UXHtyIUpxnpdD62GEbSY34gQ7rUlKjR/vINEyWv7KXm35wLZeoD/NkfcegCvFH9Zi62aM4XzUmwIRiP6WFPjpCcWpb4xk5br3HyROsv6nC2WN4+Vd+4t+8iVQowSMPNAPwinEf7/+sRnRX26CuR0/pPLSphDlV15GofxZBErj5q2dTveRclnx1LsFrfsYjP/k3xvDHY5djiBsUhgH7A6vHVZINUbRwkrZtLez0Kwii4JiOD9SWKogChm6QUHViCbWHsXyfqQpVd3rcw+0JkjHV6TKyTwU519tXQOj+vLLrGYaOGtaPWN/GUA1ie9sRxI4+UxbOvEK095PR8cTUTfa/vI8LD4zl9Kvv4c3fvXlMcvmOPpWqk8p0Uk0rVhjjL+HA4U4a9rVlUkFCj2li0SdzwZfO4Kenvswjyh973Pej4k28ZtzL6ee3D+q1NpIaf/z6MgRFwjRM5HwP13I/j+6GnV/cxBf0Jh4Zjic9CEaqw8zFDQrDRrakgb145qQwBjHApkXTbHmnnrr97cQiKSt1ZBve9zq/kHX3cSsQNLVm5fO7FZEFUXBqFrYctrMT7+WE0B3RKzPxwslUTSxi3TM7h9x5M9hBudEUDLIxUhqR7S28urstpwUzOGsM5VOKOfjaAWvQbJiv3+4ei3Wm2FsXZnJpAM0wMUwzt8ibhaiIFMwq41tL8kh+bzkAY8rgwgcv4tEPvtx13yv+hZw/b9DpNkM1EAwTQZHAMHja8zlOP/Nhpv7sg9z6D2+fp8jhRPTJFC8cS7DQR2h367BPb5/ouEFhmMnRD8rMFPRFzq5bt6STIzWtxH0djmx1Tv3B/n8vwcF6PBCyJbG79e57KwLceOtiZpYH+dHv36RlY6NVrxhEQABLJuJ/P7eIUwpW8zVxJqt///aoXcBHAjuoCVmvT2BqMa98ZSfaqxu49bpv8NZfN/Y6V9EdT5kfb3mAxKHwgHUT+6SQbo2zdWMDnZEUoihwuLajz0K8oEiIXplnavycc9tTLL4dfvrYZn7w93386NCPmPm1Syn72Az+Pf17mMZTQ38xdKuOdsf3V1B66Z2EH4mQrN98TJzRvOUBrrnmVBRZ5PEnthHf3zHij3ki4QaFEaavwp9S6MU3rgAtmkZts7qMTNVqM7TrDs4JoTtZpwbIGhwaoP1SkCVK873ke2TEI5BW1uMqz22sJ3zymezf+daQb/9eIbtt1FsewNy+Cz2UICH2DLA22YVXQRIonj2GRedOYtULu2h/p6H/B8wIJWqRNO11naQSKqIoWhpWth5S9okwU3NKHArzwF/X83dRINkYtZz8khrfvPkp5n30LgJ42HzX60NOv3TVqEzUtgTNGxudBoqRtkC1ZcHjSY1wNEWsLX7MWnJPFFxBvGOMqIj4xhfw7P0LCD75Izqv+l+++fdmNmdsD7PpbWagV/pIIXS/reSTCEwpRvTJlmVmXBtQ8K7H/WSGqOy01mAWAHsCe7R4Jg8XgiQg53s496YFJBMqa/+6scd7aA/kZQ+emYaJf1IR4+ZWUL+pidje9gEfxx6QFL0ykk9yfmabEYH13lgbC7XnKbKP++3v5wNdk/2Y1oUYPWpVI4VS6CWvuhA1bHl/DEUi/ERnMIJ4blA4xnjK/Hzq9vMpPPNiAJZ8biyddzzHZ761nM7toUEdv4/YzCQ7eAwxGMCRf9iVQi8l8yvp3NdBqiHiSHUM1/2PVuygkX9SCWOqCwm3JejYEcqdCh9sO6jU06fCPn2IisiE8ybym/+cS0z188sntrDuoc0jXoA9Xu/he3WTcSxwVVJHIYIkoOkGJ8+AHTsheOVMNLmNcdPLiO5u633SuRvZ6aIh0UtqY6QDgk311FKa8hQa4yoYBnKhD1ERrcncaMo6tQxiAOvdhCBa5kHzz5/MOaeOZdv+Nl5qjGaUTI80ZWPNgQiigJnZIBtAaXk+FQf/CG0dfPWq/+WmF3cP2RhoqByv92qwDQsuR4YbFI4xWiTNiy/s5Etbf8fc3e+wvfw/2X4wSiySGvIif6TBYag52KP9AOopnT2bGkAS8ZblMeakUmadWklHOEnd/naat7dgqPFBBcTjRfaueEivh2EQ7UzRHE7QHkkNytq0L7pLYDioOjVrDrF+yZeonhTlubWH0ZOj97V0Gd246aNjjC2sZstrSz4JKU8h3Z50TEqgp8zB8eJoA4L9fD3FPiuPPrmYqy6ZzozSAC9ua+SNNw5S91Y96fbkqO03FxWR/JllBCvyCdd2DLoF0lZ8tV3ptGiaZEN0yNIdg8F+LFERnc41dzft0h03fTQKsY6+GqmklpMnBno4amXvDI/HdR4t9vOTvFYQzAt4SMTSPLtiD4/FVOq3Nln6PaPchUtQJAqrgoytLiLekRj07UzdmgZP1IZJZL3HI7FYm7rp2ly6DAtuUDiOdO97708mAo5NcBiRBSszlZtMqsQ7Ehze3ESqKdav5MfxoreOHCOlcXhVLY1K3ZClN+z3WPbJBGeNwRdQaFpVO6qDYF/kbGL0nu2n9iyMqVs+GG5X0LuTgXsZXUac0TLpOxKTuPbCoUXSqOEUY6oLufTT8/GU+EZdQMhWEe1eQ9DjXQ56R4JvbD7X3TCPr9+8CKUkb7gu+ZiR3RYr+2XLT9tW/KUrIHzwxgVc8fkzKDqtclSkP12GjhsU3mU4+kDDrOE/Ugu0qVvTuLY72rc+vZDbjN/yoVvOGFWLhiAJeMcGOe3aOVz8pUWULZ6A6Bu+g7QaTrFxRzNrd7WM2tpJX2QHBG95gMBJpXjLA8h+2TGEkoMeLr/5dD595yc4/6YrWHbLLnzjCo73pbscAW5QeBeTHSB6nZwWBZTiPOR8z5BuN1QESWDcB6bwnb9eTXBmaY/F3hYETBwKc8c/NlG3+OesXVN71I87WESfjKfER8GcckrPmUDxonH4JxdZxf4sv+uS6aXcc+Uevr3ldpbesIEpl0wdtsCVaoqx5g/v8MQPXxsRWe9jgW0Ba79miF3Lh5Tv5XOLfax6Icr+A/DolHuZdk718btYlyPGDQrvIbIXekEU8FYEuOJLi7jw86c7rl0jcSKQ/Ar/OvsZEtPPZcXttQRnjen12vS4yo5nd/KpW1+gbmVPk53hxt7BjjlzHNd/63xevqeCZT8r4Hf/cyELr5iBb2y+lQLJtPRKiojx4jKevL2GVRc/wC3XzUP0Dt9pwRa2e7dhv0+GapBuT5JssGYtsjvljJRGU7ws53Yer9TjvlxGP25QeI8i+RXOv2EuX/jHzXz98c/zgf843XKBGwGCM0od5c1Hp/2RJ+46rdffs2sLke0tI94pI0jWKWnhJ07l+a82c/VPPsZj0md5uewmpj72Wa4+ZzKeMr/T828aJq27WhEvvIDJk6C5Bc4aux9PiW9UpbmOF6ZhLfxqOEWiPuLUV+x5CbUtwW13rebaZRdxwdVFXFd3K7vW1h/nq3Y5Etyg8B7FUA2iGbG0zkMRxlcEh3XXm01sXzsnTe36+vW6/BF5nMFi6w35xuZz+pxKzMZDyH6F4iI4/9YZyJeezeK237H0p0WULhiL5FcwdZNEbZjrH5hI6YaNfDT0Qx7dWj7qiuHHC/sEaiS1rv9UI+cU0bC6lstXLuGHH76bJfdMJLavf00nl9GJO7z2HsVWYr3yq2dTXRnkD79cNWK684IkUHLWeB76/lx+vrSNVfetG3Le3FthDXglG6JHfYrIHhDMP6mEOQvHMa4iiKYbtHcmufXiMloWvQ9Ng/HrX+aWO/dw8JX9GCktZ9BObU8Qr+0cla2zoxX7tbeUXd99qbL3Ou7w2gmM3Sv+9J1vIHply094BCSGbQesRH2E363oZMO/9w+5P130yVz3X+cwqSLI3fe9RcvKoytCWwu4jtqWILypiTe2twDWblbO99DZOZPf/ukjaOv2UJsaQ16g1kmtmapOuj2JFm12cuVuQBg89nCmy7sXNyi8hzF1k3RbcsTuX5CsYrZ/UhEej0Q0ls4I2w2NvHFBvjR3EwBLZ4w76qAAWekONffUoUXSvPXn9Zw3dg75k85B+/5yTFUnb1zQ8rZoT1gifZnA5gYElxMNNyi4HDGCIuEbV8BJsysINURY88gW1LbEkNMGqeYY33jxZFoaIuxctm2ErrYL0zBJh+JEDYOyU8qZPKOMadXF7DrQxpZVB0k2RlHVoU0uu7i8V3CDgsuRoxukmmPs3NBAOhQ/ooAA1u791TvXACO/M7dnEpRCLxVzK7ny8pm8b0ox4wPreL16DocPdtAUtaavBVev3+UExA0KLkeMvePWIukebl9Dvq9juPiKPpm8cUEueP9UPjKrDX9kJYTSFHrnIytuQ57LiY37CXA5YhxNoPbEu0aqWfTKeMr8XPaR2Xw+/0EOnfEx1i/6HtqzL+JXJNJZgnfvhufj4jLcuCcFl6NiWPwWspQ3gRGzWbQ9BwonF/HFxe08Kv/d+Vnnt9cx/4Y61FTG8/gIjXBcXN7tuEHB5bhh97RLXskaIMsY24/kqUPySRSXBfA0r8/5fqgVdMNLMqlaQ1kj0L5r031C2j2RuIwm3KDgclywp47loIfyeZXMXTiOeFJjX00LjeutwvVAJ4bevA/6fUzREnFTvBJ4cuWrL/tCNctqfSPmjOZcg30y6gU3OLiMBtyg4HLcEBURX2U+V394Fp+sXgWyh3WLL+K7sdW0RtOWtk4fC6U9NCcqInrSSvkM1Plk6/c0HgqzybiKa5euIfZcDb4FlYSu/S0P37nRCkYj4BVtBzBBFHJ8CEzdBFUf0ZOJi8tQcIOCy3HFNEw8igSdzZiqyoSqOMFCH+2KiNHH3J3jfVwRoLC6iM7DEVKNEcezoT/0uErnvg7ueHQjF7/vO4z5by8HWmK8dOdGGt45jB5XR2w+wQ4Ikl9B8knO9WiGiYBb3HYZHbhBweW4YagGajjFmo2HOedDn8Ejxlh9SCDcnhjU4ijIEoECD/EOmXRGAru/29nS1Vo4Se3GBh5vTyDJIpFwkviBDiuojPCOXZAEJJ+EnO/BNEz0pJ657hF9WBeXQeMGBZfjgq0rlA7FWffMTm7e2oQ3TyHSliB+oAM91XdKxdRN9JROqjFCfcoqTA92TsJUdXTdIF7bSbIhCljBaTDpp+Ei26bUxWW04QYFl+OGHRhSDRFCobjlbZCx7xxo0TSSGqqqO4qqg11kHRMiw8RI5X7/WGCoRleKyjCcgOQGCZfRghsUXI4rjiXoEezSj8ZO9HgswGamdqCngFQmX6SPbPuri8tQcYOCi8sxQPTKCJJgnRCyBuPsgOCeElxGC67MhYvLCCJIAlOumM6b363htUVP8tATn0AOehwL0KM57bi4jATuScHlhESQBOR8D4IiOYXqkUD0yjz43wU8Kj8DwILnT2PMkrs4/Op+Nxi4jErck4LLCYnolSmaW8GYeZV4KwI9pCeGC9Mw2dQy3fl68mdmE2mKugHBZdTinhRcTjgEScBfXcDnbzydWErj0ce2kKzrHJGF2khqfPkzj3PGgw8zcVwhlzy6mUjGHtTFZTTiBgWXExLTMNlxsJ2G5ijh2o4R7QDSImneuOdt3hixR3BxGT7coOBywmHqJom6CM/dtw49mkKLpN10jotLBjcouJyQ2ENz7tCYi0sublBwOSFxW0FdXHpHME3T/WS4uLi4uABuS6qLi4uLSxZuUHBxcXFxcXCDgouLi4uLgxsUXFxcXFwc3KDg4uLi4uLgBgUXFxcXFwc3KLi4uLi4OLhBwcXFxcXFwQ0KLi4uLi4O/x/s/mMkYgRJpQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -104,7 +104,8 @@ "source": [ "from astropy.visualization import simple_norm\n", "plt.imshow(img,aspect='equal',cmap='RdYlBu_r',origin='lower',interpolation='None',\\\n", - " norm=simple_norm(img,'asinh',asinh_a=0.1,min_cut=-0.01,max_cut=4))" + " norm=simple_norm(img,'asinh',asinh_a=0.1,min_cut=-0.01,max_cut=4))\n", + "plt.axis(\"off\")" ] }, { From b3abb71669bec5f342ee7f30bb97766c91a07993 Mon Sep 17 00:00:00 2001 From: Xiangchong Li Date: Wed, 26 Jul 2023 14:59:25 -0700 Subject: [PATCH 09/30] update workflow --- .github/workflows/shear_meas_tests.yml | 9 +-------- .github/workflows/test.yml | 7 +------ requirements.txt | 3 ++- 3 files changed, 4 insertions(+), 15 deletions(-) diff --git a/.github/workflows/shear_meas_tests.yml b/.github/workflows/shear_meas_tests.yml index 71e83da2..c2aa1bf7 100644 --- a/.github/workflows/shear_meas_tests.yml +++ b/.github/workflows/shear_meas_tests.yml @@ -32,19 +32,12 @@ jobs: conda config --set always_yes yes conda install -q mamba - mamba install -q stackvana=0 - + mamba install -q --file requirements.txt mamba install -q \ flake8 \ pytest \ - numpy \ - galsim \ - "numba!=0.54.0" \ - ngmix \ - lsstdesc-weaklensingdeblending \ fitsio \ meds \ - hexalattice \ ngmix pip install --no-deps -e . diff --git a/.github/workflows/test.yml b/.github/workflows/test.yml index 82f1e5e6..fa362a5b 100644 --- a/.github/workflows/test.yml +++ b/.github/workflows/test.yml @@ -31,18 +31,13 @@ jobs: conda config --set always_yes yes conda install -q mamba - mamba install -q stackvana=0 - + mamba install -q --file requirements.txt mamba install -q \ flake8 \ pytest \ numpy \ - galsim \ - "numba!=0.54.0" \ ngmix \ - lsstdesc-weaklensingdeblending \ fitsio \ - hexalattice pip install --no-deps -e . diff --git a/requirements.txt b/requirements.txt index 765a2df4..c67f8fca 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,8 +1,9 @@ -stackvana +stackvana<=0.2023.28 pip lsstdesc.weaklensingdeblending numba galsim +pydantic<=1.10.11 # optional, but needed for tests to pass hexalattice From fece4b39cb4496cd06322a4bf27ce83b253608b2 Mon Sep 17 00:00:00 2001 From: Xiangchong Li Date: Fri, 15 Sep 2023 19:32:44 -0700 Subject: [PATCH 10/30] commit --- descwl_shear_sims/shear.py | 22 +- examples/example_NFWShear.ipynb | 802 +++++++++++--------------------- 2 files changed, 277 insertions(+), 547 deletions(-) diff --git a/descwl_shear_sims/shear.py b/descwl_shear_sims/shear.py index dcb1f53f..74776aa0 100644 --- a/descwl_shear_sims/shear.py +++ b/descwl_shear_sims/shear.py @@ -2,7 +2,7 @@ import numpy as np # maximum kappa allowed # values greater than it will be clipped -kappa_max = 0.6 +g_max = 0.6 """ shear_obj = ShearConstant(cluster_obj, z_cl, ra_cl, dec_cl) shear_obj = ShearRedshift(g1=0.02, g2=0.00) @@ -58,15 +58,17 @@ def get_shear(self, redshift, shift): # TODO: confirm whether the units is Mpc/h or Mpc? gammat = self.cobj.eval_tangential_shear(r3d, z_cl, redshift) - kappa0 = self.cobj.eval_convergence(r3d, z_cl, redshift) - # we are forcing kappa to be less than kappa_max - # and scale gamma by the same ratio - kappa = min(kappa0, kappa_max) - ratio = kappa / kappa0 - gamma1 = gammat * np.cos(2. * phi) * ratio - gamma2 = -gammat * np.sin(2. * phi) * ratio - g1 = gamma1 / (1-kappa) - g2 = gamma2 / (1-kappa) + kappa = self.cobj.eval_convergence(r3d, z_cl, redshift) + gamma1 = gammat * np.cos(2. * phi) + gamma2 = -gammat * np.sin(2. * phi) + g1 = gamma1 #/ (1-kappa) + g2 = gamma2 #/ (1-kappa) + # we are forcing g to be less than g_max + g = np.sqrt(g1 ** 2. + g2 ** 2.) + ratio = min(g_max / g, 1.0) + # and rescale g1 and g2 if g > g_max + g1 = g1 * ratio + g2 = g2 * ratio else: g1 = 0. g2 = 0. diff --git a/examples/example_NFWShear.ipynb b/examples/example_NFWShear.ipynb index c1ba54d0..af942d14 100644 --- a/examples/example_NFWShear.ipynb +++ b/examples/example_NFWShear.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 16, + "execution_count": 19, "id": "d12a992b-6669-4675-b68a-b705ff09f693", "metadata": {}, "outputs": [], @@ -24,38 +24,111 @@ }, { "cell_type": "code", - "execution_count": 2, - "id": "707e17ec-2aa0-4470-b986-fefe11e4be47", + "execution_count": 58, + "id": "14f7db13-1476-4197-b54f-219b30bdb59a", "metadata": {}, "outputs": [], "source": [ - "cosmo = clmm.Cosmology(H0=70.0, Omega_dm0=0.27 - 0.045, Omega_b0=0.045, Omega_k0=0.0)\n", - "halo = clmm.Modeling(massdef=\"mean\", delta_mdef=200, halo_profile_model=\"nfw\")\n", - "halo.set_cosmo(cosmo)\n", - "halo.set_concentration(4)\n", - "halo.set_mass(1.0e15)\n", - "z_cl = 1.0\n", - "# source properties\n", - "z_source = 2.0 # all sources in the same plane\n", + "from astropy.cosmology import FlatLambdaCDM\n", + "from lenstronomy.Cosmo.lens_cosmo import LensCosmo\n", + "from lenstronomy.LensModel.lens_model import LensModel\n", "\n", - "shear_obj = dss.shear.ShearNFW(halo, z_cl)" - ] - }, - { - "cell_type": "markdown", - "id": "3eae4691-6752-4e77-a81d-d913d7bec263", - "metadata": {}, - "source": [ - "# step1: make sure the direction is correct" + "zl_list = [0.1, 0.4]\n", + "M200_list = [1e14, 1e15]\n", + "\n", + "\n", + "g_max = 0.6\n", + "\n", + "class ShearNFW(object):\n", + " def __init__(self, zl_list, M200_list, c_list, cosmo):\n", + " if not isinstance(zl_list, list):\n", + " if isinstance(zl_list, float):\n", + " zl_list = [zl_list]\n", + " if not isinstance(M200_list, list):\n", + " if isinstance(M200_list, float):\n", + " M200_list = [M200_list]\n", + " if not isinstance(c_list, list):\n", + " if isinstance(c_list, float):\n", + " c_list = [c_list]\n", + " assert len(zl_list) == len(M200_list)\n", + " assert len(zl_list) == len(c_list)\n", + " self.cosmo = cosmo\n", + " self.zl_list = zl_list\n", + " self.params = []\n", + " self.n_halos = len(zl_list)\n", + " for _ in range(self.n_halos):\n", + " self.params.append({\"M\": M200_list[_], \"c\": c_list[_]})\n", + " return\n", + "\n", + " def get_shear(self, redshift, shift):\n", + " \"\"\"\n", + " A shear wrapper to return g1 and g2 with different shear type\n", + "\n", + " Parameters\n", + " ----------\n", + " redshift (float): redshifts of galaxies\n", + " shift (galsim.positionD): Galsim positionD shift [arcsec]\n", + "\n", + " Returns\n", + " ---------\n", + " shear (galsim.Shear) shear distortion on the galaxy\n", + " \"\"\"\n", + "\n", + " model_list = []\n", + " kwargs_list = []\n", + " for _ in range(self.n_halos):\n", + " model_list.append(\"NFW\")\n", + " lens_cosmo = LensCosmo(z_lens=zl_list[_], z_source=redshift, cosmo=self.cosmo)\n", + " Rs_angle, alpha_Rs = lens_cosmo.nfw_physical2angle(**self.params[_])\n", + " rho0, Rs, c, r200, M200 = lens_cosmo.nfw_angle2physical(Rs_angle, alpha_Rs)\n", + " kwargs = {'Rs': Rs_angle, 'alpha_Rs': alpha_Rs, \"center_x\": 0.0, \"center_y\": 0.0}\n", + " kwargs_list.append(kwargs)\n", + " lens = LensModel(lens_model_list=model_list)\n", + " alpha_x, alpha_y = lens.alpha(x=shift.x, y=shift.y, kwargs=kwargs_list)\n", + " f_xx, f_xy, f_yx, f_yy = lens.hessian(x=shift.x, y=shift.y, kwargs=kwargs_list)\n", + " gamma1 = 0.5 * (f_xx - f_yy)\n", + " gamma2 = f_xy\n", + " kappa = 0.5 * (f_xx + f_yy)\n", + " g1 = gamma1 #/ (1 - kappa)\n", + " g2 = gamma2 #/ (1 - kappa)\n", + " # we are forcing g to be less than g_max\n", + " g = np.sqrt(g1 ** 2. + g2 ** 2.)\n", + " ratio = min(g_max / g, 1.0)\n", + " # and rescale g1 and g2 if g > g_max\n", + " g1 = g1 * ratio\n", + " g2 = g2 * ratio\n", + " shear = galsim.Shear(g1=g1, g2=g2)\n", + " return shear" ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 59, "id": "913c7ae0-8b39-4a3b-9e09-c40262170e0c", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAINCAYAAACeQx1BAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA8dElEQVR4nO3deVxVdeL/8fcFBFwAd5CkXKqfNmgmaONSagvibk1a5ljmUppmljOW1besMa2mrEbNJcpMnVxbzNS0TE1NU1xTy8k0VyStuIoCAuf3R9MZrrggwfnc5fV8PO7j4edzD/D2ZN63n/O557osy7IEAADgkCDTAQAAQGChfAAAAEdRPgAAgKMoHwAAwFGUDwAA4CjKBwAAcBTlAwAAOIryAQAAHBViOoC3yc/P1+HDhxURESGXy2U6DgAAPsOyLJ04cUKxsbEKCjr/+gbl4yyHDx9WXFyc6RgAAPisAwcOqGbNmud9nvJxloiICEm/nbjIyEjDaQAA8B1ut1txcXH2a+n5UD7O8vullsjISMoHAADFcLFtC2w4BQAAjqJ8AAAAR1E+AACAoygfAADAUZQPAADgKMoHAABwFOUDAAA4ivIBAAAcRfkAAACOonwAAABHUT4AAICjKB8AAMBRlA8AAOAoygcAAHAU5QMAADgqxHQAAIElOztbx48f93j8/PPPheYKzqekpKhTp06mowMoIZQPAMV28uRJHTly5ILF4ezHqVOnLvnnpKenl0J6AKZQPgAU25QpUzRs2LBS/znHjx8v9Z8BwDmUDwDFVqVKlRL9fuXKlVOVKlVUuXJlValSxX5ce+21JfpzAJhF+QBQbJUrVz7nfHBw8DlLxNnjs+fCw8Md/h04Iysry29/b0BxUD4AFFtCQoJmzpxZqERERkbK5XKZjuc1evbsqW+++Ubt2rVTcnKyWrVqpbJly5qOBRjjsizLMh3Cm7jdbkVFRSkjI0ORkZGm4wDwcWfOnFHVqlXldrvtufDwcLVq1couI1dffTVlDX6hqK+hrHwAfuLXX3/VggULFBERodtuu810HPzXunXrPIqH9NtlmE8//VSffvqpJKlWrVpKTk5Wu3bt1KZNG0VERJiICjiGlY+zsPIBX5KRkaEFCxZozpw5+vTTT3XmzBklJiZqw4YNpqPhv/bt26dp06ZpyZIlWr9+vS72V26ZMmXUsmVLJScnKzk5WQ0aNGBVBD6jqK+hlI+zUD7g7dxutz7++GPNmTNHS5YsUU5OTqFjfvjhB9WuXdtAOlzI8ePH9dlnn2nx4sVasmSJjh49etGviY2NtYvIrbfeqooVK5Z+UKCYKB/FRPmANzpx4oQWLlyoOXPmaPHixcrOzj7vsREREZo5cyZ3BPVy+fn52rZtm5YsWaLFixdr7dq1ys3NveDXBAcH689//rNdRho3bqygID4lA96D8lFMlA94i5MnT+qTTz7RnDlztGjRImVlZZ332AoVKqhz587q3r272rZty9s6fVBGRoaWL19ul5EDBw5c9GuqVaumtm3bKjk5WR07dlRUVJQDSYHzo3wUE+UDJmVmZmrRokWaM2eOPvnkE50+ffq8x5YvX16dOnVS9+7dlZyczFs3/YhlWdq1a5eWLFmiJUuWaOXKlee8vFZQamqqGjdu7FBC4NwoH8VE+YDTTp06pcWLF2vOnDlauHDhBT/7pFy5curYsaO6d++udu3aqVy5cg4mhSmZmZlasWKFXUa+//57j+erV6+uI0eOcAkGxvFWW8CLnT592qNwZGZmnvfYsmXLqkOHDurevbvat2+v8uXLO5gU3qB8+fLq0KGDOnToIEn6/vvv7SKyfPlyJScnUzzgU1j5OAsrHyhNubm5uvfee7VgwQKdPHnyvMeFh4erffv26t69uzp06KAKFSo4mBK+JCsrSxkZGYqOjjYdBWDlA/BGISEh+uGHH85ZPMLCwjwKBzeaQlGEh4ezwRg+h/IBOKx79+5at26dJCk0NFTt2rVT9+7d1bFjR1bbAAQEygfgsDvuuEPLly/XnXfeqU6dOvH2SAABh/IBOCwuLk4ff/yx6RgAYAzbowEAgKMoHwAAwFGUDwAA4CjKBwAAcBTlAwAAOIryAQAAHEX5AAAAjqJ8AAAAR1E+AACAoygfAADAUZQPAADgKMoHAABwFOUDAOCo3NxcnTx50nQMGET5AAA4atSoUWrcuLE2btxoOgoMoXwAABzz5Zdf6h//+If+85//qFmzZnrppZeUn59vOhYcRvkAADjCsiw9/vjjdtnIzc3VY489pqSkJB0+fNhwOjiJ8gEAcITL5dKCBQt02223ecx//vnnatiwoRYsWGAoGZxG+QAAOKZKlSqaP3++Jk+erLJly9rzx48fV5cuXTRo0CCdPn3aYEI4gfIBn5eVlaUNGzaYjgGgiFwul+6//36lpqbq2muv9XjujTfeUGJiorZt22YoHZxA+YBP279/v2644QbddNNN2rlzp+k4AC5B/fr1tX79ej3yyCMe8zt37lTTpk01btw4WZZlKB1Kk8+WjzFjxsjlcmno0KH2nGVZGjlypGJjY1W2bFm1bt1aO3bsMBcSpWrFihVKSEjQxo0bdfLkSd12223KyMgwHQvAJQgLC9PYsWO1ePFiVa9e3Z7Pzs7WkCFD1LFjR6WnpxtMiNLgk+Vjw4YNmjJliho2bOgx/9JLL2ns2LEaP368NmzYoJiYGN166606ceKEoaQoDZZl6bXXXtMtt9yiY8eO2fPHjx/X999/bzAZgOJKTk7Wtm3b1K5dO4/5RYsWqWHDhvr0008NJUNp8LnycfLkSfXs2VNvvvmmKlWqZM///oL05JNP6vbbb1d8fLymTZumU6dO6d///rfBxChJp06dUq9evfTII48oLy/Pnr/uuuuUmpqqhIQEg+kA/BHR0dH65JNP9Prrrys0NNSeP3r0qJKTkzVs2DBlZ2cbTIiS4nPlY9CgQerQoYNuueUWj/m9e/cqLS1NSUlJ9lxYWJhatWqltWvXnvf7ZWdny+12ezzgnfbt26cWLVpo5syZHvO9evXSmjVrdMUVVxhKBqCkuFwuDRkyRBs2bNA111zj8dzYsWP15z//Wd9++62hdCgpPlU+Zs2apU2bNmnMmDGFnktLS5P0W3MuKDo62n7uXMaMGaOoqCj7ERcXV7KhUSI+++wzJSQkaMuWLfZccHCw/vWvf2natGkeb9kD4PsaNmyoDRs2aODAgR7zW7ZsUUJCglJSUtiM6sN8pnwcOHBADz/8sGbMmKHw8PDzHudyuTzGlmUVmitoxIgRysjIsB8HDhwoscz44yzL0j//+U+1bdtWP//8sz1frVo1ff7553rooYcu+N8XgO8qV66c3njjDX344YeqXLmyPX/q1Cn1799f3bp18/h7Ab7DZ8pHamqq0tPTlZCQoJCQEIWEhGjlypX617/+pZCQEHvF4+xVjvT09EKrIQWFhYUpMjLS4wHvkJmZqbvuukvDhw/3+OyHJk2aKDU1Va1atTKYDoBTunTpom3btummm27ymJ8/f76uvfZarVy50lAyFJfPlI+bb75Z27dv15YtW+xHYmKievbsqS1btqhOnTqKiYnRsmXL7K/JycnRypUr1bx5c4PJURx79uxRs2bNNGfOHI/5++67T6tWreLyGBBgLrvsMi1btkwvvviiQkJC7PmDBw+qTZs2evrpp7kM40NCLn6Id4iIiFB8fLzHXPny5VWlShV7fujQoRo9erSuuuoqXXXVVRo9erTKlSunu+++20RkFNOSJUvUo0cP/frrr/ZcmTJl9Prrr2vAgAFcZgECVFBQkIYPH642bdro7rvvtt9ab1mWcnJy+LvBh/jMykdRDB8+XEOHDtWDDz6oxMREHTp0SEuXLlVERITpaCgCy7I0evRotW/f3qN4xMTE6IsvvtDAgQP5ywWAmjRpos2bN+u+++6TJCUmJuq5554znAqXwmWxTuXB7XYrKipKGRkZ7P9w0IkTJ9S7d2+9//77HvPNmjXTvHnzFBsbaygZAG82e/ZsNW7cWFdddZXpKFDRX0N95rIL/Nfu3bvVtWtX7dq1y2P+gQce0Ouvv66wsDBDyQB4uzvvvNN0BBSDX112ge9ZuHChmjRp4lE8QkND9eabb2rSpEkUDwDwQ5QPGJGfn69nn31WnTp18rir7GWXXaZVq1apX79+BtMBAEoTl11gxIMPPqjJkyd7zLVs2VJz585VTEyMoVQAACew8gEj+vbt63FJZfDgwfr8888pHgAQACgfMKJJkyaaOHGiwsLC9M4772jcuHEen2IJAPBfvNX2LLzV1ln79+/X5ZdfbjoGAKAEFPU1lJUPGEXxAIDAQ/kAAACOonwAAABHUT4AAICjKB8AAMBRlA8AAOAoygcAAHAU5QMAADiK8gEAwFncbrfWrl1rOobfonwAAFDADz/8oGbNmqlt27batm2b6Th+ifIBAMB/fffdd7r++uu1c+dOnTx5Up06ddLRo0dNx/I7lA8AAP6rTp06uvbaa+3x/v37dfvttysrK8tgKv9D+QAA4L/KlCmjuXPn6uqrr7bn1q5dq/79+4vPYS05lA8AAAqoVKmSPv74Y1WsWNGemzFjhl544QVzofwM5QMAgLNcffXVmjdvnoKDg+25J554Qu+//77BVP6D8gEAwDncfPPNmjBhgsdcr169tHnzZkOJ/AflAwCA83jggQc0ZMgQe3zq1Cl17txZR44cMZjK91E+AAC4gFdeeUVt27a1xwcPHlSXLl10+vRpg6l8G+UDAIALCAkJ0ezZs1W/fn17bsOGDbrvvvt4B0wxUT4AALiIqKgoffzxx6pSpYo9N3v2bP3jH/8wmMp3UT4AACiCunXr6v3331eZMmXsuWeeeUZz5swxmMo3UT4AACiiG2+8URMnTvSYu/fee7VhwwZDiXwT5QMAgEvQt29fDRs2zB5nZWWpS5cuOnjwoMFUvoXyAQDAJXrxxRfVsWNHe3zkyBF16dJFmZmZBlP5DsoHAACXKDg4WP/+978VHx9vz23atEn33HOP8vPzDSbzDZQPAACKISIiQh9//LGqVatmz73//vt6+umnDabyDZQPAACKqVatWvrggw8UGhpqzz3//POaOXOmwVTej/IBAMAf0KJFC6WkpHjM9e3bV1999ZWhRN6P8gEAwB/Uq1cvjRgxwh5nZ2dr8eLFBhN5N8oHAAAlYNSoUeratauCg4M1YcIEPffcc6Yjea0Q0wEAAPAHQUFBmjFjhjZt2qQbbrjBdByvxsoHAAAlpHz58hSPIqB8BKATJ05o7969pmMAAAIU5SMAjRw5Un/60580evRo5eTkmI4DAAgwLsuyLNMhvInb7VZUVJQyMjIUGRlpOk6J27Ztmxo3bqy8vDxJUlJSkj799FPDqQAA/qCor6GsfASQ/Px8DRgwwC4ekjRgwACDiQAAgYjyEUDefvttj5vedOjQQV27djUXCAAQkCgfAeLYsWN67LHH7HHZsmU1btw4uVwug6kAAIGI8hEghg8frp9//tkeP/XUU6pdu7bBRACAQEX5CACrV6/W1KlT7XG9evX0t7/9zWAiAEAgo3z4uTNnzmjgwIEec2+88YbHJzACAOAkyoefe+211/TNN9/Y47/+9a9q06aNwUQAgEDHfT7O4k/3+di/f7/q16+vU6dOSZIqVqyob7/9VtHR0YaTAQD8Eff5gB5++GG7eEjS6NGjKR4AAOMoH35q4cKF+vDDD+1xkyZNdP/995sLBADAf1E+/NCpU6f00EMP2eOgoCBNmjRJwcHBBlMBAPAbyocfGjVqlPbt22ePBw0apMaNG5sLBABAAWw4PYuvbzjdtWuXrr32Wp05c0aSFBMTo2+//VZRUVGGkwEA/B0bTgOQZVl68MEH7eIhSa+++irFAwDgVSgffmTGjBlasWKFPb7lllt05513mgsEAMA5UD78xC+//KJhw4bZ49DQUE2YMIEPjgMAeB3Kh5944okn9NNPP9njxx9/XFdffbXBRAAAnBvlww98/fXXmjx5sj2uU6eOHn/8cYOJAAA4P8qHj8vNzdWAAQNU8E1LEyZMUNmyZQ2mAgDg/CgfPu7zzz/X5s2b7fEdd9yh5ORkg4kAALgwyoePa9u2rb744gvVq1dPFSpU0GuvvWY6EgAAFxRiOgD+uNatW2vr1q3asmWLLrvsMtNxAAC4IFY+/ERoaKiaNm1qOgYAABdF+QAAAI6ifAAAAEdRPgAAgKMoHwAAwFGUDwAA4CjKBwAAcBTlAwAAOIryAQAAHOUz5WPMmDFq0qSJIiIiVL16dXXt2lXfffedxzGWZWnkyJGKjY1V2bJl1bp1a+3YscNQYgAAcC4+Uz5WrlypQYMGad26dVq2bJlyc3OVlJSkzMxM+5iXXnpJY8eO1fjx47VhwwbFxMTo1ltv1YkTJwwmBwAABbmsgp/F7kN++uknVa9eXStXrtSNN94oy7IUGxuroUOH6rHHHpMkZWdnKzo6Wi+++KIeeOCBIn1ft9utqKgoZWRkKDIysjR/CwAA+JWivob6zMrH2TIyMiRJlStXliTt3btXaWlpSkpKso8JCwtTq1attHbt2vN+n+zsbLndbo8HAADezrIs+ej6gW+WD8uy9Oijj6ply5aKj4+XJKWlpUmSoqOjPY6Njo62nzuXMWPGKCoqyn7ExcWVXnAAAP6g3bt36+mnn1bdunX15Zdfmo5TLCGmAxTH4MGDtW3bNq1evbrQcy6Xy2NsWVahuYJGjBihRx991B673W4KCADAKx09elT16tWzVzymT5+uG2+80XCqS+dzKx8PPfSQFixYoC+++EI1a9a052NiYiSp0CpHenp6odWQgsLCwhQZGenxAADAG0VHR6t169b2eO7cucrKyjIXqJh8pnxYlqXBgwfr/fff1/Lly1W7dm2P52vXrq2YmBgtW7bMnsvJydHKlSvVvHlzp+MCAFAqevXqZf86IyNDH3/8scE0xeMz5WPQoEGaMWOG/v3vfysiIkJpaWlKS0vT6dOnJf12uWXo0KEaPXq0PvjgA33zzTfq3bu3ypUrp7vvvttwegAASsZf/vIXhYeH2+Pp06cbTFM8PvNW2/Pt25g6dap69+4t6bfVkWeffVaTJ0/WL7/8ouuvv14TJkywN6UWBW+1BQB4ux49emjWrFmSpJCQEB0+fFjVqlUznKror6E+Uz6cQvkAAHi7RYsWqUOHDvZ43LhxGjx4sMFEv/H7+3wAABCokpKSVL16dXvsa5deKB8AAPiYkJAQ9ejRwx5//fXXhT7vzJtRPryMZVlauHChx2fWAABwtoLvepGkGTNmGEpy6SgfXmbTpk3q1KmTqlatqs6dO2v79u2mIwEAvFDjxo1Vv359ezxjxgzl5+cbTFR0lA8v89FHH0mSsrKy9PHHH3u8nQoAgN+5XC6P1Y99+/ZpzZo1BhMVHeXDy/xePiSpfv36uuqqqwymAQB4s549e3qMfWXjKeXDi+zdu1fbtm2zx126dDGYBgDg7S6//HKP263PmTPHJ263TvnwIgsWLPAYUz4AABdz9u3WFy5caDBN0VA+vEjBSy4xMTFq2rSpwTQAAF9wxx13+Nzt1ikfXuLnn3/WqlWr7HGnTp0UFMR/HgDAhUVGRnqslC9atEjHjh0zmOjieHXzEosWLVJeXp495pILAKCoCl56yc3N1ezZsw2muTjKh5coeMmlfPnyuvnmmw2mAQD4kqSkJI8PlvP2Sy+UDy+QnZ2tJUuW2OO2bdtyfw8AQJGVKVPG43br69ev1+7duw0mujDKhxdYvny5Tp48aY+55AIAuFS+dLt1yocXKHjJJTg42ONjkgEAKIqEhATVq1fPHs+YMUOWZRlMdH6UD8Py8/M97u/RsmVLValSxWAiAIAvOvt263v37vXa261TPgzbuHGjjhw5Yo+55AIAKC5fud065cOwgpdcJMoHAKD4rrjiCrVq1UrBwcFq166d2rVrZzrSOYWYDhDoCpaP+Ph41alTx2AaAICvGz9+vKpVq6bo6GjTUc6L8mHQnj17tGPHDnvMqgcA4I+Kj483HeGiuOxiEJdcAACBiPJhUMHyERsbq4SEBINpAABwBuXDkGPHjmn16tX2uHPnznyQHAAgIPBqZ8jChQuVn59vj7nkAgAIFJQPQwpecomIiFCbNm0MpgEAwDmUDwNOnz6tpUuX2uPk5GSFhYUZTAQAgHMoHwZ89tlnOnXqlD3u2rWruTAAADiM8mFAnTp1NGTIEF1xxRUKCQlR+/btTUcCAMAxLstbP/LOELfbraioKGVkZCgyMrJUf5ZlWfrhhx9Ut27dUv05AAA4oaivoax8GORyuSgeAICAQ/kAAACOonwAAABHUT4AAICjKB8AAMBRlA8AAOAoygcAAHAU5QMAADiK8gEAABxF+QAAAI6ifAAAAEdRPgAAgKMoHwAAwFGUDwAA4CjKBwAAcBTlAwAAOIryAQAAHEX5AAAAjqJ8AAAAR1E+AACAoygfAADAUZQPAADgKMoHAABwFOUDAAA4ivIBAAAcRfkAAACOonwAAABHUT4AAICjKB8AAMBRlA8AAOAoygcAAHAU5QMAADiK8gEAABxF+QAAAI6ifAAAAEdRPgAAgKNCTAcAAADOcrlc9q8ty3L857PyAQAAHEX5AAAAjqJ8AAAAR1E+AACAoygfAADAUZQPAADgKMoHAABwlF+WjzfeeEO1a9dWeHi4EhIS9OWXX5qOBAAA/svvysfs2bM1dOhQPfnkk9q8ebNuuOEGtWvXTvv373c8y8mTJ7V//37t2LFDmzZtcvznAwDgjS65fPTu3VurVq0qjSwlYuzYserbt6/69eun+vXr67XXXlNcXJwmTpzoeJb/+7//0xVXXKH4+HjdfPPNjv98AAC80SWXjxMnTigpKUlXXXWVRo8erUOHDpVGrmLJyclRamqqkpKSPOaTkpK0du3ac35Ndna23G63x6OkRERE2L8+ceKEkVvYAgDgbS65fMyfP1+HDh3S4MGDNXfuXNWqVUvt2rXTvHnzdObMmdLIWGTHjh1TXl6eoqOjPeajo6OVlpZ2zq8ZM2aMoqKi7EdcXFyJ5alQoYL967y8PGVnZ5fY9wYAwFcVa89HlSpV9PDDD2vz5s36+uuvdeWVV6pXr16KjY3VI488ov/85z8lnfOSFPzAHOm3D805e+53I0aMUEZGhv04cOBAieUouPIh/bb6AQBAoPtDG06PHDmipUuXaunSpQoODlb79u21Y8cOXXPNNXr11VdLKmORVa1aVcHBwYVWOdLT0wuthvwuLCxMkZGRHo+SUnDlQ/ptAyoAAIHuksvHmTNnNH/+fHXs2FFXXHGF5s6dq0ceeURHjhzRtGnTtHTpUk2fPl3PPfdcaeS9oNDQUCUkJGjZsmUe88uWLVPz5s0dz8PKBwAAhYVc6hfUqFFD+fn56tGjh77++ms1atSo0DFt27ZVxYoVSyDepXv00UfVq1cvJSYmqlmzZpoyZYr279+vAQMGOJ6FlQ8AAAq75PLx6quvqlu3bgoPDz/vMZUqVdLevXv/ULDiuvPOO3X8+HE999xzOnLkiOLj47Vo0SJdccUVjmdh5QMAgMIuuXz06tWrNHKUqAcffFAPPvig6RisfAAAcA5+d4dTb8LKBwAAhVE+StHZKx+UDwAAKB+l6uyVDy67AABA+ShVZcqUUVhYmD1m5QMAAMpHqSt46YWVDwAAKB+l7uwPlwMAINBd8lttcWlY+QAAeBvTn7LOykcpY+UDAABPlI9SxsoHAACeKB+ljJUPAAA8UT5KWcGVD8oHAACUj1JXcOWDyy4AAFA+Sh0rHwAAeKJ8lLKCKx9ZWVnKzc01mAYAAPMoH6Xs7A+X49ILACDQUT5KGR8uBwCAJ+5wWsrq1KmjTp06qXz58oqIiFBoaKjpSAAAGOWyTN9j1cu43W5FRUUpIyNDkZGRpuMAAOAzivoaymUXAADgKMoHAABwFOUDAAA4ivIBAAAcRfkAAACOonwAAABHUT4AAICjKB8AAMBRlA8AAOAoygcAAHAU5QMAADiK8gEAABxF+QAAAI6ifAAAAEdRPgAA8HO7du3Sr7/+ajqGjfIBAICfu/fee1WlShUlJibqX//6l+k4lA8AAPxZRkaGUlNTlZ+fr9TUVO3du9d0JMoHAAD+bNWqVcrPz7fHN910k8E0v6F8AADgx7744gv710FBQbrxxhsNpvlvDtMBAABA6Vm+fLn964SEBEVFRRlM8xvKBwAAfur48ePaunWrPW7Tpo3BNP9D+QAAwE+tWLHCY+wN+z0kygcAAH6r4H6PkJAQtWjRwmCa/6F8AADgpwru97j++utVoUIFg2n+h/IBAIAfOnLkiHbt2mWPvWW/h0T5AADAL3nrfg+J8gEAgF8qeMklLCxMzZo1M5jGE+UDAAA/VHCzafPmzRUeHm4wjSfKBwAAfmb//v3as2ePPfamSy4S5QMAAL9TcNVD8q7NphLlAwAAv1Nwv0f58uXVpEkTg2kKo3wAAOBHLMvyWPlo2bKlQkNDDSYqjPIBAIAf2bNnjw4cOGCPvW2/h0T5AADAr3j7fg+J8gEAgF8puN8jKipK1113ncE050b5AADAT5y93+PGG29USEiIwUTnRvkAAMBP7Nq1S0ePHrXH3rjfQ6J8AADgN3xhv4dE+QAAwG8U3O9RpUoVNWjQwGCa86N8AADgJ44fP27/unXr1goK8s6Xee/bhQIAAIplxYoVSk9P14oVKxQdHW06znlRPgAA8CPVq1dX9+7dTce4IO9cjwEAAH6L8gEAABxF+fAy+fn5Wrp0qZ599lnTUQAAKBXs+fAin376qYYMGaLdu3dLknr06KGrr77acCoAAEoWKx9epEKFCnbxkKSJEycaTAMAQOmgfHiR5s2bq1GjRvZ46tSpyszMNBcIAIBSQPnwIi6XS4MGDbLHGRkZmjlzpsFEAACUPMqHl7n77rtVsWJFezxhwgRZlmUuEAAAJYzy4WXKlSunPn362ONt27Zp9erVBhMBAFCyKB9eaODAgXK5XPZ4woQJBtMAAFCyKB9e6Morr1RycrI9nj9/vo4cOWIwEQAAJYfy4aUKbjzNzc3VlClTDKYBAKDkUD68VHJysurUqWOPJ0+erDNnzhhMBABAyfCJ8rFv3z717dtXtWvXVtmyZVW3bl0988wzysnJ8Thu//796tSpk8qXL6+qVatqyJAhhY7xFcHBwRo4cKA9PnLkiD744AODiQAAKBk+UT6+/fZb5efna/LkydqxY4deffVVTZo0SU888YR9TF5enjp06KDMzEytXr1as2bN0vz58zVs2DCDyf+YPn36KDw83B6z8RQA4A9clo/eROKf//ynJk6cqB9++EGStHjxYnXs2FEHDhxQbGysJGnWrFnq3bu30tPTFRkZWaTv63a7FRUVpYyMjCJ/TWnq27ev3n77bXu8bds2NWjQwGAiAADOraivoT6x8nEuGRkZqly5sj3+6quvFB8fbxcPSWrbtq2ys7OVmppqImKJKLjxVGL1AwDg+3yyfOzZs0fjxo3TgAED7Lm0tDRFR0d7HFepUiWFhoYqLS3tvN8rOztbbrfb4+FNGjdurGbNmtnj6dOn69dffzUXCACAP8ho+Rg5cqRcLtcFHxs3bvT4msOHDys5OVndunVTv379PJ4reGOu31mWdc75340ZM0ZRUVH2Iy4urmR+cyWo4OrHqVOnNG3aNINpAAD4Y4zu+Th27JiOHTt2wWNq1aplb7o8fPiw2rRpo+uvv17vvPOOgoL+152efvppffTRR9q6das998svv6hy5cpavny52rRpc87vn52drezsbHvsdrsVFxfnNXs+pN8yXn755UpPT5ckXX311dq1a5fH7x8AANOKuucjxMFMhVStWlVVq1Yt0rGHDh1SmzZtlJCQoKlTpxZ64W3WrJmef/55HTlyRDVq1JAkLV26VGFhYUpISDjv9w0LC1NYWFjxfxMOCAsLU//+/fX8889Lknbv3q3PP/9ct956q+FkAABcOp/4p/Phw4fVunVrxcXF6eWXX9ZPP/2ktLQ0j70cSUlJuuaaa9SrVy9t3rxZn3/+uf72t7+pf//+XrOC8Uc88MADCg4Otsfjx483mAYAgOLzifKxdOlSff/991q+fLlq1qypGjVq2I/fBQcH65NPPlF4eLhatGih7t27q2vXrnr55ZcNJi85cXFx6tKliz1euHCh9u3bZy4QAADF5LP3+Sgt3nafj4K++OIL3XTTTfb4scce0wsvvGAwEQAA/+P39/kIRK1bt9Y111xjj1NSUpSVlWUwEQAAl47y4UNcLpcefPBBe3z8+HHNmTPHYCIAAC4d5cPH3HPPPYqIiFDFihX16KOP6oYbbjAdCQCAS2L0rba4dBEREVqyZIkaNWqkcuXKmY4DAMAlo3z4oObNm5uOAABAsXHZBQAAOIryAQAAHEX5AAAAjqJ8AAAAR1E+AACAoygfAADAUZQPAADgKMoHAABwFOUDAAA4ivIBAAAcRfkAAACOonwAAGDI3Llz9euvv5qO4TjKBwAABqxdu1Z33XWX4uPjtXTpUtNxHEX5AADAYZmZmbrnnnuUn5+vQ4cOqW3bttq8ebPpWI6hfAAA4LDhw4drz5499vjuu+/WddddZzCRsygfAAA4aNmyZXrjjTfscWxsrMaPH28wkfMoHwAAOOTXX39Vnz59PObeeustVapUyVAiMygfAAA45OGHH9bBgwft8QMPPKDk5GSDicygfAAA4IAPP/xQ7777rj2uXbu2Xn75ZYOJzKF8AABQytLT03X//ffbY5fLpWnTpqlChQoGU5lD+QgwWVlZGjhwoGbPnm06CgAEBMuyNHDgQP3000/23KOPPqobbrjBYCqzKB8BZM+ePWrevLkmTZqk/v37a/fu3aYjAYDfmzlzpt5//317fM0112jUqFEGE5lH+Qgg06ZNs29ic+LECXXr1k2nT582nAoA/NfBgwc1ePBgexwcHKx3331X4eHhBlOZR/kIIE8//bTHMt+2bdv08MMPG0wEAP7Lsiz17dtXGRkZ9txTTz2lhIQEg6m8A+UjgISEhOi9995TtWrV7Lk333xT06dPN5gKAPzT5MmTPT6zJSEhQU8++aTBRN6D8hFgLrvsMs2cOVMul8ueGzBggHbu3GkwFQD4lz179uhvf/ubPQ4LC9O7776rMmXKGEzlPSgfAejWW2/V008/bY9PnTqlbt26KTMz02AqAPAPeXl5uvfeez3+Tn3++ed1zTXXGEzlXSgfAer//u//dPPNN9vjnTt3auDAgbIsy2AqAPB9Y8eO1Zo1a+zxDTfcoKFDh5oL5IUoHwEqODhYM2fOVExMjD03ffp0vf322wZTAYBv++abb/TUU0/Z4/Lly+udd95RcHCwwVTeh/IRwKKjozVr1iwFBf3vj8HgwYO1detWg6kAwDedOXNG99xzj3Jycuy5V155RXXq1DGYyjtRPgJcq1atPG52k5WVpW7dusntdhtMBQC+Z9SoUfa9lCQpOTnZ45bq+B/KB/TYY4+pXbt29vg///mP+vfvz/4PACiiDRs26Pnnn7fHFStWVEpKisc7C/E/lA8oKChI7777rmrWrGnPzZkzRxMnTjSYCgB8g2VZGjRokPLy8uy58ePH67LLLjOYyrtRPiBJqlq1qmbPnq2QkBB77pFHHtHGjRsNpgIA7+dyufTee++pZcuWkqS//OUvuvvuuw2n8m6UD9iaN2+uF1980R7n5OSoW7du+uWXXwymAgDvV7duXa1YsUKvv/66Jk6cyOWWi3BZXNj34Ha7FRUVpYyMDEVGRpqO4zjLsnTbbbfpo48+sue6dOmiDz74gP+ZAAAXVNTXUFY+4MHlcmnq1KmqVauWPffRRx/ptddeM5YJAOBfKB8opFKlSpo7d65CQ0PtueHDh+urr74ymAoA4C8oHzinxMREjR071h7n5uaqe/fuOnbsmMFUAAB/QPnAeT344IPq1q2bPT548KDuuece5efnG0wFAPB1lA+cl8vlUkpKiq688kp7bvHixZo7d67BVAAAX0f5wAVFRkZq3rx5CgsLU3BwsF566SV1797ddCwAgA8LufghCHTXXnutpk6dqssvv1wtWrQwHQcA4OMoHyiSHj16mI4AAPATXHYBAACOonwAAABHUT4AAICjKB8AAMBRlA8AAOAoygcAAHAU5QMAADiK8gEAABxF+QAABKSsrCx9++23pmMEJMoHACDg/Pzzz7r11lvVqlUr/fDDD6bjBBzKBwAgoOzdu1fNmzfX6tWrlZ6ernbt2un48eOmYwUUygcAIGBs3LhRzZo103fffWfPpaena8+ePQZTBR7KBwAgICxatEitWrXS0aNH7bnLL79ca9asUdOmTQ0mCzyUDwCA33vzzTfVuXNnnTp1yp5r1KiRvvrqK11zzTUGkwUmygcAwG9ZlqWnnnpK999/v/Ly8uz5tm3batWqVYqNjTWYLnCFmA4AAEBpyMnJUd++fTVjxgyP+T59+mjSpEkqU6aMoWRg5QMA4HcyMjLUvn37QsVj5MiRSklJoXgYxsoHAMCvHDx4UO3bt9f27dvtuZCQEE2ZMkX33XefwWT4HeUDAOA3tm3bpvbt2+vQoUP2XIUKFTR//nwlJSUZTIaCKB8AAL/w+eef6/bbb5fb7bbnatSooUWLFqlRo0bmgqEQ9nwAAHzeu+++q+TkZI/i8ac//Unr1q2jeHghygcAwGdZlqVRo0bp3nvvVW5urj3funVrrV69WpdffrnBdDgfLrsAAHxSbm6uBg4cqJSUFI/5u+++W2+//bbCwsIMJcPFsPIBAPA5J0+eVOfOnQsVj8cff1zTp0+neHg5Vj4AAD4lLS1NHTp00KZNm+y5oKAgjR8/XgMHDjSYDEXlcysf2dnZatSokVwul7Zs2eLx3P79+9WpUyeVL19eVatW1ZAhQ5STk2MmKACgxGVlZally5YexaNs2bL64IMPKB4+xOfKx/Dhw895L/68vDx16NBBmZmZWr16tWbNmqX58+dr2LBhBlICAEpDeHi4HnnkEXtcrVo1rVixQp07dzaYCpfKpy67LF68WEuXLtX8+fO1ePFij+eWLl2qnTt36sCBA3Y5eeWVV9S7d289//zzioyMNBEZAFDCBg0apB9//FEffvihFi9erLp165qOhEvkMysfR48eVf/+/TV9+nSVK1eu0PNfffWV4uPjPVZF2rZtq+zsbKWmpp73+2ZnZ8vtdns84Bvy8vK0Zs0a0zEAGPDCCy/o66+/pnj4KJ8oH5ZlqXfv3howYIASExPPeUxaWpqio6M95ipVqqTQ0FClpaWd93uPGTNGUVFR9iMuLq5Es6P0vPHGG2rZsqV69+6tn3/+2XQcAA4KCgpSxYoVTcdAMRktHyNHjpTL5brgY+PGjRo3bpzcbrdGjBhxwe/ncrkKzVmWdc75340YMUIZGRn248CBA3/494XSt2/fPvvPw7Rp01S/fn3NmzdPlmUZTgYAuBijez4GDx6su+6664LH1KpVS6NGjdK6desKvW87MTFRPXv21LRp0xQTE6P169d7PP/LL7/ozJkzhVZECgoLC+P94D5o0aJFyszMtMfp6enq1q2bunbtqgkTJpxzUzIAwDu4LB/4p+L+/fs99mIcPnxYbdu21bx583T99derZs2aWrx4sTp27KiDBw+qRo0akqTZs2fr3nvvVXp6epE3nLrdbkVFRSkjI4NNql5u5cqV6tevn77//nuP+aioKL3yyivq06fPBVe9AAAlq6ivoT5RPs62b98+1a5dW5s3b7Y/MCgvL0+NGjVSdHS0/vnPf+rnn39W79691bVrV40bN67I35vy4VtOnz6tZ599Vi+//LLy8vI8nrvppps0ZcoUNqQBgEOK+hrqExtOiyI4OFiffPKJwsPD1aJFC3Xv3l1du3bVyy+/bDoaSlHZsmX1wgsvaP369br22ms9nlu+fLkaNGigsWPHFiomAABzfHLlozSx8uG7zpw5o5dfflnPPvussrOzPZ5r2rSpUlJS1KBBA0PpAMD/BdzKB1CmTBmNGDFCW7ZsUYsWLTye+/rrr9W4cWM988wzhYoJAMBZlA/4nXr16mnVqlUaP368KlSoYM/n5ubqueeeU+PGjbVu3TqDCQEgsFE+4JeCgoI0aNAg7dixQ8nJyR7P7dy5U82bN9fQoUN18uRJQwkBIHBRPuDXLr/8ci1atEjTp09X5cqV7XnLsvT666+rQYMGWrZsmcGEABB4KB/wey6XS3/961+1a9euQje127dvn5KSktSnTx/98ssvhhICQGChfCBgVK9eXe+9954++uijQndAnTp1qurXr6/58+cbSgcAgYPygYDTuXNn7dy5Uw888IDH/NGjR3XHHXfooYceMpQMAAID5QMBKSoqSpMmTdIXX3yhK6+80uO5du3aGUoFAIGB8oGA1rp1a23dulV///vfFRQUpJ49e6p9+/amYwGAX+MOp2fhDqeBa+PGjapVq5aqVq1qOgoA+KSivoaGOJgJ8GqJiYmmIwBAQOCyCwAAcBTlAwAAOIryAQAAHEX5AIAAZ1mW1q5dqz59+qhfv36m4yAAsOEUAALUTz/9pOnTpyslJUW7du2SJIWGhurFF19UlSpVDKeDP2PlAwACSH5+vpYuXaru3bvrsssu07Bhw+ziIUk5OTmaMWOGwYQIBKx8AEAAOHjwoKZOnaq33npLP/7443mPu/nmm1WvXj0HkyEQUT4AwE+dOXNGCxcuVEpKipYsWaL8/PxzHhcbG6v77rtPffr0UZ06dRxOiUBE+QAAP7N792699dZbeuedd5Senn7OY4KDg9WxY0f169dPycnJCgnh5QDO4U8bAPiB06dPa/78+UpJSdHKlSvPe1zdunXVt29f9e7dWzVq1HAwIfA/lA8A8GFbtmxRSkqKZsyYoYyMjHMeExYWpr/85S/q16+fWrVqpaAg3msAsygfAOBjMjIy9N577yklJUWpqannPa5Bgwbq37+/evbsqcqVKzuYELgwygcA+JCZM2fq/vvv16lTp875fIUKFdSjRw/1799fiYmJcrlcDicELo7yAfi4X3/9VVFRUbzIBIgGDRqcs3g0a9ZM/fr1U/fu3VWhQgUDyYCio3wAPu7222/XN998o+bNm6tFixZq0aKFEhISFBYWZjoaSkHDhg3VtGlTff3116pSpYruuece9e3bV3/6059MRwOKzGVZlmU6hDdxu92KiopSRkaGIiMjTccBLujMmTOqWLFioX8Jh4WFKTEx0S4jzZo1U7Vq1QylRElbvHix3G63unbtSsmEVynqayjl4yyUD/iSjRs3qkmTJkU69uqrr7bLSIsWLfT//t//41INgBJF+Sgmygd8yZEjRzRnzhytWbNGa9as0eHDh4v8tVWqVPG4VJOYmKjw8PBSTAvA31E+ionyAV9lWZZ+/PFHu4isWbNG27dvV1H/Fw8NDVVCQoJHIalevXoppwbgTygfxUT5gD/JyMjQunXr7DKyfv16ZWZmFvnrr7zySrVo0UJ9+vTRjTfeWIpJAfgDykcxUT7gz3Jzc7Vt2zaP1ZGDBw9e9OtSUlLUt29fBxIC8GWUj2KifCDQ7N+/3y4ia9eu1datWwt9+umuXbu89mPW8/PzlZOTo+zsbOXk5Hg8zp4rOO7YsSPvFAFKGOWjmCgfCHQnTpzQ+vXr7ULy/fffa8+ePY69M2b48OFKTU29YHEoOM7LyyvWzzl69Ch7WoASVtTXUG4yBsBDRESEbrnlFt1yyy2SftvI6uRbcjdv3qzly5eX+s/Jzs4u9Z8B4Nz4aEMAF+T0vUBCQ0Md+Tk5OTmO/BwAhbHyAcCrNGzYUJmZmQoNDVVoaKjCwsLsX19sfCnHxsXFmf6tAgGLPR9nYc8HAADFU9TXUC67AAAAR1E+AACAoygfAADAUZQPAADgKMoHAABwFOUDAAA4ivIBAAAcRfkAAACOonwAAABHUT4AAICjKB8AAMBRlA8AAOAoygcAAHAU5QMAADiK8gEAABxF+QAAAI6ifAAAAEeFmA7gbSzLkiS53W7DSQAA8C2/v3b+/lp6PpSPs5w4cUKSFBcXZzgJAAC+6cSJE4qKijrv8y7rYvUkwOTn5+vw4cOKiIiQy+UyHcdRbrdbcXFxOnDggCIjI03H8Xmcz5LHOS15nNOSFejn07IsnThxQrGxsQoKOv/ODlY+zhIUFKSaNWuajmFUZGRkQP5PU1o4nyWPc1ryOKclK5DP54VWPH7HhlMAAOAoygcAAHAU5QO2sLAwPfPMMwoLCzMdxS9wPkse57TkcU5LFuezaNhwCgAAHMXKBwAAcBTlAwAAOIryAQAAHEX5AAAAjqJ8wEN2drYaNWokl8ulLVu2eDy3f/9+derUSeXLl1fVqlU1ZMgQ5eTkmAnqxfbt26e+ffuqdu3aKlu2rOrWratnnnmm0LnifF6aN954Q7Vr11Z4eLgSEhL05Zdfmo7kM8aMGaMmTZooIiJC1atXV9euXfXdd995HGNZlkaOHKnY2FiVLVtWrVu31o4dOwwl9i1jxoyRy+XS0KFD7TnO54VRPuBh+PDhio2NLTSfl5enDh06KDMzU6tXr9asWbM0f/58DRs2zEBK7/btt98qPz9fkydP1o4dO/Tqq69q0qRJeuKJJ+xjOJ+XZvbs2Ro6dKiefPJJbd68WTfccIPatWun/fv3m47mE1auXKlBgwZp3bp1WrZsmXJzc5WUlKTMzEz7mJdeekljx47V+PHjtWHDBsXExOjWW2+1P+8K57ZhwwZNmTJFDRs29JjnfF6EBfzXokWLrHr16lk7duywJFmbN2/2eC4oKMg6dOiQPffee+9ZYWFhVkZGhoG0vuWll16yateubY85n5emadOm1oABAzzm6tWrZz3++OOGEvm29PR0S5K1cuVKy7IsKz8/34qJibFeeOEF+5isrCwrKirKmjRpkqmYXu/EiRPWVVddZS1btsxq1aqV9fDDD1uWxfksClY+IEk6evSo+vfvr+nTp6tcuXKFnv/qq68UHx/vsSrStm1bZWdnKzU11cmoPikjI0OVK1e2x5zPosvJyVFqaqqSkpI85pOSkrR27VpDqXxbRkaGJNl/Jvfu3au0tDSPcxwWFqZWrVpxji9g0KBB6tChg2655RaPec7nxfHBcpBlWerdu7cGDBigxMRE7du3r9AxaWlpio6O9pirVKmSQkNDlZaW5lBS37Rnzx6NGzdOr7zyij3H+Sy6Y8eOKS8vr9D5io6O5lwVg2VZevTRR9WyZUvFx8dLkn0ez3WOf/zxR8cz+oJZs2Zp06ZN2rBhQ6HnOJ8Xx8qHHxs5cqRcLtcFHxs3btS4cePkdrs1YsSIC34/l8tVaM6yrHPO+6Oins+CDh8+rOTkZHXr1k39+vXzeC7Qz+elOvu8cK6KZ/Dgwdq2bZvee++9Qs9xjovmwIEDevjhhzVjxgyFh4ef9zjO5/mx8uHHBg8erLvuuuuCx9SqVUujRo3SunXrCn0WQWJionr27Klp06YpJiZG69ev93j+l19+0ZkzZwq1e39V1PP5u8OHD6tNmzZq1qyZpkyZ4nEc57PoqlatquDg4EKrHOnp6ZyrS/TQQw9pwYIFWrVqlWrWrGnPx8TESPrtX+w1atSw5znH55aamqr09HQlJCTYc3l5eVq1apXGjx9vv5OI83kBBvebwEv8+OOP1vbt2+3Hp59+akmy5s2bZx04cMCyrP9tkDx8+LD9dbNmzWKD5HkcPHjQuuqqq6y77rrLys3NLfQ85/PSNG3a1Bo4cKDHXP369dlwWkT5+fnWoEGDrNjYWGv37t3nfD4mJsZ68cUX7bns7Gw2SJ6H2+32+Dtz+/btVmJiovXXv/7V2r59O+ezCCgfKGTv3r2F3u2Sm5trxcfHWzfffLO1adMm67PPPrNq1qxpDR482FxQL3Xo0CHryiuvtG666Sbr4MGD1pEjR+zH7zifl2bWrFlWmTJlrLfeesvauXOnNXToUKt8+fLWvn37TEfzCQMHDrSioqKsFStWePx5PHXqlH3MCy+8YEVFRVnvv/++tX37dqtHjx5WjRo1LLfbbTC57yj4bhfL4nxeDOUDhZyrfFjWbyskHTp0sMqWLWtVrlzZGjx4sJWVlWUmpBebOnWqJemcj4I4n5dmwoQJ1hVXXGGFhoZajRs3tt8mios735/HqVOn2sfk5+dbzzzzjBUTE2OFhYVZN954o7V9+3ZzoX3M2eWD83lhLsuyLANXewAAQIDi3S4AAMBRlA8AAOAoygcAAHAU5QMAADiK8gEAABxF+QAAAI6ifAAAAEdRPgAAgKMoHwAAwFGUDwAA4CjKBwCv9tNPPykmJkajR4+259avX6/Q0FAtXbrUYDIAxcVnuwDweosWLVLXrl21du1a1atXT9ddd506dOig1157zXQ0AMVA+QDgEwYNGqTPPvtMTZo00datW7VhwwaFh4ebjgWgGCgfAHzC6dOnFR8frwMHDmjjxo1q2LCh6UgAiok9HwB8wg8//KDDhw8rPz9fP/74o+k4AP4AVj4AeL2cnBw1bdpUjRo1Ur169TR27Fht375d0dHRpqMBKAbKBwCv9/e//13z5s3T1q1bVaFCBbVp00YRERFauHCh6WgAioHLLgC82ooVK/Taa69p+vTpioyMVFBQkKZPn67Vq1dr4sSJpuMBKAZWPgAAgKNY+QAAAI6ifAAAAEdRPgAAgKMoHwAAwFGUDwAA4CjKBwAAcBTlAwAAOIryAQAAHEX5AAAAjqJ8AAAAR1E+AACAoygfAADAUf8fbrvOF6Q/tGwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ + "cosmo = clmm.Cosmology(H0=70.0, Omega_dm0=0.27 - 0.045, Omega_b0=0.045, Omega_k0=0.0)\n", + "halo = clmm.Modeling(massdef=\"critical\", delta_mdef=200, halo_profile_model=\"nfw\")\n", + "halo.set_cosmo(cosmo)\n", + "halo.set_concentration(4)\n", + "halo.set_mass(1.0e15)\n", + "z_cl = 1.0\n", + "# source properties\n", + "z_source = 2.0 # all sources in the same plane\n", + "\n", + "shear_obj = dss.shear.ShearNFW(halo, z_cl)\n", "# generate positions\n", "radius = 50 # arcsec\n", "n_gal = 20\n", @@ -73,26 +146,94 @@ "# get the shear\n", "shear_list = []\n", "for ss in shift_list:\n", - " shear_list.append(shear_obj.get_shear(z_source, ss))" + " shear_list.append(shear_obj.get_shear(z_source, ss))\n", + "\n", + "gamma = []\n", + "for ss in shear_list:\n", + " gamma.append(ss.g1 + 1j * ss.g2) \n", + "gamma = np.array(gamma)\n", + "\n", + "angles = np.angle(gamma, deg=True) / 2.\n", + "lengths = np.abs(gamma) * 100.\n", + "\n", + "# Create whisker plot\n", + "plt.figure(figsize=(6, 6))\n", + "plt.quiver(x, y, np.cos(np.deg2rad(angles)), np.sin(np.deg2rad(angles)),\n", + " color=\"black\", headaxislength=0, headlength=0, headwidth=1, pivot = 'middle')\n", + "plt.xlabel('x')\n", + "plt.ylabel('y')\n", + "plt.show()" ] }, { "cell_type": "code", - "execution_count": 5, - "id": "3d6955d3-7c6d-4d68-a81f-fa8f2003c06f", + "execution_count": 60, + "id": "a7ecb75e-dbff-48b4-a495-bfe7f544eb14", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[ 1 3 9 27 81 243 729 2187 6561 19683\n", + " 59049 177147]\n", + "[2.78361124e-01 2.74640017e-01 2.56551659e-01 1.98359090e-01\n", + " 1.02796620e-01 3.27933044e-02 7.20665320e-03 1.26455112e-03\n", + " 1.95016137e-04 2.78421302e-05 3.78395338e-06 4.97313342e-07]\n" + ] + }, + { + "data": { + "text/plain": [ + "Text(0, 0.5, '$|g|$')" + ] + }, + "execution_count": 60, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAG1CAYAAAAcMztGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABNQklEQVR4nO3deVhU9eIG8PfMDMMOyqoIKuYGoiADkriU1cVLqWFlZS5oZllWV723fnm9LdYty255KwdzzS3L0rSybkalaa6A4Ia7KCgIosgqDMx8f3+IU4TLjDCcWd7P88yTnDkz553zYPN6zvd7jiSEECAiIiIiKOQOQERERGQtWIyIiIiI6rEYEREREdVjMSIiIiKqx2JEREREVI/FiIiIiKgeixERERFRPRYjIiIionoquQPYGoPBgPz8fHh6ekKSJLnjEBERkQmEECgvL0dQUBAUiusfF2IxMlN+fj5CQkLkjkFERES3IC8vD8HBwdd9nsXIRFqtFlqtFnV1dQCu7FgvLy+ZUxEREZEpysrKEBISAk9PzxuuJ/FeaeYpKyuDt7c3SktLWYyIiIhshKnf3xx8TURERFSPxYiIiIioHosRERERUT0WIyIiIqJ6LEYm0mq1CA8PR2xsrNxRiIiIyEI4K81MnJVGRERkezgrjYiIiMhMLEZERERE9ViMiIiIiOqxGBERERHVYzEiIiIiqsdiZCJO1yciIrJ/nK5vJktN138/9Siy8i5BIQEKSYJCAiRJglKSoFBc+fPV5QpJgvSH9ZQKqf75q8saPq9Q/Pm1UuPtKG78vEKSoFRcWeaqVsJNrYSrkwpu9X92cVLW/1kFFycFJElqtn1DRETUVKZ+f6taMBPdwIGzpdhy9LzcMZqFJAGuTsorj6slSq2CW/3Prmol3Jx+X+5q/LPyT0VL1WD51fdTK1m8iIjIMliMrMQTA0IxpFdbGARgEAIGgzD+WYjf/2wQqH/uOs8bGq575bkrf9YbGr/X1ef1hobrXnlf1D/3+7q1BoFqnR5VtXW4rNPjsk6Pqlo9qnR66OoMAAAhgCrdlWWobP59pVRIDUqW6x+OVrmqlfB0UaGTnzs6B3igc4AHOvi6w0nJs8ZERHRzLEZWIv42P7kjNJneIHC5Vo8q3ZXSdLUcVdde/fPvyy/X6v/w57or/61ffvV1l3V1xp8v6/SoMwjjdspr6lBeU2dSLpVCQntfN3T29zCWpc4BHujk7wEPZ/4VICKi3/FbgZqNUiHBw1llsbKhqzP8oTzVGQvW76XqyrKSSh1OnK/E8aIKnDhfgSqdHifPV+Lk+Ur8mF3Y4D3berugc4AHbqsvTVf/6+eh5uk6IiIHxGJENkOtUkCtUsAbTia/xmAQOFdWjeNFFVce5ytwor4wFVfoUFBajYLSamw9Vtzgdd6uTvVF6fdTcp39PdGutSuUChYmIiJ7xVlpZuJNZO3HpSqd8ajSH4vTmZLLuN7fCmeVAqF/GL909dHR1x0uTsqW/QBERGQyU7+/WYzMxGJk/6prr5x6O15fmK4eYTpZXGkcYP5nCgkI8fl9HNNtfzgt5+1q+hEuIiKyDBYjC2Exclx6g0DexaqGR5nq/1teff2B4P6ezujs74HbAtzri5MnurXxhL+ncwumJyJybCxGFsJiRH8mhMD58hrj+KXfxzJV4lxZ9XVfN7CrP0bFtcfd3QOg4uUEiIgsisWomWm1Wmi1Wuj1ehw9epTFiExSXl3bYIbc1VNzORcqjeOY2ni54JHYEIzs0x5tvF3kDUxEZKdYjCyER4yoOeReqMJnabn4Ii0PFyp1AK5c7uDu7gEYdXsHDOjsBwVnvxERNRsWIwthMaLmVFOnx8aDhfh052nsyrloXN7exw2PxbXHCE0wfD04FomIqKlYjCyExYgs5XhROT7dlYu1GWdQVj+YW61U4K8RbTAqrj36hPrwopNERLeIxchCWIzI0i7r9NiwLx8rd+Vib94l4/IuAR4YFdcew6ODeQkAIiIzsRhZCIsRtaQDZ0vx6a5cfJ119spNeQG4OCkwLDIIo+I6IDKklbwBiYhsBIuRhbAYkRzKqmvxdeZZrNyZiyOF5cblPdt5Y1RcewyLCoKbmnf4ISK6HhYjC2ExIjkJIbAntwSf7szFhv0FxitxezqrMDy6HUbFdUC3Np4ypyQisj4sRhbCYkTW4mKlDmszzuDTXadx6kKVcXlMh9YYfXsH/DWiDe/fRkRUj8XIQliMyNoYDAI7Tl7Ap7tO48eDhagzXPkr3drNCSNiQvBYn/bo6Ocuc0oiInmxGFkIixFZs6KyaqxOy8Nnu3ORX/r77UgGdPG7cvuRsEA48fYjROSAWIwshMWIbIHeILDpcBE+3XUam4+eN95+JMDTGY/GhuDRPu0R1MpV3pBERC2IxegGhg8fjs2bN+Puu+/GmjVrzHotixHZmryLVfg8LRer0/JQXHHl9iMKCbireyBG3d4eA7v4Q8nbjxCRnWMxuoFNmzahoqICy5YtYzEih6GrMyA1uxArd57GjpMXjMuDW7tiZJ/2eDgmBP6evP0IEdknFqOb2Lx5M+bOnctiRA7peFEFPtudizUZZ1B6uRYA4KSUMLhHG4yK64DbO/H2I0RkX0z9/ra6UZhbtmzB0KFDERQUBEmSsH79+kbrpKSkIDQ0FC4uLtBoNNi6dWvLByWyYZ0DPPDykHDs+ufdeG9EJHq3b4VavcCGfQUYuXAn7n7/V3yyLcd4nSQiIkdhdZfKraysRGRkJMaPH48HH3yw0fOrV6/GlClTkJKSgn79+mH+/PlITExEdnY22rdvDwDQaDSoqalp9Noff/wRQUFBZuWpqalp8F5lZWVmfiIi6+XipMSDmmA8qAnGwfxSrNqVi/WZZ3HyfCVmfpuNNRln8MGjUegcwItGEpFjsOpTaZIkYd26dUhKSjIui4uLQ3R0NObNm2dcFhYWhqSkJMyaNcvk9zb1VNprr72GmTNnNlrOU2lkrypq6rAu8yze//EISqpq4eKkwIz7wjE6rj1PrxGRzbLZU2k3otPpkJGRgYSEhAbLExISsH37dotsc/r06SgtLTU+8vLyLLIdImvh4azCmNs74IcpAzGgix+qaw14ef0BPLEsHcUVjY/EEhHZE5sqRsXFxdDr9QgMDGywPDAwEOfOnTP5fQYPHowRI0bg+++/R3BwMNLS0q67rrOzM7y8vBo8iBxBoJcLlo3vg5eHhEOtUuDnw0X463+3YNPhIrmjERFZjNWNMTLFnw/nCyHMOsS/ceNGs7ep1Wqh1Wqh1+vNfi2RrVIoJEzoH4p+nX3xt8+ycKSwHOOXpmHM7R3wz3vD4KrmvdiIyL7Y1BEjPz8/KJXKRkeHioqKGh1Fam6TJ09Gdnb2DY8uEdmr7m288PWz/TC+X0cAwIqdpzF07m84cLZU3mBERM3MpoqRWq2GRqNBampqg+WpqamIj4+XKRWRY3BxUuLVoT2w/PE+8Pd0xvGiCgxP2Yb5v56AwWC1cziIiMxidcWooqICWVlZyMrKAgDk5OQgKysLubm5AIBp06Zh0aJFWLJkCQ4dOoSpU6ciNzcXkyZNsmgurVaL8PBwxMbGWnQ7RNZuYFd/bJwyEAnhgajVC8z632GMWrQL+Zcuyx2NiKjJrG66/ubNmzFo0KBGy5OTk7F06VIAVy7wOHv2bBQUFCAiIgJz5szBwIEDWyQfr3xNdIUQAqvT8jDz22xcrtXDy0WFtx7oiSG9zLtWGBFRS+AtQSyExYiooZziSkz5PBN7z1wZb/RAdDvMHNYDni5OMicjIvqdXV7HSE48lUZ0baF+7ljzdDyeHdQZCgn4as9Z3PvhVmScvih3NCIis/GIkZl4xIjo+tJOXcSUz7Nw9tJlKCTg2bu64Pm7OkOl5L/BiEhePGJERC0utqMP/jdlAIb3bgeDAD78+Rge+ngHThVXyh2NiMgkLEZE1Ky8XJww55EofDiyNzxdVMjKu4R7P9yKL9LywAPURGTtWIxMxDFGROYZFhmEH6YMRFyoD6p0ery4dh+eXrkHJZU6uaMREV0XxxiZiWOMiMyjNwgs2HIS7/14BHUGgUAvZ7w3Igr9u/jJHY2IHAjHGBGRVVAqJDx9521Y90w/dPJ3R2FZDUYv3oU3NmSjupb3HiQi68JiREQtomewN757bgBGxbUHACz+LQdJ2m04WlguczIiot+xGBFRi3FVK/Hm8J5YNDYGvu5qHD5XjiEf/YZPtuVwYDYRWQUWIxNx8DVR87knPBA/TBmIO7v5Q1dnwMxvs5H8SRqKyqrljkZEDo6Dr83EwddEzUcIgRU7T+PN7w6hps4AH3c13n6gJxJ6tJE7GhHZGQ6+JiKrJ0kSxvbtiA3P9UdYWy9crNThyRUZmP7VPlTp6uSOR0QOiMWIiGTXJdAT6yfH48mBnSBJwGe78zDkw9+w78wluaMRkYNhMSIiq+CsUuKf94bh0wlxaOPlgpPFlXggZTu0m45Db+AZfyJqGSxGRGRV4jv74YcpA3Bfz7aoMwi8u/EIRi7YiTMlVXJHIyIHwGJkIs5KI2o5rdzUmPtYb/xnRCTc1UrsPnURif/divWZZ+WORkR2jrPSzMRZaUQt6/SFSkxdnYU9uZcAXLkH2xtJEfB2dZI3GBHZFM5KIyK70MHXHV881RdT7ukCpULCN3vzce8HW7Hr5AW5oxGRHWIxIiKrp1IqMOWervhyUl+093HD2UuX8ejCnZj9w2HU6Q1yxyMiO8JiREQ2I7p9a3z/twEYoQmGEEDK5hOYvGoPaup4M1oiah4sRkRkUzycVXh3RCQ+GtkbaqUCGw8W4oll6bwgJBE1CxYjIrJJQyOD8Mn4WLipldh6rBijF+1C6eVauWMRkY1jMTIRp+sTWZ9+nf2w8ok4eLmosCf3Eh5dsBPny2vkjkVENozT9c3E6fpE1udQQRnGLN6N4ooahPq5Y+UTcWjXylXuWERkRThdn4gcRlhbL3w5qS/atXJFTnElRszbjhPnK+SORUQ2iMWIiOxCqJ87vpzUF5383ZFfWo2HP96Bg/mlcsciIhvDYkREdiOolSu+fKovegR54UKlDo8u2ImM0xfljkVENoTFiIjsiq+HMz578nbEdmyN8uo6jF60G1uPnZc7FhHZCBYjIrI7Xi5OWP54HO7o6o/LtXpMWJqOHw4UyB2LiGwAixER2SVXtRILx8bg3p5toNMb8Myne/Blep7csYjIyrEYEZHdUqsU+GhkNB6OCYZBAC+s2Yclv+XIHYuIrBiLERHZNaVCwjsP9sKE/qEAgNc3ZOODn46Bl3AjomthMTIRr3xNZLskScK/7gvD1Hu6AgDm/HQUb353iOWIiBrhla/NxCtfE9m2Jb/l4PUN2QCAR2JC8NYDPaFUSDKnIiJL45WviYiu4fH+oXj3oV5QSMDq9Dw8/1kmdHUGuWMRkZVgMSIihzMiJgQpo6LhpJTw3f4CTFyejss6vdyxiMgKsBgRkUP6a0RbLE6OhauTEr8ePY+xS3ahrLpW7lhEJDMWIyJyWAO7+mPFhD7wdFEh7VQJRi7YiQsVNXLHIiIZsRgRkUOL6eiDz5+8Hb7uahzML8PD83egoPSy3LGISCYsRkTk8HoEeeOLSX0R5O2CE+cr8dC8HcgprpQ7FhHJgMWIiAjAbf4e+PLpeIT6uePspcsY8fEOHCookzsWEbUwFiMionrtWrnii6f6onsbTxRX1OCR+TuwJ7dE7lhE1IJYjIiI/sDf0xmrn+yL6PatUFZdh9GLdmHb8WK5YxFRC2ExIiL6E283J6yYEIf+nf1QpdNj/Cdp+PHgObljEVELcLhilJeXhzvvvBPh4eHo1asXvvzyS7kjEZEVcndWYfG4GAzuEQid3oCnP92Dr/ackTsWEVmYw90rraCgAIWFhYiKikJRURGio6Nx5MgRuLu7m/R63iuNyLHU6Q14ce0+fLXnLADg9ft7YGzfjvKGIiKz8V5p19G2bVtERUUBAAICAuDj44OLFy/KG4qIrJZKqcB/HorEuPiOAIBXvj4I7abjcLB/UxI5DKsrRlu2bMHQoUMRFBQESZKwfv36RuukpKQgNDQULi4u0Gg02Lp16y1tKz09HQaDASEhIU1MTUT2TKGQ8OrQcDx/V2cAwLsbj+Dt/x1mOSKyQ1ZXjCorKxEZGYm5c+de8/nVq1djypQpmDFjBjIzMzFgwAAkJiYiNzfXuI5Go0FERESjR35+vnGdCxcuYOzYsViwYIHFPxMR2T5JkjAtoRtm3BsGAJi/5ST+ue4A9AaWIyJ7YtVjjCRJwrp165CUlGRcFhcXh+joaMybN8+4LCwsDElJSZg1a5ZJ71tTU4O//OUvmDhxIsaMGXPTdWtqfr93UllZGUJCQjjGiMiBfb47F9PX7YcQwNDIILz/cCSclFb370wi+gO7HGOk0+mQkZGBhISEBssTEhKwfft2k95DCIFx48bhrrvuumkpAoBZs2bB29vb+OBpNyJ6tE97fDSyN1QKCd/uzcdTKzJQXauXOxYRNQObKkbFxcXQ6/UIDAxssDwwMBDnzpl2jZFt27Zh9erVWL9+PaKiohAVFYX9+/dfd/3p06ejtLTU+MjLy2vSZyAi+zCkVxAWjo2Bs0qBXw4XYeyS3SivrpU7FhE1kUruALdCkqQGPwshGi27nv79+8NgMJi8LWdnZzg7O0Or1UKr1UKv578KieiKQd0DsPzxPpiwLB27cy5i1KJdWDq+D3zc1XJHI6JbZFNHjPz8/KBUKhsdHSoqKmp0FKm5TZ48GdnZ2UhLS7PodojItsR18sVnE2+Hj7sa+86U4pH5O3CutFruWER0i2yqGKnVamg0GqSmpjZYnpqaivj4eJlSEZGj6xnsjS+euh2BXs44VlSBEfO3I/dCldyxiOgWWF0xqqioQFZWFrKysgAAOTk5yMrKMk7HnzZtGhYtWoQlS5bg0KFDmDp1KnJzczFp0iSL5tJqtQgPD0dsbKxFt0NEtqlzgCfWTIpHB1835F28jIc+3o4j58rljkVEZrK66fqbN2/GoEGDGi1PTk7G0qVLAVy5wOPs2bNRUFCAiIgIzJkzBwMHDmyRfLwlCBHdSFFZNcYs3o0jheVo5eaEpeP7ICqkldyxiByeqd/fVleMrB2LERHdzKUqHZI/ScPevEtwVyuxfEIcNB1ayx2LyKHZ5XWMiIhsQSs3NT59Ig59O/miUqfH40vTcPhcmdyxiMgELEYm4hgjIjKHh7MKi8fFILp9K5RersWYxbs5IJvIBvBUmpl4Ko2IzHGpSodH5u/EkcJytPdxw5pJfRHg5SJ3LCKHw1NpRERWoJWbGism9EF7HzfkXqzCmMW7UVrFK2QTWSsWIyIiCwvwcsHKCXHw93TGkcJyjF+6G1W6OrljEdE1sBiZiGOMiKgp2vu6YcWEPvByUWFP7iU8tSIDujrTb09ERC2DY4zMxDFGRNQUGadLMHrRLlyu1eO+Xm3x4aO9oVSYdq9HIrp1HGNERGSFNB1aY/4YDZyUEr7bV4B/rT8A/vuUyHqwGBERtbCBXf3x30d6Q5KAz3bn4t2NR+SORET1WIxMxDFGRNSc7uvVFm8N7wkASNl8Agu2nJA5EREBHGNkNo4xIqLmNG/zCbzzw2EAwDsP9sQjse1lTkRknzjGiIjIBjx95214amAnAMD0r/bjhwMFMicicmwsRkREMnspsTseiQmBQQDPf5aF344Vyx2JyGGxGBERyUySJLz1QE8kRrSBTm/AkyvSkZlbIncsIofEYkREZAWUCgn/fTQK/Tv7oUqnx/ilaThaWC53LCKHw2JkIs5KIyJLc1YpMX+MBlEhrXCpqhZjFu9C3sUquWMRORTOSjMTZ6URkaVdqtLh4fk7cLSwAh193fDFpL4I8HSROxaRTeOsNCIiG9XKTY0VE+IQ3NoVpy5UIXlJGkov18odi8ghsBgREVmhQC8XrJwQBz8PZxwqKMOEpWm4rNPLHYvI7rEYERFZqY5+7lgxoQ+8XFRIP12Cpz/NgK7OIHcsIrvGYkREZMXC2nphybhYuDgpsPnIefz9y73QGzg0lMhSWIyIiKxcTEcffDxaAyelhG/35uPVbw6A82aILIPFyEScrk9EcrqzWwDefzgKkgSs3JmL91OPyh2JyC5xur6ZOF2fiOS0cudp/Gv9AQDAv+4LwxMDOsmciMg2cLo+EZEdGn17B7wwuBsA4N/fHcKX6XkyJyKyLyxGREQ25pk7b8PEAaEAgP9buw8bD56TORGR/WAxIiKyMZIk4Z/3huHhmGAYBPDcqkxsP14sdywiu8BiRERkgyRJwlvDe2Jwj0Do9AZMXJ6OvXmX5I5FZPNYjIiIbJRKqcAHj/ZGv86+qNTpMe6T3TheVC53LCKbxmJERGTDXJyUmD8mBpHB3iipqsXoRbtxpqRK7lhENovFiIjIxnk4q7B0fB90CfDAubJqjFm8G+fLa+SORWSTWIyIiOxAa3c1VkyIQ7tWrsgprkTykt0oq66VOxaRzWExIiKyE228XbDyiTj4eaiRXVCGJ5am47JOL3csIpvCYmQi3hKEiGxBqJ87lj3eB54uKuw+dRGTV+1Brd4gdywim8FbgpiJtwQhIluQduoixizehepaA+6PCsKch6OgUEhyxyKSDW8JQkTkwGI7+mDeKA1UCglfZ+Vj5rcHwX8HE90cixERkZ0a1D0A7z0cCUkClu04jTk/HZM7EpHVYzEiIrJj90e1w+v3RwAAPvz5GJb8liNzIiLrxmJERGTnxtzeAX//S1cAwOsbsrE244zMiYisF4sREZEDePauzpjQPxQA8OLafUjNLpQ5EZF1YjEiInIAkiRhxr1heDA6GHqDwORVe7DjxAW5YxFZHRYjIiIHoVBIeOfBnvhLeCB0dQZMXJ6O/WdK5Y5FZFVYjIiIHIhKqcBHI3ujbydfVNTUIfmT3TheVCF3LCKrwWJERORgXJyUWJgcg17B3rhYqcPYxbtQUHpZ7lhEVoHFiIjIAXk4q7B0fB/c5u+O/NJqjP8kDeW86SyR4xWj8vJyxMbGIioqCj179sTChQvljkREJAsfdzWWPd4H/p7OOHyuHM+uykQd76tGDs7h7pWm1+tRU1MDNzc3VFVVISIiAmlpafD19TXp9bxXGhHZm31nLuGR+TtxuVaPx+La482kCEgS76tG9oX3SrsOpVIJNzc3AEB1dTX0ej3vH0REDq1XcCt88GgUJAlYtSsXC7aclDsSkWysrhht2bIFQ4cORVBQECRJwvr16xutk5KSgtDQULi4uECj0WDr1q1mbePSpUuIjIxEcHAwXnzxRfj5+TVTeiIi25TQow1evi8cADDrf4fx/f4CmRMRycPqilFlZSUiIyMxd+7caz6/evVqTJkyBTNmzEBmZiYGDBiAxMRE5ObmGtfRaDSIiIho9MjPzwcAtGrVCnv37kVOTg5WrVqFwsLrXwG2pqYGZWVlDR5ERPbo8f6hGBffEQAwdXUW9uSWyBuISAZWPcZIkiSsW7cOSUlJxmVxcXGIjo7GvHnzjMvCwsKQlJSEWbNmmb2Np59+GnfddRdGjBhxzedfe+01zJw5s9FyjjEiInukNwg8tSIDPx0qhK+7Gl89E48Ovu5yxyJqMrscY6TT6ZCRkYGEhIQGyxMSErB9+3aT3qOwsNB41KesrAxbtmxBt27drrv+9OnTUVpaanzk5eXd+gcgIrJySoWED0dGoWc7b1yo1GH80jRcqtLJHYuoxdhUMSouLoZer0dgYGCD5YGBgTh37pxJ73HmzBkMHDgQkZGR6N+/P5599ln06tXruus7OzvDy8urwYOIyJ65qVVYnByDdq1ccfJ8JZ5ckYGaOr3csYhahEruALfiz9NIhRAmTy3VaDTIysoye5tarRZarRZ6Pf/nQET2L8DLBUvGxeKheduxO+ciXlq7H+8/HMlp/GT3bOqIkZ+fH5RKZaOjQ0VFRY2OIjW3yZMnIzs7G2lpaRbdDhGRtejWxhMpo6OhUkhYl3kWc346JnckIouzqWKkVquh0WiQmpraYHlqairi4+NlSkVEZL8GdPHHm8MjAAAf/nwMazLOyJyIyLKs7lRaRUUFjh8/bvw5JycHWVlZ8PHxQfv27TFt2jSMGTMGMTEx6Nu3LxYsWIDc3FxMmjTJorl4Ko2IHNUjse1x+kIVUjafwPSv9iGolQvib+P138g+Wd10/c2bN2PQoEGNlicnJ2Pp0qUArlzgcfbs2SgoKEBERATmzJmDgQMHtkg+3hKEiByRwSDw/OeZ2LCvAJ4uKqx7Jh6dAzzljkVkMlO/v62uGFk7FiMiclTVtXqMXrQL6adLENzaFeue6Qd/T2e5YxGZxC6vYyQnrVaL8PBwxMbGyh2FiEgWLk5KLBgbg46+bjhTchlPLEvDZR2HF5B94REjM/GIERE5upziSjyQsg0lVbUY3CMQKaM0UCo4jZ+sG48YERGRRYT6uWPB2BiolQpsPFiIWd8fkjsSUbNhMSIiIrPFdvTBfx6OBAAs+i0HK3ackjcQUTNhMTIRxxgRETU0LDIILwy+cq/JV785iF8OF8qciKjpOMbITBxjRET0OyEEXlq7H6vT8+CmVuKLp/oiop233LGIGuEYIyIisjhJkvDv4RHo39kPVTo9JixLQ/6ly3LHIrplLEZERNQkTkoFUkZHo2ugBwrLavD40jSUV9fKHYvolrAYERFRk3m5OGHJuFj4ezrj8LlyTF6ViVq9Qe5YRGZjMTIRB18TEd1YcGs3LEmOhauTEluOnscrXx8Eh7GSrTFr8HVoaCgkyfyLeE2ZMgXPP/+82a+zRhx8TUR0Y6nZhXhyRTqEAF5K7I5Jd9wmdyQik7+/Vea86dWbuJqrY8eOt/Q6IiKyPX8JD8QrQ8Ix89tsvP2/wwhp7Yb7erWVOxaRScwqRnfccYelchARkR0Z3y8Upy9UYen2U5j6RRbaeLtA06G13LGIbuqWxxjt378fdXV1zZmFiIjsyMtDwnFPWCB0dQZMXJ6O0xcq5Y5EdFO3XIwiIyPh4eGB6OhojB8/Hh988AE2b96MS5cuNWM868HB10RE5lEqJHw4Mgo923njYqUO4z9JQ0mlTu5YRDd0y8Xot99+g4+PD0JDQ1FTU4OlS5firrvugq+vL7p164aXX37ZrkrS5MmTkZ2djbS0NLmjEBHZDDe1CouTY9CulStOFlfiqRUZqKnTyx2L6LpuuRg9++yzSElJwdq1a7Fq1SpkZmZi06ZN6NSpE5KTk7F161b07t0b58+fb868RERkYwK8XLBkXCw8nVXYfeoiXlyzj9P4yWrdcjE6fPgwwsPDGyy74447MGfOHOzZswebNm1CTEwM/vnPfzY5JBER2bZubTwxb7QGKoWEr7PyMSf1qNyRiK7plotRbGwsVq5c2Wh5jx498OOPP0KSJLzwwgv46aefmhSQiIjsQ/8ufnhreE8AwIe/HMeX6XkyJyJq7JaLUUpKCv773//isccew+HDhwEAOp0Oc+bMgY+PDwDA398fhYWFzZOUiIhs3sOxIZg86MoFH6d/tR/bjxfLnIiooVsuRj169MCOHTtQUFCA8PBwuLq6wt3dHQsXLsTbb78NAMjMzERQUFCzhSUiItv39790w9DIINQZBJ5amYFjheVyRyIyMuuWINdz6tQp7N27FyqVChqNBm3atAEAbN26FYWFhXjooYeaHNRa8JYgRERNV12rx+hFu5B+ugTtWrli3eR4BHi6yB2L7Jip39/NUowcgVarhVarhV6vx9GjR1mMiIia6GKlDg+kbMOpC1WIDPbG50/2hataKXcsslMWKUa8iSyPGBERNaec4ko8kLINJVW1SAgPxLzRGigV5n/PEN2MRYrRr7/+ekthOnbsiA4dOtzSa60NixERUfNKO3URoxbugk5vwIT+oXh5SPjNX0RkJp5KsxAWIyKi5vfN3nw8/1kmAOD1+3tgbN+O8gYiu2Pq9/ctz0ojIiJqLsMig/DC4G4AgNe+OYifD/FSLyQPFiMiIrIKz9x5Gx6JCYFBAM99lokDZ0vljkQOiMWIiIisgiRJ+PfwCAzo4ocqnR6PL01D/qXLcsciB8NiREREVsNJqYB2VDS6BXqiqLwGjy9NQ3l1rdyxyIGwGBERkVXxcnHCkvGx8Pd0xuFz5Xjm0z2o1RvkjkUOgsWIiIisTrtWrliSHAtXJyW2HivGK18fACdRU0tgMTKRVqtFeHg4YmNj5Y5CROQQegZ748ORvSFJwGe787Bw60m5I5ED4HWMzMTrGBERtawlv+Xg9Q3ZkCRgSXIsBnUPkDsS2SBex4iIiOzC+H4dMbJPCET9NP6jheVyRyI7xmJERERWTZIkzBwWgbhQH1TU1OGJZem4WKmTOxbZKRYjIiKyemqVAvNGaxDi44rci1V4emUGdHWcqUbNj8WIiIhsgo+7GouTY+HhrMKunIt49ZuDnKlGzY7FiIiIbEbXQE98ODKqfqZaLpZtPyV3JLIzLEZERGRT7uoeiOmJ3QEAr2/Ixpaj52VORPaExYiIiGzOxAGd8GB0MAwCmLxqD06cr5A7EtkJFiMiIrI5kiThrQcioOnQGuXVV2aqlVbxnmrUdCxGRERkk5xVSnw8WoN2rVyRU1yJyav2oI73VKMmYjEiIiKb5e/pjIVjY+CmVuK348V4Y0O23JHIxjlsMaqqqkKHDh3wj3/8Q+4oRETUBOFBXpjzSBQAYNmO01i587S8gcimOWwxevPNNxEXFyd3DCIiagaDe7TBC4O7AQBe++Ygtp8oljkR2SqHLEbHjh3D4cOHce+998odhYiImskzd96G+6OCUGcQeObTPThVXCl3JLJBVleMtmzZgqFDhyIoKAiSJGH9+vWN1klJSUFoaChcXFyg0WiwdetWs7bxj3/8A7NmzWqmxEREZA0kScI7D/ZCZEgrXKqqxRPL01FWzZlqZB6rK0aVlZWIjIzE3Llzr/n86tWrMWXKFMyYMQOZmZkYMGAAEhMTkZuba1xHo9EgIiKi0SM/Px9ff/01unbtiq5du7bURyIiohbi4qTEwjEatPFywfGiCjz/WSb0Bt42hEwnCSu+0YwkSVi3bh2SkpKMy+Li4hAdHY158+YZl4WFhSEpKcmko0DTp0/HypUroVQqUVFRgdraWvz973/HK6+8cs31a2pqUFNTY/y5rKwMISEhKC0thZeX161/OCIispj9Z0oxYv52VNca8ET/UPxrSLjckUhmZWVl8Pb2vun3t9UdMboRnU6HjIwMJCQkNFiekJCA7du3m/Qes2bNQl5eHk6dOoX//Oc/mDhx4nVL0dX1vb29jY+QkJAmfQYiIrK8nsHeeG9EFABg0W85+CItT95AZDNsqhgVFxdDr9cjMDCwwfLAwECcO3fOItucPn06SktLjY+8PP7lIiKyBff1aou/3d0FADBj/X6knboocyKyBSq5A9wKSZIa/CyEaLTMFOPGjbvpOs7OznB2doZWq4VWq4Verzd7O0REJI+/3d0Fx4sq8N3+Ajy1IgNfT+6HEB83uWORFbOpI0Z+fn5QKpWNjg4VFRU1OorU3CZPnozs7GykpaVZdDtERNR8FAoJ/xkRiYh2XrhYqcPE5emoqKmTOxZZMZsqRmq1GhqNBqmpqQ2Wp6amIj4+XqZURERkzVzVSiwcGwN/T2ccPleOKZ9nwcCZanQdVleMKioqkJWVhaysLABATk4OsrKyjNPxp02bhkWLFmHJkiU4dOgQpk6ditzcXEyaNMmiubRaLcLDwxEbG2vR7RARUfNr6+2KBWM0UKsU+OlQId798YjckchKWd10/c2bN2PQoEGNlicnJ2Pp0qUArlzgcfbs2SgoKEBERATmzJmDgQMHtkg+U6f7ERGR9VmfeRZTVmcBAOY8EonhvYPlDUQtxtTvb6srRtaOxYiIyLbN/uEwUjafgFqlwOdP3o7o9q3ljkQtwC6vY0RERNRU/0johr+EB0JXZ8CTyzOQf+my3JHIirAYmYhjjIiI7INCIeG/j0ShextPFFfUYOLydFTpOFONruCpNDPxVBoRkX04U1KF++duw4VKHRIj2kD7WDQUCvOviUe2gafSiIiIbiC4tRvmj9HASSnhfwfO4b8/H5M7ElkBFiMiInJYMR198NbwngCAD38+hm/35suciOTGYmQijjEiIrJPI2JCMHFAKADgH1/uxb4zl+QNRLLiGCMzcYwREZH90RsEnliWhk1HziPQyxnfPNsfgV4ucseiZsQxRkRERCZSKiR8OLI3ugR4oLCsBk8uT0d1LW8a7ohYjIiIiAB4ujhhcXIsWrs5Ye+ZUrywZh94UsXxsBiZiGOMiIjsX3tfN6SM0kClkPDt3nxoNx2XOxK1MI4xMhPHGBER2b9Vu3Lxz3X7AQAfj9bgrxFtZE5ETcUxRkRERLfosbj2GBffEQAwdXUWDuaXyhuIWgyLERER0TX8674wDOjih8u1ekxclo7z5TVyR6IWwGJERER0DSqlAnNHRqOTnzvyS6vx1Ip01NRxppq9YzEiIiK6Dm83JyxKjoGXiwp7ci9h+lf7OVPNzrEYmYiz0oiIHFMnfw9oR0VDqZDw1Z6zWLDlpNyRyII4K81MnJVGROSYlm0/hVe/OQhJAhaNjcHdYYFyRyIzcFYaERFRMxrbtwNGxbWHEMDzn2XiyLlyuSORBbAYERERmUCSJLw2rAdu7+SDSp0eE5al4UIFZ6rZGxYjIiIiEzkpFZg3SoMOvm44U3IZT3+6B7o6g9yxqBmxGBEREZmhtbsai5Nj4Omswu6ci3jl6wOcqWZHWIyIiIjM1DnAEx8+1hsKCfg8LQ+fbDsldyRqJixGJuJ0fSIi+qNB3QLwz3vDAAD//i4bvx49L3Miag6crm8mTtcnIqKrhBD4v7X78EX6GXi6qLDumX7oHOAhdyy6Bk7XJyIisjBJkvBGUgRiO7ZGeXUdnlyRjrLqWrljUROwGBERETWBs0qJeaM1CPJ2wcnzlZjyeRb0Bp6MsVUsRkRERE3k5+GM+WNi4KxS4JfDRXg/9YjckegWsRgRERE1g57B3pj9UC8AgHbTCXy3r0DmRHQrWIyIiIiayf1R7fDkwE4AgH98uRfZ+WUyJyJzsRgRERE1o//7a3cM6OKHy7V6TFyejouVOrkjkRlYjIiIiJqRUiFh7shodPB1w9lLlzH50z2o1fO2IbaCxYiIiKiZebs5YeHYGLirldhx8gLe/O6Q3JHIRCxGREREFtA10BPvPxIFAFi6/RS+SM+TNxCZhMXIRLwlCBERmWtwjzaYck8XAMC/1h1AZm6JzInoZnhLEDPxliBERGQOg0Fg0soM/JhdiEAvZ3z7bH8EeLnIHcvh8JYgREREVkChkPD+I1HoGuiBwrIaPLUyAzV1erlj0XWwGBEREVmYh7MKC8bEwMtFhczcS3hl/UHwhI11YjEiIiJqAR393DH3sWgoJGB1eh5W7DwtdyS6BhYjIiKiFjKwqz9eSuwOAJj5bTZ2nLggcyL6MxYjIiKiFjRxQCckRQVBbxCYvGoPzpRUyR2J/oDFiIiIqAVJkoS3H+yFiHZeuFipw5PLM3BZx8HY1oLFiIiIqIW5OCkxf0wMfN3VyC4owwtr9nIwtpVgMSIiIpJBu1aumDdaA5VCwoZ9Bfj415NyRyKwGBEREcmmT6gPXhvWAwAwe+NhbDpSJHMicshipFKpEBUVhaioKDzxxBNyxyEiIgc2+vYOGNmnPYQAnv8sEyfPV8gdyaGp5A4gh1atWiErK0vuGERERACAmcN64FhhOdJPl2Di8nSsn9wPni5OcsdySA55xIiIiMiaqFUKpIyORhsvF5w4X4mpq7NgMHAwthysrhht2bIFQ4cORVBQECRJwvr16xutk5KSgtDQULi4uECj0WDr1q1mbaOsrAwajQb9+/fHr7/+2kzJiYiIbl2ApwsWjNVArVLgp0NFmPPTUbkjOSSrK0aVlZWIjIzE3Llzr/n86tWrMWXKFMyYMQOZmZkYMGAAEhMTkZuba1xHo9EgIiKi0SM/Px8AcOrUKWRkZODjjz/G2LFjUVZW1iKfjYiI6EZ6BbfC2w/0BAB89Mtx/G9/gcyJHI8krPjCCZIkYd26dUhKSjIui4uLQ3R0NObNm2dcFhYWhqSkJMyaNcvsbSQmJuKNN95ATEzMNZ+vqalBTU2N8eeysjKEhISgtLQUXl5eZm+PiIjoZt7YkI3Fv+XATa3EV8/Eo3sbft80VVlZGby9vW/6/W11R4xuRKfTISMjAwkJCQ2WJyQkYPv27Sa9R0lJibHonDlzBtnZ2ejUqdN11581axa8vb2Nj5CQkFv/AERERCaYntgd/Tv7oUqnx8Tl6Sip1MkdyWHYVDEqLi6GXq9HYGBgg+WBgYE4d+6cSe9x6NAhxMTEIDIyEkOGDMEHH3wAHx+f664/ffp0lJaWGh95eXlN+gxEREQ3o1Iq8NHI3gjxcUXexct49rM9qNMb5I7lEGxyur4kSQ1+FkI0WnY98fHx2L9/v8nbcnZ2hrOzs1n5iIiImqq1uxoLx8bggZTt2Hb8Amb97zBeHhIudyy7Z1NHjPz8/KBUKhsdHSoqKmp0FKm5abVahIeHIzY21qLbISIiuqp7Gy+8/3AkAGDxbzlYm3FG5kT2z6aKkVqthkajQWpqaoPlqampiI+Pt+i2J0+ejOzsbKSlpVl0O0RERH/014i2eP6uzgCA6ev2IyvvkryB7JzVFaOKigpkZWUZr0ydk5ODrKws43T8adOmYdGiRViyZAkOHTqEqVOnIjc3F5MmTZIxNRERkeVMuacr7gkLhK7OgEkrMlBUXi13JLtlddP1N2/ejEGDBjVanpycjKVLlwK4coHH2bNno6CgABEREZgzZw4GDhxo0VxarRZarRZ6vR5Hjx7ldH0iImpR5dW1GJ6yHceLKqDp0BqrJsbBWaWUO5bNMHW6vtUVI2tn6o4lIiJqbifPV+B+7TaUV9dhZJ8QvDW8p8mTjxydXV7HiIiIyJF18vfARyN7Q5KAz3bnYeWu3Ju/iMzCYmQizkojIiJrcGe3ALw4uDsAYOY3B7Hr5AWZE9kXnkozE0+lERGR3IQQeP7zLHy7Nx++7mp881x/tGvlKncsq8ZTaURERHZKkiTMfrAXwtt64UKlDk+tSMdlnV7uWHaBxYiIiMgGuaqVWDBWAx93NQ6cLcNLX+0DTwI1HYuRiTjGiIiIrE1wazekjIqGSiHh66x8LNhyUu5INo9jjMzEMUZERGRtlu84hVe+PgiFBHwyvg/u6OovdySrwzFGREREDmLM7R3wSEwIDAJ4btUenCqulDuSzWIxIiIisnGSJOH1pB6Ibt8KZdV1mLg8HRU1dXLHskksRkRERHbAWaXEx6M1CPRyxrGiCkxdnQWDgaNlzMViZCIOviYiImsX4OWCj0droFYqkJpdiA9+PiZ3JJvDwddm4uBrIiKydl+m5+GFNfsAAB+P1uCvEW1kTiQ/Dr4mIiJyUCNiQjAuviMA4O9fZOHIuXJ5A9kQFiMiIiI7NOO+MMTf5otKnR4Tl6fjUpVO7kg2gcWIiIjIDjkpFZj7WDSCW7si92IVnvssE3V6g9yxrB6LkYk4+JqIiGyNj7saC8fGwNVJia3HivHOD4fljmT1OPjaTBx8TUREtua7fQWYvGoPAOCDR6Nwf1Q7mRO1PA6+JiIiIgDAfb3aYvKg2wAA/7d2Hw7ml8qcyHqxGBERETmAaX/phju6+qO61oCnVmSgpJKDsa+FxYiIiMgBKBUSPny0N9r7uOFMyWU8/3km9LwydiMsRkRERA7C280J88dojIOx3914RO5IVofFiIiIyIGEtfXC7Id6AQA+/vUENuzLlzmRdWExIiIicjBDI4Pw1MBOAIAX1+zjlbH/gMXIRLyOERER2ZMXBndDv86+qNLp8eSKdJRW1codySrwOkZm4nWMiIjIXlys1GHoR7/h7KXLuLObPxYnx0KpkOSOZRG8jhERERHdkI+7GvPHaOCsUmDzkfP4709H5Y4kOxYjIiIiBxbRzhtvP9gTAPDRL8ex8eA5mRPJi8WIiIjIwQ3vHYzx/ToCAP7+xV4cL3LcwdgsRkRERIR/3huGuFAfVNTU4ckVGSirdszB2CxGREREBCelAtpR0Wjr7YKT5ysxbfVeGBzwytgsRkRERAQA8PNwxsejNVCrFPjpUCHmbjoud6QWx2JERERERpEhrfDvpAgAwJyfjuLnQ4UyJ2pZLEZERETUwMMxIRhzewcIAUxZnYWc4kq5I7UYFiMT8crXRETkSF4eEo6YDq1RXl2HJ5eno6KmTu5ILYJXvjYTr3xNRESOoqisGkM++g1F5TVIjGiDlFHRkCTbvDI2r3xNRERETRLg5YJ5ozVwUkr434FzmPfrCbkjWRyLEREREV2XpkNrvDasBwDg3Y1H8OvR8zInsiwWIyIiIrqhx/q0x6OxIRACeP6zTOReqJI7ksWwGBEREdENSZKEmff3QFRIK5RersWTK9JRpbPPwdgsRkRERHRTziol5o2Ohp+HGofPleP/1u6HPc7fYjEiIiIik7T1doX2sWioFBK+3ZuPxb/lyB2p2bEYERERkcniOvni5SHhAIC3vj+E7ceLZU7UvFiMiIiIyCxj+3bAA9HtYBDA5FV7cKbEfgZjsxgRERGRWSRJwlvDeyKinRdKqmoxaWUGqmv1csdqFixGREREZDYXJyU+Hq2Bj7saB86W4Z/r7GMwtkMWo5ycHAwaNAjh4eHo2bMnKisd5+Z4REREzSW4tRvmPtYbSoWEr/acxbLtp+SO1GQOWYzGjRuH119/HdnZ2fj111/h7OwsdyQiIiKbFH+bH6YndgcAvPHdIew6eUHmRE3jcMXo4MGDcHJywoABAwAAPj4+UKlUMqciIiKyXRP6h2JYZBD0BoHJq/agoPSy3JFumdUVoy1btmDo0KEICgqCJElYv359o3VSUlIQGhoKFxcXaDQabN261eT3P3bsGDw8PDBs2DBER0fjrbfeasb0REREjkeSJLzzYC+EtfVCcYUOk1busdnB2FZXjCorKxEZGYm5c+de8/nVq1djypQpmDFjBjIzMzFgwAAkJiYiNzfXuI5Go0FERESjR35+Pmpra7F161ZotVrs2LEDqampSE1NbamPR0REZJdc1UrMH62Bt6sT9uZdwqtfH7TJwdiSsOLUkiRh3bp1SEpKMi6Li4tDdHQ05s2bZ1wWFhaGpKQkzJo166bvuWPHDsycORM//PADAODdd98FALzwwgvXXL+mpgY1NTXGn8vKyhASEoLS0lJ4eXndysciIiKyW1uOnse4T3bDIIA3h0dgVFwHuSMBuPL97e3tfdPvb6s7YnQjOp0OGRkZSEhIaLA8ISEB27dvN+k9YmNjUVhYiJKSEhgMBmzZsgVhYWHXXX/WrFnw9vY2PkJCQpr0GYiIiOzZwK7+eGHwlcHYr31zEBmnL8qcyDw2VYyKi4uh1+sRGBjYYHlgYCDOnTtn0nuoVCq89dZbGDhwIHr16oUuXbpgyJAh111/+vTpKC0tNT7y8vKa9BmIiIjs3aQ7OuHenm1QqxeYtHIPisqq5Y5kMpucjiVJUoOfhRCNlt1IYmIiEhMTTVrX2dkZzs7O0Gq10Gq10OttczAZERFRS5EkCe8+FInjRRU4WliBpz/dg88m3g61yvqPx1h/wj/w8/ODUqlsdHSoqKio0VGk5jZ58mRkZ2cjLS3NotshIiKyB+7OKswfEwNPFxUyTpfg9Q0H5Y5kEpsqRmq1GhqNptEsstTUVMTHx8uUioiIiK4l1M8dHzwaBUkCVu7Mxeq03Ju/SGZWV4wqKiqQlZWFrKwsAFdu35GVlWWcjj9t2jQsWrQIS5YswaFDhzB16lTk5uZi0qRJFs2l1WoRHh6O2NhYi26HiIjIntzVPRBT7+kKAHh5/UFk5V2SN9BNWN10/c2bN2PQoEGNlicnJ2Pp0qUArlzgcfbs2SgoKEBERATmzJmDgQMHtkg+U6f7ERER0RUGg8BTKzOQml2INl4u+Pa5/vD3bNnbcZn6/W11xcjasRgRERGZr7y6Fvdrt+Hk+Ur0CfXBp0/EwUnZcieu7PI6RkRERGSbPF2csGBMDDycVdidcxFvfndI7kjXxGJkIo4xIiIiaprOAR547+FIAMDS7afw1Z4zMidqjKfSzMRTaURERE3z/o9H8OEvx+GsUmDt0/GIaOdt8W3yVBoRERFZpSn3dMWgbv6oqTPgqRUZuFipkzuSEYsRERERtSiFQsJ/H+2Njr5uOHvpMp5dtQd1eoPcsQCwGJmMY4yIiIiaj7erE+aPiYGbWontJy5g9sYjckcCwDFGZuMYIyIioubz3b4CTF61BwDw4cjeGBYZZJHtcIwRERERWb37erXFpDtuAwC8uGYvDhWUyZqHxYiIiIhk9cLgbhjQxQ/VtVcGY1+qkm8wNouRiTjGiIiIyDKUCgkfjeyNEB9X5F6swudpebJl4RgjM3GMERERkWVk55dh2/FiPDEgFJIkNet7m/r9rWrWrRIRERHdovAgL4QHyXvQgafSiIiIiOqxGBERERHVYzEiIiIiqsdiZCLOSiMiIrJ/nJVmJs5KIyIisj288jURERGRmViMiIiIiOqxGBERERHVYzEiIiIiqsdiRERERFSPxchEnK5PRERk/zhd30ycrk9ERGR7OF2fiIiIyEwquQPYmqsH2MrKymROQkRERKa6+r19sxNlLEZmKi8vBwCEhITInISIiIjMVV5eDm9v7+s+zzFGZjIYDMjPz4enpyckSbrhurGxsUhLS7ul7Zjz2pute6Pnr/fctZb/edkffy4rK0NISAjy8vIsPvaK+9UyuF8tg/vVMmx1v97KMu7Xmz9nyjIhBDQaDY4ePQqF4vojiXjEyEwKhQLBwcEmratUKm/5l9ic195s3Rs9f73nrrX8z8uutY6Xl5fF/+Jyv1oG96tlcL9ahq3u16Ys4369/nOmLlOr1TcsRQAHX1vU5MmTW+S1N1v3Rs9f77lrLf/zsqZ8vqbgfrUM7lfL4H61DFvdr01Z1hK4X3kqjZoJL2NgGdyvlsH9ahncr5bB/dqyeMSImoWzszNeffVVODs7yx3FrnC/Wgb3q2Vwv1oG92vL4hEjIiIiono8YkRERERUj8WIiIiIqB6LEREREVE9FiMiIiKieixGRERERPVYjKhFlZeXIzY2FlFRUejZsycWLlwodyS7kJeXhzvvvBPh4eHo1asXvvzyS7kj2Y3hw4ejdevWeOihh+SOYtM2bNiAbt26oUuXLli0aJHccewGfz+bH6frU4vS6/WoqamBm5sbqqqqEBERgbS0NPj6+sodzaYVFBSgsLAQUVFRKCoqQnR0NI4cOQJ3d3e5o9m8TZs2oaKiAsuWLcOaNWvkjmOT6urqEB4ejk2bNsHLywvR0dHYtWsXfHx85I5m8/j72fx4xIhalFKphJubGwCguroaer0e7OZN17ZtW0RFRQEAAgIC4OPjg4sXL8obyk4MGjQInp6ecsewabt370aPHj3Qrl07eHp64t5778XGjRvljmUX+PvZ/FiMqIEtW7Zg6NChCAoKgiRJWL9+faN1UlJSEBoaChcXF2g0GmzdutWsbVy6dAmRkZEIDg7Giy++CD8/v2ZKb71aYr9elZ6eDoPBgJCQkCamtn4tuV8dWVP3c35+Ptq1a2f8OTg4GGfPnm2J6FaNv7/WicWIGqisrERkZCTmzp17zedXr16NKVOmYMaMGcjMzMSAAQOQmJiI3Nxc4zoajQYRERGNHvn5+QCAVq1aYe/evcjJycGqVatQWFjYIp9NTi2xXwHgwoULGDt2LBYsWGDxz2QNWmq/Orqm7udrHRWWJMmimW1Bc/z+kgUIousAINatW9dgWZ8+fcSkSZMaLOvevbt46aWXbmkbkyZNEl988cWtRrRJltqv1dXVYsCAAWL58uXNEdPmWPL3ddOmTeLBBx9sakS7cCv7edu2bSIpKcn43PPPPy8+/fRTi2e1JU35/eXvZ/PiESMymU6nQ0ZGBhISEhosT0hIwPbt2016j8LCQpSVlQG4csfoLVu2oFu3bs2e1ZY0x34VQmDcuHG46667MGbMGEvEtDnNsV/p5kzZz3369MGBAwdw9uxZlJeX4/vvv8fgwYPliGsz+PsrH5XcAch2FBcXQ6/XIzAwsMHywMBAnDt3zqT3OHPmDCZMmAAhBIQQePbZZ9GrVy9LxLUZzbFft23bhtWrV6NXr17GcQorVqxAz549mzuuzWiO/QoAgwcPxp49e1BZWYng4GCsW7cOsbGxzR3XZpmyn1UqFd577z0MGjQIBoMBL774Imei3oSpv7/8/Wx+LEZktj+PDRBCmDxeQKPRICsrywKpbF9T9mv//v1hMBgsEcvmNWW/AuDsKRPdbD8PGzYMw4YNa+lYNu9m+5W/n82Pp9LIZH5+flAqlY3+tV1UVNToXzVkOu5Xy+B+bRncz5bB/SofFiMymVqthkajQWpqaoPlqampiI+PlymV7eN+tQzu15bB/WwZ3K/y4ak0aqCiogLHjx83/pyTk4OsrCz4+Pigffv2mDZtGsaMGYOYmBj07dsXCxYsQG5uLiZNmiRjauvH/WoZ3K8tg/vZMrhfrZR8E+LIGm3atEkAaPRITk42rqPVakWHDh2EWq0W0dHR4tdff5UvsI3gfrUM7teWwf1sGdyv1on3SiMiIiKqxzFGRERERPVYjIiIiIjqsRgRERER1WMxIiIiIqrHYkRERERUj8WIiIiIqB6LEREREVE9FiMiIiKieixGRGR37rzzTkyZMsWi29i8eTMkSYIkSUhKSpI9T3Pq2LGj8bNdunRJ7jhELYr3SiMim7V582YMGjQIJSUlaNWqlXH5V199BScnpxbJcOTIEQQEBLTItlpKWloatm7digcffFDuKEQtjsWIiKyOTqeDWq2+5df7+Pg0Y5obCwgIaFDK5FJbW9tsZdDf379F9yGRNeGpNCIHt2bNGvTs2ROurq7w9fXFPffcg8rKSuPzn3zyCcLCwuDi4oLu3bsjJSXF+NypU6cgSRI+//xzxMfHw8XFBT169MDmzZuN6+j1ekyYMAGhoaFwdXVFt27d8MEHHzTIMG7cOCQlJWHWrFkICgpC165dAQArV65ETEwMPD090aZNGzz22GMoKioybnvQoEEAgNatW0OSJIwbNw5A41NXJSUlGDt2LFq3bg03NzckJibi2LFjxueXLl2KVq1aYePGjQgLC4OHhwf++te/oqCgwOz9WVlZibFjx8LDwwNt27bFe++912gdnU6HF198Ee3atYO7uzvi4uIa7DMAWLhwIUJCQuDm5obhw4fj/fffb1DAXnvtNURFRWHJkiXo1KkTnJ2dIYRAaWkpnnzySQQEBMDLywt33XUX9u7d2+C9v/32W2g0Gri4uKBTp06YOXMm6urqzP6sRHZJ5pvYEpGM8vPzhUqlEu+//77IyckR+/btE1qtVpSXlwshhFiwYIFo27atWLt2rTh58qRYu3at8PHxEUuXLhVCCJGTkyMAiODgYLFmzRqRnZ0tnnjiCeHp6SmKi4uFEELodDrxyiuviN27d4uTJ0+KlStXCjc3N7F69WpjjuTkZOHh4SHGjBkjDhw4IPbv3y+EEGLx4sXi+++/FydOnBA7duwQt99+u0hMTBRCCFFXVyfWrl0rAIgjR46IgoICcenSJSGEEHfccYf429/+Znz/YcOGibCwMLFlyxaRlZUlBg8eLDp37ix0Op0QQohPPvlEODk5iXvuuUekpaWJjIwMERYWJh577LHr7rurd0YvKSlpsPzpp58WwcHB4scffxT79u0TQ4YMER4eHg3yPPbYYyI+Pl5s2bJFHD9+XLz77rvC2dlZHD16VAghxG+//SYUCoV49913xZEjR4RWqxU+Pj7C29vb+B6vvvqqcHd3F4MHDxZ79uwRe/fuFQaDQfTr108MHTpUpKWliaNHj4q///3vwtfXV1y4cEEIIcQPP/wgvLy8xNKlS8WJEyfEjz/+KDp27Chee+01kz4fkb1jMSJyYBkZGQKAOHXq1DWfDwkJEatWrWqw7I033hB9+/YVQvxejN5++23j87W1tSI4OFi88847193uM888Ix588EHjz8nJySIwMFDU1NTcMO/u3bsFAGNxu96X9x+L0dGjRwUAsW3bNuPzxcXFwtXVVXzxxRdCiCvFCIA4fvy4cR2tVisCAwOvm+Va2y4vLxdqtVp8/vnnxmUXLlwQrq6uxjzHjx8XkiSJs2fPNni/u+++W0yfPl0IIcQjjzwi7rvvvgbPjxo1qlExcnJyEkVFRcZlP//8s/Dy8hLV1dUNXnvbbbeJ+fPnCyGEGDBggHjrrbcaPL9ixQrRtm3bm34+IkfAMUZEDiwyMhJ33303evbsicGDByMhIQEPPfQQWrdujfPnzyMvLw8TJkzAxIkTja+pq6uDt7d3g/fp27ev8c8qlQoxMTE4dOiQcdnHH3+MRYsW4fTp07h8+TJ0Oh2ioqIavEfPnj0bjSvKzMzEa6+9hqysLFy8eBEGgwEAkJubi/DwcJM+46FDh6BSqRAXF2dc5uvri27dujXI6Obmhttuu834c9u2bY2n7Ux14sQJ6HS6BvvDx8cH3bp1M/68Z88eCCGMpwuvqqmpga+vL4ArA7qHDx/e4Pk+ffpgw4YNDZZ16NAB/v7+xp8zMjJQUVFhfJ+rLl++jBMnThjXSUtLw5tvvml8Xq/Xo7q6GlVVVXBzczPrMxPZGxYjIgemVCqRmpqK7du348cff8RHH32EGTNmYNeuXcYvyIULFzYoFVdfdzOSJAEAvvjiC0ydOhXvvfce+vbtC09PT7z77rvYtWtXg/Xd3d0b/FxZWYmEhAQkJCRg5cqV8Pf3R25uLgYPHgydTmfyZxRCXHf51YwAGg1cliTpuq81d1t/ZDAYoFQqkZGR0Wg/enh4XDPb9d77z/vMYDCgbdu2jcYrATCOTzIYDJg5cyYeeOCBRuu4uLjcND+RvWMxInJwkiShX79+6NevH1555RV06NAB69atw7Rp09CuXTucPHkSo0aNuuF77Ny5EwMHDgRw5YhSRkYGnn32WQDA1q1bER8fj2eeeca4/tWjFzdy+PBhFBcX4+2330ZISAgAID09vcE6V48w6fX6675PeHg46urqsGvXLsTHxwMALly4gKNHjyIsLOymOczRuXNnODk5YefOnWjfvj2AKwO/jx49ijvuuAMA0Lt3b+j1ehQVFWHAgAHXfJ/u3btj9+7dDZb9+bNfS3R0NM6dOweVSoWOHTted50jR46gc+fOZnwyIsfBYkTkwHbt2oWff/4ZCQkJCAgIwK5du3D+/HljYXjttdfw/PPPw8vLC4mJiaipqUF6ejpKSkowbdo04/totVp06dIFYWFhmDNnDkpKSvD4448DuFIWli9fjo0bNyI0NBQrVqxAWloaQkNDb5itffv2UKvV+OijjzBp0iQcOHAAb7zxRoN1OnToAEmSsGHDBtx7771wdXU1HnW5qkuXLrj//vsxceJEzJ8/H56ennjppZfQrl073H///c2xG408PDwwYcIEvPDCC/D19UVgYCBmzJgBheL3CcBdu3bFqFGjMHbsWLz33nvo3bs3iouL8csvv6Bnz56499578dxzz2HgwIF4//33MXToUPzyyy/43//+1+go0p/dc8896Nu3L5KSkvDOO++gW7duyM/Px/fff4+kpCTExMTglVdewZAhQxASEoIRI0ZAoVBg37592L9/P/7973836/4gskkyjm8iIpllZ2eLwYMHC39/f+Hs7Cy6du0qPvroowbrfPrppyIqKkqo1WrRunVrMXDgQPHVV18JIX4ffL1q1SoRFxcn1Gq1CAsLEz///LPx9dXV1WLcuHHC29tbtGrVSjz99NPipZdeEpGRkcZ1kpOTxf33398o36pVq0THjh2Fs7Oz6Nu3r/jmm28EAJGZmWlc5/XXXxdt2rQRkiSJ5ORkIUTjWWkXL14UY8aMEd7e3sLV1VUMHjzYOANMiCuDr/84sFkIIdatWydu9L/I6w1OLi8vF6NHjxZubm4iMDBQzJ49u1GeqzP1OnbsKJycnESbNm3E8OHDxb59+4zrLFiwQLRr1064urqKpKQk8e9//1u0adPG+Pyrr77aYB9eVVZWJp577jkRFBQknJycREhIiBg1apTIzc01rvPDDz+I+Ph44erqKry8vESfPn3EggULTPp8RPZOEsLMk+hERPVOnTqF0NBQZGZmNhpMbe+ud9VtS5k4cSIOHz6MrVu3WnxbQMt/PiJrwQs8EhE1QXBwMEaOHNns7/uf//wHe/fuxfHjx/HRRx9h2bJlSE5ObvbtXEuPHj2QmJjYItsisjYcY0REdAvi4uKMV8/+87im5rB7927Mnj0b5eXl6NSpEz788EM88cQTzb6da/n+++9RW1sLAPDy8mqRbRJZC55KIyIiIqrHU2lERERE9ViMiIiIiOqxGBERERHVYzEiIiIiqsdiRERERFSPxYiIiIioHosRERERUT0WIyIiIqJ6LEZERERE9f4fE0o2yCt94IMAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ - "gamma = []\n", - "for ss in shear_list:\n", - " gamma.append(ss.g1 + 1j * ss.g2) \n", - "gamma = np.array(gamma)" + "n_gal = 1\n", + "d_array = []\n", + "g_array = []\n", + "for i in range(12):\n", + " position = galsim.PositionD(3.0 ** i, 0.)\n", + " # get the shear\n", + " shear = shear_obj.get_shear(z_source, position)\n", + " g1 = shear.g1\n", + " g2 = shear.g2\n", + " gabs = np.abs(g1 + 1j * g2)\n", + " d_array.append(3 ** i)\n", + " g_array.append(gabs)\n", + "d_array = np.array(d_array)\n", + "g_array = np.array(g_array)\n", + "\n", + "print(d_array)\n", + "print(g_array)\n", + "plt.close()\n", + "fig, ax = plt.subplots()\n", + "ax.plot(d_array / 3600., g_array)\n", + "ax.set_xscale(\"log\")\n", + "ax.set_yscale(\"log\")\n", + "ax.set_xlabel(\"separation [degree]\")\n", + "ax.set_ylabel(r\"$|g|$\")" ] }, { "cell_type": "code", - "execution_count": 6, - "id": "8c203fae-f689-4405-91be-056aa84a3593", + "execution_count": 61, + "id": "45d40de9-7fe9-413e-a481-347276e28c82", "metadata": {}, "outputs": [ { @@ -107,6 +248,33 @@ } ], "source": [ + "cosmo = FlatLambdaCDM(H0=70.0, Om0=0.27, Ob0=0.045)\n", + "\n", + "shear_obj = ShearNFW(zl_list=[1.], M200_list=[1e15], c_list=[4.0], cosmo=cosmo)\n", + "# generate positions\n", + "radius = 50 # arcsec\n", + "n_gal = 20\n", + "theta = np.linspace(0, 360, n_gal) / n_gal\n", + "x = np.cos(theta) * radius\n", + "y = np.sin(theta) * radius\n", + "shifts = np.zeros(n_gal, dtype=[('dx', 'f8'), ('dy', 'f8')])\n", + "shifts['dx'] = x\n", + "shifts['dy'] = y\n", + "\n", + "shift_list = []\n", + "for ss in shifts:\n", + " shift_list.append(galsim.PositionD(ss['dx'], ss['dy']))\n", + "\n", + "# get the shear\n", + "shear_list = []\n", + "for ss in shift_list:\n", + " shear_list.append(shear_obj.get_shear(z_source, ss))\n", + " \n", + "gamma = []\n", + "for ss in shear_list:\n", + " gamma.append(ss.g1 + 1j * ss.g2) \n", + "gamma = np.array(gamma)\n", + "\n", "angles = np.angle(gamma, deg=True) / 2.\n", "lengths = np.abs(gamma) * 100.\n", "\n", @@ -119,25 +287,39 @@ "plt.show()" ] }, - { - "cell_type": "markdown", - "id": "b70c050a-b590-4192-81da-3b747dd07d27", - "metadata": {}, - "source": [ - "# step2: make sure the amplitude is correct" - ] - }, { "cell_type": "code", - "execution_count": 7, - "id": "d95fa97a-1415-44b4-82cf-3cae3106e2a1", + "execution_count": 62, + "id": "b22ff0a9-6ce6-49e2-bef7-1a91a16ee4dd", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[ 1 3 9 27 81 243 729 2187 6561 19683\n", + " 59049 177147]\n", + "[8.26751816e-02 8.26215008e-02 8.22711368e-02 8.02829024e-02\n", + " 7.16882521e-02 4.92520061e-02 2.14542996e-02 5.89296747e-03\n", + " 1.17895828e-03 1.96054091e-04 2.92963630e-05 4.10083070e-06]\n" + ] + }, + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 62, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "n_gal = 1\n", "d_array = []\n", "g_array = []\n", - "for i in range(10):\n", + "for i in range(12):\n", " position = galsim.PositionD(3.0 ** i, 0.)\n", " # get the shear\n", " shear = shear_obj.get_shear(z_source, position)\n", @@ -147,538 +329,84 @@ " d_array.append(3 ** i)\n", " g_array.append(gabs)\n", "d_array = np.array(d_array)\n", - "g_array = np.array(g_array)" + "g_array = np.array(g_array)\n", + "print(d_array)\n", + "print(g_array)\n", + "ax.plot(d_array / 3600., g_array)" ] }, { "cell_type": "code", - "execution_count": 9, - "id": "4f6eb0d7-2809-4b37-8357-1e443e900273", + "execution_count": 64, + "id": "0d0c3bed-89c3-4c13-aec1-ffedff1a0956", "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "Text(0, 0.5, '$|g|$')" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "[ 1 3 9 27 81 243 729 2187 6561 19683\n", + " 59049 177147]\n", + "[2.47424027e-01 5.30458122e-01 4.51641183e+00 3.92914418e-01\n", + " 1.43436687e-01 4.35660410e-02 9.72263335e-03 1.73440286e-03\n", + " 2.70341617e-04 3.88561182e-05 5.30434563e-06 6.99305314e-07]\n" + ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAG1CAYAAAAcMztGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABLJUlEQVR4nO3deVxU5eIG8OfMAMO+C7KJuIMoyIiopUZ5MSwN067lhjeXNMvUlps/u2Xbtc1sEc0lMzXTsrSb15tyS9NcAcElVFxQUFBk32SbeX9/iHMjXAZkOLM838+HT82ZM+c8w7Hm8cx73iMJIQSIiIiICAq5AxAREREZCxYjIiIionosRkRERET1WIyIiIiI6rEYEREREdVjMSIiIiKqx2JEREREVI/FiIiIiKieldwBTI1Wq0VOTg6cnJwgSZLccYiIiEgPQgiUlZXB19cXCsWtzwuxGDVRTk4OAgIC5I5BREREzZCdnQ1/f/9bPs9i1EROTk4Arv9inZ2dZU5DRERE+igtLUVAQIDuc/xWWIya6MbXZ87OzixGREREJuZOw2AscvD11q1b0bVrV3Tu3BkrV66UOw4REREZCYs7Y1RXV4c5c+Zg586dcHZ2RkREBB599FG4u7vLHY2IiIhkZnFnjA4dOoTu3bvDz88PTk5OGDp0KLZv3y53LCIiIjICJleMdu/ejWHDhsHX1xeSJGHLli2N1lmyZAmCgoJga2sLtVqNPXv26J7LycmBn5+f7rG/vz8uXbrUGtGJiIjIyJlcMaqoqEBYWBgWL1580+c3btyIWbNmYd68eUhNTcWAAQMQGxuLrKwsANfnMfgzzkdEREREgAmOMYqNjUVsbOwtn//www8xadIkTJ48GQDw0UcfYfv27Vi6dCkWLFgAPz+/BmeILl68iKioqFtur7q6GtXV1brHpaWlLfAuiIiIyBiZ3Bmj26mpqUFKSgpiYmIaLI+JicG+ffsAAH369MHx48dx6dIllJWVYdu2bRgyZMgtt7lgwQK4uLjofji5IxERkfkyq2KUn58PjUYDb2/vBsu9vb1x+fJlAICVlRUWLlyI6Oho9OrVCy+++CI8PDxuuc25c+eipKRE95OdnW3Q90BERETyMbmv0vTx5zFDQogGy4YPH47hw4frtS2VSgWVStWi+YiIiMg4mdUZI09PTyiVSt3ZoRvy8vIanUVqqoSEBISEhCAyMvKutkNERETGy6yKkY2NDdRqNRITExssT0xMRP/+/e9q2zNmzEB6ejqSkpLuajtERERkvEzuq7Ty8nKcOXNG9zgzMxNpaWlwd3dHu3btMGfOHIwfPx69e/dGv379sHz5cmRlZWHatGkypiYiIiJTYHLFKDk5GdHR0brHc+bMAQDEx8dj9erVGD16NAoKCvDGG28gNzcXoaGh2LZtGwIDA+WKbBEKyquRcqEIKVlFOJtXgTZONvB1sYOvqx383Ozg52oHb2db2FiZ1UlKIiIyM5K42YyH1EhCQgISEhKg0WiQkZGBkpISODs7yx1LFlqtwJmr5Ui5UITk80U4nFWEzPyKO75OkgBvJ1v4uto2KEy+Ltf/3dfVDi521q3wDoiIyNKUlpbCxcXljp/fLEZNpO8v1pxU1tQhLbsYhy8UIflCEQ5fKEJpVV2j9Tp7OUId6IZgH2cUVdYgp/gaLhVfQ05xFS4VX0NNnfaO+3JSWcHX1a5xeXK9/k8vJxWslDzrRERETaPv57fJfZVGhpdTfE1XgFIuFCE9txQabcP+bGutQHiAK3oHukMd6IZe7Vzham9zy21qtQIFFX8sS9f/eanoGnJKrpenwooalFXX4dSVMpy6UnbT7SgVEto629aXpf+VpxvFyc/VDg4q/rEmIqLm4SeIhavVaHEit/T6+KD6n9ySqkbr+bjYQh3opvsJ9nGGdRPO3CgUEto4qdDGSYWwANebrlNZU4ec4qpblqfc4irUacX1ZcXXbrkvFzvrP5xlstUVJ19XO/i72sHTUQWFgvfHIyKixliM9PTHMUamrKSyFoezrheg5AuFOJJdgmu1Dd+TUiEhxMcZ6kA3RAS6oXegG3xd7Qyezd7GCp28HNHJy/Gmz2u0AlfLqnXFKOdGeSr63+PSqjqUXKtFybVapOfe/L521koJPi52tyxPfq52sLVWGvKtEhGRkeIYoyYypTFGQghk5lc0OBt0Oq+80XrOtla6AhQR6IYwf1eT/TqqrKpWd9bp4p/KU07xNVwurYJWjz/xHg42CHC3x8T+7fFIuG+j2dSJiMi0cPC1gRhzMaqq1eDYpRIkn79egg5nFaGwoqbRekGeDg2+FuvUxtFivlqq1WhxpbSqfkB4pW5g+I3idKn4GiprGp5BGxzshbdH9IC3s61MqYmI6G6xGBmIMRWjvNIq3Zmg5AtF+D2nBLWahofTxkqBMH8XRAS6Qd3uehHycOS9325FCIGSa7W4VHwN/03Pw+Kdp1GrEXC2tcKrw7pjZIQfzx4REZkgFiMDkasYabQCpy6XISWrCCnnC5GSVYTswsYDkD0dVegd6Ibe7a9/Ldbd1xkqK46Xaa5Tl8vw4qYjOHqxBABwX9c2WPBoD/i4GH7MFRERtRwWoxbW2hM8llXVIi27WDeBYmpWMcqrG84dJElAV28nqOuLkLqdOwLc7XhGo4XVabRYvuccPko8jRqNFk4qK7zycDD+2juAv2siIhPBYmQghjpjlF1YieQLhbrZpE9dKcOfj4yjygq92rkiov4rsV7tXOFky5miW8uZvDK88O1RpGUXAwAGdPbEOyN7wq8VrtgjIqK7w2JkIIYqRnEJe3UfuDcEuNvpxgWpA93Rta0TlBYySNpYabQCn/92Dgt3ZKC6TgtHlRXmDu2GMX3a8ewREZER48zXJqZvBw8AuP61WP1l87wKyvgoFRKmDuyIwcHeeGnTUSRfKMK8zcex7Vgu3nm0JwLc7eWOSEREd4FnjJrImK5KI3lptAKr953H+9tPoqpWC3sbJV6O7YZxUYEWM/0BEZGp0Pfzm3fjJGompULCpHuD8NNzA9EnyB2VNRq8+sPveGLFAVwoqJA7HhERNQOLkZ4SEhIQEhKCyMhIuaOQkWnv6YANU/ri9eHdYW+jxMHMQjz40R6s+i0TWn2m2SYiIqPBr9KaiF+l0e1kF1bipU1Hsf9cAQAgsr0b3hsVhiBPB5mTERFZNn6VRiSDAHd7fDU5Cm/FhcLBRomk80V48KPdWLH7HDQ8e0REZPRYjIhamEIhYVzfQGyfPRADOnuiuk6Lt7edwKjP9uHMTW7iS0RExoPFiMhA/N3ssebJPnjn0R5wUlkhNasYQz/Zg6W7zqJOo5U7HhER3QSLEZEBSZKEx/u0w/bZA3Ff1zaoqdPi3Z9OYuTSfci4UiZ3PCIi+hMWI6JW4Otqhy8mRuL9UT3hZGuFIxdL8PAnv2HxL6dRy7NHRERGg8WIqJVIkoTHegcgcfYgPNDNCzUaLT7YkYERS/biRG6p3PGIiAgsRnrjPEbUUtq62GJlfG8sGh0GFztrHL9UiuGLf8NH/81ATR3PHhERyYnzGDUR5zGilpRXWoVXthzHjvQrAIBgH2e8P6onQv1cZE5GRGReOI8RkQnwcrbFsvFqfPJEL7jZW+NEbiniEvbiwx2nePaIiEgGLEZEMpMkCcPDfLFj9iAM7dEWdVqBT345g2Gf/oajF4vljkdEZFFYjIiMRBsnFZaMVSNhTAQ8HGxw6koZRizZh/d+OomqWo3c8YiILAKLEZGReainD3bMHohhYb7QaAWW7DqLhz/9DalZRXJHIyIyeyxGREbIw1GFT5/ohc/GqeHpqMKZvHKMXLoPC7ad4NkjIiIDYjEiMmIPhrZF4uyBGNHLD1oBLNt9DkM/2YOUC4VyRyMiMkssRkRGzs3BBotGh2PlhN7wclLh3NUKjPpsP97cmo5rNTx7RETUkliM9MQJHklug0O8kTh7EEap/SEE8PlvmYj9eDcOZfLsERFRS+EEj03ECR7JGOw8lYe53x3D5dIqSBIQ3689XnqwK+xtrOSORkRklDjBI5EZi+7qhR1zBuLxyAAIAazedx4PfrQH+88WyB2NiMiksRgRmShnW2u8M7In1jzZB36udsgqrMQTKw7glS3HUF5dJ3c8IiKTxGJEZOIGdmmDn2YNwNiodgCAdQeyMGTRbvx2Ol/mZEREpofFiMgMONla4+0RPbB+chT83exwqfgaxn1+EHO/P4qyqlq54xERmQwWIyIz0r+TJ7bPGoj4foEAgK8PZSNm0W7s+P0yeJ0FEdGdsRgRmRkHlRVefyQUG6b2RaCHPXJLqjB1bQrGf34IJy+Xyh2PiMiosRgRmam+HTzwn+cG4On7OsLGSoHfzuRj6Md78MqWYygor5Y7HhGRUeI8Rk3EeYzIFGUXVmLBf05g27HLAAAnWys890BnTOjXHjZW/PsREZk/fT+/WYyaiMWITNmBcwV448d0pOde/0otyNMB84YG44FgL0iSJHM6IiLDYTEyEBYjMnUarcCmlGy8vz0D+fVfqQ3o7IlXHgpB17ZOMqcjIjIMFiMDYTEic1FWVYuEnWex6rdM1Gi0UEjA2KhAzP5LF7g72Mgdj4ioRfGWIC2MN5Elc+Nka42XY7vhv3MGITa0LbQCWHvgAu57fyc+/y0TNXVauSMSEbU6njFqIp4xInO1/2wB3tiajhP14486eDrglYeDEd2V44+IyPTxqzQDYTEic6bRCnybnI0PdpxCfnkNgOvjj/7xcAi6eHP8ERGZLhYjA2ExIktQVlWLxTvP4IvfzqNGo4VSIWFsVDvMGszxR0RkmliMDITFiCzJhYIKLNh2Ej/9fn3+I2dbK8wa3AXj+wXCWskhikRkOliMDITFiCzRvrP5eHPrif+NP2rjgH88FIL7urbh+CMiMgksRgbCYkSWSqMV+CY5Gx9sP4WCiuvjjwZ2aYN/PBSMzhx/RERGjsXIQFiMyNKVVtUi4ZczWLU3E7UaAaVCwrj68UduHH9EREaKxchAWIyIrjufX4F/bjuBHelXAAAudtaYNbgzxvXl+CMiMj4sRgbCYkTU0L4z+XhjazpOXi4DAHRs44BXHg5BdFcvmZMREf0Pi5GBsBgRNabRCmxMysbCHf8bfzSoSxv84+FgdPLi+CMikh+LkYGwGBHdWmlVLRb/cgZf/GH80fi+gZg1uDNc7Tn+iIjkw2JkICxGRHeWWT/+KPEP449mD+6MsRx/REQyYTEyEBYjIv3tPZOPN35Mx6kr18cfdfJyxCsPBeM+jj8iolbGYmQgLEZETVOn0WJjcjYW7shAYf34o+iubTDvoRB08nKUOR0RWQoWIwNhMSJqnpJrtVj8y2ms3ncetRoBK4WEcRx/RESthMXIQFiMiO5OZn4F3v73Cfz3xPXxR6721pjzly4Y06cdrDj+iIgMRN/Pb4v8v9CIESPg5uaGUaNGyR2FyOIEeTpgZXxvrJ3UB129nVBcWYtXf/gdsR/vwa8ZV+WOR0QWziKL0cyZM7FmzRq5YxBZtAGd2+DfM+/Fm3GhcLO3xum8csSvOoQnVyfh7NVyueMRkYWyyGIUHR0NJydOOkckNyulAuP7BmLXi9GYfG8QrBQSfjmZhyGLduONH9NRUlkrd0QisjBGV4x2796NYcOGwdfXF5IkYcuWLY3WWbJkCYKCgmBrawu1Wo09e/a0flAiajEudtZ45eEQ7Jg9EIODvVCnFVi1NxP3fbATa/efR51GK3dEIrIQRleMKioqEBYWhsWLF9/0+Y0bN2LWrFmYN28eUlNTMWDAAMTGxiIrK0u3jlqtRmhoaKOfnJyc1nobRNQMHdo4YmV8JNY82QddvB1RVFmLf9SPP9rN8UdE1AqM+qo0SZKwefNmxMXF6ZZFRUUhIiICS5cu1S0LDg5GXFwcFixYoPe2d+3ahcWLF2PTpk23Xa+6uhrV1dW6x6WlpQgICOBVaUQGVqfR4utDWfgwMQNF9V+pPdzTBwse7QEnW2uZ0xGRqTHLq9JqamqQkpKCmJiYBstjYmKwb98+g+xzwYIFcHFx0f0EBAQYZD9E1JCVUoHx/dpj1wvRmFQ//mjr0VwMX7wXJy+Xyh2PiMyUSRWj/Px8aDQaeHt7N1ju7e2Ny5cv672dIUOG4LHHHsO2bdvg7++PpKSkW647d+5clJSU6H6ys7ObnZ+Ims7F3hr/eDgE30zrB18XW2TmVyAuYS82pVyUOxoRmSEruQM0hyRJDR4LIRotu53t27frva5KpYJKpdJ7fSIyjIh2btg6cwBmbUzD7oyreOHbI0g+X4j5w7vD1lopdzwiMhMmdcbI09MTSqWy0dmhvLy8RmeRWlpCQgJCQkIQGRlp0P0Q0a25O9hg9cRIzPlLF0gSsCEpG48u2YcLBRVyRyMiM2FSxcjGxgZqtRqJiYkNlicmJqJ///4G3feMGTOQnp5+26/diMjwFAoJMx/ojLVPRsHDwQbpuaV4+JPf8NNx/b9OJyK6FaMrRuXl5UhLS0NaWhoAIDMzE2lpabrL8efMmYOVK1di1apVOHHiBGbPno2srCxMmzZNxtRE1Nru7eyJf88cgN6BbiirrsO0dSl4a2s6ajnnERHdBaO7XH/Xrl2Ijo5utDw+Ph6rV68GcH2Cx/feew+5ubkIDQ3FokWLMHDgwFbJx5vIEhmXWo0W7/10Eiv2ZAIAege6YfGYCLR1sZU5GREZE30/v42uGBmrhIQEJCQkQKPRICMjg8WIyMj8dPwyXvz2CMqq6+DhYIOPH++Fezt7yh2LiIwEi5GB8IwRkfG6UFCB6esOIz23FJIEzB7cBc9Ed4JCof9Vq0RknsxygkciotsJ9HDA90/3x+ORARAC+DAxAxNXJ6GwokbuaERkIliMiMis2For8c7InvjgsTDYWiuwO+MqHvpkDw5nFckdjYhMAIsREZmlUWp/bJlxDzp4OiC3pAqjl+3HF3szwdEDRHQ7LEZ64gSPRKanW1tn/PDMPXiopw9qNQKv/5iOZ9anoqyqVu5oRGSkOPi6iTj4msj0CCHw5b7zeHvbCdRqBII8HbB0XAS6teV/w0SWgoOviYjqSZKEifcEYeNTvBEtEd0eixERWYwbN6Id2KUNqmq1eOHbI3j5u6OoqtXIHY2IjASLERFZlBs3on2eN6IloptgMdITB18TmQ+FQsKzvBEtEd0EB183EQdfE5mXyyVVeGb9YSRfuD7P0eR7g/D32G6wVvLvjUTmhIOviYj00NbFFl9P7YspA4IAACt/y8QTyw/gckmVzMmISA4sRkRk8ayVCsx7KASfjVPDSWWF5AtFeOiTPfjtdL7c0YiolbEYERHVezC0LbbOvBchPs4oqKjB+FUH8cnPp6HVcsQBkaVgMSIi+oMbN6J9og9vREtkiViM9MSr0ogsh621Egse5Y1oiSwRr0prIl6VRmRZTl4uxdPrDuNcfgWsFBLmPRSMif3bQ5IkuaMRURPwqjQiohbwxxvR1ml5I1oic8diRER0B0621lj8RC/MHxYCa6WEfx/LxfDFe3Hycqnc0YiohbEYERHpgTeiJbIMLEZERE1wsxvR/n0Tb0RLZC5YjIiImujPN6LdmJyNEUv24Xw+b0RLZOpYjPTEy/WJ6I/+fCPaE7mlGPYpb0RLZOp4uX4T8XJ9Ivoz3oiWyPjxcn0iolbCG9ESmQ8WIyKiFsAb0RKZBxYjIqIWxBvREpk2FiMiohbGG9ESmS4WIyIiA+CNaIlME4sREZEBjVL7Y8uMe9DB0wG5JVX462f7sfbABbljEdEtsBgRERnYn29E+48tx/HZr2fljkVEN8FipCdO8EhEd+PGjWhnPtAZAPDOf07i059Py5yKiP6MEzw2ESd4JKK7tfiX0/hgRwYA4LkHOmPW4M6QJEnmVETmjRM8EhEZqWfu74yXY7sBAD7++TQ+2HEK/DsqkXFgMSIiksG0QR3xykPBAICEnWfxzn9OshwRGQEWIyIimUwe0AGvD+8OAFi2+xze2JrOckQkMxYjIiIZxfdvj7dHhAIAvth7Hq/963fOkk0kIxYjIiKZjY0KxLsje0CSgDX7L2DeluMsR0QyYTEiIjICoyPb4f1RYZAk4OtDWXj5+6PQsBwRtToWIyIiIzFK7Y+PRodDIQHfJF/Ei98eYTkiamUsRkRERuSRcD98+kQElAoJ36dewqyNaajTaOWORWQxWIyIiIzMQz19kDCmF6wUEn48koOZG1JRy3JE1CpYjIiIjNCDoT5YOk4Na6WEbccu45n1h1FTx3JEZGgsRkRERuovId5YPr43bKwU2P77FUxfl4LqOo3csYjMGosREZERi+7mhZUTekNlpcDPJ/MwdU0KqmpZjogMhcVITwkJCQgJCUFkZKTcUYjIwgzs0gZfTIyEnbUSv2ZcxeQvk3GthuWIyBAkwfnnm0Tfu/MSEbW0g+cK8LfVSais0aBfBw98PrE37G2s5I5FZBL0/fzmGSMiIhMR1cEDa57sA0eVFfafK8DEVUkor66TOxaRWWExIiIyIb3bu2PNpD5wsrXCofOFmPD5QZRW1codi8hssBgREZmYiHZu+GpyFFzsrHE4qxjjPz+EkmssR0QtgcWIiMgE9fR3xVeTo+Bmb40j2cUYu/IAiitr5I5FZPJYjIiITFSonwvWT+kLdwcbHL9UiidWHERhBcsR0d1gMSIiMmHBPs7YMLUvPB1VOJFbiieWH0B+ebXcsYhMFosREZGJ6+LthA1T+8LLSYVTV8rw+PIDyCutkjsWkUliMSIiMgOdvByx8al+8HGxxZm8cjy+/AAul7AcETUVixERkZkI8nTAxqn94Odqh3P5FRi9fD9yiq/JHYvIpLAYERGZkXYe9tgwtS8C3O1woaASo5fvR3ZhpdyxiEwGixERkZkJcLfHxqn9EOhhj+zCa3h8+QFcKKiQOxaRSWAxIiIyQ76udtg4tR86eDrgUvE1jF52AJn5LEdEd8JiRERkptq62GLDU33RycsRl0urMHrZfpzJK5c7FpFRYzEiIjJjXk622DC1L7p6OyGvrBqPLz+AjCtlcsciMloWV4yys7Nx3333ISQkBD179sS3334rdyQiIoPydFTh66l9EezjjPzy6+XoRG6p3LGIjJIkhBByh2hNubm5uHLlCsLDw5GXl4eIiAicOnUKDg4Oer2+tLQULi4uKCkpgbOzs4HTEhG1nOLKGoz//BCOXSqBq7011k2KQqifi9yxiFqFvp/fFnfGyMfHB+Hh4QAALy8vuLu7o7CwUN5QREStwNXeBusmRyEswBXFlbUYs+IAjl4sljsWkVExumK0e/duDBs2DL6+vpAkCVu2bGm0zpIlSxAUFARbW1uo1Wrs2bOnWftKTk6GVqtFQEDAXaYmIjINLnbWWDupDyLauaK0qg5jVxzE4awiuWMRGQ2jK0YVFRUICwvD4sWLb/r8xo0bMWvWLMybNw+pqakYMGAAYmNjkZWVpVtHrVYjNDS00U9OTo5unYKCAkyYMAHLly83+HsiIjImzrbWWDMpCn3au6Osug4TPj+E5PM8c04EGPkYI0mSsHnzZsTFxemWRUVFISIiAkuXLtUtCw4ORlxcHBYsWKDXdqurq/GXv/wFU6ZMwfjx4++4bnX1/+5UXVpaioCAAI4xIiKTV1lTh0mrk7H/XAHsbZRYNTESfTt4yB2LyCDMcoxRTU0NUlJSEBMT02B5TEwM9u3bp9c2hBCYOHEi7r///juWIgBYsGABXFxcdD/82o2IzIW9jRVWTYzEgM6eqKzRYOIXh7DvTL7csYhkZVLFKD8/HxqNBt7e3g2We3t74/Lly3ptY+/evdi4cSO2bNmC8PBwhIeH49ixY7dcf+7cuSgpKdH9ZGdn39V7ICIyJnY2SqyY0BuDurRBVa0Wf1udhN0ZV+WORSQbK7kDNIckSQ0eCyEaLbuVe++9F1qtVu99qVQqqFSqJuUjIjIlttZKLJ+gxtPrDuPnk3mYvCYZy8apEd3NS+5oRK3OpM4YeXp6QqlUNjo7lJeX1+gsEhER6U9lpcTScWrEhHijpk6LqWuTkZh+Re5YRK3OpIqRjY0N1Go1EhMTGyxPTExE//79DbrvhIQEhISEIDIy0qD7ISKSi42VAgljI/BQDx/UagSmr0vBT8dz5Y5F1KqMrhiVl5cjLS0NaWlpAIDMzEykpaXpLsefM2cOVq5ciVWrVuHEiROYPXs2srKyMG3aNIPmmjFjBtLT05GUlGTQ/RARyclaqcDHj4djeJgv6rQCM9anYuvRnDu/kMhMGN0Yo+TkZERHR+sez5kzBwAQHx+P1atXY/To0SgoKMAbb7yB3NxchIaGYtu2bQgMDJQrMhGRWbFSKrBodDisFBK+T72EmV+nok4jENfLT+5oRAZn1PMYGSPeK42ILIVGK/Dyd0fxbcpFSBLw/qgwjFL7yx2LqFnMch4jOXGMERFZGqVCwrsje+KJPu0gBPDipiPYmJR15xcSmTCeMWoinjEiIksjhMBr//oda/ZfAAC8FReKcX05fIFMC88YERFRi5AkCa8P744n7wkCALyy5ThW782UORWRYbAYERHRHUmShH88HIynBnYAAMz/MR0r95yTORVRy2Mx0hPHGBGRpZMkCS/HdsOM6I4AgLf+fQLfpVyUORVRy+IYoybiGCMisnRCCCz4z0ks330OVgoJqyZGYmCXNnLHIrotjjEiIiKDkCQJLz/YDcPqJ4Gcvi4Fxy+VyB2LqEWwGBERUZMpFBI+eKwn+nXwQEWNBn9bnYTswkq5YxHdNRYjIiJqFpWVEp+NV6NbWydcLavGxC8OobiyRu5YRHeFxUhPHHxNRNSYi501vvhbJHxcbHH2agUmf5mMqlqN3LGImo2Dr5uIg6+JiBrLuFKGkUv3oayqDg92b4uEsRFQKiS5YxHp6Pv53aRiFBQUBElq+h/0WbNmYebMmU1+nTFiMSIiurkD5wow4fNDqNFoMbF/e7w2LKRZnxlEhqDv57dVUza6evXqZoVp3759s15HRESmo28HDyz8axie/ToVq/edh4+LLZ4a1FHuWERN0qRiNGjQIEPlICIiMzAszBdXSqvw1r9PYMF/TqKtiy0eCfeTOxaR3po9+PrYsWOoq6trySxERGQGJg/ooLuv2gvfHsG+M/kyJyLSX7OLUVhYGBwdHREREYG//e1v+Pjjj7Fr1y4UFxe3YDzjwavSiIj098pDwXiohw9qNQJPrU3BidxSuSMR6aXZV6Xt27cPo0aNQr9+/aBSqXDixAkcOXIEkiShU6dO+Otf/4rnn38erq6uLRxZXhx8TUSkn6paDSasOoRDmYXwdlbh+6fvgZ+rndyxyEIZ/JYgzzzzDJYsWYLvvvsO69evR2pqKnbu3IkOHTogPj4ee/bsQa9evXD16tXm7oKIiEyYrbUSK8b3RmcvR1wprcbEVYdQUlkrdyyi22p2MTp58iRCQkIaLBs0aBAWLVqEw4cPY+fOnejduzf+7//+765DEhGRaXKxt8bqJ/vA21mF03nlmLKWE0CScWt2MYqMjMS6desaLe/evTt27NgBSZLw4osv4r///e9dBSQiItPm52qHLyb2gaPKCocyC/H8t0eg1XJuYTJOzS5GS5YswUcffYQxY8bg5MmTAICamhosWrQI7u7uAIA2bdrgypUrLZOUiIhMVoivM5aNV8NaKeHfR3Px9rYTckciuqlmF6Pu3btj//79yM3NRUhICOzs7ODg4IAVK1bgnXfeAQCkpqbC19e3xcISEZHpuqeTJ94fFQYA+Py3TKzcc07mRESNNWmCxz/r3r07du7cifPnz+PIkSOwsrKCWq1G27ZtAVw/Y3SjJJm6hIQEJCQkQKPhd+NERM0V18sPuSVVePenk3jr3yfQ1sUWD/fkX6DJePAmsk3Ey/WJiO6OEALz//U7vtx/ATZKBdZM6oO+HTzkjkVmziD3SuNNZImI6G5JkoRXh3XH5dIqbP/9CqauScam6f3RxdtJ7mhETTtj9OuvvzZrJ+3bt0dgYGCzXmtseMaIiKhlVNVqMG7lQSRfKIKPiy02P30P2rrYyh2LzJS+n9/8Kq2JWIyIiFpOUUUNRn62D+euVqBbWyd8M60fnG2t5Y5FZsjgM18TERHdLTcHG3z5tz5o46TCyctlmLY2BTV1WrljkQVjMSIiIlkFuNvji4mRcLBRYt/ZAry4iRNAknxYjIiISHahfi5YOk4NK4WEH9Jy8O72k3JHIgvFYkREREZhYJc2eGdkTwDAsl/PYfXeTJkTkSViMSIiIqMxSu2PF2K6AABe35qO/xzLlTkRWRoWIz0lJCQgJCQEkZGRckchIjJrM6I7YUxUOwgBPLcxDUnnC+WORBaEl+s3ES/XJyIyvDqNFtPWpeC/J/LgYmeN76b3QycvTgBJzcfL9YmIyGRZKRX49IkIhAe4ouRaLeJXJSGvtEruWGQBWIyIiMgo2dko8Xl8b7T3sMel4muY+EUSyqpq5Y5FZo7FiIiIjJaHowpfPtkHno42SM8txdNfHeYEkGRQLEZERGTUAj0c8Hl8JOysldhzOh8vf38UHB5LhsJiRERERi8swBVLxkZAqZDw/eFL+GDHKbkjkZliMSIiIpMQ3c0LC0b0AAAk7DyLdQcuyJyIzBGLERERmYy/RgZg1uDOAIBXfziOHb9fljkRmRsWIyIiMinPPdAZj0cGQCuAmRtScTirSO5IZEZYjIiIyKRIkoS34kIR3bUNqmq1mLQ6Ceeulssdi8wEixEREZkcK6UCi8dEoKe/C4oqaxH/xSFcLauWOxaZARYjIiIySQ4qK6yaGIl27vbILryGJ1cnoaK6Tu5YZOJYjPTEm8gSERkfz/oJIN0dbHDsUgme/uowajWcAJKajzeRbSLeRJaIyPikZhXhiRUHUFWrxWNqf7w3qickSZI7FhkR3kSWiIgsRq92blj8RAQUEvBtykUs+u9puSORiWIxIiIiszA4xBtvxoUCAD75+TS+PpQlcyIyRSxGRERkNsZGBeKZ6E4AgFe2HMcvJ6/InIhMDYsRERGZledjumBkhD80WoEZX6XiSHax3JHIhLAYERGRWZEkCe+M7IEBnT1xrVaDJ1cn4Xx+hdyxyESwGBERkdmxViqwdJwa3X2dUVBRg4lfHEJBOSeApDtjMSIiIrPkqLLCF3+LhL+bHc4XVOLJL5NRWcMJIOn2WIyIiMhseTnZ4ssn+8DV3hpHsovx7PpU1HECSLoNFiMiIjJrHds44vP43lBZKfDzyTz844ffwbmN6VZYjIiIyOypA93x8eO9IEnA14eysPiXM3JHIiPFYkRERBbhwdC2eH14dwDAwsQMfJOcLXMiMkYsRkREZDEm9GuPaYM6AgDmfn8Mu07lyZyIjA2LERERWZSXhnRFXLgvNFqBp786jGMXS+SOREaExYiIiCyKQiHhvVFhuKeTByprNPjb6iRcKr4mdywyEixGRERkcWysFPhsnBrd2johv7waU9dwjiO6zuKKUVlZGSIjIxEeHo4ePXpgxYoVckciIiIZONlaY8WE3nB3sMHvOaV48dujvIyfIAkL+1Og0WhQXV0Ne3t7VFZWIjQ0FElJSfDw8NDr9aWlpXBxcUFJSQmcnZ0NnJaIiAztUGYhxq48gFqNwJy/dMHMBzrLHYkMQN/Pb4s7Y6RUKmFvbw8AqKqqgkaj4d8QiIgsWJ8gd7z5SCgA4MPEDPx0PFfmRCQnoytGu3fvxrBhw+Dr6wtJkrBly5ZG6yxZsgRBQUGwtbWFWq3Gnj17mrSP4uJihIWFwd/fHy+99BI8PT1bKD0REZmix/u0w8T+7QEAszceQXpOqbyBSDZGV4wqKioQFhaGxYsX3/T5jRs3YtasWZg3bx5SU1MxYMAAxMbGIisrS7eOWq1GaGhoo5+cnBwAgKurK44cOYLMzEysX78eV65caZX3RkRExuuVh4JxbydPXKvVYMqaZOSXV8sdiWRg1GOMJEnC5s2bERcXp1sWFRWFiIgILF26VLcsODgYcXFxWLBgQZP3MX36dNx///147LHHbvp8dXU1qqv/9x9HaWkpAgICOMaIiMgMFVfWIC5hL84XVKJPe3esmxwFGyujO4dAzWCWY4xqamqQkpKCmJiYBstjYmKwb98+vbZx5coVlJZeP0VaWlqK3bt3o2vXrrdcf8GCBXBxcdH9BAQENP8NEBGRUXO1t8HK+N5wUlnh0PlCvPrDcY5DtTAmVYzy8/Oh0Wjg7e3dYLm3tzcuX76s1zYuXryIgQMHIiwsDPfeey+eeeYZ9OzZ85brz507FyUlJbqf7GzeW4eIyJx18nLCJ09cv+HshqRsrN53Xu5I1Iqs5A7QHJIkNXgshGi07FbUajXS0tL03pdKpYJKpWpKPCIiMnHR3bwwN7Yb/rntJN7cmo5OXo4Y0LmN3LGoFZjUGSNPT08olcpGZ4fy8vIanUVqaQkJCQgJCUFkZKRB90NERMZhyoAOeDTCD1oBzPjqMDLzK+SORK3ApIqRjY0N1Go1EhMTGyxPTExE//79DbrvGTNmID09HUlJSQbdDxERGQdJkvDPET3Qq50rSqvqMPnLJJRW1codiwzM6IpReXk50tLSdF93ZWZmIi0tTXc5/pw5c7By5UqsWrUKJ06cwOzZs5GVlYVp06bJmJqIiMyRrbUSy8ap0dbZFmevVuDZ9anQaDkY25wZ3eX6u3btQnR0dKPl8fHxWL16NYDrEzy+9957yM3NRWhoKBYtWoSBAwe2Sj7eEoSIyPIcu1iCx5btQ1WtFlMHdsD/DQ2WOxI1kb6f30ZXjIxVQkICEhISoNFokJGRwWJERGRhfjySg2e/TgUAfPBYGEap/WVORE3BYmQgPGNERGS5Pth+Cot3noGNUoGvp/aFOtBN7kikJ7Oc4JGIiEhOc/7SBTEh3qjRaPHU2hTkllyTOxK1MBYjIiIiPSkUEhaNDke3tk7IL6/GlDXJuFajkTsWtSAWIz1xHiMiIgIAB5UVVkzoDXcHGxy/VIoXNx3hbUPMCMcYNRHHGBEREQAcOFeAcSsPok4r8PxfuuDZBzrLHYlug2OMiIiIDKhvBw+88UgoAGBhYgZ+Oq7fPTvJuLEYERERNdOYqHaI7xcIAJjzTRpO5JbKnIjuFosRERHRXXjl4RD07+iByhoNJn+ZjILyarkj0V1gMdITB18TEdHNWCsVWDI2AoEe9rhUfA3TvzqMmjqt3LGomTj4uok4+JqIiG7m9JUyjFiyD+XVdXiiTzv8c0QoJEmSOxbV4+BrIiKiVtTZ2wmfPBEOSQK+PpSFNfsvyB2JmoHFiIiIqIXc380bf3+wGwDgja3p2HsmX+ZE1FQsRkRERC3oqYEd8GgvP2i0Ak9/dRjn8yvkjkRNwGJERETUgiRJwj8f7YGwAFeUXKvF5DXJKK2qlTsW6YnFSE+8Ko2IiPRla63EivFqeDurcCavHM99nQqNltc6mQJeldZEvCqNiIj0dfRiMR77bD+q67R4amAHzB0aLHcki8Wr0oiIiGTW098V743qCQBYtvscvj98UeZEdCcsRkRERAb0SLgfZkR3BAC8/P0xpGYVyZyIbofFiIiIyMCe/0tXDA72Rk2dFlPXpiC35JrckegWWIyIiIgMTKGQ8NHj4ejq7YSrZdWYuiYFVbUauWPRTbAYERERtQJHlRVWxveGm701jl0qwYubjoLXPxkfFiMiIqJWEuBujyVj1bBSSPjxSA6W7DordyT6ExYjPXEeIyIiagn9Onpg/vDuAID3t5/Cjt8vy5yI/ojzGDUR5zEiIqKW8I8tx7H2wAU42Cjx3dP90a0tP1MMifMYERERGbFXh4WgXwcPVNRoMPnLZBRW1MgdicBiREREJAtrpQJLxkagnbs9LhZdw/R1Kaip08ody+KxGBEREcnEzcEGK+N7w1FlhYOZhXj9x9/ljmTxWIyIiIhk1MXbCR+NDockAV8dzMLa/efljmTRWIyIiIhkNjjEGy8O6QoAmP9jOvadyZc5keViMSIiIjIC0wd1RFy4LzRagafXH8aFggq5I1kkFiMiIiIjIEkS3hnZE2H+LiiurMXkL5NRVlUrdyyLw2KkJ07wSEREhmZrrcTyCb3h5aTC6bxyzNqQBo2W0w22Jk7w2ESc4JGIiAwtLbsYf122HzV1Wkwb1BEvx3aTO5LJ4wSPREREJio8wBXvj+oJAPjs17PYnHpR5kSWg8WIiIjICD0S7ofp93UEAPz9u2NIyy6WN5CFYDEiIiIyUi/GdMXgYC/U1GkxdU0yLpdUyR3J7LEYERERGSmFQsKi0eHo4u2IvLJqTF2bjKpajdyxzBqLERERkRFzsrXGygmRcLW3xtGLJfj7d0fB66YMh8WIiIjIyLXzsMeSsRFQKiT8kJaDpb+elTuS2WIxIiIiMgH9O3pi/rAQAMD720/hv+lXZE5knliMiIiITMT4fu0xNqodhACe25CKU5fL5I5kdliMiIiITMj84d3Rt4M7Kmo0mLwmCUUVNXJHMissRkRERCbEWqnAkrFqBLjbIbvwGqZ/lYJajVbuWGaDxYiIiMjEuDvYYOWESDjYKHHgXCFe//F3uSOZDRYjPfEmskREZEy6tnXCR4/3giQB6w5kYe2BC3JHMgu8iWwT8SayRERkTBJ2nsH720/BSiHhq8lRiOrgIXcko8SbyBIREVmAp+/riGFhvqjTCsxYn8rbhtwlFiMiIiITJkkS3h3ZA93aOiG/vBrTv0pBdR1vG9JcLEZEREQmzt7GCsvGq+Fsa4XUrGK8uTVd7kgmi8WIiIjIDAR6OODjPwzG/iY5W+5IJonFiIiIyExEd/PCrAe6AABe2XIcxy6WyJzI9LAYERERmZFn7++EB7p5oaZOi2nrUlDImbGbhMWIiIjIjCgUEj4cHY72Hva4VHwNz359GHWcGVtvLEZERERmxsXOGsvG94adtRJ7zxTggx0ZckcyGSxGREREZqhrWye8N6onAOCzX8/iP8dyZU5kGliMiIiIzNSwMF9MGRAEAHjh2yM4faVM5kTGj8WIiIjIjP39wW7o28EdFTUaPLU2BaVVtXJHMmosRkRERGbMSqnA4jER8HGxxbn8Cjz/zRFotbxN6q2wGBEREZk5T0cVlo5Tw0apQGL6FSz99azckYwWixEREZEFCA9wxRuPdAcAfLDjFH7NuCpzIuPEYkRERGQhHu/TDk/0CYAQwMyvU5FdWCl3JKNjscWosrISgYGBeOGFF+SOQkRE1GrmD++OsABXlFyrxVNrU3CtRiN3JKNiscXo7bffRlRUlNwxiIiIWpXKSomlYyPg4WCD9NxSzNt8DEJwMPYNFlmMTp8+jZMnT2Lo0KFyRyEiImp1vq52+HRMLygVEr5PvYQ1+y/IHcloGF0x2r17N4YNGwZfX19IkoQtW7Y0WmfJkiUICgqCra0t1Go19uzZ06R9vPDCC1iwYEELJSYiIjI9/Tt6Ym5sNwDAm1vTkXS+UOZExsHoilFFRQXCwsKwePHimz6/ceNGzJo1C/PmzUNqaioGDBiA2NhYZGVl6dZRq9UIDQ1t9JOTk4MffvgBXbp0QZcuXVrrLRERERmlSfcG4eGePqjTCjz91WFcKa2SO5LsJGHEXyxKkoTNmzcjLi5OtywqKgoRERFYunSpbllwcDDi4uL0Ogs0d+5crFu3DkqlEuXl5aitrcXzzz+PV1999abrV1dXo7q6Wve4tLQUAQEBKCkpgbOzc/PfHBERkRGorKnDiIR9OHWlDOpAN3w9pS9srIzuvMldKy0thYuLyx0/v03qndfU1CAlJQUxMTENlsfExGDfvn16bWPBggXIzs7G+fPn8cEHH2DKlCm3LEU31ndxcdH9BAQE3NV7ICIiMib2Nlb4bLwaTrZWSLlQhLf+nS53JFmZVDHKz8+HRqOBt7d3g+Xe3t64fPmyQfY5d+5clJSU6H6ys7MNsh8iIiK5BHk64KPR4QCANfsvYFPKRXkDychK7gDNIUlSg8dCiEbL9DFx4sQ7rqNSqaBSqZq8bSIiIlPyQLA3nnugMz7++TTmbT6Gbm2dEOrnInesVmdSZ4w8PT2hVCobnR3Ky8trdBappSUkJCAkJASRkZEG3Q8REZFcnnugM6K7tkF1nRZPrU1BUUWN3JFanUkVIxsbG6jVaiQmJjZYnpiYiP79+xt03zNmzEB6ejqSkpIMuh8iIiK5KBQSPhrdC4Ee9rhUfA0zN6RCozXaa7QMwuiKUXl5OdLS0pCWlgYAyMzMRFpamu5y/Dlz5mDlypVYtWoVTpw4gdmzZyMrKwvTpk2TMTUREZF5cLG3xmfj1LCzVmLP6Xws3HFK7kityujGGCUnJyM6Olr3eM6cOQCA+Ph4rF69GqNHj0ZBQQHeeOMN5ObmIjQ0FNu2bUNgYKBckYmIiMxKsI8z3hnZA89tSMOSXWfR098FD4b6yB2rVRj1PEbGJCEhAQkJCdBoNMjIyOA8RkREZPbe3JqOz3/LhIONEj88cy86eTnKHanZ9J3HiMWoifT9xRIREZm6Wo0W41YexMHMQnRs44AtM+6Bk6213LGaxSwneCQiIqLWY61UYPGYCLR1tsXZqxV44dsjMPfzKSxGREREdEttnFRYOi4CNkoFtv9+BUt/PSt3JINiMSIiIqLb6tXODfOHdwcAfLD9FHZnXJU5keGwGOmJEzwSEZEle6JPAEb3DoBWADM3pCK7sFLuSAbBwddNxMHXRERkqapqNfjrsv04erEE3X2d8d30/rC1VsodSy8cfE1EREQtytZaiaXj1HB3sMHvOaX4v83HzG4wNosRERER6c3P1Q6Ln+gFhQR8f/gS1h24IHekFsViRERERE3Sv5MnXo7tBgB4/cd0pFwolDlRy2Ex0hMHXxMREf3PlAEd8FAPH9RpBaavO4y80iq5I7UIDr5uIg6+JiIiuq6iug5xCXtxOq8cvQPdsH5KX9hYGec5Fw6+JiIiIoNyUFlh2Xg1nFRWSL5QhH9uOyF3pLvGYkRERETN1qGNIz4cHQ4AWL3vPL4/fFHeQHeJxYiIiIjuyl9CvDHz/k4AgLnfH8PxSyUyJ2o+FiMiIiK6a88N7oL7urZBdZ0W09aloLiyRu5IzcJipCdelUZERHRrSoWEj0f3Qjt3e1wsuoaZG9Kg0Zre9V28Kq2JeFUaERHRrZ3ILcWIJXtRVavFs/d3wvMxXeWOBIBXpREREZEMgn2c8e7IngCAT385gx2/X5Y5UdOwGBEREVGLeiTcD0/eEwQAmPPNEZy9Wi5zIv2xGBEREVGLmzu0G/oEuaO8ug7T1qagvLpO7kh6YTEiIiKiFmetVCBhTAS8nVU4nVeOlzYdgSkMa2YxIiIiIoNo46TC0nFqWCslbDt2Gct3n5M70h2xGOmJl+sTERE1XUQ7N8wf3h0A8O5PJ7H3TL7MiW6Pl+s3ES/XJyIiahohBP7+3VF8k3wRbvbW+PHZe+HvZt+qGXi5PhERERkFSZLwxiOh6OnvgqLKWkxfdxhVtRq5Y90UixEREREZnK21EkvHqeHuYINjl0rwjy3HjXIwNosRERERtQo/Vzt8+kQvKCTg25SLWH8oS+5IjbAYERERUau5p5Mn/v5gNwDA/H/9jsNZRTInaojFiIiIiFrV1IEdMLRHW9RqBKavS8HVsmq5I+mwGBEREVGrkiQJ740KQ2cvR1wprcaM9YdRq9HKHQsAixERERHJwFFlhc/Gq+GkssKhzEIs2HZS7kgAWIz0xgkeiYiIWlbHNo5Y+NcwAMCqvZn4Ie2SzIk4wWOTcYJHIiKilrVwxyl8+ssZ2ForsPnpexDs0/Kfr5zgkYiIiEzCrMFdMKhLG1TVavHU2hSUVNbKloXFiIiIiGSlVEj4+PFwBLjbIauwEhuS5JvfyEq2PRMRERHVc7W3wbJxvbH3TD4mDwiSLQeLERERERmFEF9nhPjKO36XX6URERER1WMxIiIiIqrHYkRERERUj8WIiIiIqB6LEREREVE9FiMiIiKieixGRERERPVYjPTEm8gSERGZP95Etol4E1kiIiLTw5vIEhERETURixERERFRPRYjIiIionosRkRERET1rOQOYGpujFUvLS2VOQkRERHp68bn9p2uOWMxaqKysjIAQEBAgMxJiIiIqKnKysrg4uJyy+d5uX4TabVa5OTkwMnJCZIkNXo+MjISSUlJLbKv5mxL39fcab3bPd/U5/68rLS0FAEBAcjOzpZlygNLOEa3e57HqOVew2PEY3S7ZTxGxnWMhBAoKyuDr68vFIpbjyTiGaMmUigU8Pf3v+XzSqWyxf4DaM629H3Nnda73fNNfe5W6zs7O8vyPwtLOEa3e57HqOVew2PEY6TPujxGd7deSx6j250puoGDr1vYjBkzZN2Wvq+503q3e76pz7Xk76QlWMIxut3zPEYt9xoeI/m2xWN0ZzxGzXv//CqNWh1nDzd+PEbGj8fI+PEYmSaeMaJWp1Kp8Nprr0GlUskdhW6Bx8j48RgZPx4j08QzRkRERET1eMaIiIiIqB6LEREREVE9FiMiIiKieixGRERERPVYjIiIiIjqsRiR0SorK0NkZCTCw8PRo0cPrFixQu5I9CfZ2dm47777EBISgp49e+Lbb7+VOxLdxIgRI+Dm5oZRo0bJHYXqbd26FV27dkXnzp2xcuVKuePQH/ByfTJaGo0G1dXVsLe3R2VlJUJDQ5GUlAQPDw+5o1G93NxcXLlyBeHh4cjLy0NERAROnToFBwcHuaPRH+zcuRPl5eX48ssvsWnTJrnjWLy6ujqEhIRg586dcHZ2RkREBA4ePAh3d3e5oxF4xoiMmFKphL29PQCgqqoKGo0G7PHGxcfHB+Hh4QAALy8vuLu7o7CwUN5Q1Eh0dDScnJzkjkH1Dh06hO7du8PPzw9OTk4YOnQotm/fLncsqsdiRM22e/duDBs2DL6+vpAkCVu2bGm0zpIlSxAUFARbW1uo1Wrs2bOnSfsoLi5GWFgY/P398dJLL8HT07OF0luG1jhGNyQnJ0Or1SIgIOAuU1uW1jxG1DLu9pjl5OTAz89P99jf3x+XLl1qjeikBxYjaraKigqEhYVh8eLFN31+48aNmDVrFubNm4fU1FQMGDAAsbGxyMrK0q2jVqsRGhra6CcnJwcA4OrqiiNHjiAzMxPr16/HlStXWuW9mYvWOEYAUFBQgAkTJmD58uUGf0/mprWOEbWcuz1mNzvzLUmSQTNTEwiiFgBAbN68ucGyPn36iGnTpjVY1q1bN/Hyyy83ax/Tpk0T33zzTXMjWjxDHaOqqioxYMAAsWbNmpaIadEM+d/Rzp07xciRI+82Iv1Jc47Z3r17RVxcnO65mTNniq+++srgWUk/PGNEBlFTU4OUlBTExMQ0WB4TE4N9+/bptY0rV66gtLQUwPW7VO/evRtdu3Zt8ayWqiWOkRACEydOxP3334/x48cbIqZFa4ljRK1Ln2PWp08fHD9+HJcuXUJZWRm2bduGIUOGyBGXbsJK7gBknvLz86HRaODt7d1gube3Ny5fvqzXNi5evIhJkyZBCAEhBJ555hn07NnTEHEtUksco71792Ljxo3o2bOnbpzF2rVr0aNHj5aOa5Fa4hgBwJAhQ3D48GFUVFTA398fmzdvRmRkZEvHJeh3zKysrLBw4UJER0dDq9XipZde4tW2RoTFiAzqz9+bCyH0/i5drVYjLS3NAKnoj+7mGN17773QarWGiEV/cDfHCACveJLBnY7Z8OHDMXz48NaORXrgV2lkEJ6enlAqlY3+VpuXl9fob1IkDx4j48djZHp4zEwfixEZhI2NDdRqNRITExssT0xMRP/+/WVKRX/EY2T8eIxMD4+Z6eNXadRs5eXlOHPmjO5xZmYm0tLS4O7ujnbt2mHOnDkYP348evfujX79+mH58uXIysrCtGnTZExtWXiMjB+PkenhMTNzMl4RRyZu586dAkCjn/j4eN06CQkJIjAwUNjY2IiIiAjx66+/yhfYAvEYGT8eI9PDY2beeK80IiIionocY0RERERUj8WIiIiIqB6LEREREVE9FiMiIiKieixGRERERPVYjIiIiIjqsRgRERER1WMxIiIiIqrHYkREZue+++7DrFmzDLqPXbt2QZIkSJKEuLg42fO0pPbt2+veW3FxsdxxiFoV75VGRCZr165diI6ORlFREVxdXXXLv//+e1hbW7dKhlOnTsHLy6tV9tVakpKSsGfPHowcOVLuKEStjsWIiIxOTU0NbGxsmv16d3f3Fkxze15eXg1KmVxqa2tbrAy2adOmVX+HRMaEX6URWbhNmzahR48esLOzg4eHBwYPHoyKigrd81988QWCg4Nha2uLbt26YcmSJbrnzp8/D0mSsGHDBvTv3x+2trbo3r07du3apVtHo9Fg0qRJCAoKgp2dHbp27YqPP/64QYaJEyciLi4OCxYsgK+vL7p06QIAWLduHXr37g0nJye0bdsWY8aMQV5enm7f0dHRAAA3NzdIkoSJEycCaPzVVVFRESZMmAA3NzfY29sjNjYWp0+f1j2/evVquLq6Yvv27QgODoajoyMefPBB5ObmNvn3WVFRgQkTJsDR0RE+Pj5YuHBho3Vqamrw0ksvwc/PDw4ODoiKimrwOwOAFStWICAgAPb29hgxYgQ+/PDDBgVs/vz5CA8Px6pVq9ChQweoVCoIIVBSUoKpU6fCy8sLzs7OuP/++3HkyJEG2/7xxx+hVqtha2uLDh064PXXX0ddXV2T3yuRWZL5JrZEJKOcnBxhZWUlPvzwQ5GZmSmOHj0qEhISRFlZmRBCiOXLlwsfHx/x3XffiXPnzonvvvtOuLu7i9WrVwshhMjMzBQAhL+/v9i0aZNIT08XkydPFk5OTiI/P18IIURNTY149dVXxaFDh8S5c+fEunXrhL29vdi4caMuR3x8vHB0dBTjx48Xx48fF8eOHRNCCPH555+Lbdu2ibNnz4r9+/eLvn37itjYWCGEEHV1deK7774TAMSpU6dEbm6uKC4uFkIIMWjQIPHcc8/ptj98+HARHBwsdu/eLdLS0sSQIUNEp06dRE1NjRBCiC+++EJYW1uLwYMHi6SkJJGSkiKCg4PFmDFjbvm7u3GH9aKiogbLp0+fLvz9/cWOHTvE0aNHxcMPPywcHR0b5BkzZozo37+/2L17tzhz5ox4//33hUqlEhkZGUIIIX777TehUCjE+++/L06dOiUSEhKEu7u7cHFx0W3jtddeEw4ODmLIkCHi8OHD4siRI0Kr1Yp77rlHDBs2TCQlJYmMjAzx/PPPCw8PD1FQUCCEEOKnn34Szs7OYvXq1eLs2bNix44don379mL+/Pl6vT8ic8diRGTBUlJSBABx/vz5mz4fEBAg1q9f32DZm2++Kfr16yeE+F8xeuedd3TP19bWCn9/f/Huu+/ecr9PP/20GDlypO5xfHy88Pb2FtXV1bfNe+jQIQFAV9xu9eH9x2KUkZEhAIi9e/fqns/Pzxd2dnbim2++EUJcL0YAxJkzZ3TrJCQkCG9v71tmudm+y8rKhI2NjdiwYYNuWUFBgbCzs9PlOXPmjJAkSVy6dKnB9h544AExd+5cIYQQo0ePFg899FCD58eOHduoGFlbW4u8vDzdsp9//lk4OzuLqqqqBq/t2LGjWLZsmRBCiAEDBoh//vOfDZ5fu3at8PHxueP7I7IEHGNEZMHCwsLwwAMPoEePHhgyZAhiYmIwatQouLm54erVq8jOzsakSZMwZcoU3Wvq6urg4uLSYDv9+vXT/buVlRV69+6NEydO6JZ99tlnWLlyJS5cuIBr166hpqYG4eHhDbbRo0ePRuOKUlNTMX/+fKSlpaGwsBBarRYAkJWVhZCQEL3e44kTJ2BlZYWoqCjdMg8PD3Tt2rVBRnt7e3Ts2FH32MfHR/e1nb7Onj2LmpqaBr8Pd3d3dO3aVff48OHDEELovi68obq6Gh4eHgCuD+geMWJEg+f79OmDrVu3NlgWGBiINm3a6B6npKSgvLxct50brl27hrNnz+rWSUpKwttvv617XqPRoKqqCpWVlbC3t2/SeyYyNyxGRBZMqVQiMTER+/btw44dO/Dpp59i3rx5OHjwoO4DcsWKFQ1KxY3X3YkkSQCAb775BrNnz8bChQvRr18/ODk54f3338fBgwcbrO/g4NDgcUVFBWJiYhATE4N169ahTZs2yMrKwpAhQ1BTU6P3exRC3HL5jYwAGg1cliTplq9t6r7+SKvVQqlUIiUlpdHv0dHR8abZbrXtP//OtFotfHx8Go1XAqAbn6TVavH666/j0UcfbbSOra3tHfMTmTsWIyILJ0kS7rnnHtxzzz149dVXERgYiM2bN2POnDnw8/PDuXPnMHbs2Ntu48CBAxg4cCCA62eUUlJS8MwzzwAA9uzZg/79++Ppp5/WrX/j7MXtnDx5Evn5+XjnnXcQEBAAAEhOTm6wzo0zTBqN5pbbCQkJQV1dHQ4ePIj+/fsDAAoKCpCRkYHg4OA75miKTp06wdraGgcOHEC7du0AXB/4nZGRgUGDBgEAevXqBY1Gg7y8PAwYMOCm2+nWrRsOHTrUYNmf3/vNRERE4PLly7CyskL79u1vuc6pU6fQqVOnJrwzIsvBYkRkwQ4ePIiff/4ZMTEx8PLywsGDB3H16lVdYZg/fz5mzpwJZ2dnxMbGorq6GsnJySgqKsKcOXN020lISEDnzp0RHByMRYsWoaioCE8++SSA62VhzZo12L59O4KCgrB27VokJSUhKCjottnatWsHGxsbfPrpp5g2bRqOHz+ON998s8E6gYGBkCQJW7duxdChQ2FnZ6c763JD586d8cgjj2DKlClYtmwZnJyc8PLLL8PPzw+PPPJIS/wadRwdHTFp0iS8+OKL8PDwgLe3N+bNmweF4n8XAHfp0gVjx47FhAkTsHDhQvTq1Qv5+fn45Zdf0KNHDwwdOhTPPvssBg4ciA8//BDDhg3DL7/8gv/85z+NziL92eDBg9GvXz/ExcXh3XffRdeuXZGTk4Nt27YhLi4OvXv3xquvvoqHH34YAQEBeOyxx6BQKHD06FEcO3YMb731Vov+PohMkozjm4hIZunp6WLIkCGiTZs2QqVSiS5duohPP/20wTpfffWVCA8PFzY2NsLNzU0MHDhQfP/990KI/w2+Xr9+vYiKihI2NjYiODhY/Pzzz7rXV1VViYkTJwoXFxfh6uoqpk+fLl5++WURFhamWyc+Pl488sgjjfKtX79etG/fXqhUKtGvXz/xr3/9SwAQqampunXeeOMN0bZtWyFJkoiPjxdCNL4qrbCwUIwfP164uLgIOzs7MWTIEN0VYEJcH3z9x4HNQgixefNmcbv/Rd5qcHJZWZkYN26csLe3F97e3uK9995rlOfGlXrt27cX1tbWom3btmLEiBHi6NGjunWWL18u/Pz8hJ2dnYiLixNvvfWWaNu2re751157rcHv8IbS0lLx7LPPCl9fX2FtbS0CAgLE2LFjRVZWlm6dn376SfTv31/Y2dkJZ2dn0adPH7F8+XK93h+RuZOEaOKX6ERE9c6fP4+goCCkpqY2Gkxt7m4167ahTJkyBSdPnsSePXsMvi+g9d8fkbHgBI9ERHfB398fTzzxRItv94MPPsCRI0dw5swZfPrpp/jyyy8RHx/f4vu5me7duyM2NrZV9kVkbDjGiIioGaKionSzZ/95XFNLOHToEN577z2UlZWhQ4cO+OSTTzB58uQW38/NbNu2DbW1tQAAZ2fnVtknkbHgV2lERERE9fhVGhEREVE9FiMiIiKieixGRERERPVYjIiIiIjqsRgRERER1WMxIiIiIqrHYkRERERUj8WIiIiIqB6LEREREVG9/wcpH/R8d4PzrQAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "[]" ] }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "plt.plot(d_array / 3600., g_array)\n", - "plt.xscale(\"log\")\n", - "plt.yscale(\"log\")\n", - "plt.xlabel(\"separation [degree]\")\n", - "plt.ylabel(r\"$|g|$\")\n", - "# We set kappa_max to 0.8" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "id": "0c43422d-d816-4c98-8bb9-8671bbdcd1a1", - "metadata": {}, - "outputs": [], - "source": [ - "band=\"r\"\n", - "rng = np.random.RandomState(1)\n", - "coadd_dim = 500\n", - "buff = 50\n", - "# galaxy catalog; you can make your own\n", - "galaxy_catalog = WLDeblendGalaxyCatalog(\n", - " rng=rng,\n", - " coadd_dim=coadd_dim,\n", - " buff=buff,\n", - " layout=\"random\",\n", - ")\n", - "\n", - "survey = get_survey(gal_type=galaxy_catalog.gal_type, band=band)\n", - "noise_for_gsparams = survey.noise\n", - "lists = get_objlist(\n", - " galaxy_catalog=galaxy_catalog,\n", - " survey=survey,\n", - " star_catalog=None,\n", - " noise=noise_for_gsparams,\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "id": "717a8a13-7bf7-45ab-a163-a17f783be24a", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "dict_keys(['objlist', 'shifts', 'redshifts', 'star_objlist', 'star_shifts', 'bright_objlist', 'bright_shifts', 'bright_mags'])" - ] - }, - "execution_count": 45, + "execution_count": 64, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "lists.keys()" + "d_array = []\n", + "g_array = []\n", + "ghalo = galsim.NFWHalo(mass=1e15, conc=4, redshift=1.0, omega_m=0.27, omega_lam=0.73)\n", + "for i in range(12):\n", + " position = galsim.PositionD(3.0 ** i, 0.)\n", + " # get the shear\n", + " g1, g2 = ghalo.getShear(position, z_source)\n", + " gabs = np.abs(g1 + 1j * g2)\n", + " d_array.append(3 ** i)\n", + " g_array.append(gabs)\n", + "d_array = np.array(d_array)\n", + "g_array = np.array(g_array)\n", + "print(d_array)\n", + "print(g_array)\n", + "ax.plot(d_array / 3600., g_array)" ] }, { "cell_type": "code", - "execution_count": 46, - "id": "aaf65a03-5261-4ec1-b8e9-f26d5db85ba0", + "execution_count": 65, + "id": "d6cb97de-5125-4fdf-927a-8b1dca7c4141", "metadata": {}, "outputs": [ { "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAG9CAYAAADwYLkrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACBHElEQVR4nOzdd1gU1/7H8fcWuoACiqDYG4iiIBaMPWLUaNR0jV1jS1FTbvyZm2YSE40lUTR2EkvUFE0zURJrNCKi2HsDFUSKdFh2d35/LGK4xgSU3aV8X8/DgzszO+e7c8nlw5kz56gURVEQQgghhBCorV2AEEIIIURZIcFICCGEEKKABCMhhBBCiAISjIQQQgghCkgwEkIIIYQoIMFICCGEEKKABCMhhBBCiAISjIQQQgghCkgwEkIIIYQoIMFICCGEEKKABCMhhBBCiAKVMhgNHDiQatWq8cQTT1i7FCGEEEKUIZUyGL300kt8+eWX1i5DCCGEEGVMpQxG3bp1w9nZ2dplCCGEEKKMKXfBaPfu3fTr1w9vb29UKhWbN2++65hFixZRv3597O3tCQoKYs+ePZYvVAghhBDlTrkLRllZWQQEBLBw4cK/3b9hwwYmT57M9OnTOXz4MJ06daJ3797ExsZauFIhhBBClDdaaxdQUr1796Z379733D937lxGjx7NmDFjAJg/fz5bt25l8eLFzJw5s8Tt5eXlkZeXV/jaaDSSkpKCu7s7KpWq5B9ACCGEEBanKAoZGRl4e3ujVt+7X6jcBaN/otPpiI6O5o033iiyPTQ0lH379t3XOWfOnMm7775bGuUJIYQQwsri4uKoXbv2PfdXqGCUlJSEwWDA09OzyHZPT08SEhIKX/fq1YtDhw6RlZVF7dq12bRpE8HBwX97zmnTpjF16tTC12lpadSpU4e4uDhcXFzM80GEEEIIUarS09Px8fH514evKlQwuu1/b3EpilJk29atW4t9Ljs7O+zs7AgLCyMsLAyDwQCAi4uLBCMhhBCinPm3YTDlbvD1P/Hw8ECj0RTpHQJITEy8qxeppCZNmsTJkyeJiop6oPMIIYQQouyqUMHI1taWoKAgIiIiimyPiIggJCTkgc4dFhaGn5/fPW+5CSGEEKL8K3e30jIzMzl//nzh60uXLhETE4Obmxt16tRh6tSpDB06lDZt2tChQweWLl1KbGws48ePf6B2J02axKRJk0hPT8fV1fVBP4YQQgghyqByF4wOHjxIt27dCl/fHhg9fPhwwsPDefrpp0lOTua9994jPj4ef39/tmzZQt26da1VshBCCCHKCZWiKIq1iygP/jr4+uzZs6SlpcngayGEEKKcuH3H599+f0swKqHiXlghhBBClB3F/f1doQZfCyGEEEI8CAlGxSRPpQkhhBAVn9xKKyG5lSaEEEKUP3IrTQghhBCihCQYCSGEEEIUkGBUTDLGSAghhKj4ZIxRCckYo7Jt77W9/B77OxMCJlDdsbq1yxFCCFFGFPf3d7mb+VqIe9l3bR8vbH8BvVHPmdQzrOq1CluNrbXLEkIIUY7IrTRRIRy7eYzJOyejN+oBOHrzKB9Gfoh0iAohhCgJCUai3LuYdpGJv08kR59De6/2LOi+ALVKzbfnvuXrs19buzwhhBDliASjYpLB12VTQlYC4yPGcyvvFs3dmzO/23y6+nTlpdYvATDzwEwOJx62cpVCCCHKCxl8XUIy+LrsSMtLY/gvw7mQdoF6LvX4ovcXuNm7AaAoCq/uepVtV7bh4eDBhkc3UMOxhpUrFkIIYS0ywaOo0HL0OUz6fRIX0i5Qw6EGS3ouKQxFACqVihkdZ9C4WmOScpKYsnMKOoPOihULIYQoDyQYiXIn35jPKztf4cjNIzjbOvN5z8/xruJ913GONo582vVTXGxdZDC2EEKIYpFgJMoVo2Lk7b1vs+faHuw19oT1CKNxtcb3PN7HxYdZnWfJYGwhhBDFIsFIlBuKojDn4Bx+vPgjGpWGOV3n0LpG6399X8daHWUwthBCiGKRYFRM8lSa9a06sYovT34JwHsd36Nz7c7Ffu8o/1H0qtcLvVHPlB1TuJF1w1xlCiGEKMfkqbQSkqfSrGPTuU28te8tAF5t8yrDmw8v8Tmy87N57pfnOJd6jpYeLVn1iMyMLYQQlYU8lSYqjB2xO3j3z3cBGNl85H2FIigYjN2tYDB20lE+iPxABmMLIYQoQoKRKNOib0Tz2u7XMCgGHmv4GFOCpjzQ+XycfZjdeTZqlZrvzn3HxjMbS6lSIYQQFYEEI1FmnUk5w4u/v0ieIY8utbvwTsg7qFSqBz5vSK0QXg58GYCPDnzEoRuHHvicQgghKgYJRqJMuppxlQm/TSAjP4PWNVozu8tstGptqZ1/ZPORPFLvEfSKnqk7p5KQlVBq5xZCCFF+STASZU5yTjLjIsZxM+cmjao2YkH3BThoHUq1DZVKxbsh79KkWhOSc5OZunMqeYa8Um1DCCFE+SPBSJQpmbpMJvw2gdiMWLydvFnScwmudq5macvRxpH53ebjYuvCsaRjfLBfBmMLIURlJ8GomGQeI/PTGXRM3jGZUymnqGZXjSU9l5h94VcfZx9mdzENxt50fhMbzmwwa3tCCCHKNpnHqIRkHiPzMBgNvLb7NSKuROCodWRlr5U092husfZXHl/JvOh5aFValvdaTpBnkMXaFkIIYX4yj5EoNxRF4cPID4m4EoFWrWV+t/kWDUUgg7GFEEKYSDASVrf4yGI2nt2IChUzO82kg3cHi9fw18HYKbkpMhhbCCEqKQlGwqrWn17P4iOLAZjebjqP1HvEarXIYGwhhBASjITV/Hr5Vz6M/BCACQETeLrZ01auSAZjCyFEZSfBSFjFn9f/ZNqeaSgoPN30aSYETLB2SYVCvEOYHDgZgI8PfEz0jWjrFiSEEMJiJBgJizuRdIKXd7yM3qgntG4o09pOK5WlPkrTiOYj6F2vtwzGFkKISkaCkbCoy2mXmfDbBHL0ObTzasfMTjPRqDXWLusuKpWKd0LeKRyMPWXHFBmMLYQQlUClDEY//fQTTZs2pXHjxixfvtza5VQaidmJjIsYR2peKn7ufnza7VNsNbbWLuueHG0c+bTbp7jauXI8+Tjv739fBmMLIUQFV+mCkV6vZ+rUqWzfvp1Dhw7x8ccfk5KSYu2yKry0vDTGRYzjetZ16rrUZVGPRTjZOFm7rH9V27k2szubBmNvPr+Z9WfWW7skIYQQZlTpgtGBAwdo3rw5tWrVwtnZmT59+rB161Zrl1Wh5ehzeHH7i5y/dZ7qDtVZ0nMJ7g7u1i6r2Dp4d2BK4BQAZh2YxcGEg1auSAghhLmUu2C0e/du+vXrh7e3NyqVis2bN991zKJFi6hfvz729vYEBQWxZ8+ewn3Xr1+nVq1aha9r167NtWvXLFF6pZRvzOe1Xa9xOPEwzrbOfN7zc2pVqfXvbyxjhjcfTu/6psHYr+x6RQZjCyFEBVXuglFWVhYBAQEsXLjwb/dv2LCByZMnM336dA4fPkynTp3o3bs3sbGxAH87RqSsPRFVUSiKwjv73mHX1V3YaexY2H0hTao1sXZZ9+X2zNhNqzWVwdhCCFGBlbtg1Lt3b95//30GDRr0t/vnzp3L6NGjGTNmDL6+vsyfPx8fHx8WLzbNrlyrVq0iPURXr17Fy8vrnu3l5eWRnp5e5EsUz7zoefxw4Qc0Kg2fdPmEQM9Aa5f0QBy0DszvNr9wMPaMP2fIYGwhhKhgyl0w+ic6nY7o6GhCQ0OLbA8NDWXfvn0AtG3bluPHj3Pt2jUyMjLYsmULvXr1uuc5Z86ciaura+GXj4+PWT9DRRF+PJxVJ1YB8E7IO3T16WrdgkrJXwdjf3/he746/ZW1SxJCCFGKKlQwSkpKwmAw4OnpWWS7p6cnCQmmMSFarZY5c+bQrVs3WrduzWuvvYa7+70HAk+bNo20tLTCr7i4OLN+horg+/PfMyd6DgBTgqYwoNEA6xZUyv46GHt21GwZjC2EEBVIhQpGt/3vmCFFUYps69+/P2fPnuX8+fM8//zz/3guOzs7XFxcWL16Ne3bt6dHjx5mqbmi2BW3i7f3vQ3AcL/hjGw+0soVmYcMxhZCiIqpQgUjDw8PNBpNYe/QbYmJiXf1IpXUpEmTOHnyJFFRUQ90norscOJhXtn1CgbFQP+G/ZnaZmqFHdj+v4OxJ++YLIOxhRCiAqhQwcjW1pagoCAiIiKKbI+IiCAkJMRKVVUO51LPMen3SeQZ8uhcuzPvhLyDWlWhfrzu8tfB2CeST8hgbCGEqADK3W+uzMxMYmJiiImJAeDSpUvExMQUPo4/depUli9fzsqVKzl16hRTpkwhNjaW8ePHP1C7YWFh+Pn5ERwc/KAfocK5lnmN8RHjydBl0Kp6Kz7p8gk2ahtrl2URMhhbCCEqFpVSzv7E3blzJ926dbtr+/DhwwkPDwdMEzzOmjWL+Ph4/P39mTdvHp07dy6V9tPT03F1dSUtLQ0XF5dSOWd5lpKbwvBfhnM5/TKNqjYi/JFwXO1crV2WxX1x4gs+OfgJWpWWZaHLaFOzjbVLEkII8RfF/f1d7oKRtYSFhREWFobBYODs2bMSjICs/CxGbx3NieQTeDl5sbr3ajydHmwsV3mlKApv7HmDLZe24GbvxoZHN1DTqaa1yxJCCFFAgpGZSI+Ric6gY+LvE4mMj6SaXTW+6P0F9V3rW7ssq8rR5zDsl2GcTjlNc/fmhD8Sjr3W3tplCSGEoPi/v8vdGCNhfQajgf/74/+IjI/EQevAoocXVfpQBHcGY1e1q2oajL1fBmMLIUR5I8FIlIiiKHx04CO2Xt6KVq1lfrf5+Hv4W7usMqNWlVrM7mIajP3DhR9Yd3qdtUsSQghRAhKMikmeSjP5/OjnrD+zHhUqZj40kxBvmQbhf7X3as/UoKmAaWbsqASZ+0oIIcoLGWNUQpV1jNH51POsP7OeDWc2ADCt7TQG+w62clVl1/8Oxl7fdz1eVe69WLEQQgjzKu7vb60FaxLlTHZ+Nr9e/pVvz33L0ZtHC7ePazlOQtG/UKlUvBPyDhfTLnI65TSTd07mi0e+kMHYQghRxkmPUTFVlsf1FUXhWNIxvjv3Hb9c+oVsfTYAWpWWLj5deKLJE3T07lhhl/oobdcyr/HMT89wK+8W/Rv25/2O78u1E0IIK5DH9c2kot5KS81N5aeLP/Hdue84f+t84fZ6LvUY1HgQ/Rr2w8PBw4oVll/74/czLmIcRsXIG23fYIjvEGuXJIQQlY7cShP/yqgYiYyP5Ltz3/F77O/kG/MBsNfYE1ovlEGNBxFYI1B6OB7Q7cHYnxz8hNlRs2lSrQnBNSv3IH4hhCirJBhVQglZCXx//ns2nd/Etcxrhdt93Xx5vPHj9G7QGxfbitMbVhYM8xvGqZRT/HzxZ17Z+QobHt0gg7GFEKIMkmBUSeQb89kdt5vvzn/HH9f+wKgYAXC2caZPgz4MajwIP3c/K1dZcalUKt7u8DYXbl3gdMppXt7xMosfXoy7g7u1SxNCCPEXMsaomMrr4OvLaZf57vx3/HD+B5Jzkwu3t/Fsw6DGg3i47sM4aB2sWGHl8tfB2A5aB57zfY7hzYdXyoV3hRDCkmTwtZmUh8HXOfocfrvyG9+e+5boG9GF293t3Xms0WMMbDSQeq71rFdgJXci+QQz/pzBieQTgKnXbljzYTzn+xxVbKtYuTohhKiYJBiZSVkORqeST/HtuW/ZcnELGfkZAKhVah6q9RCDGg+ic+3O2KhtrFylANO0CDvidrAwZiHnUs8BUNWuKqP8R/FMs2ekF08IIUqZBCMzKWvBKF2XzpaLW/ju3HecSjlVuL1WlVoMbDSQxxo9Rk2nmlasUPwTo2Jk2+VthMWEcTn9MgAeDh6MaTGGJ5s8ia3G1roFCiFEBSHByEzKQjBSFIXoG9F8d+47tl3ZRp4hDwAbtQ0P13mYQU0G0bZmW9QqWQqvvNAb9fx88WcWH1lc+KRgTaeajGs5jscaPSY9fUII8YAkGJmJNYNRUk4SP1z4gU3nNhX2LgA0qtqIxxs/zqMNHqWqfVWL1iRKV74hn03nN7Hk6BISsxMBqF2lNhNbTaRP/T5o1BorVyiEEOWTBKNSZu6n0o5dTSMpKw+1SoVaBWqVCpUKFMXIyVtR/HHjZ44k78OgGACw0zgQ4vkw3Ws9SiNXPzRqdeF71CrT4+FqlQoVd86lVt95feeYe3+//T4V//NaJnw0uzxDHl+f+Zplx5aRkpsCQAPXBkxsNZGedXtKb6AQQpSQBCMzMVeP0ejwKH4/nVj4WmWTgo3rQWyqHkRtk1643ZBdh/xbweRntASjXam1XxJ2WjX2NhrsbQq+a03/trPRFLw2bb/ruCLbCrZrNf9zjBo7rQa7v5zbRqOqtGEsOz+br05/xcrjK0nXmX4OmlZrygutX6BL7S6V9roIIURJSTAyE3MFo/d+PEnk5QSyNEfItN1Hns3pwn0qoxP2uW2xzWmPWu+FUVFQFNNYI6MCxoLv8JfXRgUFUAr3Fxzzv6/LAbWKO2HqdugqEqxMYep2uKpip6VWNQfquDlSx82R2tUccbAt37egMnQZrDm5hi9OfkFWfhYALTxa8ELrF+jg1UECkhBC/AsJRmZijmCkKArzouex6fwmbuXdKtzewasDg5oMortPd7M9naQUhCzjX0IWFH2tGEEpCF16o5G8fCN5egO5+UZy8//yvcg2A3n6v/v37WNN3/Nub9MbiuzP0xtL9XNWd7ajjpsjPgWByafgq46bI54u9mjU5SNY3Mq9RfiJcNadXkeOPgeAIM8gXmz9IkGeQVauTgghyi4JRmZirh6jqTunEnElghqONRjYaCADGg2gtnPtUjt/eaMoCnl6Uwj739D012BlClemY/IK9qfl5HM1NYfYlGziUrLJyNP/Y1u2GjW1qzlQ282ROm4FwalaQXByd8TFvuw9EZaUk8SKYyvYeGYjOqMOgBDvEF5o9QItqrewcnVCCFH2SDAyE3MFoxPJJ0jOSaajd0d58qgUKYpCWk4+sSnZBUHpTmCKS83mWmoO+n+5p+jqYHPntpzbnVt0PtUc8a7qgK3WegOhE7ISWHZ0Gd+d+w69YgqAXX268kKrF2jq1tRqdQkhRFkjwchMysI8RqL06A1G4tNyiUs1hSVTgMoxBaeUbJKzdP/4frUKvFxv3567+zadu5OtRcb/xGXEseTIEn68+GPhAsG96vViYquJNHBtYPb2hRCirJNgZCYSjCqXrDw9canZxCabQtPtW3S3e53+bSyUo63mzm25v4SnBtWrUM/dsdRD06W0SyyOWcwvl38BTEvCPNrgUcYHjMfH2adU2xJCiPJEgpGZSDAStxmNCkmZeaaQlJpNbHLR23QJ6bn8039djWpUoW8LLx5t6UVjT+dSre1MyhkWxSxie9x2ALQqLQMaD2Bcy3GyRIwQolKSYFTKzD3Bo6h4cvMNXLt157bcX8c4nU/MRGe409vUxLMKfVt407elF41qVCm1Go4nHWdhzEL2XtsLmJaNearpU4xpMQYPB49Sa0cIIco6CUZmIj1GojSk5+bz28kb/Hw0nt3nbpJvuPOfYbOazvRt4UXfll40qF46IenQjUMsOLyAgzcOAuCgdeCZZs8wqvkoWUZGCFEpSDAyEwlGorSl5eQTcfIGPx+9zp5zSUWekvPzcqFvSy/6tvCinofTA7WjKAqRCZEsOLSAo0lHAXCycWKo31CG+Q3D2bZ0b+cJIURZIsHITCQYCXO6la1jW0FP0t7zRUOSfy0X0+22Fl7UcXe87zYURWHPtT0sOLyA0ymmGdZdbF0Y6T+Swc0G42hz/+cWQoiySoKRmUgwEpaSmqVj28kEfjoaz74LyRj+EpJa1nalbwsv+rTwwsft/oKMUTHye+zvhB0O40LaBQDc7N0Y7T+ap5s9jZ3GOmvxCSGEOUgwMhMJRsIakjPz2HriBj8fu86fF5KLrHMX4FOVR1t40aelF7WqOpT43AajgV8u/8KimEXEZcQBUMOhBs+3fJ7HmzyOVq0trY8hhBBWI8HITCQYCWtLyszj1+MJ/Hw0nshLRUNSYJ2q9G3pTZ8WNfFyLVlIyjfm8+OFH/n8yOfEZ8UD0KRaE/7b/r+0qtGqFD+BEEJYngQjM5FgJMqSxIxcth433W47cDmlyLxJbepWo29L0+02Txf7Yp9TZ9DxzdlvWHRkEWl5aQAMajyIyYGTqWZfrbQ/ghBCWIQEo38wcOBAdu7cSY8ePfjmm29K9F4JRqKsSkzPZcuxeH4+Fk/U5dTC7SoVBNd1o29LL3r716RGMUNSam4q8w/N57tz3wHgaufKlMApDGw8ELXKeuvDCSHE/ZBg9A927NhBZmYmX3zxhQQjUSElpN0JSdFXioaktvXceLSlF4/4e1Hd+d8HWMckxjBj/wzOpp4FoGX1lvy3/X9p5tbMbPULIURpk2D0L3bu3MnChQslGIkK7/qtnMKQdDj2VuF2tQraN3Cnb0svHmleE/cq9w5JeqOer05/xcLDC8nWZ6NWqRncbDCTWk2iim3pzdQthBDmUtzf32WuP3z37t3069cPb29vVCoVmzdvvuuYRYsWUb9+fezt7QkKCmLPnj2WL1SIcsK7qgNjOjVg08SO/PGfbkzv40uAT1WMCuy7kMz0TccJ/uA3nlseyVcHYknJ0t11Dq1ay1C/ofww4AceqfcIRsXImlNr6L+5P79c+oVK+veVEKICKnPBKCsri4CAABYuXPi3+zds2MDkyZOZPn06hw8fplOnTvTu3ZvY2NjCY4KCgvD397/r6/r165b6GEKUSbWrOTK2cwO+n9SRPa93443ezWhRyxWjAn+cT2Lad8cI/uA3hq6IZOPBOPL/sp4bgKeTJ7O7zGZJzyXUdanLzZybvL77dcZGjOVS2iUrfSohhCg9ZfpWmkqlYtOmTQwYMKBwW7t27QgMDGTx4sWF23x9fRkwYAAzZ84s9rmLeystLy+PvLy8wtfp6en4+PjIrTRRoVxJzuLnY/H8fDSeE9fTC7c3rO7E2/2a07lJ9bveozPoWHV8FcuOLSPPkIdWrWVk85GMbTkWB23J51MSQghzKre30v6JTqcjOjqa0NDQIttDQ0PZt2+fWdqcOXMmrq6uhV8+Pj5maUcIa6rr7sTEro34+aVO7Hi1K6+GNsHdyZYLN7MYtvIAY744yJXkrCLvsdXYMi5gHJse20SnWp3QG/UsO7aMgd8PZFfcLit9EiGEeDDlKhglJSVhMBjw9PQsst3T05OEhIRin6dXr148+eSTbNmyhdq1axMVFXXPY6dNm0ZaWlrhV1xc3H3XL0R5UN/DiRe6N2b7q10Z/VB9tGoVv526Qc+5u5m99TRZefoix/s4+xDWI4z5XedT06km1zKv8cL2F3h5+8tcz5Tb10KI8qVcBaPbVCpVkdeKoty17Z9s3bqVmzdvkp2dzdWrVwkODr7nsXZ2dri4uLB69Wrat29Pjx497rtuIcoTVwcb/vuoH79O7kSnxh7oDEbCdlyg+5ydfB9zrciAa5VKRY+6Pfj+se8Z6T8SrUrL9rjtDPh+ACuOrSDfkG/FTyKEEMVXrsYY6XQ6HB0d+frrrxk4cGDhcS+//DIxMTHs2mX+7nuzPa7/86twZW8xDy5+CKTYgbEk5/zLPwrPr/qf9v76+n73/W8b/MO+/zmnWgMqTcF3Nai197lNA+qC7f+6TfM3773HNo0N2LmYvuxdQFu2F2xVFIWIkzd4/+dTxKZkA6aZtd/p3xz/Wq53HX8+9TzvR75P9I1oABq4NuDN9m8SXPPef4QIIYQ5Fff3d7laHdLW1pagoCAiIiKKBKOIiAgee+wxK1ZWCtLiIPGktasQ1qKxMwUkO+c7YcnOBexdCwKU81+23WOfjWMJgnDJqFQqQpvXpHOT6qz44xILt5/n4JVU+i38g2eCfXg1tGmReZAaVWvEql6r+OniT3xy8BMupl1k1NZRPNrgUV5p8woeDh5mqVMIIR5UmesxyszM5Pz58wC0bt2auXPn0q1bN9zc3KhTpw4bNmxg6NChfP7553To0IGlS5eybNkyTpw4Qd26dc1WV1hYGGFhYRgMBs6ePVv6PUYJxyA7ueTvu+//+e7zfYXtKX85hXL3vsLX97vvdhv32vcP71OMoBjAaPjLdyMY9fe5reB7aW7T6yAvA3QZJbj4/0KtvTtYFQlSLv++z7aKqTfsX8Sn5fDRL6f5PsY0hsjZXsuUh5swtENdbDRF35+Wl8aCwwvYeGYjCgrONs68GPgiTzV5Co1aU3qfXwgh/kG5nfl6586ddOvW7a7tw4cPJzw8HDBN8Dhr1izi4+Px9/dn3rx5dO7c2SL1yczXolQZDaaAlJdu+p6bbvp3bjrkpRV8z/jLtr98/+u/FeO/t1UsqjvhyskdajQHr5ZQsyXUbGEKUH8RdTmFd344UfiIf+MaVXi7X3Meanx3j9CJpBPM2D+DE8knAPBz9+O/7f+Lv4d/KdUuhBD3Vm6DUVknwUiUOYoCuqx7h6Yi32+HrLS79xmLMUDarYEpJHm1hJoB4NUSg2N1NkTFMXvraVKzTefo1dyTN/v64ePmWOTtBqOBb85+w6eHPiUjPwMVKp5q+hQvtn4RV7u7xyoJIURpkWBUysx+K00Ia8vPLdpblR5vusWbcBTij0L61b9/X5Wa4BVAroc/3ye4s+iME1eMHthqNYzv3IDxXRviaFt0OGNSThJzD87lx4s/AuBm78YrbV6hX4N+JXrCVAghikuCkZlIj5GotLKSC0LSkTthKfk8fzdeLUtVhaP6OhxX6nHNvjFduvSga0gIKo1NkeOiEqL4YP8HXEi7AEBgjUDebP8mjas1tsQnEkJUIhKMzESCkRB/kZcJN04UBKUYU1hKPPW3t+V02GKo7odDndZ3bsV5+pGv1rL61Go+P/I5OfoctCrTgrXjA8bjaON4d5tCCHEfJBiVMrmVJkQx6XVw8zQkHEV/LYbEswdwTTuDkyr37mNVGqjeFGq2JN6jPh+nH+f35CMAeDp68kbbN+hRp4fcXhNCPDAJRmYiPUZClNy11CyWf/8bN89G0Vx9mVbaK7S2icM+P/WuY3c72PNh9RpcK3iS/6Gqzfi/ttPw8Qq0cNVCiIpEgpGZSDAS4v7tv5jMOz+c4HRCBqDwUA0dbwbqacalO+OX0uLIValY7urCyqou5KtU2BoVxmTrGeXih513qztPxlWrb7ZJLYUQFYsEIzORYCTEg9EbjHwVFcecbWe4VfB4f98WXkzr04za1RwhO6VwcPfl65F8kH6c/VrTPE118vOZnpxKSE7BbTlHd2g1GILHQLV6VvpEQojyQIJRKZMxRkKUrtQsHXMjzrI28gpGBey0aiZ0bcj4Lg2xt7kzI7aiKGy98AOzomZzU5cGQKjBltcTruKpuz1uSQVNe0Pb56FBV+lFEkLcRYKRmUiPkRCl61R8Ou/8cILISykA1KrqwPS+vvT2r1lk0HWmLpNFRxax7tQ6DIoBR60jE2t157krJ9Fc2nnnhB5NTAEp4BnTLN5CCIEEI7ORYCRE6VMUhZ+PxfPhz6e4nmbqBerQwJ23+/vRrGbR/87OpJxhxv4ZHLlpenqtvVd7PvZ7HrejGyFmHegyTQfauRTcZhsLHo0s+nmEEGWPBCMzkWAkhPnk6Aws3nWBJbsukKc3olGreK5dHab0bEJVR9vC44yKkU3nNvFx1Mfk6HOo4ViDOV3m0MqlARz5Cg4sLZh8skCjh6HtONP3YiySK4SoeCQYlTIZYySE5cSlZPPhllP8cjwBgGqONrwS2pRn29ZBo75ze+3CrQtM2TmFS2mX0Kq0TAmawlC/oagUBS5uhwPL4OxWCmfnrlYf2o6FVkPAoarlP5gQwmokGJmJ9BgJYTn7zifxzo8nOHvDdHvMz8uFd/o3p219t8JjsvKzeGffO/x6+VcAetbtyXsh71HFtorpgJSLELUCDq02rQEHYOMEAU+bxiLV8LXoZxJCWIcEIzORYCSEZekNRtbsv8LciLOk5+oB6BfgzbTezfCu6gCYxih9dforZh+cjd6op65LXeZ2nUuTak3unEiXBUc3QORSuHnqzvZ6naDdOGjSGzRFF7sVQlQcEozMRIKRENaRnJnHnIizfHUgFkUBBxsNk7o1ZFyXhthoTOOGjt48yiu7XiEhKwF7jT1vtn+Txxo9VvREigKX/4ADS+D0z6CY5kjC1QeCR0PgcHB0QwhRsUgwMhMJRkJY1/Frabz74wmiLpuWEwmuV42wwYHUcLEH4FbuLd744w32XtsLwOONH2dau2nYaezuPtmtODi4AqK/gBzTdAFo7aHFE6bbbF4BFvlMQgjzk2BkJhKMhLA+RVHYHHONtzafICNPj0cVOxYObk37Bu6A6am1pUeXsihmEQoKvm6+zOk6Bx9nn78/YX4OHP/O1IsUf+TOdp/20O558O0PGhsLfDIhhLlIMCpl8lSaEGXPpaQsJqyJ5nRCBhq1iv880pSxnRoUTgy57/o+3tj9Bql5qTjbOPPBQx/QrU63e59QUSDugCkgnfwejKYxTVSpCW1GQZuRUKWGBT6ZEKK0STAyE+kxEqJsydEZmL7pGN8dvgbAI81rMvvJljjbm3p4ErISeHXXq4UTQo7yH8WLrV9Eq/6XgdYZCXBwFRxcCVmJpm1qG2g+0DRYu3Ybs30mIUTpk2BkJhKMhCh7FEVhTWQs7/14gnyDQn0PJz5/LoimNU1LguQb8pkbPZc1p9YAEOQZxOzOs6nuWP3fT67XmXqPDiyBq1F3tnsHmgJS84Gg/ZvxS0KIMkWCkZlIMBKi7IqJu8XENdFcT8vFwUbDzEEtGNC6VuH+rZe38tbet8jWZ+Nu787sLrMJrhlc/AauHTJNGnn8GzDoTNucqkPQCNOtNhfv0v1AQohSI8HITCQYCVG2pWTpeHn9YfacSwJgWIe6vNnXD1ut6ZH+S2mXmLpzKudvnUetUvNS65cY6T8StaoES4VkJUF0uOk2W7rpFh4qDfj2M/Ui1ekAf1kAVwhhfRKMzESCkRBln8Go8OlvZ/lsu2m9tFY+VVk0JLBwQsjs/Gze3/8+P178EYCuPl15v+P7uNq5lrAhPZz+ybQ225W9d7Z7tjAtPdLiSbB1LJXPJIR4MBKMzESCkRDlx/bTN5i8Pob0XD1uTrYseLY1HRt5AKZxSd+c+4aZkTPJN+ZTq0ot5nadi5+73/01lnDcFJCObgR9jmmbQzXThJGdpoJ9CUOXEKJUSTAyEwlGQpQvcSnZjF8TzYnr6ahV8EpoUyZ0aYi6YDHaE8kneGXnK1zLvIat2pZp7abxeOPHCx/5L7HsFDi8BqKWwa1Y0zaXWtDvU2jcs5Q+lRCipCQYmYkEIyHKn9x8A299f5yNB68C8LBvDeY82QpXR9Mj/Wl5abz5x5vsvLoTgP4N+/Nm+zdx0Drcf6NGA5z9Fba9aVrIFiBgMDzyoaknSQhhURKMSplM8ChE+bchKpb/fn8Cnd5IHTdHFj8XSHNv0y0uo2Jk1fFVfHb4M4yKkcbVGjO3y1zqudZ7sEZ12bD9fdi/CFBMk0X2mw9Nez/oxxFClIAEIzORHiMhyrfj19IYvyaaq6k52GnVvD/Anyfb3FkqJCohitd2vUZybjJONk68F/IeofVCH7zh2Ej4fhIknzO9bvEU9P5YFqwVwkIkGJmJBCMhyr9b2TqmbIhhx5mbADzb1oe3+zXH3kYDwM3sm7y2+zWib0QDMNRvKFOCpmCjfsD10vJzYOdM2LcAFCM41YC+c8Cv/4OdVwjxryQYmYkEIyEqBqNRYeGO88z77SyKAi1qubJoSCA+bqbH6/VGPZ8d/oxVx1cB0Kp6K2Z3mU1Np5oP3vjVg6beo5unTa+bD4I+s8HJ48HPLYT4WxKMzESCkRAVy+6zN3l5/WFSs/NxdbBh/jOt6Nb0zkKx22O38+Yfb5KRn0E1u2p83PljOnh3ePCG9Xmw62P4Yz4oBnD0gL6fmJYYEUKUOglGZiLBSIiK52pqNpPWHuLI1TRUKnipe2Ne7tG48JH+uPQ4pu6ayumU06hQMbHVRJ5v+XzJZsu+l+uHYfMkSDxheu3b33R7rUqNf36fEKJEJBiZiQQjISqmPL2BGT+dZM1+09xDXZpUZ/7TrajmZAtArj6Xjw58xLfnvgWgY62OfPTQR1S1r/rgjet1sOcT2DMHjHpwcIPes6DFE7K0iBClRIKRmUgwEqJi++7QVf5v0zFy843UqurAoiGBBPhULdz//fnvmbF/BnmGPGo61WRul7m0qN6idBqPPwrfT4SEY6bXTfvAo/PAuRTGNQlRyRX393cp9AOXL3FxcXTt2hU/Pz9atmzJ119/be2ShBBlyKDA2mya2JF67o5cu5XDk5//ybrIWG7/DflYo8dY22ctdZzrkJCVwLBfh/HV6a8olb8xvVrC2B3QbTqobeDMFghrCzFfgfwNK4RFVLoeo/j4eG7cuEGrVq1ITEwkMDCQM2fO4OTkVKz3S4+REJVDWk4+r359hIiTNwB4PLA27w/wx8HW9Eh/hi6Dt/a+xW+xvwHQu15v3gl5B0ebUlo09sYJ2DwR4mNMrxuHmpYVcfEunfMLUcnIrbRiatmyJT///DM+Pj7/fjASjISoTBRFYcnui8z69TRGBXy9XFg8JJB6Hk6F+1efXM286HnoFT0NXBswt+tcGlZtWDoFGPSw71PY+REYdGDnAr0+gNZDZeyRECVUbm+l7d69m379+uHt7Y1KpWLz5s13HbNo0SLq16+Pvb09QUFB7Nmz577aOnjwIEajsdihSAhRuahUKsZ3aciaMe3wqGLLqfh0+i38o7AXSaVSMaz5MFY+spIaDjW4mHaRZ39+lp8v/lw6BWi00OkVGLcHarWBvHT44UVYMwhuxZVOG0KIIspcMMrKyiIgIICFCxf+7f4NGzYwefJkpk+fzuHDh+nUqRO9e/cmNja28JigoCD8/f3v+rp+/XrhMcnJyQwbNoylS5ea/TMJIcq3kIYe/PRiJwLrVCUjV8/YLw8y69fT6A1GAFrXaM3Gfhtp59WOHH0Ob+x5g/f3v4/OoCudAmo0g9HboOcM0NjBhe2wqAMcXCljj4QoZWX6VppKpWLTpk0MGDCgcFu7du0IDAxk8eLFhdt8fX0ZMGAAM2fOLNZ58/Ly6NmzJ2PHjmXo0KElqklupQlReen0Rmb+copVey8DENLQnc+ebY1HFTsADEYDi44sYulR0x9c/u7+zOk6B+8qpTguKOmcadbsuEjT6/pdoP8CqFa39NoQogIqt7fS/olOpyM6OprQ0KILOoaGhrJv375inUNRFEaMGEH37t2LFYry8vJIT08v8iWEqJxstWre7tecz55tjaOthn0Xknn0sz+IvpIKgEat4cXWL7KoxyJc7Vw5nnycp356iqiEqNIrwqMxjPwFes0ErQNc2mXqPTqwDIzG0mtHiEqqXAWjpKQkDAYDnp6eRbZ7enqSkJBQrHPs3buXDRs2sHnzZlq1akWrVq04duzYPY+fOXMmrq6uhV8yHkkI0T/Am+8ndaRhdScS0nN5esmfhO+9VPjIfqfandj46Eb83f1Jy0tjXMQ4frn0S+kVoNZAh4kwYS/U7Qj5WbDlVfiiH6RcLL12hKiEylUwuk31P09jKIpy17Z7eeihhzAajcTExBR+tWhx78nZpk2bRlpaWuFXXJwMeBRCQGNPZ75/4SH6tKiJ3qjwzo8neXl9DNk6PQDeVbxZ9cgqetbtSb4xn9d3v0748fDSme/oNveGMPwn6D0bbJzgyh+wKAT2L5beIyHuU7kKRh4eHmg0mrt6hxITE+/qRSotdnZ2uLi4sHr1atq3b0+PHj3M0o4QovypYqclbHAgb/b1RaNW8cOR6wwI28uFm5kA2Gvtmd15Ns/5PgfAnOg5fHTgIwxGQ+kVoVZDu+dh4j6o1wn0OfDrG7CqNySdL712hKgkylUwsrW1JSgoiIiIiCLbIyIiCAkJMWvbkyZN4uTJk0RFleJYASFEuadSqRjTqQFfjW1PDWc7zt7I5LGFe/nlWDxgGnf0n7b/4bU2rwGw7vQ6Xtn1Crn63NItpFo9GPYD9J0LtlUgbj983hH2LYDSDGJCVHBlLhhlZmYW3uICuHTpEjExMYWP40+dOpXly5ezcuVKTp06xZQpU4iNjWX8+PFmrSssLAw/Pz+Cg4PN2o4QonxqW9+Nn156iHb13cjM0zNh7SE++Pkk+QWP9A9rPozZXWZjo7bh99jfGbNtDKm5qaVbhFoNwaNh4p/QoBvoc2Hbm7CyF9w8U7ptCVFBlbnH9Xfu3Em3bt3u2j58+HDCw8MB0wSPs2bNIj4+Hn9/f+bNm0fnzp0tUp88ri+E+Cd6g5FZW8+wdLdpEHTbem4sfi4Q94JH+qNvRPPS9pdI16VT16Uuix9ejI+zGR7qUBQ49KUpGOWlm+Y/6voGhLxkmjhSiEpGlgQxEwlGQoji+PV4PK9+fZTMPD313B35YlRb6rqblhK5eOsiE36bwPWs67jZuxHWIwx/D3/zFJJ2DX58Gc4XDEHwbg2PLQJPP/O0J0QZVSHnMbImuZUmhCiJR/y92DypI7WqOnA5OZvHF+/j6NVbADSo2oA1fdbg6+ZLSm4Ko7aOYlfcLvMU4loLhnwNAxaDvStcPwxLOsOu2WDIN0+bQpRj0mNUQtJjJIQoicT0XEasiuJkfDqOthrChgTSrWkNALLys3hl5yvsvb4XtUrN9HbTearpU+YrJj0efpoCZwvmVKrZEgYsgpr3nrJEiIpCeoyEEKIMqOFiz4Zx7XmokQfZOgNjvjjI1wdN86E52TixoMcCBjQagFExMmP/DD479FnpznX0Vy5e8OxXMGgZOFSDhKOwtCvsmAkGvXnaFKKckWBUTHIrTQhxv5ztbVg5IpiBrWthMCq89s1RFvx+DkVRsFHb8F7Ie0wImADAsmPLmP7HdPLNdZtLpYKWT8HESGj2KBj1sOsjWPsE5JTyU3JClENyK62E5FaaEOJ+KYrCrK1nWLzzAgCD29Xhvf7N0WpMf6N+d+473vvzPQyKgXZe7ZjXdR7Ots7mLAiOfws/vAj52eDWAJ7dANWbmK9NIaxEbqUJIUQZo1Kp+M8jzXi3f3NUKlgXGcv4NYfI0ZkmYBzUeBALeyzEQetAZHwkI34dwY2sG+YsCFo8AaO3gWsd0zpry3vAuYh/f68QFZQEIyGEsLDhIfVYPCQQW62a307dYPDy/aRk6QB4qNZDhD8Sjru9O2dTzzJkyxDOpZ4zb0E1W8DY7VAnxDTn0bqnTDNmyw0FUQlJMComGWMkhChNj/h7sXZMO1wdbDgce4snFu8jLiUbAD93P9b2XUs9l3rcyL7B8F+GcyD+gHkLqlIdhn0PgcNAMZomhtw8EfJLeekSIco4GWNUQjLGSAhRms4nZjB8ZRTXbuXgUcWO8JHB+NdyBSAtL42Xtr/EocRDaNVa3u/4Pn0b9DVvQYoCB5bCr9NAMUDtYHh6LTibZ6FuISxFxhgJIUQ50KiGM99NDKFZTWeSMvN4esmf7D57EwBXO1eWhi6lZ92e6I163tjzBiuPrzTf4/xgGnfUbhw8961pQsirUbCsG1yPMV+bQpQhEoyEEMLKPF3s2Ti+AyEN3cnSGRgVHsV3h64CYKex45MunzDUbygA86Ln8UHkBxiMBvMW1bAbjN0BHk0g/RqsfMT0BJsQFZwEIyGEKANc7G0IH9mW/gHe6I0KUzceIWzHeRRFQa1S83rw67we/DoqVGw4s4EpO6eQo88xb1HuDWHMb9CoJ+hz4JtRsP19MBrN264QViTBqJhk8LUQwtxstWrmP92KcZ0bADB76xne+v4EBqPp1tlQv6F80uUTbNW27IjbwZitY0jJTTFvUfauMHgDhLxoer17NmwcCnmZ5m1XCCuRwdclJIOvhRCWsPKPS8z4+SSKAr2ae/LpM62xt9EAcOjGIV7c/iLpunTqONdh8cOLqeNSx/xFxayDH18Ggw5qNDctL1KtrvnbFaIUyOBrIYQox0Y9VJ+FzwZiq1Gz9cQNhiyP5Fa2aa6jQM9AVvdZjbeTN7EZsTy35TmO3jxq/qJaDYYRP4NTDUg8YRqUfXmv+dsVwoIkGAkhRBnVt6UXX45ui4u9lugrqTy+eB9XU01zHTVwbcDavmvxdfMlNS+V0VtHsyN2h/mL8mkLz+8ArwDIToYv+0N0uPnbFcJCJBgJIUQZ1r6BO99MCMHL1Z4LN7MYtGgfJ66nAeDh4EH4I+F0rNWRXEMuk3dOZuOZjeYvyrU2jPwVmg80LUL748uw5TUw6M3fthBmJsFICCHKuCaeprmOmno6k5iRx9NL9rP3fBIAjjaOLOi+gEGNB2FUjMzYP4P50fMxKmZ+cszWEZ5YBd3eNL0+sBTWDIJsMw8GF8LMJBgVkzyVJoSwJi9XBzaO70D7Bm5k5ukZseoAmw9fA8BGbcM7Hd5hYquJAKw4voL/++P/yDfkm7colQq6vAZPrwEbJ7i0y7QI7c0z5m1XCDOSp9JKSJ5KE0JYU57ewNSNR/j5aDwA03o34/nODVCpVABsOreJ9/58D72ip13NdszrNg9nW2fzF5ZwHL56FtJiwdYZnlgJTULN364QxSRPpQkhRAVkp9Ww4JnWjH6oPgAzfznNuz+eLJzraGDjgSzssRBHrSORCZEM/3U4CVkJ5i+spr9pUHadENBlwLqnYO+nprXXhChHJBgJIUQ5o1ar+O+jfrzZ1xeA8H2XefGrQ+Tmm5YJ6VirI+GPhOPh4MG51HMM2TKEs6lnzV+YkwcM+x4ChwMKRLwFm8ZDfq752xailEgwEkKIcmpMpwZ89mxrbDVqthxLYNiKA6Rlm8YV+br7srbPWhq4NiAxO5HhvwwnMj7S/EVpbaHfp9B7Fqg0cHQ9hPeFDAv0WglRCiQYCSFEOdY/wJvwUcE422k5cDmFJz7fx/VbpjXUvKt482XvLwnyDCIzP5Pxv43np4s/mb8olQrajYPnvgX7qnDtICztBtcOmb9tIR6QBCMhhCjnQhp68PWEDtR0sedcYiaDFu3jdEI6AK52rizpuYRe9XqhN+qZtmcay48txyLP3TTsBmO3g0cTyLgOq3rDsW/M364QD0CCkRBCVADNarrw3cQQGteoQkJ6Lk8u/pN9F0xzHdlp7JjVeRbD/YYD8OmhT3l///vojRaYkNG9IYz5DRqHgj4Xvh0Nv78HRjPPsyTEfSrR4/r169cvfCS0JCZPnsxLL71U4veVJWFhYYSFhWEwGDh79qw8ri+EKJPSsvMZ++VBDlxOwVaj5pOnAugf4F24f+2ptXx84GMUFLrW7srHnT/G0cbR/IUZDfDbO7DvM9Prpn1h0BKws8BUAkJQ/Mf1SxSMdu3adV/F1KtXj7p1K8YKzDKPkRCirMvNNzB1YwxbjpkGPL/Z15cxnRoU7v/tym+8secN8gx5tPBowYLuC3B3cLdMcTFfwY8vgUEHNfzg2a+gWj3LtC0qNbMEIyHBSAhRPhiMCjN+Okn4vssAjH6oPtP7+KJWm3r9Dyce5sXtL5KWl4aPsw9Lei7Bx9nHMsXFRcGGIZB5Axzc4OnVUO8hy7QtKi2zT/B47Ngx9HpZMFAIIcoijVrF2/38+L8+zQBY8cclXlx/mDy9aa6j1jVas7r3ampVqUVcRhwjfhnBxVsXLVOcTzCM3QFerSAnBb58DA6utEzbQvyL++4xUqvV2Nra4ufnR0BAAK1atSr8XrVq1VIus+yQHiMhRHnzfcw1Xv36CPkGhfYN3FgytA2uDjYA3My+yfMRz3P+1nmq2VVjSc8l+Lr7WqYwXTb88AIc/9b0OngsPDITNDaWaV9UKmbvMfrjjz9wc3Ojfv365OXlER4eTvfu3XF3d6dp06b897//5datW/d7eiGEEKXksVa1CB/Zlip2WvZfTOGpz/8kPs0011F1x+qs7LUSP3c/UvNSGb11NDGJMZYpzNYRHl8B3d80vY5aBmsGQXaKZdoX4m/cd49RYGAgb731FgMGDCjctmvXLsaMGcPIkSPZtm0bV65c4cCBA1SvXr206rU66TESQpRXJ6+nM2LVARIz8vByteeLUW1p4ml6KixDl8ELv7/AocRDOGgdWNB9Ae282lmuuNM/w7djIT8LqtWHZ9dDjWaWa19UeGbvMTp9+jR+fn5FtnXp0oV58+Zx6NAhduzYQZs2bfi///u/+21CCCFEKfLzNs111LC6E/FpuTyxeB+RF5MBcLZ1ZvHDi+ng1YEcfQ4Tf5vI7qu7LVdcs74wJgKq1oHUS7D8YTi71XLtC1HgvoNRcHAwa9asuWt78+bN2bZtGyqVitdee43ffvvtgQoUQghRempXc+TbCSG0qVuN9Fw9Q1cc4Oej8QA42jiyoMcCuvp0RWfU8fL2l9l62YLhxLO5aVB23Y6gy4B1T8Mf80EenhYWdN/BaNGiRcyfP5/Bgwdz+vRpAHQ6HfPmzcPNzQ2A6tWrc+PGjdKptJRkZGQQHBxMq1ataNGiBcuWLbN2SUIIYVFVHW1ZM6YdvZp7ojMYeeGrQ6yNvAKYZsme23Uuvev3Rq/oeX3362w+v9lyxTl5wNDNEDQSUOC3t2HTeMjPtVwNolK772DUvHlz/vzzT+Lj4/Hz88PBwQEnJyeWLVvGRx99BMDhw4fx9vb+lzNZlqOjI7t27SImJobIyEhmzpxJcnKytcsSQgiLsrfRsGhIEEPb10VRYPqm4yzfY3pc30Ztw8yHZvJ448cxKkb+u/e/rDu1znLFaW3h0XnQ5xNQaeDoegjvA5k3LVeDqLRKZYLHy5cvc+TIEbRaLUFBQdSsWROAPXv2cOPGDZ544okHLtQcUlJSaN26NdHR0Xh4eBTrPTL4WghRkSiKwqytZ1i88wIAr/RswgvdG6FSqUz7omax5pRp2MTLgS8zpsUYyxZ4cSdsHA65t8Ctgak3qVrFWElBWJbZB1//Vb169Xjsscfo27dvYSgC6NSpU4lD0e7du+nXrx/e3t6oVCo2b9581zGLFi2ifv362NvbExQUxJ49e0rUxq1btwgICKB27dq8/vrrxQ5FQghR0ahUKl7v1ZRXejYBYE7EWWZtPYOiKKZ9wa8zruU4wLT47GeHPsOiCyY06ApjfgfXOpByEVaEwo2TlmtfVDrakhxsiUVks7KyCAgIYOTIkTz++ON37d+wYQOTJ09m0aJFdOzYkSVLltC7d29OnjxJnTp1AAgKCiIvL++u927btg1vb2+qVq3KkSNHuHHjBoMGDeKJJ57A09OzxJ9LCCEqApVKxYs9GuNgq+H9n0+xeOcFcnQG3nrUD7VaxQutX8DRxpF50fNYdmwZOfocXg9+/b5+H9wXj0YweiusHgQ3T8GqR2Dw11DHgtMJiEqjTC8iq1Kp2LRpU5G5ktq1a0dgYCCLFy8u3Obr68uAAQOYOXNmiduYMGEC3bt358knn/zb/Xl5eUVCVnp6Oj4+PnIrTQhRIa2NvMKbm4+jKPBUm9rMHNQSTcH6autPr+eDyA8AGNR4EG+1fwuNWmO54rJT4KtnIC4StA7w1JfQJNRy7Ytyrbi30krUY9SlS5cHLuxB6HQ6oqOjeeONN4psDw0NZd++fcU6x40bN3BwcMDFxYX09HR2797NhAkT7nn8zJkzeffddx+obiGEKC+GtKuLg42GV78+wsaDV8nNNzLnqQBsNGqeafYMDloH3tr3Ft+d+47s/Gw+7PQhNmoLLeHh6GYaY7RxGJyPgPXPwoDF0PIpy7QvKoVSGWNkKUlJSRgMhrtue3l6epKQkFCsc1y9epXOnTsTEBDAQw89xAsvvEDLli3vefy0adNIS0sr/IqLi3ugzyCEEGXdoMDaLBwciFat4ocj15m49lDh4rOPNXqM2Z1no1Vr+fXyr0zdMZU8w91DF8zG1hGe/QpaPAVGPXw3FvYv/vf3CVFMJeoxKiv+97727UGCxREUFERMTEyx27Kzs8POzo6wsDDCwsIwGAwlKVUIIcqlPi28sLdRM37NISJO3mDMFwdZOrQNDrYaQuuFYq+1Z+rOqey8upNJv0/is26f4WjjaJniNDYwcAk4ukPkYvj1DchKMq25ZqlxT6LCKlc9Rh4eHmg0mrt6hxITE80+eHrSpEmcPHmSqKgos7YjhBBlRfdmnoSPCMbRVsOec0kMX3WAzDw9AJ1rd2ZRj0U4aB2IjI9k/G/jydBlWK44tRoemXlnAdo9n8BPU8Aof7yKB1OugpGtrS1BQUFEREQU2R4REUFISIhZ2w4LC8PPz4/g4GCztiOEEGVJSCMPVo9ui7OdlgOXUhiyPJK07HwA2nq1ZVnoMpxtnTmceJjRW0eTmptqueJUKuj8mmkySFQQvQq+GQl6C97aExVOmQtGmZmZxMTEFN7uunTpEjExMcTGxgIwdepUli9fzsqVKzl16hRTpkwhNjaW8ePHm7Uu6TESQlRWQXXdWDe2PVUdbTgSd4tnlu0nKdMUPgKqB7Cy10rc7N04lXKKkb+OJDE70bIFthkFT4aDxhZOfg9rn4A8C/ZeiQqlVGa+Lk07d+6kW7dud20fPnw44eHhgGmCx1mzZhEfH4+/vz/z5s2jc+fOFqlPZr4WQlRWZxIyGLI8kqTMPBpWd2LtmPbUdLUH4GLaRcZuG0tidiI+zj4sD12OdxULLwl1cSesHwK6TPBqBc99a1p7TQiK//u7zAWjsuqvg6/Pnj0rwUgIUSldvJnJkOWRxKflUsfNkbVj2uHjZhp0fTXjKmO2jeFa5jU8HT1ZHrqceq71LFvgtUOmHqPsZHBvZHq8v6qPZWsQZZIEIzORHiMhRGUXl5LNkOWRxKZk4+Vqz9ox7WhQvQoAN7JuMDZiLJfSLuFu786Snkto6tbUsgXePAurB0L6VXD2hqGboEYzy9YgyhyLrpUmhBCi8vBxc+Tr8R1oVKMK8Wm5PLVkP2cSTGN6PJ08WdVrFc3cmpGcm8yoraM4dvOYZQus3gRGbwOPppBx3bSESJyMDxXFI8FICCFEiXm62LPh+fb4ermQlJnH00v/5NjVNADcHdxZHrqcltVbkq5LZ8y2MRxMOGjZAl1rwahfoVYbyEmFL/vD+d8sW4MolyQYFZM8ri+EEEW5V7Fj/dj2tPKpyq3sfAYv28/ByykAuNq5srTnUtrWbEu2PpsJv01g77W9li3Q0Q2GfQ8Nu0N+Nqx7Bo59Y9kaRLkjY4xKSMYYCSFEUZl5ekaFR3HgUgoONhqWD29Dx0amp8Fy9bm8susVdl/djVat5ZPOn9Cjbg/LFqjXwebxcPxbQAV9ZkPbsZatQVidjDESQghhEVXstHwxsi2dGnuQk29gZHgU20/fAMBea8/8rvMJrRuK3qjnlV2v8OOFHy1boNYWBi2H4LGAAltehR0zQfoFxN+QYFRMcitNCCHuzcHW1FPU088Tnd7I819Gs+VYPAA2Ghs+7vwx/Rv2x6AYmP7HdDae2WjZAtVqU09R12mm17s+MgUkWUJE/A+5lVZCcitNCCHuLd9gZOrGI/x45DpqFcx+IoDHg2oDYFSMzIycyfoz6wF4tc2rDG8+3PJFHlgGW14DFGg+yLQgrdbW8nUIi5JbaUIIISzORqNm/tOteKpNbYwKvPL1EdbsvwKAWqXm/9r9H6P8RwHwycFPWByzGIv/fd52LDyxAtQ2cOI7WPcU5GVatgZRZkkwEkIIUao0ahUfDWrJiJB6ALy5+TjL91wEQKVSMSVoCi+1fgmARUcWMefgHMuHI//HYfAGsHGCiztMj/NnJVu2BlEmSTASQghR6tRqFW/382NC14YAvP/zKT77/VxhABrbciz/Cf4PAF+c/IIZ+2dgVIyWLbJRDxj+AzhUg2vRpokg065atgZR5kgwKiYZfC2EECWjUql4vVdTXunZBIC5EWf5+NczheHoOb/neDfkXVSo+Prs10z/Yzp6o96yRdZuA6O2gkstSDoLK3qZlhQRlZYMvi4hGXwthBAlt3zPRd7/+RQAwzvU5e1+zVGrVQBsubiF//vj/zAoBnrU6cGszrOw1Vh4MPStONP6asnnwMENnvsGagVZtgZhVjL4WgghRJkxplMDPhjoj0oFX/x5hTe+O4rBaPq7vE+DPsztOhcbtQ2/x/7OS9tfIkefY9kCq/qYeo68AyEnBcL7wYUdlq1BlAkSjIQQQljEkHZ1mfNkAGoVbDx4lckbYsg3mMYVda/TnYU9FuKgdWDv9b1M+G0CmToLPynm5G4ac9SgK+Rnwdon4cQmy9YgrE6CkRBCCIsZFFibhYMD0apV/HjkOhPXHiJPb5pkMcQ7hCU9l1DFpgrRN6IZu20saXlpli3QzhkGbwS/x8CYD1+PhKgVlq1BWJUEIyGEEBbVp4UXS4cFYatVE3HyBmO+OEiOzhSOWtdozfJey6lqV5XjyccZuXUkSTlJli1QawdPrII2owAFfp4Ku2bJEiKVhASjYpKn0oQQovR0b+ZJ+IhgHG017DmXxPCVB8jIzQeguXtzVvVahYeDB+dSzzHi1xEkZCVYtkC1BvrOhc6vm17v+AB++Q8YLTylgLA4eSqthOSpNCGEKD3RV1IYsTKKjDw9AT5V+WJkMFUdTU+kxabHMmbbGOKz4vF28mZ5r+X4OPtYvsj9n8OvpjmXaPEkPLZIlhAph+SpNCGEEGVeUF031o1tT1VHG47E3eLZZZEkZeYBUMelDl888gV1XepyPes6o7aOIi49zvJFth8Pg5aDWgvHvob1z4Iuy/J1CIuQYCSEEMKqWtR2ZcPzHfCoYsep+HSeXvInCWm5AHhV8WJVr1XUd61PQlYCI7eOJDY91vJFtnwSnl0PWgc4/xt8OQCyUyxfhzA7CUZCCCGsrmlNZzaOa4+Xqz0Xbmbx1JI/iUvJBqC6Y3VW9lpJfdf63Mi+wcitI7mSfsXyRTbuaXqc374qXD0Aq/pA+nXL1yHMSoKREEKIMqFB9SpsHNeBOm6OxKZk89SSP7l40zSXkYeDByt7raSha0MSsxMZ9esoLqddtnyRPm1h1K/g7AU3T8GKUEg6b/k6hNlIMBJCCFFm+Lg58vX4DjSqUYX4tFyeWrKf0wnpgCkcLe+1nEZVG5GYk8ioraO4lHbJ8kXW8DXNku3WENLiYGUoXD9s+TqEWUgwEkIIUaZ4utiz4fn2+Hq5kJSZxzNL93P06i2gIByFmsLRzZybjNo6iotpFy1fZLW6pnDkFQDZyRD+KFzabfk6RKmTYCSEEKLMca9ix/qx7WnlU5Vb2fkMWRZJ9JVU0z4Hd1b0WkHjao1Jykli1K+juHjLCuGoSnUY/hPU7wy6TFjzOJzeYvk6RKmSYFRMMsGjEEJYlqujDWvGtKNtfTcy8vQMX3mA6CumJ8Hc7N1YEbqCJtWakJybzMitI7lw64Lli7R3gcFfg28/MOhg41A4+b3l6xClRiZ4LCGZ4FEIISwrW6dndPhB/ryYjJOthi9HtyWorhsAt3JvMTZiLKdTTuNm78by0OU0rtbY8kUa9LB5vGmeI5UGBi2FFk9Yvg5xTzLBoxBCiArB0VbLyhHBdGjgTpbOwLAVBzh42dRzVNW+Kst6LsPXzZeU3BTGbBvD2dSzli9So4WBS6DVEFAM8O0YiFln+TrEA5NgJIQQosxzsNWwckQwIQ1N4Wj4ygNE/TUchf4lHG0dw5mUM5YvUq2B/gshaASgwOaJEB1u+TrEA5FgJIQQolxwsNWwYngwHRvdCUcHLpnCkaudK8tCl+Hn7kdqXipjtlkrHKnh0fnQ9nlAgR9fhgPLLF+HuG8SjIQQQpQbDrYalg8L5qFGHmTrDIxYdYDIi8nAnXDk7+7PrbxbjN42mtMppy1fpEoFvWdBhxdMr7e8CvsWWr4OcV8kGAkhhChXHGw1LB/epjAcjQyPKgxHLrYuLAldQguPFqTlpTF662hOJp+0fJEqFYS+D51eNb3eNh12f2L5OkSJSTASQghR7tjbmMJRp8a3e46i2P/XcNRzCS09WpKuS2fstrGcSD5h+SJVKujxX+g23fR6+wzYMRPkYfAyrdIGo+zsbOrWrcurr75q7VKEEELcB3sbDcuGmcJRTr6Bkaui+POCKRw52zqzpOcSAqoH3AlHSVYIRwBdXoeH3zH9e9dH8Pu7Eo7KsEobjD744APatWtn7TKEEEI8gNvhqHOT6uTkGxgVficcVbGtwucPf06r6q3I0GUwdttYjicdt06hD02BXjNN//5jHmydLuGojKqUwejcuXOcPn2aPn36WLsUIYQQD8jeRsPSoUGF4Whk+AH2XUgCCsJRz89pXaM1GfkZPL/teY7dPGadQjtMhL5zTP/eH2YalG00WqcWcU9lLhjt3r2bfv364e3tjUqlYvPmzXcds2jRIurXr4+9vT1BQUHs2bOnRG28+uqrzJw5s5QqFkIIYW23w1GXJtXJzTcyKjyKfedN4cjJxonFDy8msEagKRxFPM/Rm0etU2jwGOi/AFBB1HL46WUJR2VMmQtGWVlZBAQEsHDh3z/auGHDBiZPnsz06dM5fPgwnTp1onfv3sTGxhYeExQUhL+//11f169f5/vvv6dJkyY0adLEUh9JCCGEBdjbaFgyNIhuTQvC0RdR7P2fcBTkGURmfibPRzxPTGKMdQoNHAYDPweVGg59Cd9PBKPBOrWIu5TptdJUKhWbNm1iwIABhdvatWtHYGAgixcvLtzm6+vLgAEDitULNG3aNNasWYNGoyEzM5P8/HxeeeUV3nrrrb89Pi8vj7y8vMLX6enp+Pj4yFppQghRRuXpDYxfHc2OMzex06pZOSKYjo08AMjOz+aF7S8QlRCFk42TaQxSjVbWKfT4t/DtWNMSIv6Pm5YU0dhYp5ZKoEKulabT6YiOjiY0NLTI9tDQUPbt21esc8ycOZO4uDguX77MJ598wtixY+8Zim4f7+rqWvjl4+PzQJ9BCCGEedlpNXw+NIjuzWqQpzfdVvvjnKnnyNHGkYXdF9K2Zluy8rMYFzGOw4mHrVOo/+Pw1BegtjGFpK9HgF5nnVpEoXIVjJKSkjAYDHh6ehbZ7unpSUJCglnanDZtGmlpaYVfcXFxZmlHCCFE6bHTalj8XCA9CsLR6C+i2HPuJlAQjnospF3NdmTrsxkXMY7oG9HWKdS3Hzy9BjS2cPon2DgU8nOtU4sAylkwuk2lUhV5rSjKXduKY8SIEXzyyT/PRGpnZ4eLiwurV6+mffv29OjRo8TtCCGEsDw7rYZFzwXysK8pHI354iC7z5rCkYPWgQU9FtDeqz05+hwm/DaBgwkHrVNo00fg2fWgtYezv8L6ZyE/xzq1iPIVjDw8PNBoNHf1DiUmJt7Vi1TaJk2axMmTJ4mKijJrO0IIIUqPnVZD2JC/hKMvD7Lrr+Go+wI6eHUgR5/DxN8nEpVgpf+Pb9QDhnwNNo5wYTusfRJ0WdappZIrV8HI1taWoKAgIiIiimyPiIggJCTESlUJIYQoy+y0GhYNCeJhX090eiNjvzzIzjOJANhr7fms+2d09O5Ijj6HSb9P4kD8AesUWr8zPPcd2DrD5T2w5nHITbdOLZVYmQtGmZmZxMTEEBMTA8ClS5eIiYkpfBx/6tSpLF++nJUrV3Lq1CmmTJlCbGws48ePN2tdYWFh+Pn5ERwcbNZ2hBBClD5brZpFQwLp6WcKR8+vji4Sjj7t/ikda90JR5HxkdYptG4HGLYZ7Fwh9k9YPRByblmnlkqqzD2uv3PnTrp163bX9uHDhxMeHg6YJnicNWsW8fHx+Pv7M2/ePDp37myR+or7uJ8QQoiyR6c38sK6Q2w7eQNbjZolw4Lo1rQGAHmGPKbsmMKea3uw09iZbrN5d7BOodcPF4SiVPBqBUM3gaObdWqpIIr7+7vMBaOyToKREEKUbzq9kRe/OsTWEwXhaGgQ3ZqZwpHOoGPKzinsvrobO40dn3X/jBBvKw3VSDgGXw6A7CTw9Idh34OTh3VqqQAq5DxG1iS30oQQomKw1apZODiQXs090RmMjFsdzfbTN0z7NLbM6zqPrrW7kmfI48XfX2Tvtb3WKbRmCxjxM1TxhBvHIbwvZJhnahpxh/QYlZD0GAkhRMWQbzDy4rrD/HoiAVuN2jTvka9nwb58Xtn1CjvidmCrtuXT7p/yUK2HrFNo0nn4oh9kXAf3RjD8R3Dxtk4t5Zj0GAkhhBD/wEajZsHg1vT2r4nOYGT8mmh+P3WjYJ8Nc7rMobtPd3RGHS9tf4ndV3dbp1CPRjDyZ3D1geTzsKo33Ir99/eJ+yLBqJjkVpoQQlQ8Nho1nz3bmr4tvMg3KIxfE81vJ++Eo0+6fkKPOj3IN+Yzecdk64UjtwYwcgtUqwepl2FVH0i5aJ1aKji5lVZCcitNCCEqnnyDkcnrY/j5WDw2GhWLhgTR06/gtpoxn//s/g8RVyLQqrXM7zqfLj5drFNo+nXTbbXk8+DsDcN/AI/G1qmlnJFbaUIIIUQx2WjUfPpMK/q2NPUcTVwbzbYTpoHONmobPu78MT3r9kRv1DN552R2xu20TqEu3jBiC1RvZhpztKoPJJ62Ti0VlAQjIYQQAtBq1Hz6dCseLQhHk9Yduisc9arXC71Rz5SdU9geu906hTp7mp5W8/SHrETT02oJx61TSwUkwaiYZIyREEJUfFqNmvlPt6JfgHdBz9Ehfj1+Jxx91Okjetfrjd6o55Wdr/D7ld+tU6iTh+npNK9WpnmOvnjUNCmkeGAyxqiEZIyREEJUfHqDkakbj/DDketo1SoWDm7NI/5epn1GPf/3x//xy6Vf0Kq0zO4ym4frPmydQnNuwdon4GqUaRmR574FH/kD/u/IGCMhhBDiPmk1auY+FcBjrbzRGxVeWHeYX47Fm/aptXz40If0bdAXvaLn1V2vsu3yNusU6lDVtFxInQ6QlwarB8CVP61TSwUhwUgIIYT4G1qNmjlP/iUcfVU0HH3Q8QP6NeiHQTHw+u7X2Xp5q3UKtXM29RTV7wy6TFgzCC5ZaVqBCkCCUTHJGCMhhKh8TD1HrRjQyhtDQTjaUhCONGoNMzrOoH/D/hgUA//Z/R/rhSNbJxi8ERr2gPxsWPsknP/NOrWUczLGqIRkjJEQQlQ+BqPCq18fYdPha2jUKj57pjV9W3oV7DPw9r63+f7C92hUGuZ0mUOPuj2sU2h+Lnw9HM7+ChpbeGo1NH3EOrWUMTLGSAghhCglGrWKT54MYFDrWhiMCi+tP8xPR68X7NPwbsi7hbfVXt39qvXmObKxN4Uh335g0MGG5+DUj9appZySYCSEEEIUg0atYvaTAQwKNIWjl9fH8OORO+FoRscZhY/yT9051XrLh2ht4YlV4P84GPNh43A4/q11aimHJBgJIYQQxaRRq5j9RACPB9bGYFSYvKFoOPqw04eE1g0l35jPlB1T2Hdtn5UKtYFByyDgWVAM8O0YOLLeOrWUMxKMhBBCiBLQqFXMeqIlTwbVLug5OswPBeFIq9byUeeP6FGnBzqjjpd2vMT++P3WKVStgccWQeAwUIywaTwc+tI6tZQjEoyKSZ5KE0IIcZtGreLjx03hyKjA5PWH+T7mGmCaIXt259l0rd2VPEMeL/7+IlEJUdYpVK2GRz+F4DGAAj+8CAdXWaeWckKeSisheSpNCCHEbUajwhvfHWXjwauoVTD/mdb0D/AGQGfQMXnHZPZc24OD1oHPH/6cQM9A6xSqKLB1OuwPM73u9ykEjbBOLVYiT6UJIYQQZqZWq/hoUEuebuODUYEpG2IK5zmy1dgyr9s8QrxDyNHnMOG3CcQkxlinUJUKen0A7SeaXv/4stxWuwcJRkIIIcQDUKtVzBzUonBA9ktfHWbbCdPCs3YaOz7t9intarYjW5/NhN8mcOzmMesUqlJBrw+h3QTT6x9egkOrrVNLGSbBSAghhHhA6oIB2beXD5m07hDbT98AwF5rz2fdP6ONZxsy8zMZ99s4TiSfsE6hKhU8MhPajqNwzNHhNdappYySYCSEEEKUAo1axZwnA+jb0ot8g8L41YfYdfYmAI42joT1CCOwRiAZugye3/Y8p1NOW6dQlQp6fwxtnwcU+P4FiFlnnVrKIAlGQgghRCnRatTMf7oVvZp7ojMYef7Lg+w9nwSYwtGihxfRsnpL0nXpjN02lrOpZ61TqEoFvWfdeVpt80SI+co6tZQxEoyEEEKIUmSjUbPg2UAe9q1Bnt7I6C+i2H8xGQAnGyc+f/hz/N39uZV3i7HbxnLh1gXrFKpSQZ9PoM1oTOFoAhzZYJ1ayhAJRkIIIUQps9WqCRsSSNem1cnNNzIqPIqoyykAONs6syR0Cb5uvqTkpjB662gupl20TqGF4WgUpnA0Ho5utE4tZYQEo2KSCR6FEEKUhJ1Ww+fPBdGpsQfZOgMjVh7gUGwqAC62LiwLXUbTak1Jzk1mzNYxXEm/Yp1C1WroM8c0r5FihE3j4OjX1qmlDJAJHktIJngUQghREjk6A6PCo/jzYjLOdlrWjm1Hy9pVAUjNTWXU1lGcv3WeGo41CO8Vjo+Lj3UKNRrhp8lw6AtQqU1rrbV4wjq1mIFM8CiEEEKUAQ62GlaMaEPbem5k5Ol5bnkkx6+lAVDNvhrLQ5fT0LUhidmJjN42mmuZ16xTqFoNj86/s7bad2Ph+LfWqcWKJBgJIYQQZuZoq2XlyGCC6lYjPVfPcysiORWfDoC7gzvLey2nnks94rPiGb11NPGZ8dYp9Pbaaq2fM4Wjb8fC8e+sU4uVSDASQgghLKCKnZbwkcEE+FTlVnY+Q5ZHcvZGBgAeDh6s6LWCOs51uJZ5jdHbRpOQlWCdQtVq6LcAWj0HigG+HQMnNlmnFiuQYCSEEEJYiLO9DV+Oaot/LRdSsnQMXhbJ+cRMAGo41mBFrxXUrlKbuIw4xmwbQ2J2onUKVauh/wJoNcQUjr4ZDSc2W6cWC5NgJIQQQliQq4MNa0a3w9fLhaTMPAYv28+lpCwAajrVZEWvFXg7eXMl/Qpjto0hKSfJOoXeDkcBzxaEo1Fw8nvr1GJBEoyEEEIIC6vqaMvaMe1o6ulMYoYpHMUmZwPgXcWbFb1WUNOpJpfSLjFm6xhSclOsU6haA4+FQctn7oSjUz9apxYLqZTBSKvV0qpVK1q1asWYMWOsXY4QQohKyM3JlrVj29GoRhXi03J5dtl+rqaawlFt59qsCF1BDccaXEi7wJhtY0jNTbVOoWoNDFgELZ4Cox6+HgGnfrJOLRZQKecx8vDwICnp/romZR4jIYQQpSkxPZdnlu7nYlIWPm4ObHi+A95VHQC4nHaZUVtHcTPnJs3cmrE8dDmudq7WKdRoME3+eOxrUGvhqS+hWV/r1HIfZB4jIYQQohyo4WLPurHtqevuSFxKDoOX7SchLReAeq71WN5rOW72bpxOOc3zEc+Trku3TqFqDQz4HPyfMPUcbRwOp7dYpxYzKnPBaPfu3fTr1w9vb29UKhWbN2++65hFixZRv3597O3tCQoKYs+ePSVqIz09naCgIB566CF27dpVSpULIYQQ96emqykc1a7mwOXkbAYv309ihikcNXBtwIrQFVSzq8bJ5JOMjxhPhi7DOoVqtDBwCfg/DsZ82DgMzvxinVrMpMwFo6ysLAICAli4cOHf7t+wYQOTJ09m+vTpHD58mE6dOtG7d29iY2MLjwkKCsLf3/+ur+vXrwNw+fJloqOj+fzzzxk2bBjp6VZK30IIIUSBWlUd+Gpse7xd7bl4M4shyyJJyswDoFG1RiwLXYarnSvHko4x4bcJZOVnWadQjRYGLoXmA03haMNQOPOrdWoxgzI9xkilUrFp0yYGDBhQuK1du3YEBgayePHiwm2+vr4MGDCAmTNnlriN3r17M2PGDNq0afO3+/Py8sjLyyt8nZ6ejo+Pj4wxEkIIYRZXkrN4esl+EtJzaVbTmXVj2+PmZAvAqeRTjN42mgxdBoE1Aln88GIcbRytU6hBD9+OhpObQWMLT6+FJqHWqaUYKuQYI51OR3R0NKGhRS98aGgo+/btK9Y5UlNTC4PO1atXOXnyJA0aNLjn8TNnzsTV1bXwy8fHSov7CSGEqBTqujuxbmw7ajjbcTohg+eWR3IrWweAr7svy3ouw9nGmUOJh3hh+wvk6HOsU6hGC48vB7/HwKCDDUPgXIR1ailF5SoYJSUlYTAY8PT0LLLd09OThITiTZ1+6tQp2rRpQ0BAAI8++iiffvopbm5u9zx+2rRppKWlFX7FxcU90GcQQggh/k2D6lVYN7YdHlVsORmfzrCVB0jLyQeguUdzPu/5OU42TkQlRPHi9hfJ1edap1CNDTy+Anz7m8LR+iFw7jfr1FJKylUwuk2lUhV5rSjKXdvuJSQkhGPHjnHkyBFiYmKK3Kb7O3Z2dri4uBT5EkIIIcytUQ1n1o4x3UY7ejWN4SsPkJFrCkctq7fk84c/x1HrSGR8JJN3TCbPkPcvZzQTjQ08sRKaPQqGPFg/GM6X33BUroKRh4cHGo3mrt6hxMTEu3qRSltYWBh+fn4EBwebtR0hhBDitqY1nVkzuh1VHW2IibvFyFVRZOXpAWhVoxWLHl6Eg9aBvdf3MnXnVHQGnXUK1djAE6vuhKOvBsP5361TywMqV8HI1taWoKAgIiKK3sOMiIggJCTErG1PmjSJkydPEhUVZdZ2hBBCiL/y83Zhzeh2uNhrOXgllZHhUWTrTOEoyDOIsB5h2Gvs2X11N6/seoV8Q751CtXamsJR0753eo4u7LBOLQ+gzAWjzMxMYmJiiImJAeDSpUvExMQUPo4/depUli9fzsqVKzl16hRTpkwhNjaW8ePHm7Uu6TESQghhLf61XFk9uh3OdloOXEphzBcHyc03ABBcM5jPun+GncaOnXE7eX336+QbrRiOngyHpn1AnwtfPQMXd1qnlvtU5h7X37lzJ926dbtr+/DhwwkPDwdMEzzOmjWL+Ph4/P39mTdvHp07d7ZIfbIkiBBCCGuJvpLKsBWRZOkMdGrswbJhbbC30QCw99peXtz+IvnGfHrV68VHnT5Cq9Zap1C9zjT549lfQOsAgzdAgy7WqaVAcX9/l7lgVNZJMBJCCGFNBy6lMHzlAXLyDXRrWp3PhwZhpzWFo91Xd/PyjpfRG/X0qd+HDx/6EI1aY51C9XmmyR/PbTWFoyEbob5lOjH+ToWcx8ia5FaaEEKIsqBtfTdWjgjG3kbNjjM3eWHdYfINRgA61+7M3C5z0aq0bLm0hbf2vYXBaLBOoVo7eHo1NA4FfQ6sfQoulWwJL2uQHqMSkh4jIYQQZcEf55IY9UUUOr2R3v41+ezZ1thoTP0dEVcieG3XaxgUAwMbDeSdkHdQq6zUF5KfCxueg/MRYOMIQ76Geg9ZvAzpMRJCCCEqsIcae7B0aBC2GjW/HE9g6sYj6At6jnrW7clHnT5CrVKz6fwmZuyfgVExWqdQG3t4eg00ehjys2Htk3B5r3VqKQYJRsUkt9KEEEKUNV2b1mDxc4HYaFT8eOQ6r31zFIPRdCPokfqP8OFDH6JWqfnm7Dd8GPkhVrtJZGNvWkutYY874ehK8ZbysjS5lVZCcitNCCFEWbP1RAKT1h5Cb1R4Iqg2sx5viVptWhHihws/8OYfb6Kg8Jzvc7we/HqxV4sodfm5sP5ZuLAdbJzguW+hbgeLNC230oQQQohKolfzmnz6TGs0ahXfRF9l+uZjGAt6jvo37M+7Ie8CsObUGuYdmmfdnqNn1kGDrpCfBWufgNj91qnlHiQYCSGEEBVA35ZezH0qALUKvjoQx9s/nCgMQAMbD+S/7f8LwKrjq1h8ZLH1CrVxgGe+gvpdQJcJax6H2Ejr1fM/JBgVk4wxEkIIUdY91qoWnzwZgEoFq/df4b2fThaGo6eaPsV/gv8DwOIji1lxbIX1CrV1hGfXm+Y1uh2O4g5Yr56/kDFGJSRjjIQQQpR1G6PieP3bowA837kB03o3KxxXtPzYcj499CkA/wn+D8/5PWe1OtFlw7qn4PIesHWGoZvAxzwdEDLGSAghhKikngr24YOB/gAs3X2R2VvPFPYcjWkxhvEBpvVFP476mK/Pfm21OrF1NC0XUq8T6DJgzSC4etB69SDBSAghhKiQhrSry3uPNQdg0c4LzP/tXOG+iQETGdl8JAAz/pzBDxd+sEqNANg6mcJR3YcgLx1WD4Sr0VYrR4KREEIIUUEN61CPN/v6AvDp7+dYuN0UjlQqFVOCpjC42WAUFP6797/8eulX6xVq62RaS61uR9M8R+nXrFaKlZbdLX/CwsIICwvDYLDSmjNCCCHEfRjTqQF6o8JHv5zmk21nsdWqeb5zQ1QqFf9p+x/yDHl8e+5b3tjzBrYaW7rX6W6dQm2dYPBGuHbQ9Di/lcjg6xKSwddCCCHKo4Xbz/HJtrMAvPdYc4Z1qAeAwWjgzb1v8tPFn7BR2/BZ9894qJbl1zIzNxl8LYQQQohCL3RvzAvdGgHw1vcn2BAVC4BGrWFGxxmE1g0l35jP5B2TiYwvO/MKWZoEIyGEEKKSeCW0CaMfqg/AG98d4/sY01gerVrLR50/omvtruQZ8nhx+4scTjxszVKtRoKREEIIUUmoVCre7OvLkHZ1UBSYuvEIvxyLB8BGbcMnXT8hxDuEHH0OE36bwPGk41au2PIkGAkhhBCViEqlYsZj/jwRVBuDUeGl9YfZfvoGAHYaO+Z3m08bzzZk5WcxLmIcZ1LOWLliy5JgVEyyJIgQQoiKQq1W8fHjLekX4E2+QWH8mkP8cS4JAAetAwt7LCSgegDpunTGbhvLhVsXrFyx5chTaSUkT6UJIYSoKPINRiatPcS2kzewt1Hz5ah2tK3vBkC6Lp0xW8dwKuUU1R2qE/5IOHVc6li54vsnT6UJIYQQ4h/ZaNQsGNyaLk2qk5tvZOSqAxyOTQXAxdaFpT2X0rhaY27m3GT0ttFcy7TexIuWIsFICCGEqMTstBqWDA2iQwN3snQGhq88wPFraQBUta/K0p5Lqe9an4SsBMZsHcONrBtWrti8JBgJIYQQlZy9jYblw9vQpm410nP1DFt5gLM3MgDwcPBgWc9l1K5Sm6uZVxmzbQxJOUlWrth8JBgJIYQQAic7LStHBtOytispWTqGLI/kUlIWAJ5OnqzotQIvJy8up19m7LaxpOamWrli85BgJIQQQggAXOxt+HJUW5rVdOZmRh6Dl+0nLiUbAO8q3iwPXU51h+qcv3WecRHjSNelW7ni0ifBSAghhBCFqjrasmZMOxrVqEJ8Wi6Dl+8nPi0HgDoudVgeuhw3ezdOpZxiwm8TyMrPsnLFpUuCUTHJPEZCCCEqC48qdqwd04667o7EpeQwZFkkiRm5ADSo2oClPZfiaufK0ZtHmfT7JHL0OVauuPTIPEYlJPMYCSGEqCyupmbz9JL9XLuVQ1NPZ756vj1uTrYAnEg+wZitY8jMz6S9V3sW9liIncbOyhXfm8xjJIQQQogHUruaI+vGtqOGsx1nbmQwdEUkaTn5ADR3b87ihxfjoHVgf/x+pu6cSr4h38oVPzgJRkIIIYS4p7ruTqwb2w53J1tOXE9nxKoDZObpAWhVoxVhPcKw09ix++pu/rPnP+iNeitX/GAkGAkhhBDiHzWq4cyaMe2o6mjD4dhbjAqPIkdnACC4ZjCfdfsMG7UNEVcimP7HdAxGg5Urvn8SjIQQQgjxr3y9XPhyVFuc7bQcuJTC86sPkptvCkAhtUKY23UuWpWWLZe28O6f72JUjFau+P5IMBJCCCFEsbSsXZXwUcE42mrYcy6JF9YdQqc3BaCuPl35qPNHqFVqNp3fxIeRH1Ien++SYCSEEEKIYguq68by4W2w06r57VQikzccRm8whaNe9Xrxfsf3UaFiw5kNzDk4p9yFIwlGQgghhCiRkIYeLBkahK1GzZZjCbz2zVGMRlMA6tewH291eAuAL05+wcKYhdYstcQqZTC6dOkS3bp1w8/PjxYtWpCVVbFm7RRCCCHMrWvTGiwc3BqNWsWmw9eYvvlYYe/QE02e4I22bwCw9OhSlh1dZs1SS6RSBqMRI0bw3nvvcfLkSXbt2oWdXdmdkEoIIYQoq0Kb12T+061Qq+CrA3G8++PJwnA0xHcIU4KmAPDZ4c/48sSX1iy12CpdMDpx4gQ2NjZ06tQJADc3N7RarZWrEkIIIcqnfgHezHoiAIDwfZf5+NczheFolP8oJgZMBGD2wdlsOL3BanUWV5kLRrt376Zfv354e3ujUqnYvHnzXccsWrSI+vXrY29vT1BQEHv27Cn2+c+dO0eVKlXo378/gYGBfPjhh6VYvRBCCFH5PBFUmw8G+gPw+a4LfPr7ucJ94wPGM8p/FADvR77PpnObrFJjcZW5rpKsrCwCAgIYOXIkjz/++F37N2zYwOTJk1m0aBEdO3ZkyZIl9O7dm5MnT1KnTh0AgoKCyMvLu+u927ZtIz8/nz179hATE0ONGjV45JFHCA4OpmfPnmb/bEIIIURFNaRdXXLzjcz46STzfzuHvY2G8V0aolKpmBw4mTxDHmtPreXtfW9jp7GjT4M+1i75b5XpRWRVKhWbNm1iwIABhdvatWtHYGAgixcvLtzm6+vLgAEDmDlz5r+e888//+Tdd9/l119/BWD27NkAvPbaa397fF5eXpGQlZ6ejo+PjywiK4QQQvyNsB3nmb31DADv9PNjRMf6ACiKwnv73+Obs9+gUWn4pMsnPFz3YYvVVSEXkdXpdERHRxMaGlpke2hoKPv27SvWOYKDg7lx4wapqakYjUZ2796Nr6/vPY+fOXMmrq6uhV8+Pj4P9BmEEEKIimxSt0a82L0RAO/8eJL1B2IBU2fHf9v/l/4N+2NQDLy2+zV2X91tzVL/VrkKRklJSRgMBjw9PYts9/T0JCEhoVjn0Gq1fPjhh3Tu3JmWLVvSuHFjHn300XseP23aNNLS0gq/4uLiHugzCCGEEBXd1J5NGNvJ1FM0bdMxNh2+CoBapebdkHfpVa8XeqOeKTum8Of1P61Z6l3K3Bij4lCpVEVeK4py17Z/0rt3b3r37l2sY+3s7LCzsyMsLIywsDAMhvK7MJ4QQghhCSqViv/r40tuvpHV+6/wysYj2Gk19GnhhVatZWanmegMOnbE7eDlHS+z+OHFBHkGWbtsoJz1GHl4eKDRaO7qHUpMTLyrF6m0TZo0iZMnTxIVFWXWdoQQQoiKQKVS8W7/5jzVpjZGBV766jC/n7oBgI3ahk+6fELHWh3J0ecw6fdJHLt5zMoVm5SrYGRra0tQUBARERFFtkdERBASEmLWtsPCwvDz8yM4ONis7QghhBAVhVqtYuaglvQP8EZvVJiw5hB7zt0EwFZjy/yu82lbsy1Z+VmM+20cp5JPWbniMhiMMjMziYmJISYmBjAt3xETE0NsrGnw1tSpU1m+fDkrV67k1KlTTJkyhdjYWMaPH2/WuqTHSAghhCg5jVrFnKcC6NXcE53ByNgvDxJ5MRkAe609C7ovoHWN1mToMng+4nnOp563ar1l7nH9nTt30q1bt7u2Dx8+nPDwcMA0weOsWbOIj4/H39+fefPm0blzZ4vUV9zH/YQQQghxh05vZNzqg+w4cxMnWw2rx7QjsE41ADJ0GYzdNpYTySdwt3cn/JFw6rnWK9X2i/v7u8wFo7Lqr4Ovz549K8FICCGEKKHcfAOjwqPYdyEZZ3stX41tj38tVwDS8tIYtXUUZ1PP8l7IewxsPLBU25ZgZCbSYySEEELcv2ydnuErDxB1OZVqjjasf74DTWs6A5Cck0xUQhSP1H+k1NutkBM8CiGEEKJ8c7TVsnJEMAG1XUnNzmfI8kgu3swEwN3B3SyhqCQkGBWTPJUmhBBClA5nexu+GNUWXy8XkjLzGLI8kriUbGuXBcittBKTW2lCCCFE6UjOzOPppfs5n5hJ7WoObBzXAe+qDmZpS26lCSGEEKJMc69ix7ox7ajn7sjV1ByGLI8kMSPXqjVJMBJCCCGE1dRwsWft2PbUqurApaQsnlseSUqWzmr1SDAqJhljJIQQQphHraoOrBvbDk8XO87eyOTb6KtWq0XGGJWQjDESQgghzOPCzUx+ORbPpG6NSrQ4fHEU9/e3tlRbFUIIIYS4Tw2rV+GF7o2tWoPcShNCCCGEKCDBSAghhBCigASjYpLB10IIIUTFJ4OvS0gGXwshhBDlj0zwKIQQQghRQhKMhBBCCCEKSDASQgghhCggwUgIIYQQooAEo2KSp9KEEEKIik+eSisheSpNCCGEKH/kqTQhhBBCiBKSYCSEEEIIUUCCkRBCCCFEAa21Cyhvbg/JSk9Pt3IlQgghhCiu27+3/21otQSjEsrIyADAx8fHypUIIYQQoqQyMjJwdXW95355Kq2EjEYj169fx9nZGZVK9Y/HBgcHExUVdV/tlOS9/3bsP+2/176/2/6/2/76Oj09HR8fH+Li4sz+tJ5cV/OQ62oecl3No7xe1/vZJtf13/cVZ5uiKAQFBXH27FnU6nuPJJIeoxJSq9XUrl27WMdqNJr7/iEuyXv/7dh/2n+vfX+3/X+3/d0xLi4uZv8PV66rech1NQ+5ruZRXq/rg2yT63rvfcXdZmtr+4+hCGTwtVlNmjTJIu/9t2P/af+99v3d9v/d9iCf70HIdTUPua7mIdfVPMrrdX2QbZYg11VupYlSIhNfmodcV/OQ62oecl3NQ66rZUmPkSgVdnZ2vP3229jZ2Vm7lApFrqt5yHU1D7mu5iHX1bKkx0gIIYQQooD0GAkhhBBCFJBgJIQQQghRQIKREEIIIUQBCUZCCCGEEAUkGAkhhBBCFJBgJCwqIyOD4OBgWrVqRYsWLVi2bJm1S6oQ4uLi6Nq1K35+frRs2ZKvv/7a2iVVGAMHDqRatWo88cQT1i6lXPvpp59o2rQpjRs3Zvny5dYup8KQn8/SJ4/rC4syGAzk5eXh6OhIdnY2/v7+REVF4e7ubu3SyrX4+Hhu3LhBq1atSExMJDAwkDNnzuDk5GTt0sq9HTt2kJmZyRdffME333xj7XLKJb1ej5+fHzt27MDFxYXAwEAiIyNxc3Ozdmnlnvx8lj7pMRIWpdFocHR0BCA3NxeDwYBk8wfn5eVFq1atAKhRowZubm6kpKRYt6gKolu3bjg7O1u7jHLtwIEDNG/enFq1auHs7EyfPn3YunWrtcuqEOTns/RJMBJF7N69m379+uHt7Y1KpWLz5s13HbNo0SLq16+Pvb09QUFB7Nmzp0Rt3Lp1i4CAAGrXrs3rr7+Oh4dHKVVfdlniut528OBBjEYjPj4+D1h12WfJ61qZPeh1vn79OrVq1Sp8Xbt2ba5du2aJ0ss0+fktmyQYiSKysrIICAhg4cKFf7t/w4YNTJ48menTp3P48GE6depE7969iY2NLTwmKCgIf3//u76uX78OQNWqVTly5AiXLl1i3bp13LhxwyKfzZoscV0BkpOTGTZsGEuXLjX7ZyoLLHVdK7sHvc5/1yusUqnMWnN5UBo/v8IMFCHuAVA2bdpUZFvbtm2V8ePHF9nWrFkz5Y033rivNsaPH69s3Ljxfkssl8x1XXNzc5VOnTopX375ZWmUWe6Y8+d1x44dyuOPP/6gJVYI93Od9+7dqwwYMKBw30svvaSsXbvW7LWWJw/y8ys/n6VLeoxEsel0OqKjowkNDS2yPTQ0lH379hXrHDdu3CA9PR0wrRi9e/dumjZtWuq1lielcV0VRWHEiBF0796doUOHmqPMcqc0rqv4d8W5zm3btuX48eNcu3aNjIwMtmzZQq9evaxRbrkhP7/Wo7V2AaL8SEpKwmAw4OnpWWS7p6cnCQkJxTrH1atXGT16NIqioCgKL7zwAi1btjRHueVGaVzXvXv3smHDBlq2bFk4TmH16tW0aNGitMstN0rjugL06tWLQ4cOkZWVRe3atdm0aRPBwcGlXW65VZzrrNVqmTNnDt26dcNoNPL666/Lk6j/org/v/LzWfokGIkS+9+xAYqiFHu8QFBQEDExMWaoqvx7kOv60EMPYTQazVFWufcg1xWQp6eK6d+uc//+/enfv7+lyyr3/u26ys9n6ZNbaaLYPDw80Gg0d/21nZiYeNdfNaL45Lqah1xXy5DrbB5yXa1HgpEoNltbW4KCgoiIiCiyPSIigpCQECtVVf7JdTUPua6WIdfZPOS6Wo/cShNFZGZmcv78+cLXly5dIiYmBjc3N+rUqcPUqVMZOnQobdq0oUOHDixdupTY2FjGjx9vxarLPrmu5iHX1TLkOpuHXNcyynoPxImyaMeOHQpw19fw4cMLjwkLC1Pq1q2r2NraKoGBgcquXbusV3A5IdfVPOS6WoZcZ/OQ61o2yVppQgghhBAFZIyREEIIIUQBCUZCCCGEEAUkGAkhhBBCFJBgJIQQQghRQIKREEIIIUQBCUZCCCGEEAUkGAkhhBBCFJBgJIQQQghRQIKREKLC6dq1K5MnTzZrGzt37kSlUqFSqRgwYIDV6ylN9erVK/xst27dsnY5QliUrJUmhCi3du7cSbdu3UhNTaVq1aqF27/77jtsbGwsUsOZM2eoUaOGRdqylKioKPbs2cPjjz9u7VKEsDgJRkKIMken02Fra3vf73dzcyvFav5ZjRo1ioQya8nPzy+1MFi9enWLXkMhyhK5lSZEJffNN9/QokULHBwccHd35+GHHyYrK6tw/6pVq/D19cXe3p5mzZqxaNGiwn2XL19GpVKxfv16QkJCsLe3p3nz5uzcubPwGIPBwOjRo6lfvz4ODg40bdqUTz/9tEgNI0aMYMCAAcycORNvb2+aNGkCwJo1a2jTpg3Ozs7UrFmTwYMHk5iYWNh2t27dAKhWrRoqlYoRI0YAd9+6Sk1NZdiwYVSrVg1HR0d69+7NuXPnCveHh4dTtWpVtm7diq+vL1WqVOGRRx4hPj6+xNczKyuLYcOGUaVKFby8vJgzZ85dx+h0Ol5//XVq1aqFk5MT7dq1K3LNAJYtW4aPjw+Ojo4MHDiQuXPnFglg77zzDq1atWLlypU0aNAAOzs7FEUhLS2N559/nho1auDi4kL37t05cuRIkXP/+OOPBAUFYW9vT4MGDXj33XfR6/Ul/qxCVEhWXsRWCGFF169fV7RarTJ37lzl0qVLytGjR5WwsDAlIyNDURRFWbp0qeLl5aV8++23ysWLF5Vvv/1WcXNzU8LDwxVFUZRLly4pgFK7dm3lm2++UU6ePKmMGTNGcXZ2VpKSkhRFURSdTqe89dZbyoEDB5SLFy8qa9asURwdHZUNGzYU1jF8+HClSpUqytChQ5Xjx48rx44dUxRFUVasWKFs2bJFuXDhgvLnn38q7du3V3r37q0oiqLo9Xrl22+/VQDlzJkzSnx8vHLr1i1FURSlS5cuyssvv1x4/v79+yu+vr7K7t27lZiYGKVXr15Ko0aNFJ1OpyiKoqxatUqxsbFRHn74YSUqKkqJjo5WfH19lcGDB9/z2t1eGT01NbXI9gkTJii1a9dWtm3bphw9elR59NFHlSpVqhSpZ/DgwUpISIiye/du5fz588rs2bMVOzs75ezZs4qiKMoff/yhqNVqZfbs2cqZM2eUsLAwxc3NTXF1dS08x9tvv604OTkpvXr1Ug4dOqQcOXJEMRqNSseOHZV+/fopUVFRytmzZ5VXXnlFcXd3V5KTkxVFUZRff/1VcXFxUcLDw5ULFy4o27ZtU+rVq6e88847xfp8QlR0EoyEqMSio6MVQLl8+fLf7vfx8VHWrVtXZNuMGTOUDh06KIpyJxh99NFHhfvz8/OV2rVrKx9//PE92504caLy+OOPF74ePny44unpqeTl5f1jvQcOHFCAwuB2r1/efw1GZ8+eVQBl7969hfuTkpIUBwcHZePGjYqimIIRoJw/f77wmLCwMMXT0/Oetfxd2xkZGYqtra2yfv36wm3JycmKg4NDYT3nz59XVCqVcu3atSLn69GjhzJt2jRFURTl6aefVvr27Vtk/5AhQ+4KRjY2NkpiYmLhtt9//11xcXFRcnNzi7y3YcOGypIlSxRFUZROnTopH374YZH9q1evVry8vP718wlRGcgYIyEqsYCAAHr06EGLFi3o1asXoaGhPPHEE1SrVo2bN28SFxfH6NGjGTt2bOF79Ho9rq6uRc7ToUOHwn9rtVratGnDqVOnCrd9/vnnLF++nCtXrpCTk4NOp6NVq1ZFztGiRYu7xhUdPnyYd955h5iYGFJSUjAajQDExsbi5+dXrM946tQptFot7dq1K9zm7u5O06ZNi9To6OhIw4YNC197eXkV3rYrrgsXLqDT6YpcDzc3N5o2bVr4+tChQyiKUni78La8vDzc3d0B04DugQMHFtnftm1bfvrppyLb6tatS/Xq1QtfR0dHk5mZWXie23Jycrhw4ULhMVFRUXzwwQeF+w0GA7m5uWRnZ+Po6FiizyxERSPBSIhKTKPREBERwb59+9i2bRsLFixg+vTpREZGFv6CXLZsWZFQcft9/0alUgGwceNGpkyZwpw5c+jQoQPOzs7Mnj2byMjIIsc7OTkVeZ2VlUVoaCihoaGsWbOG6tWrExsbS69evdDpdMX+jIqi3HP77RqBuwYuq1Sqe763pG39ldFoRKPREB0dfdd1rFKlyt/Wdq9z/+81MxqNeHl53TVeCSgcn2Q0Gnn33XcZNGjQXcfY29v/a/1CVHQSjISo5FQqFR07dqRjx4689dZb1K1bl02bNjF16lRq1arFxYsXGTJkyD+eY//+/XTu3Bkw9ShFR0fzwgsvALBnzx5CQkKYOHFi4fG3ey/+yenTp0lKSuKjjz7Cx8cHgIMHDxY55nYPk8FguOd5/Pz80Ov1REZGEhISAkBycjJnz57F19f3X+soiUaNGmFjY8P+/fupU6cOYBr4ffbsWbp06QJA69atMRgMJCYm0qlTp789T7NmzThw4ECRbf/72f9OYGAgCQkJaLVa6tWrd89jzpw5Q6NGjUrwyYSoPCQYCVGJRUZG8vvvvxMaGkqNGjWIjIzk5s2bhYHhnXfe4aWXXsLFxYXevXuTl5fHwYMHSU1NZerUqYXnCQsLo3Hjxvj6+jJv3jxSU1MZNWoUYAoLX375JVu3bqV+/fqsXr2aqKgo6tev/4+11alTB1tbWxYsWMD48eM5fvw4M2bMKHJM3bp1UalU/PTTT/Tp0wcHB4fCXpfbGjduzGOPPcbYsWNZsmQJzs7OvPHGG9SqVYvHHnusNC5joSpVqjB69Ghee+013N3d8fT0ZPr06ajVdx4AbtKkCUOGDGHYsGHMmTOH1q1bk5SUxPbt22nRogV9+vThxRdfpHPnzsydO5d+/fqxfft2fvnll7t6kf7Xww8/TIcOHRgwYAAff/wxTZs25fr162zZsoUBAwbQpk0b3nrrLR599FF8fHx48sknUavVHD16lGPHjvH++++X6vUQolyy4vgmIYSVnTx5UunVq5dSvXp1xc7OTmnSpImyYMGCIsesXbtWadWqlWJra6tUq1ZN6dy5s/Ldd98pinJn8PW6deuUdu3aKba2toqvr6/y+++/F74/NzdXGTFihOLq6qpUrVpVmTBhgvLGG28oAQEBhccMHz5ceeyxx+6qb926dUq9evUUOzs7pUOHDsoPP/ygAMrhw4cLj3nvvfeUmjVrKiqVShk+fLiiKHc/lZaSkqIMHTpUcXV1VRwcHJRevXoVPgGmKKbB138d2KwoirJp0ybln/4v8l6DkzMyMpTnnntOcXR0VDw9PZVZs2bdVc/tJ/Xq1aun2NjYKDVr1lQGDhyoHD16tPCY/2/nfnUUBoI4js8JRM1qUkCAxUPSN8DVEgSmlTwDBtWgilvHSzR4HIbUIRCER6CyYjB7JHfHJfenNIR8P7abTnbVL5nJWGu11Wqp53kahqEuFgttNpu37/P5/MMbvrtcLjqbzdT3fW00GtrpdHQymej5fL6d2Ww2GgSBep6nxhgdDAZqrf3R/YBX96b6yyY6ADin00m63a7s9/svw9Sv7rut248Sx7EcDgfZbrcPryVS//2AZ8GCRwD4h3a7LePxuPL/LpdLyfNcjsejrFYrWa/XMp1OK69zT7/fl9FoVEst4NkwYwQAfzAcDm/bsz/PNVVht9tJkiRSFIX0ej1J01SiKKq8zj1ZlklZliIiYoyppSbwLGilAQAAOLTSAAAAHIIRAACAQzACAABwCEYAAAAOwQgAAMAhGAEAADgEIwAAAIdgBAAA4BCMAAAAnCsG8foMnYz/fAAAAABJRU5ErkJggg==", "text/plain": [ - "[0.300422102213,\n", - " 0.652480721474,\n", - " 0.575277209282,\n", - " 2.52627205849,\n", - " 1.45767605305,\n", - " 3.21435308456,\n", - " 1.43933665752,\n", - " 0.602639317513,\n", - " 0.351592004299,\n", - " 1.4857083559,\n", - " 1.23648571968,\n", - " 2.45936989784,\n", - " 1.65149867535,\n", - " 1.95639693737,\n", - " 0.673706114292,\n", - " 1.33176410198,\n", - " 0.832303106785,\n", - " 1.23708331585,\n", - " 2.74137616158,\n", - " 0.478885412216,\n", - " 1.71309113503,\n", - " 3.10937333107,\n", - " 1.58497214317,\n", - " 1.53414404392,\n", - " 2.21907281876,\n", - " 3.05395698547,\n", - " 0.624157905579,\n", - " 2.48969173431,\n", - " 1.65923559666,\n", - " 1.72423791885,\n", - " 1.72161865234,\n", - " 1.41527807713,\n", - " 1.9740653038,\n", - " 1.57185637951,\n", - " 1.36203336716,\n", - " 0.998158812523,\n", - " 2.22123336792,\n", - " 0.0790505036712,\n", - " 1.54114544392,\n", - " 1.28051483631,\n", - " 0.633835613728,\n", - " 0.935597300529,\n", - " 2.90864443779,\n", - " 0.397633910179,\n", - " 1.96410322189,\n", - " 2.22879934311,\n", - " 0.681291222572,\n", - " 2.69742965698,\n", - " 0.310196310282,\n", - " 2.89895749092,\n", - " 1.48319602013,\n", - " 1.25393915176,\n", - " 1.32725834846,\n", - " 1.49158430099,\n", - " 1.06035864353,\n", - " 2.03195810318,\n", - " 1.80608427525,\n", - " 0.736506402493,\n", - " 1.11696577072,\n", - " 0.290101289749,\n", - " 0.578349113464,\n", - " 1.81913363934,\n", - " 1.52007460594,\n", - " 1.07314383984,\n", - " 0.803764998913,\n", - " 0.668692708015,\n", - " 1.02715909481,\n", - " 0.867182075977,\n", - " 1.41402947903,\n", - " 0.5780569911,\n", - " 0.188184097409,\n", - " 1.88854825497,\n", - " 1.57122135162,\n", - " 1.31176841259,\n", - " 1.77145779133,\n", - " 1.06479489803,\n", - " 1.45442044735,\n", - " 0.712578594685,\n", - " 2.21411037445,\n", - " 1.63247942924,\n", - " 1.17663383484,\n", - " 0.588364779949,\n", - " 1.11000394821,\n", - " 1.16703224182,\n", - " 0.641001403332,\n", - " 1.64528286457,\n", - " 1.15830636024,\n", - " 0.335720986128,\n", - " 0.906032621861,\n", - " 2.21711087227,\n", - " 2.40289640427,\n", - " 2.84520173073,\n", - " 1.34919595718,\n", - " 2.46827530861,\n", - " 2.83999967575,\n", - " 1.04901909828,\n", - " 0.319967508316,\n", - " 0.341769695282,\n", - " 2.46187758446,\n", - " 0.79427921772,\n", - " 2.31489515305,\n", - " 1.22375190258,\n", - " 0.501341700554,\n", - " 0.873788118362,\n", - " 0.487286388874,\n", - " 1.15298783779,\n", - " 1.4753049612,\n", - " 2.08395910263,\n", - " 2.40972471237,\n", - " 1.01812720299,\n", - " 1.16665363312,\n", - " 2.22886013985,\n", - " 2.12949180603,\n", - " 0.864983677864,\n", - " 0.77624219656,\n", - " 1.33834803104,\n", - " 1.139534235,\n", - " 1.81312501431,\n", - " 0.168495103717,\n", - " 1.67772495747,\n", - " 1.41799271107,\n", - " 0.941433608532,\n", - " 2.65767550468,\n", - " 2.28444099426,\n", - " 2.707062006,\n", - " 2.11041426659,\n", - " 1.79551744461,\n", - " 0.889996528625,\n", - " 2.55368709564,\n", - " 3.41086649895,\n", - " 0.599908709526,\n", - " 0.421412497759,\n", - " 1.31073558331,\n", - " 0.520302295685,\n", - " 2.25809669495,\n", - " 2.11552023888,\n", - " 2.62590360641,\n", - " 0.46127268672,\n", - " 1.02121424675,\n", - " 2.40373373032,\n", - " 1.9007294178,\n", - " 0.899684309959,\n", - " 1.70473027229,\n", - " 0.495625197887,\n", - " 0.427616208792,\n", - " 0.397975295782,\n", - " 0.648187816143,\n", - " 0.130950897932,\n", - " 1.52637636662,\n", - " 2.81915616989,\n", - " 2.11356329918,\n", - " 1.61144244671,\n", - " 2.06564879417,\n", - " 1.04404497147,\n", - " 1.34818983078,\n", - " 1.39981412888,\n", - " 0.864934980869,\n", - " 1.33908998966,\n", - " 2.46712183952,\n", - " 1.89539885521,\n", - " 1.24982535839,\n", - " 1.1437817812,\n", - " 2.01672744751,\n", - " 0.340645611286,\n", - " 2.41918492317,\n", - " 1.41926276684,\n", - " 1.10521566868,\n", - " 1.10822916031,\n", - " 2.25334000587,\n", - " 2.22653150558,\n", - " 3.05836296082,\n", - " 0.482657194138,\n", - " 0.318901002407,\n", - " 1.96011662483,\n", - " 1.61710560322,\n", - " 1.90298342705,\n", - " 1.73685991764,\n", - " 2.93522453308,\n", - " 0.650065481663,\n", - " 1.25021719933,\n", - " 1.10114979744,\n", - " 0.866418004036,\n", - " 2.19380021095,\n", - " 1.08637464046,\n", - " 0.822790801525,\n", - " 1.38353955746,\n", - " 1.64931476116,\n", - " 0.302997589111,\n", - " 1.51071894169,\n", - " 2.8846642971,\n", - " 1.32703089714,\n", - " 2.67867779732,\n", - " 1.76590585709,\n", - " 3.17645263672,\n", - " 1.71681344509,\n", - " 2.52285122871,\n", - " 1.17834913731,\n", - " 1.50523948669,\n", - " 1.14093506336,\n", - " 3.16135239601,\n", - " 1.09506905079,\n", - " 1.08600640297,\n", - " 1.98616600037,\n", - " 1.48948955536,\n", - " 0.502289891243,\n", - " 0.996598005295,\n", - " 1.73006772995,\n", - " 1.76647496223,\n", - " 1.09649145603,\n", - " 1.54330563545,\n", - " 0.989837527275,\n", - " 2.44702649117,\n", - " 0.830703914165,\n", - " 2.08731150627,\n", - " 1.58221542835,\n", - " 0.214862897992,\n", - " 0.538595914841,\n", - " 1.24603927135,\n", - " 0.319257706404,\n", - " 0.790669679642,\n", - " 0.159857407212,\n", - " 2.3959107399,\n", - " 2.67075037956,\n", - " 1.14329791069,\n", - " 1.15164625645,\n", - " 0.683000683784,\n", - " 0.834991812706,\n", - " 1.36701524258,\n", - " 0.547425210476,\n", - " 0.620535314083,\n", - " 2.90232038498,\n", - " 1.89723217487,\n", - " 1.75947773457,\n", - " 1.77549481392,\n", - " 1.49135160446,\n", - " 0.303325414658,\n", - " 0.974943816662,\n", - " 0.993987500668,\n", - " 2.52588868141,\n", - " 0.850441098213,\n", - " 1.87186586857,\n", - " 1.96139752865,\n", - " 1.00067532063,\n", - " 2.98829460144,\n", - " 1.35702085495,\n", - " 0.695308089256,\n", - " 1.4819444418,\n", - " 1.78945732117,\n", - " 2.82897782326,\n", - " 0.618653714657,\n", - " 2.28428649902,\n", - " 2.78763699532,\n", - " 3.39486765862,\n", - " 0.681082129478,\n", - " 1.73980367184,\n", - " 0.287106394768,\n", - " 0.76867300272,\n", - " 1.73666203022,\n", - " 0.493183493614,\n", - " 0.688378274441,\n", - " 1.49327087402,\n", - " 1.81206035614,\n", - " 1.40067899227,\n", - " 0.528106093407,\n", - " 2.16370892525,\n", - " 0.832297980785,\n", - " 3.14188766479,\n", - " 1.17325472832,\n", - " 0.560717523098,\n", - " 0.364278107882,\n", - " 2.39610099792,\n", - " 1.75224924088,\n", - " 1.52973818779,\n", - " 1.68229234219,\n", - " 2.08690261841,\n", - " 0.669252991676,\n", - " 2.28056359291,\n", - " 0.488966494799,\n", - " 0.952519595623,\n", - " 1.61904525757,\n", - " 0.411360710859,\n", - " 0.703873991966,\n", - " 1.58890843391,\n", - " 0.681704580784,\n", - " 2.14935588837,\n", - " 1.95650875568,\n", - " 1.22865474224,\n", - " 2.14638471603,\n", - " 2.22874379158,\n", - " 1.16049194336,\n", - " 1.33151984215,\n", - " 2.18627977371,\n", - " 2.74079608917,\n", - " 2.26002693176,\n", - " 2.55797576904,\n", - " 2.46304249763,\n", - " 0.879791796207,\n", - " 0.245726600289,\n", - " 0.96441757679,\n", - " 2.324187994,\n", - " 1.35781395435,\n", - " 0.609515607357,\n", - " 1.97818136215,\n", - " 1.98495614529,\n", - " 0.990938007832,\n", - " 2.14657449722,\n", - " 1.83527719975,\n", - " 1.22004532814,\n", - " 3.07879710197,\n", - " 1.11159157753,\n", - " 1.34688043594,\n", - " 2.92512249947,\n", - " 1.20276975632,\n", - " 0.796617090702,\n", - " 0.337698996067,\n", - " 0.270693898201,\n", - " 1.57235705853,\n", - " 1.24777424335,\n", - " 0.75832682848,\n", - " 2.1555109024,\n", - " 0.355849504471,\n", - " 2.36194968224,\n", - " 3.72843241692,\n", - " 1.0002001524,\n", - " 0.98874527216,\n", - " 0.810296714306,\n", - " 1.325989604,\n", - " 1.92509412766,\n", - " 1.74832165241,\n", - " 1.28338968754,\n", - " 1.33858644962,\n", - " 1.59239339828,\n", - " 0.820500671864,\n", - " 1.56284725666,\n", - " 2.06568646431,\n", - " 0.394071787596,\n", - " 1.77705764771,\n", - " 0.835838913918,\n", - " 0.857961416245,\n", - " 1.44001173973,\n", - " 2.74829339981,\n", - " 0.659689605236,\n", - " 3.04629516602,\n", - " 1.41354310513,\n", - " 0.803993582726,\n", - " 1.40441155434,\n", - " 0.543169021606,\n", - " 0.861344218254,\n", - " 1.59517264366,\n", - " 0.557316601276,\n", - " 2.9552257061,\n", - " 1.06244301796,\n", - " 0.942095577717,\n", - " 1.50433290005,\n", - " 0.673812627792,\n", - " 1.82197785378,\n", - " 1.60710632801,\n", - " 1.13935494423,\n", - " 1.16524159908,\n", - " 1.97302734852,\n", - " 1.28499805927,\n", - " 0.328805297613,\n", - " 3.23074674606,\n", - " 1.91709780693,\n", - " 2.08039426804,\n", - " 2.19860076904,\n", - " 1.40333878994,\n", - " 1.12804555893,\n", - " 0.467510610819,\n", - " 2.68251442909,\n", - " 1.37591946125,\n", - " 1.37382102013,\n", - " 0.233396604657,\n", - " 2.58502340317,\n", - " 1.92203700542,\n", - " 0.819615900517,\n", - " 0.716398119926,\n", - " 0.949211418629,\n", - " 3.56541395187,\n", - " 1.17153179646,\n", - " 2.21085906029,\n", - " 0.405795812607,\n", - " 1.33492434025,\n", - " 2.53875398636,\n", - " 1.74736618996,\n", - " 1.54196977615,\n", - " 3.26410460472,\n", - " 1.56685042381,\n", - " 2.05833029747,\n", - " 0.328493088484,\n", - " 1.71686947346,\n", - " 1.13734316826,\n", - " 1.76037442684,\n", - " 0.656079471111,\n", - " 1.0399980545,\n", - " 0.646704792976,\n", - " 2.72219848633,\n", - " 0.552381873131,\n", - " 2.58017683029,\n", - " 2.39596509933,\n", - " 0.286328285933,\n", - " 0.671723008156,\n", - " 0.894760787487,\n", - " 1.35102260113,\n", - " 0.61196821928,\n", - " 0.863633692265,\n", - " 0.74019497633,\n", - " 1.53510355949,\n", - " 1.32124757767,\n", - " 1.36363995075,\n", - " 1.84346938133,\n", - " 0.654158771038,\n", - " 2.15651893616,\n", - " 2.94037532806,\n", - " 2.07316756248,\n", - " 0.508974313736,\n", - " 2.45654439926,\n", - " 1.23254072666,\n", - " 1.85351324081]" + "
" ] }, - "execution_count": 46, + "execution_count": 65, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "lists[\"redshifts\"]" + "fig" ] }, { "cell_type": "code", "execution_count": null, - "id": "a64792ea-69b8-45e1-9379-334f73cacfbb", + "id": "472f1e75-9cbf-4c5d-93ce-4d06c7b16f15", "metadata": {}, "outputs": [], "source": [] From a9ba0719a20c17f65246a63597f6c54d62e1ff76 Mon Sep 17 00:00:00 2001 From: Xiangchong Li Date: Mon, 16 Oct 2023 10:41:07 -0700 Subject: [PATCH 11/30] add excutable simulation code in bin --- bin/simulate_image.py | 217 ++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 217 insertions(+) create mode 100755 bin/simulate_image.py diff --git a/bin/simulate_image.py b/bin/simulate_image.py new file mode 100755 index 00000000..359726c8 --- /dev/null +++ b/bin/simulate_image.py @@ -0,0 +1,217 @@ +#!/usr/bin/env python +# +# simple example with ring test (rotating intrinsic galaxies) +# Copyright 20230916 Xiangchong Li. +# +# This program is free software: you can redistribute it and/or modify +# it under the terms of the GNU General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU General Public License for more details. +# +import gc +import os +import fpfs +import fitsio +import pickle +import glob +import schwimmbad +import numpy as np +from argparse import ArgumentParser +from configparser import ConfigParser +from descwl_shear_sims.sim import make_sim +from descwl_shear_sims.galaxies import ( + WLDeblendGalaxyCatalog, +) # one of the galaxy catalog classes +from descwl_shear_sims.psfs import ( + make_ps_psf, + make_fixed_psf, +) # for making a power spectrum PSF + +# convert coadd dims to SE dims +from descwl_shear_sims.sim import get_se_dim +from descwl_shear_sims.shear import ShearConstant + +g1_list = [-0.02, 0.02] +nshear = len(g1_list) +band_list = ["g", "r", "i", "z"] +nband = len(band_list) + + +class Worker: + def __init__(self, config_name): + cparser = ConfigParser() + cparser.read(config_name) + # layout of the simulation (random, random_disk, or hex) + # see details in descwl-shear-sims + self.layout = cparser.get("simulation", "layout") + # image root directory + self.img_root = cparser.get("simulation", "img_root") + # Whether do rotation or dithering + self.rotate = cparser.getboolean("simulation", "rotate") + self.dither = cparser.getboolean("simulation", "dither") + # version of the PSF simulation: 0 -- fixed PSF; 1 -- variational PSF + self.psf_version = cparser.getint("simulation", "psf_version") + # length of the exposure + self.coadd_dim = cparser.getint("simulation", "coadd_dim") + # buffer length to avoid galaxies hitting the boundary of the exposure + self.buff = cparser.getint("simulation", "buff") + # number of rotations for ring test + self.nrot = cparser.getint("simulation", "nrot") + # number of redshiftbins + self.nzbin = cparser.getint("simulation", "nzbin") + self.rot_list = [np.pi / self.nrot * i for i in range(self.nrot)] + self.test_name = cparser.get("simulation", "test_name") + return + + def run(self, ifield=0): + print("Simulating for field: %d" % ifield) + rng = np.random.RandomState(ifield) + scale = 0.2 + + if self.psf_version == 0: + # basic test + kargs = { + "cosmic_rays": False, + "bad_columns": False, + "star_bleeds": False, + "draw_method": "auto", + } + star_catalog = None + psf = make_fixed_psf(psf_type="moffat") # .shear(e1=0.02, e2=-0.02) + psf_fname = "%s/PSF_%s_32.fits" % (self.img_root, self.test_name) + if not os.path.isfile(psf_fname): + psf_data = psf.shift( + 0.5 * scale, + 0.5 * scale + ).drawImage(nx=64, ny=64, scale=scale).array + fitsio.write(psf_fname, psf_data) + + elif self.psf_version == 1: + # spatial varying PSF + kargs = { + "cosmic_rays": False, + "bad_columns": False, + "star_bleeds": False, + "draw_method": "auto", + } + star_catalog = None + # this is the single epoch image sized used by the sim, we need + # it for the power spectrum psf + se_dim = get_se_dim( + coadd_dim=self.coadd_dim, rotate=self.rotate, dither=self.dither + ) + psf = make_ps_psf(rng=rng, dim=se_dim) + psf_fname = "%s/PSF_%s.pkl" % (self.img_root, self.test_name) + if not os.path.isfile(psf_fname): + with open(psf_fname, "wb") as f: + pickle.dump( + {"psf": psf}, + f, + ) + else: + raise ValueError("psf_version must be 0 or 1") + + img_dir = "%s/%s" % (self.img_root, self.test_name) + os.makedirs(img_dir, exist_ok=True) + nfiles = len(glob.glob( + "%s/image-%05d_g1-*" % (img_dir, ifield) + )) + if nfiles == self.nrot * nshear * nband: + print("We aleady have all the images for this subfield.") + return + + # galaxy catalog; you can make your own + galaxy_catalog = WLDeblendGalaxyCatalog( + rng=rng, + coadd_dim=self.coadd_dim, + buff=self.buff, + layout=self.layout, + ) + print("Simulation has galaxies: %d" % len(galaxy_catalog)) + for ishear in range(nshear): + for irot in range(self.nrot): + + shear_obj = ShearConstant(g1_list[ishear], g2=0.) + sim_data = make_sim( + rng=rng, + galaxy_catalog=galaxy_catalog, + star_catalog=star_catalog, + coadd_dim=self.coadd_dim, + shear_obj=shear_obj, + psf=psf, + dither=self.dither, + rotate=self.rotate, + bands=band_list, + noise_factor=0.0, + theta0=self.rot_list[irot], + **kargs + ) + # write galaxy images + for band_name in band_list: + gal_fname = "%s/image-%05d_g1-%d_rot%d_%s.fits" % ( + img_dir, + ifield, + ishear, + irot, + band_name, + ) + mi = sim_data["band_data"][band_name][0].getMaskedImage() + gdata = mi.getImage().getArray() + fpfs.io.save_image(gal_fname, gdata) + del mi, gdata, gal_fname + del sim_data + gc.collect() + del galaxy_catalog, psf + return + + +if __name__ == "__main__": + parser = ArgumentParser(description="simulate blended images") + parser.add_argument( + "--min_id", + default=0, + type=int, + help="minimum id number, e.g. 0", + ) + parser.add_argument( + "--max_id", + default=5000, + type=int, + help="maximum id number, e.g. 4000", + ) + parser.add_argument( + "--config", + required=True, + type=str, + help="configure file name", + ) + # + group = parser.add_mutually_exclusive_group() + group.add_argument( + "--ncores", + dest="n_cores", + default=1, + type=int, + help="Number of processes (uses multiprocessing).", + ) + group.add_argument( + "--mpi", + dest="mpi", + default=False, + action="store_true", + help="Run with MPI.", + ) + cmd_args = parser.parse_args() + min_id = cmd_args.min_id + max_id = cmd_args.max_id + pool = schwimmbad.choose_pool(mpi=cmd_args.mpi, processes=cmd_args.n_cores) + idlist = list(range(min_id, max_id)) + worker = Worker(cmd_args.config) + for r in pool.map(worker.run, idlist): + pass + pool.close() From 9ac1fde947d345bd3e87784e267ba7c914f851d7 Mon Sep 17 00:00:00 2001 From: Xiangchong Li Date: Mon, 16 Oct 2023 11:52:53 -0700 Subject: [PATCH 12/30] basic structure for zdependent shear --- descwl_shear_sims/shear.py | 10 ++++++++++ 1 file changed, 10 insertions(+) diff --git a/descwl_shear_sims/shear.py b/descwl_shear_sims/shear.py index 74776aa0..8ea49dee 100644 --- a/descwl_shear_sims/shear.py +++ b/descwl_shear_sims/shear.py @@ -115,11 +115,21 @@ def __init__(self, mode="0000", g_dist="g1"): self.z_bounds = np.linspace(0, 4, nz_bins+1) self.dz_bin = self.z_bounds[1]-self.z_bounds[0] self.g_dist = g_dist + self.shear_list = self.determine_shear_list(mode) return + def determine_shear_list(self, mode): + shear_list = [] + return shear_list + + def get_bin(self, refshift): + bin_num = 0 + return bin_num + def get_shear(self, redshift, shift=None): # z_gal_bins = redshift // self.dz_bin gamma1, gamma2 = (None, None) # TODO: Finish implementing the z-dependent shear + bin_number = self.get_bin(redshift) shear = galsim.Shear(g1=gamma1, g2=gamma2) return shear From 071f6673f6396e218c406231b7835d845b2ad4cd Mon Sep 17 00:00:00 2001 From: Xiangchong Li Date: Mon, 16 Oct 2023 12:13:07 -0700 Subject: [PATCH 13/30] add configure file and readme on how to run the excutable file for the simulation --- bin/README.md | 5 +++++ bin/config_sim_zshear.ini | 17 +++++++++++++++++ 2 files changed, 22 insertions(+) create mode 100644 bin/README.md create mode 100644 bin/config_sim_zshear.ini diff --git a/bin/README.md b/bin/README.md new file mode 100644 index 00000000..d24c51a8 --- /dev/null +++ b/bin/README.md @@ -0,0 +1,5 @@ +# Code to run the simulation + +```shell +simulate_image.py --config config_sim_zshear.ini --min_id 1 --max_id 2 +```` diff --git a/bin/config_sim_zshear.ini b/bin/config_sim_zshear.ini new file mode 100644 index 00000000..d6dd0d2c --- /dev/null +++ b/bin/config_sim_zshear.ini @@ -0,0 +1,17 @@ +; run the code in shear_obj_zshear branch +[simulation] + +nrot = 2 +test_name = zshear +layout = random_disk +; layout = hex +img_root = ./ +; no rotate no dither.. no +rotate = False +dither = False +; psf_version = 0 for fixed PSF +psf_version = 0 +coadd_dim = 5000 +; buffer length to avoid galaxies hit the boundary +buff = 80 +nzbin = 1 From d96fd6ec89d3018cafa358cbef1aff968882c1aa Mon Sep 17 00:00:00 2001 From: ismael2395 Date: Mon, 16 Oct 2023 12:37:15 -0700 Subject: [PATCH 14/30] simple implementation, inefficient --- descwl_shear_sims/shear.py | 22 ++++++++++++++++------ 1 file changed, 16 insertions(+), 6 deletions(-) diff --git a/descwl_shear_sims/shear.py b/descwl_shear_sims/shear.py index 8ea49dee..262f21d3 100644 --- a/descwl_shear_sims/shear.py +++ b/descwl_shear_sims/shear.py @@ -1,5 +1,6 @@ import galsim import numpy as np + # maximum kappa allowed # values greater than it will be clipped g_max = 0.6 @@ -46,6 +47,7 @@ def get_shear(self, redshift, shift): z_cl = self.z_cl if redshift > z_cl: from astropy.coordinates import SkyCoord + # Create the SkyCoord objects coord_cl = SkyCoord(self.ra_cl, self.dec_cl, unit="arcsec") coord_gals = SkyCoord(shift.x, shift.y, unit="arcsec") @@ -107,6 +109,7 @@ def __init__(self, mode="0000", g_dist="g1"): # 0: g=0.00; 1: g=-0.02; 2: g=0.02 # "0000" means that we divide into 4 redshift bins, and every bin # is distorted by -0.02 + assert set(mode).issubset(set("012")) nz_bins = len(mode) self.nz_bins = nz_bins # number of possible modes @@ -119,17 +122,24 @@ def __init__(self, mode="0000", g_dist="g1"): return def determine_shear_list(self, mode): - shear_list = [] + values = [-0.02, 0.00, 0.02] + shear_list = [values[int(i)] for i in mode] return shear_list - def get_bin(self, refshift): - bin_num = 0 + def get_bin(self, redshift): + bin_num = redshift // self.dz_bin return bin_num def get_shear(self, redshift, shift=None): - # z_gal_bins = redshift // self.dz_bin - gamma1, gamma2 = (None, None) - # TODO: Finish implementing the z-dependent shear bin_number = self.get_bin(redshift) + shear = self.shear_list[bin_number] + + if self.g_dist == 'g1': + gamma1, gamma2 = (shear, 0.) + elif self.g_dist == 'g2': + gamma1, gamma2 = (0., shear) + else: + raise ValueError("g_dist must be either 'g1' or 'g2'") + shear = galsim.Shear(g1=gamma1, g2=gamma2) return shear From b0f60759e40e23411be8084accfbed2a956175e4 Mon Sep 17 00:00:00 2001 From: ismael2395 Date: Mon, 16 Oct 2023 13:02:11 -0700 Subject: [PATCH 15/30] ternary implementation --- descwl_shear_sims/shear.py | 38 +++++++++++++++++++++++++------------- 1 file changed, 25 insertions(+), 13 deletions(-) diff --git a/descwl_shear_sims/shear.py b/descwl_shear_sims/shear.py index 262f21d3..0aaf61ef 100644 --- a/descwl_shear_sims/shear.py +++ b/descwl_shear_sims/shear.py @@ -11,6 +11,18 @@ """ +def _ternary(n, n_bins): + """CREDIT: https://stackoverflow.com/questions/34559663/\ + convert-decimal-to-ternarybase3-in-python""" + if n == 0: + return '0' + nums = [] + while n: + n, r = divmod(n, 3) + nums.append(str(r)) + return ''.join(reversed(nums)).zfill(n_bins) + + class ShearNFW(object): """ Shear object from NFW halos @@ -104,26 +116,26 @@ class ShearRedshift(object): """ Constant shear along every redshift slice """ - def __init__(self, mode="0000", g_dist="g1"): + def __init__(self, mode="0-0", g_dist="g1"): # note that there are three options in each redshift bin # 0: g=0.00; 1: g=-0.02; 2: g=0.02 - # "0000" means that we divide into 4 redshift bins, and every bin - # is distorted by -0.02 - assert set(mode).issubset(set("012")) - nz_bins = len(mode) - self.nz_bins = nz_bins - # number of possible modes - self.n_modes = 3 ** nz_bins - self.mode = mode + # "4-7" means that we divide into 4 redshift bins, and "7" in ternary + # is "0021", which means that the shear is (0.0, 0.0, 0.02, -0.02) in each bin. + assert '-' in mode, "mode must be in the form of 'nz_bins-code'" + nz_bins, code = mode.split("-") + assert nz_bins.isdigit() and code.isdigit() + self.nz_bins = int(nz_bins) + self.code = _ternary(code, self.nz_bins) + assert 0 <= int(code) < 3 ** self.nz_bins, "mode code is too large" self.z_bounds = np.linspace(0, 4, nz_bins+1) self.dz_bin = self.z_bounds[1]-self.z_bounds[0] self.g_dist = g_dist - self.shear_list = self.determine_shear_list(mode) + self.shear_list = self.determine_shear_list(self.code) return - def determine_shear_list(self, mode): - values = [-0.02, 0.00, 0.02] - shear_list = [values[int(i)] for i in mode] + def determine_shear_list(self, code): + values = [0.00, -0.02, 0.02] + shear_list = [values[int(i)] for i in code] return shear_list def get_bin(self, redshift): From 4fe3991d43ba4b89bcaf83805e968e2c47aca2de Mon Sep 17 00:00:00 2001 From: Xiangchong Li Date: Wed, 18 Oct 2023 03:46:24 +0900 Subject: [PATCH 16/30] some corrections and we need to define zbounds from ini file, I think --- bin/config_sim_zshear.ini | 4 +++- bin/simulate_image.py | 29 ++++++++++++++++++++--------- descwl_shear_sims/shear.py | 24 +++++++++++++----------- 3 files changed, 36 insertions(+), 21 deletions(-) diff --git a/bin/config_sim_zshear.ini b/bin/config_sim_zshear.ini index d6dd0d2c..2d9784a3 100644 --- a/bin/config_sim_zshear.ini +++ b/bin/config_sim_zshear.ini @@ -3,6 +3,8 @@ nrot = 2 test_name = zshear +shear_mode_list = [0, 1] +z_bounds = [0.0, 10.0] layout = random_disk ; layout = hex img_root = ./ @@ -11,7 +13,7 @@ rotate = False dither = False ; psf_version = 0 for fixed PSF psf_version = 0 -coadd_dim = 5000 +coadd_dim = 500 ; buffer length to avoid galaxies hit the boundary buff = 80 nzbin = 1 diff --git a/bin/simulate_image.py b/bin/simulate_image.py index 359726c8..80323ef9 100755 --- a/bin/simulate_image.py +++ b/bin/simulate_image.py @@ -15,6 +15,7 @@ # import gc import os +import json import fpfs import fitsio import pickle @@ -22,7 +23,7 @@ import schwimmbad import numpy as np from argparse import ArgumentParser -from configparser import ConfigParser +from configparser import ConfigParser, ExtendedInterpolation from descwl_shear_sims.sim import make_sim from descwl_shear_sims.galaxies import ( WLDeblendGalaxyCatalog, @@ -34,17 +35,15 @@ # convert coadd dims to SE dims from descwl_shear_sims.sim import get_se_dim -from descwl_shear_sims.shear import ShearConstant +from descwl_shear_sims.shear import ShearRedshift -g1_list = [-0.02, 0.02] -nshear = len(g1_list) band_list = ["g", "r", "i", "z"] nband = len(band_list) class Worker: def __init__(self, config_name): - cparser = ConfigParser() + cparser = ConfigParser(interpolation=ExtendedInterpolation()) cparser.read(config_name) # layout of the simulation (random, random_disk, or hex) # see details in descwl-shear-sims @@ -66,6 +65,14 @@ def __init__(self, config_name): self.nzbin = cparser.getint("simulation", "nzbin") self.rot_list = [np.pi / self.nrot * i for i in range(self.nrot)] self.test_name = cparser.get("simulation", "test_name") + self.shear_mode_list = json.loads( + cparser.get("simulation", "shear_mode_list") + ) + self.z_bounds = json.loads( + cparser.get("simulation", "z_bounds") + ) + print(self.shear_mode_list) + self.nshear = len(self.shear_mode_list) return def run(self, ifield=0): @@ -121,7 +128,7 @@ def run(self, ifield=0): nfiles = len(glob.glob( "%s/image-%05d_g1-*" % (img_dir, ifield) )) - if nfiles == self.nrot * nshear * nband: + if nfiles == self.nrot * self.nshear * nband: print("We aleady have all the images for this subfield.") return @@ -133,10 +140,14 @@ def run(self, ifield=0): layout=self.layout, ) print("Simulation has galaxies: %d" % len(galaxy_catalog)) - for ishear in range(nshear): + for shear_mode in self.shear_mode_list: for irot in range(self.nrot): - shear_obj = ShearConstant(g1_list[ishear], g2=0.) + shear_obj = ShearRedshift( + mode=shear_mode, + z_bounds=self.z_bounds, + g_dist="g1", # need to enable users to set this value + ) sim_data = make_sim( rng=rng, galaxy_catalog=galaxy_catalog, @@ -156,7 +167,7 @@ def run(self, ifield=0): gal_fname = "%s/image-%05d_g1-%d_rot%d_%s.fits" % ( img_dir, ifield, - ishear, + shear_mode, irot, band_name, ) diff --git a/descwl_shear_sims/shear.py b/descwl_shear_sims/shear.py index 0aaf61ef..bda19481 100644 --- a/descwl_shear_sims/shear.py +++ b/descwl_shear_sims/shear.py @@ -116,19 +116,21 @@ class ShearRedshift(object): """ Constant shear along every redshift slice """ - def __init__(self, mode="0-0", g_dist="g1"): + def __init__(self, mode, z_bounds, g_dist="g1"): + nz_bins = len(z_bounds) - 1 + # nz_bins is the number of redshift bins # note that there are three options in each redshift bin # 0: g=0.00; 1: g=-0.02; 2: g=0.02 - # "4-7" means that we divide into 4 redshift bins, and "7" in ternary - # is "0021", which means that the shear is (0.0, 0.0, 0.02, -0.02) in each bin. - assert '-' in mode, "mode must be in the form of 'nz_bins-code'" - nz_bins, code = mode.split("-") - assert nz_bins.isdigit() and code.isdigit() + # for example, if number of redshift bins is 4, if mode = 7 which in + # ternary is "0021" --- meaning that the shear is (0.0, 0.0, 0.02, + # -0.02) in each bin. self.nz_bins = int(nz_bins) - self.code = _ternary(code, self.nz_bins) - assert 0 <= int(code) < 3 ** self.nz_bins, "mode code is too large" - self.z_bounds = np.linspace(0, 4, nz_bins+1) - self.dz_bin = self.z_bounds[1]-self.z_bounds[0] + self.code = _ternary(int(mode), self.nz_bins) + assert 0 <= int(mode) < 3 ** self.nz_bins, "mode code is too large" + # maybe we need it to be more flexible in the future + # but now we keep the linear spacing + self.z_bounds = z_bounds + print(self.nz_bins) self.g_dist = g_dist self.shear_list = self.determine_shear_list(self.code) return @@ -139,7 +141,7 @@ def determine_shear_list(self, code): return shear_list def get_bin(self, redshift): - bin_num = redshift // self.dz_bin + bin_num = np.searchsorted(self.z_bounds, redshift, side="left") - 1 return bin_num def get_shear(self, redshift, shift=None): From f77941918662b04028846173958a611bbbb8c423 Mon Sep 17 00:00:00 2001 From: ismael2395 Date: Tue, 17 Oct 2023 12:38:09 -0700 Subject: [PATCH 17/30] remove print --- bin/simulate_image.py | 30 +++++++++++++----------------- 1 file changed, 13 insertions(+), 17 deletions(-) diff --git a/bin/simulate_image.py b/bin/simulate_image.py index 80323ef9..29cbc7c6 100755 --- a/bin/simulate_image.py +++ b/bin/simulate_image.py @@ -14,28 +14,25 @@ # GNU General Public License for more details. # import gc -import os +import glob import json -import fpfs -import fitsio +import os import pickle -import glob -import schwimmbad -import numpy as np from argparse import ArgumentParser from configparser import ConfigParser, ExtendedInterpolation -from descwl_shear_sims.sim import make_sim -from descwl_shear_sims.galaxies import ( - WLDeblendGalaxyCatalog, -) # one of the galaxy catalog classes -from descwl_shear_sims.psfs import ( - make_ps_psf, - make_fixed_psf, -) # for making a power spectrum PSF -# convert coadd dims to SE dims -from descwl_shear_sims.sim import get_se_dim +import fitsio +import fpfs +import numpy as np +import schwimmbad + +from descwl_shear_sims.galaxies import \ + WLDeblendGalaxyCatalog # one of the galaxy catalog classes +from descwl_shear_sims.psfs import ( # for making a power spectrum PSF + make_fixed_psf, make_ps_psf) from descwl_shear_sims.shear import ShearRedshift +# convert coadd dims to SE dims +from descwl_shear_sims.sim import get_se_dim, make_sim band_list = ["g", "r", "i", "z"] nband = len(band_list) @@ -71,7 +68,6 @@ def __init__(self, config_name): self.z_bounds = json.loads( cparser.get("simulation", "z_bounds") ) - print(self.shear_mode_list) self.nshear = len(self.shear_mode_list) return From 676c45d31122d06931db11b2e802b90e3ccecc6c Mon Sep 17 00:00:00 2001 From: ismael2395 Date: Tue, 17 Oct 2023 12:38:41 -0700 Subject: [PATCH 18/30] remove another print --- descwl_shear_sims/shear.py | 1 - 1 file changed, 1 deletion(-) diff --git a/descwl_shear_sims/shear.py b/descwl_shear_sims/shear.py index bda19481..d5541f2c 100644 --- a/descwl_shear_sims/shear.py +++ b/descwl_shear_sims/shear.py @@ -130,7 +130,6 @@ def __init__(self, mode, z_bounds, g_dist="g1"): # maybe we need it to be more flexible in the future # but now we keep the linear spacing self.z_bounds = z_bounds - print(self.nz_bins) self.g_dist = g_dist self.shear_list = self.determine_shear_list(self.code) return From e85d122ccadbc43bcdcf185897c8187056318b93 Mon Sep 17 00:00:00 2001 From: ismael2395 Date: Tue, 17 Oct 2023 12:46:48 -0700 Subject: [PATCH 19/30] type checking --- descwl_shear_sims/shear.py | 1 + 1 file changed, 1 insertion(+) diff --git a/descwl_shear_sims/shear.py b/descwl_shear_sims/shear.py index d5541f2c..9f38a2d3 100644 --- a/descwl_shear_sims/shear.py +++ b/descwl_shear_sims/shear.py @@ -117,6 +117,7 @@ class ShearRedshift(object): Constant shear along every redshift slice """ def __init__(self, mode, z_bounds, g_dist="g1"): + assert isinstance(mode, int), "mode must be an integer" nz_bins = len(z_bounds) - 1 # nz_bins is the number of redshift bins # note that there are three options in each redshift bin From bd9e198f32f8d32ace3c3f14b43cd03212781a6f Mon Sep 17 00:00:00 2001 From: Xiangchong Li Date: Wed, 18 Oct 2023 13:06:47 +0900 Subject: [PATCH 20/30] enable users to set shear value (e.g. 0.02 or 0.03) in the ini file --- bin/config_sim_zshear.ini | 21 +++++++++++++-------- bin/simulate_image.py | 5 +++-- descwl_shear_sims/shear.py | 11 ++++++----- 3 files changed, 22 insertions(+), 15 deletions(-) diff --git a/bin/config_sim_zshear.ini b/bin/config_sim_zshear.ini index 2d9784a3..0ddc864d 100644 --- a/bin/config_sim_zshear.ini +++ b/bin/config_sim_zshear.ini @@ -1,19 +1,24 @@ ; run the code in shear_obj_zshear branch [simulation] -nrot = 2 +img_root = ./ test_name = zshear -shear_mode_list = [0, 1] +# boundary of the redshift bins z_bounds = [0.0, 10.0] +# shear distortion setup +shear_mode_list = [0, 1] +shear_value = 0.02 + +# galaxy distribution layout and number of rotation +nrot = 2 layout = random_disk ; layout = hex -img_root = ./ -; no rotate no dither.. no +coadd_dim = 500 +; buffer length to avoid galaxies hit the boundary +buff = 80 +; no rotate no dither.. no dither rotate = False dither = False + ; psf_version = 0 for fixed PSF psf_version = 0 -coadd_dim = 500 -; buffer length to avoid galaxies hit the boundary -buff = 80 -nzbin = 1 diff --git a/bin/simulate_image.py b/bin/simulate_image.py index 29cbc7c6..3f1e8276 100755 --- a/bin/simulate_image.py +++ b/bin/simulate_image.py @@ -59,7 +59,6 @@ def __init__(self, config_name): # number of rotations for ring test self.nrot = cparser.getint("simulation", "nrot") # number of redshiftbins - self.nzbin = cparser.getint("simulation", "nzbin") self.rot_list = [np.pi / self.nrot * i for i in range(self.nrot)] self.test_name = cparser.get("simulation", "test_name") self.shear_mode_list = json.loads( @@ -69,6 +68,7 @@ def __init__(self, config_name): cparser.get("simulation", "z_bounds") ) self.nshear = len(self.shear_mode_list) + self.shear_value = cparser.getfloat("simulation", "shear_value") return def run(self, ifield=0): @@ -140,9 +140,10 @@ def run(self, ifield=0): for irot in range(self.nrot): shear_obj = ShearRedshift( - mode=shear_mode, z_bounds=self.z_bounds, + mode=shear_mode, # mode tells z bin is + / - distorted g_dist="g1", # need to enable users to set this value + shear_value=self.shear_value ) sim_data = make_sim( rng=rng, diff --git a/descwl_shear_sims/shear.py b/descwl_shear_sims/shear.py index 9f38a2d3..e88b8e0b 100644 --- a/descwl_shear_sims/shear.py +++ b/descwl_shear_sims/shear.py @@ -92,7 +92,7 @@ def get_shear(self, redshift, shift): class ShearConstant(object): """ - Constant shear along every redshift slice + Constant shear in the full exposure Parameters ---------- g1, g2: Constant shear distortion @@ -114,15 +114,15 @@ def get_shear(self, redshift=None, shift=None): class ShearRedshift(object): """ - Constant shear along every redshift slice + Constant shear in each redshift slice """ - def __init__(self, mode, z_bounds, g_dist="g1"): + def __init__(self, z_bounds, mode, g_dist="g1", shear_value=0.02): assert isinstance(mode, int), "mode must be an integer" nz_bins = len(z_bounds) - 1 # nz_bins is the number of redshift bins # note that there are three options in each redshift bin # 0: g=0.00; 1: g=-0.02; 2: g=0.02 - # for example, if number of redshift bins is 4, if mode = 7 which in + # for example, number of redshift bins is 4, if mode = 7 which in # ternary is "0021" --- meaning that the shear is (0.0, 0.0, 0.02, # -0.02) in each bin. self.nz_bins = int(nz_bins) @@ -133,10 +133,11 @@ def __init__(self, mode, z_bounds, g_dist="g1"): self.z_bounds = z_bounds self.g_dist = g_dist self.shear_list = self.determine_shear_list(self.code) + self.shear_value = shear_value return def determine_shear_list(self, code): - values = [0.00, -0.02, 0.02] + values = [0.00, -self.shear_value, self.shear_value] shear_list = [values[int(i)] for i in code] return shear_list From d8a061d9aef53fea230fa63b6be529305810062b Mon Sep 17 00:00:00 2001 From: Xiangchong Li Date: Thu, 19 Oct 2023 02:33:07 +0900 Subject: [PATCH 21/30] remove the nfw part; add unit tests; change convention: 0: -; 1:+; 2:0 --- descwl_shear_sims/__init__.py | 1 - descwl_shear_sims/shear.py | 91 +--- examples/example_NFWShear.ipynb | 436 ------------------ examples/example_NFWShear_imsim.ipynb | 141 ------ .../test_shear_meas_zshear_metacal.py | 286 ++++++++++++ 5 files changed, 293 insertions(+), 662 deletions(-) delete mode 100644 examples/example_NFWShear.ipynb delete mode 100644 examples/example_NFWShear_imsim.ipynb create mode 100644 shear_meas_tests/test_shear_meas_zshear_metacal.py diff --git a/descwl_shear_sims/__init__.py b/descwl_shear_sims/__init__.py index fe93f7ce..7c787c39 100644 --- a/descwl_shear_sims/__init__.py +++ b/descwl_shear_sims/__init__.py @@ -19,4 +19,3 @@ from . import artifacts from . import masking from . import wcs -from . import shear diff --git a/descwl_shear_sims/shear.py b/descwl_shear_sims/shear.py index e88b8e0b..cfc86825 100644 --- a/descwl_shear_sims/shear.py +++ b/descwl_shear_sims/shear.py @@ -1,15 +1,6 @@ import galsim import numpy as np -# maximum kappa allowed -# values greater than it will be clipped -g_max = 0.6 -""" -shear_obj = ShearConstant(cluster_obj, z_cl, ra_cl, dec_cl) -shear_obj = ShearRedshift(g1=0.02, g2=0.00) -shear_obj = ShearNFW(mode="0000", g_dist="g1") -""" - def _ternary(n, n_bins): """CREDIT: https://stackoverflow.com/questions/34559663/\ @@ -23,73 +14,6 @@ def _ternary(n, n_bins): return ''.join(reversed(nums)).zfill(n_bins) -class ShearNFW(object): - """ - Shear object from NFW halos - - Parameters - ---------- - cluster_obj (object): cluster object from clmm - z_cl (float): redshift of the cluster - x_cl (float): ra of the cluster [arcsec] - y_cl (float): dec of the cluster [arcsec] - - """ - def __init__(self, cluster_obj, z_cl, ra_cl=0., dec_cl=0.): - self.z_cl = z_cl - self.ra_cl = ra_cl - self.dec_cl = dec_cl - self.cobj = cluster_obj - self.cosmo = cluster_obj.cosmo - return - - def get_shear(self, redshift, shift): - """ - A shear wrapper to return g1 and g2 with different shear type - - Parameters - ---------- - redshift (float): redshifts of galaxies - shift (galsim.positionD): Galsim positionD shift [arcsec] - - Returns - --------- - shear (galsim.Shear) shear distortion on the galaxy - """ - z_cl = self.z_cl - if redshift > z_cl: - from astropy.coordinates import SkyCoord - - # Create the SkyCoord objects - coord_cl = SkyCoord(self.ra_cl, self.dec_cl, unit="arcsec") - coord_gals = SkyCoord(shift.x, shift.y, unit="arcsec") - # Calculate the separation - sep = coord_cl.separation(coord_gals).radian - # What is the unit of r3d? - r3d = self.cosmo.rad2mpc(sep, self.z_cl) - # position angle - phi = coord_cl.position_angle(coord_gals).radian - - # TODO: confirm whether the units is Mpc/h or Mpc? - gammat = self.cobj.eval_tangential_shear(r3d, z_cl, redshift) - kappa = self.cobj.eval_convergence(r3d, z_cl, redshift) - gamma1 = gammat * np.cos(2. * phi) - gamma2 = -gammat * np.sin(2. * phi) - g1 = gamma1 #/ (1-kappa) - g2 = gamma2 #/ (1-kappa) - # we are forcing g to be less than g_max - g = np.sqrt(g1 ** 2. + g2 ** 2.) - ratio = min(g_max / g, 1.0) - # and rescale g1 and g2 if g > g_max - g1 = g1 * ratio - g2 = g2 * ratio - else: - g1 = 0. - g2 = 0. - shear = galsim.Shear(g1=g1, g2=g2) - return shear - - class ShearConstant(object): """ Constant shear in the full exposure @@ -118,26 +42,25 @@ class ShearRedshift(object): """ def __init__(self, z_bounds, mode, g_dist="g1", shear_value=0.02): assert isinstance(mode, int), "mode must be an integer" - nz_bins = len(z_bounds) - 1 + self.nz_bins = int(len(z_bounds) - 1) # nz_bins is the number of redshift bins # note that there are three options in each redshift bin - # 0: g=0.00; 1: g=-0.02; 2: g=0.02 - # for example, number of redshift bins is 4, if mode = 7 which in - # ternary is "0021" --- meaning that the shear is (0.0, 0.0, 0.02, - # -0.02) in each bin. - self.nz_bins = int(nz_bins) + # 0: g=-0.02; 1: g=0.02; 2: g=0.00 + # for example, number of redshift bins is 4, (nz_bins = [0., 0.5, 1.0, + # 1.5, 2.0]) if mode = 7 which in ternary is "0021" --- meaning that + # the shear is (-0.02, -0.02, 0.00, 0.02) in each bin, respectively. self.code = _ternary(int(mode), self.nz_bins) assert 0 <= int(mode) < 3 ** self.nz_bins, "mode code is too large" # maybe we need it to be more flexible in the future # but now we keep the linear spacing self.z_bounds = z_bounds self.g_dist = g_dist - self.shear_list = self.determine_shear_list(self.code) self.shear_value = shear_value + self.shear_list = self.determine_shear_list(self.code) return def determine_shear_list(self, code): - values = [0.00, -self.shear_value, self.shear_value] + values = [-self.shear_value, self.shear_value, 0.0] shear_list = [values[int(i)] for i in code] return shear_list diff --git a/examples/example_NFWShear.ipynb b/examples/example_NFWShear.ipynb deleted file mode 100644 index af942d14..00000000 --- a/examples/example_NFWShear.ipynb +++ /dev/null @@ -1,436 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 19, - "id": "d12a992b-6669-4675-b68a-b705ff09f693", - "metadata": {}, - "outputs": [], - "source": [ - "%matplotlib inline\n", - "%reload_ext autoreload\n", - "%autoreload 2\n", - "\n", - "import clmm\n", - "import galsim\n", - "import numpy as np\n", - "import descwl_shear_sims as dss\n", - "import matplotlib.pyplot as plt\n", - "\n", - "from descwl_shear_sims.galaxies import WLDeblendGalaxyCatalog\n", - "from descwl_shear_sims.objlists import get_objlist\n", - "from descwl_shear_sims.surveys import get_survey" - ] - }, - { - "cell_type": "code", - "execution_count": 58, - "id": "14f7db13-1476-4197-b54f-219b30bdb59a", - "metadata": {}, - "outputs": [], - "source": [ - "from astropy.cosmology import FlatLambdaCDM\n", - "from lenstronomy.Cosmo.lens_cosmo import LensCosmo\n", - "from lenstronomy.LensModel.lens_model import LensModel\n", - "\n", - "zl_list = [0.1, 0.4]\n", - "M200_list = [1e14, 1e15]\n", - "\n", - "\n", - "g_max = 0.6\n", - "\n", - "class ShearNFW(object):\n", - " def __init__(self, zl_list, M200_list, c_list, cosmo):\n", - " if not isinstance(zl_list, list):\n", - " if isinstance(zl_list, float):\n", - " zl_list = [zl_list]\n", - " if not isinstance(M200_list, list):\n", - " if isinstance(M200_list, float):\n", - " M200_list = [M200_list]\n", - " if not isinstance(c_list, list):\n", - " if isinstance(c_list, float):\n", - " c_list = [c_list]\n", - " assert len(zl_list) == len(M200_list)\n", - " assert len(zl_list) == len(c_list)\n", - " self.cosmo = cosmo\n", - " self.zl_list = zl_list\n", - " self.params = []\n", - " self.n_halos = len(zl_list)\n", - " for _ in range(self.n_halos):\n", - " self.params.append({\"M\": M200_list[_], \"c\": c_list[_]})\n", - " return\n", - "\n", - " def get_shear(self, redshift, shift):\n", - " \"\"\"\n", - " A shear wrapper to return g1 and g2 with different shear type\n", - "\n", - " Parameters\n", - " ----------\n", - " redshift (float): redshifts of galaxies\n", - " shift (galsim.positionD): Galsim positionD shift [arcsec]\n", - "\n", - " Returns\n", - " ---------\n", - " shear (galsim.Shear) shear distortion on the galaxy\n", - " \"\"\"\n", - "\n", - " model_list = []\n", - " kwargs_list = []\n", - " for _ in range(self.n_halos):\n", - " model_list.append(\"NFW\")\n", - " lens_cosmo = LensCosmo(z_lens=zl_list[_], z_source=redshift, cosmo=self.cosmo)\n", - " Rs_angle, alpha_Rs = lens_cosmo.nfw_physical2angle(**self.params[_])\n", - " rho0, Rs, c, r200, M200 = lens_cosmo.nfw_angle2physical(Rs_angle, alpha_Rs)\n", - " kwargs = {'Rs': Rs_angle, 'alpha_Rs': alpha_Rs, \"center_x\": 0.0, \"center_y\": 0.0}\n", - " kwargs_list.append(kwargs)\n", - " lens = LensModel(lens_model_list=model_list)\n", - " alpha_x, alpha_y = lens.alpha(x=shift.x, y=shift.y, kwargs=kwargs_list)\n", - " f_xx, f_xy, f_yx, f_yy = lens.hessian(x=shift.x, y=shift.y, kwargs=kwargs_list)\n", - " gamma1 = 0.5 * (f_xx - f_yy)\n", - " gamma2 = f_xy\n", - " kappa = 0.5 * (f_xx + f_yy)\n", - " g1 = gamma1 #/ (1 - kappa)\n", - " g2 = gamma2 #/ (1 - kappa)\n", - " # we are forcing g to be less than g_max\n", - " g = np.sqrt(g1 ** 2. + g2 ** 2.)\n", - " ratio = min(g_max / g, 1.0)\n", - " # and rescale g1 and g2 if g > g_max\n", - " g1 = g1 * ratio\n", - " g2 = g2 * ratio\n", - " shear = galsim.Shear(g1=g1, g2=g2)\n", - " return shear" - ] - }, - { - "cell_type": "code", - "execution_count": 59, - "id": "913c7ae0-8b39-4a3b-9e09-c40262170e0c", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAINCAYAAACeQx1BAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA8dElEQVR4nO3deVxVdeL/8fcFBFwAd5CkXKqfNmgmaONSagvibk1a5ljmUppmljOW1besMa2mrEbNJcpMnVxbzNS0TE1NU1xTy8k0VyStuIoCAuf3R9MZrrggwfnc5fV8PO7j4edzD/D2ZN63n/O557osy7IEAADgkCDTAQAAQGChfAAAAEdRPgAAgKMoHwAAwFGUDwAA4CjKBwAAcBTlAwAAOIryAQAAHBViOoC3yc/P1+HDhxURESGXy2U6DgAAPsOyLJ04cUKxsbEKCjr/+gbl4yyHDx9WXFyc6RgAAPisAwcOqGbNmud9nvJxloiICEm/nbjIyEjDaQAA8B1ut1txcXH2a+n5UD7O8vullsjISMoHAADFcLFtC2w4BQAAjqJ8AAAAR1E+AACAoygfAADAUZQPAADgKMoHAABwFOUDAAA4ivIBAAAcRfkAAACOonwAAABHUT4AAICjKB8AAMBRlA8AAOAoygcAAHAU5QMAADgqxHQAAIElOztbx48f93j8/PPPheYKzqekpKhTp06mowMoIZQPAMV28uRJHTly5ILF4ezHqVOnLvnnpKenl0J6AKZQPgAU25QpUzRs2LBS/znHjx8v9Z8BwDmUDwDFVqVKlRL9fuXKlVOVKlVUuXJlValSxX5ce+21JfpzAJhF+QBQbJUrVz7nfHBw8DlLxNnjs+fCw8Md/h04Iysry29/b0BxUD4AFFtCQoJmzpxZqERERkbK5XKZjuc1evbsqW+++Ubt2rVTcnKyWrVqpbJly5qOBRjjsizLMh3Cm7jdbkVFRSkjI0ORkZGm4wDwcWfOnFHVqlXldrvtufDwcLVq1couI1dffTVlDX6hqK+hrHwAfuLXX3/VggULFBERodtuu810HPzXunXrPIqH9NtlmE8//VSffvqpJKlWrVpKTk5Wu3bt1KZNG0VERJiICjiGlY+zsPIBX5KRkaEFCxZozpw5+vTTT3XmzBklJiZqw4YNpqPhv/bt26dp06ZpyZIlWr9+vS72V26ZMmXUsmVLJScnKzk5WQ0aNGBVBD6jqK+hlI+zUD7g7dxutz7++GPNmTNHS5YsUU5OTqFjfvjhB9WuXdtAOlzI8ePH9dlnn2nx4sVasmSJjh49etGviY2NtYvIrbfeqooVK5Z+UKCYKB/FRPmANzpx4oQWLlyoOXPmaPHixcrOzj7vsREREZo5cyZ3BPVy+fn52rZtm5YsWaLFixdr7dq1ys3NveDXBAcH689//rNdRho3bqygID4lA96D8lFMlA94i5MnT+qTTz7RnDlztGjRImVlZZ332AoVKqhz587q3r272rZty9s6fVBGRoaWL19ul5EDBw5c9GuqVaumtm3bKjk5WR07dlRUVJQDSYHzo3wUE+UDJmVmZmrRokWaM2eOPvnkE50+ffq8x5YvX16dOnVS9+7dlZyczFs3/YhlWdq1a5eWLFmiJUuWaOXKlee8vFZQamqqGjdu7FBC4NwoH8VE+YDTTp06pcWLF2vOnDlauHDhBT/7pFy5curYsaO6d++udu3aqVy5cg4mhSmZmZlasWKFXUa+//57j+erV6+uI0eOcAkGxvFWW8CLnT592qNwZGZmnvfYsmXLqkOHDurevbvat2+v8uXLO5gU3qB8+fLq0KGDOnToIEn6/vvv7SKyfPlyJScnUzzgU1j5OAsrHyhNubm5uvfee7VgwQKdPHnyvMeFh4erffv26t69uzp06KAKFSo4mBK+JCsrSxkZGYqOjjYdBWDlA/BGISEh+uGHH85ZPMLCwjwKBzeaQlGEh4ezwRg+h/IBOKx79+5at26dJCk0NFTt2rVT9+7d1bFjR1bbAAQEygfgsDvuuEPLly/XnXfeqU6dOvH2SAABh/IBOCwuLk4ff/yx6RgAYAzbowEAgKMoHwAAwFGUDwAA4CjKBwAAcBTlAwAAOIryAQAAHEX5AAAAjqJ8AAAAR1E+AACAoygfAADAUZQPAADgKMoHAABwFOUDAOCo3NxcnTx50nQMGET5AAA4atSoUWrcuLE2btxoOgoMoXwAABzz5Zdf6h//+If+85//qFmzZnrppZeUn59vOhYcRvkAADjCsiw9/vjjdtnIzc3VY489pqSkJB0+fNhwOjiJ8gEAcITL5dKCBQt02223ecx//vnnatiwoRYsWGAoGZxG+QAAOKZKlSqaP3++Jk+erLJly9rzx48fV5cuXTRo0CCdPn3aYEI4gfIBn5eVlaUNGzaYjgGgiFwul+6//36lpqbq2muv9XjujTfeUGJiorZt22YoHZxA+YBP279/v2644QbddNNN2rlzp+k4AC5B/fr1tX79ej3yyCMe8zt37lTTpk01btw4WZZlKB1Kk8+WjzFjxsjlcmno0KH2nGVZGjlypGJjY1W2bFm1bt1aO3bsMBcSpWrFihVKSEjQxo0bdfLkSd12223KyMgwHQvAJQgLC9PYsWO1ePFiVa9e3Z7Pzs7WkCFD1LFjR6WnpxtMiNLgk+Vjw4YNmjJliho2bOgx/9JLL2ns2LEaP368NmzYoJiYGN166606ceKEoaQoDZZl6bXXXtMtt9yiY8eO2fPHjx/X999/bzAZgOJKTk7Wtm3b1K5dO4/5RYsWqWHDhvr0008NJUNp8LnycfLkSfXs2VNvvvmmKlWqZM///oL05JNP6vbbb1d8fLymTZumU6dO6d///rfBxChJp06dUq9evfTII48oLy/Pnr/uuuuUmpqqhIQEg+kA/BHR0dH65JNP9Prrrys0NNSeP3r0qJKTkzVs2DBlZ2cbTIiS4nPlY9CgQerQoYNuueUWj/m9e/cqLS1NSUlJ9lxYWJhatWqltWvXnvf7ZWdny+12ezzgnfbt26cWLVpo5syZHvO9evXSmjVrdMUVVxhKBqCkuFwuDRkyRBs2bNA111zj8dzYsWP15z//Wd9++62hdCgpPlU+Zs2apU2bNmnMmDGFnktLS5P0W3MuKDo62n7uXMaMGaOoqCj7ERcXV7KhUSI+++wzJSQkaMuWLfZccHCw/vWvf2natGkeb9kD4PsaNmyoDRs2aODAgR7zW7ZsUUJCglJSUtiM6sN8pnwcOHBADz/8sGbMmKHw8PDzHudyuTzGlmUVmitoxIgRysjIsB8HDhwoscz44yzL0j//+U+1bdtWP//8sz1frVo1ff7553rooYcu+N8XgO8qV66c3njjDX344YeqXLmyPX/q1Cn1799f3bp18/h7Ab7DZ8pHamqq0tPTlZCQoJCQEIWEhGjlypX617/+pZCQEHvF4+xVjvT09EKrIQWFhYUpMjLS4wHvkJmZqbvuukvDhw/3+OyHJk2aKDU1Va1atTKYDoBTunTpom3btummm27ymJ8/f76uvfZarVy50lAyFJfPlI+bb75Z27dv15YtW+xHYmKievbsqS1btqhOnTqKiYnRsmXL7K/JycnRypUr1bx5c4PJURx79uxRs2bNNGfOHI/5++67T6tWreLyGBBgLrvsMi1btkwvvviiQkJC7PmDBw+qTZs2evrpp7kM40NCLn6Id4iIiFB8fLzHXPny5VWlShV7fujQoRo9erSuuuoqXXXVVRo9erTKlSunu+++20RkFNOSJUvUo0cP/frrr/ZcmTJl9Prrr2vAgAFcZgECVFBQkIYPH642bdro7rvvtt9ab1mWcnJy+LvBh/jMykdRDB8+XEOHDtWDDz6oxMREHTp0SEuXLlVERITpaCgCy7I0evRotW/f3qN4xMTE6IsvvtDAgQP5ywWAmjRpos2bN+u+++6TJCUmJuq5554znAqXwmWxTuXB7XYrKipKGRkZ7P9w0IkTJ9S7d2+9//77HvPNmjXTvHnzFBsbaygZAG82e/ZsNW7cWFdddZXpKFDRX0N95rIL/Nfu3bvVtWtX7dq1y2P+gQce0Ouvv66wsDBDyQB4uzvvvNN0BBSDX112ge9ZuHChmjRp4lE8QkND9eabb2rSpEkUDwDwQ5QPGJGfn69nn31WnTp18rir7GWXXaZVq1apX79+BtMBAEoTl11gxIMPPqjJkyd7zLVs2VJz585VTEyMoVQAACew8gEj+vbt63FJZfDgwfr8888pHgAQACgfMKJJkyaaOHGiwsLC9M4772jcuHEen2IJAPBfvNX2LLzV1ln79+/X5ZdfbjoGAKAEFPU1lJUPGEXxAIDAQ/kAAACOonwAAABHUT4AAICjKB8AAMBRlA8AAOAoygcAAHAU5QMAADiK8gEAwFncbrfWrl1rOobfonwAAFDADz/8oGbNmqlt27batm2b6Th+ifIBAMB/fffdd7r++uu1c+dOnTx5Up06ddLRo0dNx/I7lA8AAP6rTp06uvbaa+3x/v37dfvttysrK8tgKv9D+QAA4L/KlCmjuXPn6uqrr7bn1q5dq/79+4vPYS05lA8AAAqoVKmSPv74Y1WsWNGemzFjhl544QVzofwM5QMAgLNcffXVmjdvnoKDg+25J554Qu+//77BVP6D8gEAwDncfPPNmjBhgsdcr169tHnzZkOJ/AflAwCA83jggQc0ZMgQe3zq1Cl17txZR44cMZjK91E+AAC4gFdeeUVt27a1xwcPHlSXLl10+vRpg6l8G+UDAIALCAkJ0ezZs1W/fn17bsOGDbrvvvt4B0wxUT4AALiIqKgoffzxx6pSpYo9N3v2bP3jH/8wmMp3UT4AACiCunXr6v3331eZMmXsuWeeeUZz5swxmMo3UT4AACiiG2+8URMnTvSYu/fee7VhwwZDiXwT5QMAgEvQt29fDRs2zB5nZWWpS5cuOnjwoMFUvoXyAQDAJXrxxRfVsWNHe3zkyBF16dJFmZmZBlP5DsoHAACXKDg4WP/+978VHx9vz23atEn33HOP8vPzDSbzDZQPAACKISIiQh9//LGqVatmz73//vt6+umnDabyDZQPAACKqVatWvrggw8UGhpqzz3//POaOXOmwVTej/IBAMAf0KJFC6WkpHjM9e3bV1999ZWhRN6P8gEAwB/Uq1cvjRgxwh5nZ2dr8eLFBhN5N8oHAAAlYNSoUeratauCg4M1YcIEPffcc6Yjea0Q0wEAAPAHQUFBmjFjhjZt2qQbbrjBdByvxsoHAAAlpHz58hSPIqB8BKATJ05o7969pmMAAAIU5SMAjRw5Un/60580evRo5eTkmI4DAAgwLsuyLNMhvInb7VZUVJQyMjIUGRlpOk6J27Ztmxo3bqy8vDxJUlJSkj799FPDqQAA/qCor6GsfASQ/Px8DRgwwC4ekjRgwACDiQAAgYjyEUDefvttj5vedOjQQV27djUXCAAQkCgfAeLYsWN67LHH7HHZsmU1btw4uVwug6kAAIGI8hEghg8frp9//tkeP/XUU6pdu7bBRACAQEX5CACrV6/W1KlT7XG9evX0t7/9zWAiAEAgo3z4uTNnzmjgwIEec2+88YbHJzACAOAkyoefe+211/TNN9/Y47/+9a9q06aNwUQAgEDHfT7O4k/3+di/f7/q16+vU6dOSZIqVqyob7/9VtHR0YaTAQD8Eff5gB5++GG7eEjS6NGjKR4AAOMoH35q4cKF+vDDD+1xkyZNdP/995sLBADAf1E+/NCpU6f00EMP2eOgoCBNmjRJwcHBBlMBAPAbyocfGjVqlPbt22ePBw0apMaNG5sLBABAAWw4PYuvbzjdtWuXrr32Wp05c0aSFBMTo2+//VZRUVGGkwEA/B0bTgOQZVl68MEH7eIhSa+++irFAwDgVSgffmTGjBlasWKFPb7lllt05513mgsEAMA5UD78xC+//KJhw4bZ49DQUE2YMIEPjgMAeB3Kh5944okn9NNPP9njxx9/XFdffbXBRAAAnBvlww98/fXXmjx5sj2uU6eOHn/8cYOJAAA4P8qHj8vNzdWAAQNU8E1LEyZMUNmyZQ2mAgDg/CgfPu7zzz/X5s2b7fEdd9yh5ORkg4kAALgwyoePa9u2rb744gvVq1dPFSpU0GuvvWY6EgAAFxRiOgD+uNatW2vr1q3asmWLLrvsMtNxAAC4IFY+/ERoaKiaNm1qOgYAABdF+QAAAI6ifAAAAEdRPgAAgKMoHwAAwFGUDwAA4CjKBwAAcBTlAwAAOIryAQAAHOUz5WPMmDFq0qSJIiIiVL16dXXt2lXfffedxzGWZWnkyJGKjY1V2bJl1bp1a+3YscNQYgAAcC4+Uz5WrlypQYMGad26dVq2bJlyc3OVlJSkzMxM+5iXXnpJY8eO1fjx47VhwwbFxMTo1ltv1YkTJwwmBwAABbmsgp/F7kN++uknVa9eXStXrtSNN94oy7IUGxuroUOH6rHHHpMkZWdnKzo6Wi+++KIeeOCBIn1ft9utqKgoZWRkKDIysjR/CwAA+JWivob6zMrH2TIyMiRJlStXliTt3btXaWlpSkpKso8JCwtTq1attHbt2vN+n+zsbLndbo8HAADezrIs+ej6gW+WD8uy9Oijj6ply5aKj4+XJKWlpUmSoqOjPY6Njo62nzuXMWPGKCoqyn7ExcWVXnAAAP6g3bt36+mnn1bdunX15Zdfmo5TLCGmAxTH4MGDtW3bNq1evbrQcy6Xy2NsWVahuYJGjBihRx991B673W4KCADAKx09elT16tWzVzymT5+uG2+80XCqS+dzKx8PPfSQFixYoC+++EI1a9a052NiYiSp0CpHenp6odWQgsLCwhQZGenxAADAG0VHR6t169b2eO7cucrKyjIXqJh8pnxYlqXBgwfr/fff1/Lly1W7dm2P52vXrq2YmBgtW7bMnsvJydHKlSvVvHlzp+MCAFAqevXqZf86IyNDH3/8scE0xeMz5WPQoEGaMWOG/v3vfysiIkJpaWlKS0vT6dOnJf12uWXo0KEaPXq0PvjgA33zzTfq3bu3ypUrp7vvvttwegAASsZf/vIXhYeH2+Pp06cbTFM8PvNW2/Pt25g6dap69+4t6bfVkWeffVaTJ0/WL7/8ouuvv14TJkywN6UWBW+1BQB4ux49emjWrFmSpJCQEB0+fFjVqlUznKror6E+Uz6cQvkAAHi7RYsWqUOHDvZ43LhxGjx4sMFEv/H7+3wAABCokpKSVL16dXvsa5deKB8AAPiYkJAQ9ejRwx5//fXXhT7vzJtRPryMZVlauHChx2fWAABwtoLvepGkGTNmGEpy6SgfXmbTpk3q1KmTqlatqs6dO2v79u2mIwEAvFDjxo1Vv359ezxjxgzl5+cbTFR0lA8v89FHH0mSsrKy9PHHH3u8nQoAgN+5XC6P1Y99+/ZpzZo1BhMVHeXDy/xePiSpfv36uuqqqwymAQB4s549e3qMfWXjKeXDi+zdu1fbtm2zx126dDGYBgDg7S6//HKP263PmTPHJ263TvnwIgsWLPAYUz4AABdz9u3WFy5caDBN0VA+vEjBSy4xMTFq2rSpwTQAAF9wxx13+Nzt1ikfXuLnn3/WqlWr7HGnTp0UFMR/HgDAhUVGRnqslC9atEjHjh0zmOjieHXzEosWLVJeXp495pILAKCoCl56yc3N1ezZsw2muTjKh5coeMmlfPnyuvnmmw2mAQD4kqSkJI8PlvP2Sy+UDy+QnZ2tJUuW2OO2bdtyfw8AQJGVKVPG43br69ev1+7duw0mujDKhxdYvny5Tp48aY+55AIAuFS+dLt1yocXKHjJJTg42ONjkgEAKIqEhATVq1fPHs+YMUOWZRlMdH6UD8Py8/M97u/RsmVLValSxWAiAIAvOvt263v37vXa261TPgzbuHGjjhw5Yo+55AIAKC5fud065cOwgpdcJMoHAKD4rrjiCrVq1UrBwcFq166d2rVrZzrSOYWYDhDoCpaP+Ph41alTx2AaAICvGz9+vKpVq6bo6GjTUc6L8mHQnj17tGPHDnvMqgcA4I+Kj483HeGiuOxiEJdcAACBiPJhUMHyERsbq4SEBINpAABwBuXDkGPHjmn16tX2uHPnznyQHAAgIPBqZ8jChQuVn59vj7nkAgAIFJQPQwpecomIiFCbNm0MpgEAwDmUDwNOnz6tpUuX2uPk5GSFhYUZTAQAgHMoHwZ89tlnOnXqlD3u2rWruTAAADiM8mFAnTp1NGTIEF1xxRUKCQlR+/btTUcCAMAxLstbP/LOELfbraioKGVkZCgyMrJUf5ZlWfrhhx9Ut27dUv05AAA4oaivoax8GORyuSgeAICAQ/kAAACOonwAAABHUT4AAICjKB8AAMBRlA8AAOAoygcAAHAU5QMAADiK8gEAABxF+QAAAI6ifAAAAEdRPgAAgKMoHwAAwFGUDwAA4CjKBwAAcBTlAwAAOIryAQAAHEX5AAAAjqJ8AAAAR1E+AACAoygfAADAUZQPAADgKMoHAABwFOUDAAA4ivIBAAAcRfkAAACOonwAAABHUT4AAICjKB8AAMBRlA8AAOAoygcAAHAU5QMAADiK8gEAABxF+QAAAI6ifAAAAEdRPgAAgKNCTAcAAADOcrlc9q8ty3L857PyAQAAHEX5AAAAjqJ8AAAAR1E+AACAoygfAADAUZQPAADgKMoHAABwlF+WjzfeeEO1a9dWeHi4EhIS9OWXX5qOBAAA/svvysfs2bM1dOhQPfnkk9q8ebNuuOEGtWvXTvv373c8y8mTJ7V//37t2LFDmzZtcvznAwDgjS65fPTu3VurVq0qjSwlYuzYserbt6/69eun+vXr67XXXlNcXJwmTpzoeJb/+7//0xVXXKH4+HjdfPPNjv98AAC80SWXjxMnTigpKUlXXXWVRo8erUOHDpVGrmLJyclRamqqkpKSPOaTkpK0du3ac35Ndna23G63x6OkRERE2L8+ceKEkVvYAgDgbS65fMyfP1+HDh3S4MGDNXfuXNWqVUvt2rXTvHnzdObMmdLIWGTHjh1TXl6eoqOjPeajo6OVlpZ2zq8ZM2aMoqKi7EdcXFyJ5alQoYL967y8PGVnZ5fY9wYAwFcVa89HlSpV9PDDD2vz5s36+uuvdeWVV6pXr16KjY3VI488ov/85z8lnfOSFPzAHOm3D805e+53I0aMUEZGhv04cOBAieUouPIh/bb6AQBAoPtDG06PHDmipUuXaunSpQoODlb79u21Y8cOXXPNNXr11VdLKmORVa1aVcHBwYVWOdLT0wuthvwuLCxMkZGRHo+SUnDlQ/ptAyoAAIHuksvHmTNnNH/+fHXs2FFXXHGF5s6dq0ceeURHjhzRtGnTtHTpUk2fPl3PPfdcaeS9oNDQUCUkJGjZsmUe88uWLVPz5s0dz8PKBwAAhYVc6hfUqFFD+fn56tGjh77++ms1atSo0DFt27ZVxYoVSyDepXv00UfVq1cvJSYmqlmzZpoyZYr279+vAQMGOJ6FlQ8AAAq75PLx6quvqlu3bgoPDz/vMZUqVdLevXv/ULDiuvPOO3X8+HE999xzOnLkiOLj47Vo0SJdccUVjmdh5QMAgMIuuXz06tWrNHKUqAcffFAPPvig6RisfAAAcA5+d4dTb8LKBwAAhVE+StHZKx+UDwAAKB+l6uyVDy67AABA+ShVZcqUUVhYmD1m5QMAAMpHqSt46YWVDwAAKB+l7uwPlwMAINBd8lttcWlY+QAAeBvTn7LOykcpY+UDAABPlI9SxsoHAACeKB+ljJUPAAA8UT5KWcGVD8oHAACUj1JXcOWDyy4AAFA+Sh0rHwAAeKJ8lLKCKx9ZWVnKzc01mAYAAPMoH6Xs7A+X49ILACDQUT5KGR8uBwCAJ+5wWsrq1KmjTp06qXz58oqIiFBoaKjpSAAAGOWyTN9j1cu43W5FRUUpIyNDkZGRpuMAAOAzivoaymUXAADgKMoHAABwFOUDAAA4ivIBAAAcRfkAAACOonwAAABHUT4AAICjKB8AAMBRlA8AAOAoygcAAHAU5QMAADiK8gEAABxF+QAAAI6ifAAAAEdRPgAA8HO7du3Sr7/+ajqGjfIBAICfu/fee1WlShUlJibqX//6l+k4lA8AAPxZRkaGUlNTlZ+fr9TUVO3du9d0JMoHAAD+bNWqVcrPz7fHN910k8E0v6F8AADgx7744gv710FBQbrxxhsNpvlvDtMBAABA6Vm+fLn964SEBEVFRRlM8xvKBwAAfur48ePaunWrPW7Tpo3BNP9D+QAAwE+tWLHCY+wN+z0kygcAAH6r4H6PkJAQtWjRwmCa/6F8AADgpwru97j++utVoUIFg2n+h/IBAIAfOnLkiHbt2mWPvWW/h0T5AADAL3nrfg+J8gEAgF8qeMklLCxMzZo1M5jGE+UDAAA/VHCzafPmzRUeHm4wjSfKBwAAfmb//v3as2ePPfamSy4S5QMAAL9TcNVD8q7NphLlAwAAv1Nwv0f58uXVpEkTg2kKo3wAAOBHLMvyWPlo2bKlQkNDDSYqjPIBAIAf2bNnjw4cOGCPvW2/h0T5AADAr3j7fg+J8gEAgF8puN8jKipK1113ncE050b5AADAT5y93+PGG29USEiIwUTnRvkAAMBP7Nq1S0ePHrXH3rjfQ6J8AADgN3xhv4dE+QAAwG8U3O9RpUoVNWjQwGCa86N8AADgJ44fP27/unXr1goK8s6Xee/bhQIAAIplxYoVSk9P14oVKxQdHW06znlRPgAA8CPVq1dX9+7dTce4IO9cjwEAAH6L8gEAABxF+fAy+fn5Wrp0qZ599lnTUQAAKBXs+fAin376qYYMGaLdu3dLknr06KGrr77acCoAAEoWKx9epEKFCnbxkKSJEycaTAMAQOmgfHiR5s2bq1GjRvZ46tSpyszMNBcIAIBSQPnwIi6XS4MGDbLHGRkZmjlzpsFEAACUPMqHl7n77rtVsWJFezxhwgRZlmUuEAAAJYzy4WXKlSunPn362ONt27Zp9erVBhMBAFCyKB9eaODAgXK5XPZ4woQJBtMAAFCyKB9e6Morr1RycrI9nj9/vo4cOWIwEQAAJYfy4aUKbjzNzc3VlClTDKYBAKDkUD68VHJysurUqWOPJ0+erDNnzhhMBABAyfCJ8rFv3z717dtXtWvXVtmyZVW3bl0988wzysnJ8Thu//796tSpk8qXL6+qVatqyJAhhY7xFcHBwRo4cKA9PnLkiD744AODiQAAKBk+UT6+/fZb5efna/LkydqxY4deffVVTZo0SU888YR9TF5enjp06KDMzEytXr1as2bN0vz58zVs2DCDyf+YPn36KDw83B6z8RQA4A9clo/eROKf//ynJk6cqB9++EGStHjxYnXs2FEHDhxQbGysJGnWrFnq3bu30tPTFRkZWaTv63a7FRUVpYyMjCJ/TWnq27ev3n77bXu8bds2NWjQwGAiAADOraivoT6x8nEuGRkZqly5sj3+6quvFB8fbxcPSWrbtq2ys7OVmppqImKJKLjxVGL1AwDg+3yyfOzZs0fjxo3TgAED7Lm0tDRFR0d7HFepUiWFhoYqLS3tvN8rOztbbrfb4+FNGjdurGbNmtnj6dOn69dffzUXCACAP8ho+Rg5cqRcLtcFHxs3bvT4msOHDys5OVndunVTv379PJ4reGOu31mWdc75340ZM0ZRUVH2Iy4urmR+cyWo4OrHqVOnNG3aNINpAAD4Y4zu+Th27JiOHTt2wWNq1aplb7o8fPiw2rRpo+uvv17vvPOOgoL+152efvppffTRR9q6das998svv6hy5cpavny52rRpc87vn52drezsbHvsdrsVFxfnNXs+pN8yXn755UpPT5ckXX311dq1a5fH7x8AANOKuucjxMFMhVStWlVVq1Yt0rGHDh1SmzZtlJCQoKlTpxZ64W3WrJmef/55HTlyRDVq1JAkLV26VGFhYUpISDjv9w0LC1NYWFjxfxMOCAsLU//+/fX8889Lknbv3q3PP/9ct956q+FkAABcOp/4p/Phw4fVunVrxcXF6eWXX9ZPP/2ktLQ0j70cSUlJuuaaa9SrVy9t3rxZn3/+uf72t7+pf//+XrOC8Uc88MADCg4Otsfjx483mAYAgOLzifKxdOlSff/991q+fLlq1qypGjVq2I/fBQcH65NPPlF4eLhatGih7t27q2vXrnr55ZcNJi85cXFx6tKliz1euHCh9u3bZy4QAADF5LP3+Sgt3nafj4K++OIL3XTTTfb4scce0wsvvGAwEQAA/+P39/kIRK1bt9Y111xjj1NSUpSVlWUwEQAAl47y4UNcLpcefPBBe3z8+HHNmTPHYCIAAC4d5cPH3HPPPYqIiFDFihX16KOP6oYbbjAdCQCAS2L0rba4dBEREVqyZIkaNWqkcuXKmY4DAMAlo3z4oObNm5uOAABAsXHZBQAAOIryAQAAHEX5AAAAjqJ8AAAAR1E+AACAoygfAADAUZQPAADgKMoHAABwFOUDAAA4ivIBAAAcRfkAAACOonwAAGDI3Llz9euvv5qO4TjKBwAABqxdu1Z33XWX4uPjtXTpUtNxHEX5AADAYZmZmbrnnnuUn5+vQ4cOqW3bttq8ebPpWI6hfAAA4LDhw4drz5499vjuu+/WddddZzCRsygfAAA4aNmyZXrjjTfscWxsrMaPH28wkfMoHwAAOOTXX39Vnz59PObeeustVapUyVAiMygfAAA45OGHH9bBgwft8QMPPKDk5GSDicygfAAA4IAPP/xQ7777rj2uXbu2Xn75ZYOJzKF8AABQytLT03X//ffbY5fLpWnTpqlChQoGU5lD+QgwWVlZGjhwoGbPnm06CgAEBMuyNHDgQP3000/23KOPPqobbrjBYCqzKB8BZM+ePWrevLkmTZqk/v37a/fu3aYjAYDfmzlzpt5//317fM0112jUqFEGE5lH+Qgg06ZNs29ic+LECXXr1k2nT582nAoA/NfBgwc1ePBgexwcHKx3331X4eHhBlOZR/kIIE8//bTHMt+2bdv08MMPG0wEAP7Lsiz17dtXGRkZ9txTTz2lhIQEg6m8A+UjgISEhOi9995TtWrV7Lk333xT06dPN5gKAPzT5MmTPT6zJSEhQU8++aTBRN6D8hFgLrvsMs2cOVMul8ueGzBggHbu3GkwFQD4lz179uhvf/ubPQ4LC9O7776rMmXKGEzlPSgfAejWW2/V008/bY9PnTqlbt26KTMz02AqAPAPeXl5uvfeez3+Tn3++ed1zTXXGEzlXSgfAer//u//dPPNN9vjnTt3auDAgbIsy2AqAPB9Y8eO1Zo1a+zxDTfcoKFDh5oL5IUoHwEqODhYM2fOVExMjD03ffp0vf322wZTAYBv++abb/TUU0/Z4/Lly+udd95RcHCwwVTeh/IRwKKjozVr1iwFBf3vj8HgwYO1detWg6kAwDedOXNG99xzj3Jycuy5V155RXXq1DGYyjtRPgJcq1atPG52k5WVpW7dusntdhtMBQC+Z9SoUfa9lCQpOTnZ45bq+B/KB/TYY4+pXbt29vg///mP+vfvz/4PACiiDRs26Pnnn7fHFStWVEpKisc7C/E/lA8oKChI7777rmrWrGnPzZkzRxMnTjSYCgB8g2VZGjRokPLy8uy58ePH67LLLjOYyrtRPiBJqlq1qmbPnq2QkBB77pFHHtHGjRsNpgIA7+dyufTee++pZcuWkqS//OUvuvvuuw2n8m6UD9iaN2+uF1980R7n5OSoW7du+uWXXwymAgDvV7duXa1YsUKvv/66Jk6cyOWWi3BZXNj34Ha7FRUVpYyMDEVGRpqO4zjLsnTbbbfpo48+sue6dOmiDz74gP+ZAAAXVNTXUFY+4MHlcmnq1KmqVauWPffRRx/ptddeM5YJAOBfKB8opFKlSpo7d65CQ0PtueHDh+urr74ymAoA4C8oHzinxMREjR071h7n5uaqe/fuOnbsmMFUAAB/QPnAeT344IPq1q2bPT548KDuuece5efnG0wFAPB1lA+cl8vlUkpKiq688kp7bvHixZo7d67BVAAAX0f5wAVFRkZq3rx5CgsLU3BwsF566SV1797ddCwAgA8LufghCHTXXnutpk6dqssvv1wtWrQwHQcA4OMoHyiSHj16mI4AAPATXHYBAACOonwAAABHUT4AAICjKB8AAMBRlA8AAOAoygcAAHAU5QMAADiK8gEAABxF+QAABKSsrCx9++23pmMEJMoHACDg/Pzzz7r11lvVqlUr/fDDD6bjBBzKBwAgoOzdu1fNmzfX6tWrlZ6ernbt2un48eOmYwUUygcAIGBs3LhRzZo103fffWfPpaena8+ePQZTBR7KBwAgICxatEitWrXS0aNH7bnLL79ca9asUdOmTQ0mCzyUDwCA33vzzTfVuXNnnTp1yp5r1KiRvvrqK11zzTUGkwUmygcAwG9ZlqWnnnpK999/v/Ly8uz5tm3batWqVYqNjTWYLnCFmA4AAEBpyMnJUd++fTVjxgyP+T59+mjSpEkqU6aMoWRg5QMA4HcyMjLUvn37QsVj5MiRSklJoXgYxsoHAMCvHDx4UO3bt9f27dvtuZCQEE2ZMkX33XefwWT4HeUDAOA3tm3bpvbt2+vQoUP2XIUKFTR//nwlJSUZTIaCKB8AAL/w+eef6/bbb5fb7bbnatSooUWLFqlRo0bmgqEQ9nwAAHzeu+++q+TkZI/i8ac//Unr1q2jeHghygcAwGdZlqVRo0bp3nvvVW5urj3funVrrV69WpdffrnBdDgfLrsAAHxSbm6uBg4cqJSUFI/5u+++W2+//bbCwsIMJcPFsPIBAPA5J0+eVOfOnQsVj8cff1zTp0+neHg5Vj4AAD4lLS1NHTp00KZNm+y5oKAgjR8/XgMHDjSYDEXlcysf2dnZatSokVwul7Zs2eLx3P79+9WpUyeVL19eVatW1ZAhQ5STk2MmKACgxGVlZally5YexaNs2bL64IMPKB4+xOfKx/Dhw895L/68vDx16NBBmZmZWr16tWbNmqX58+dr2LBhBlICAEpDeHi4HnnkEXtcrVo1rVixQp07dzaYCpfKpy67LF68WEuXLtX8+fO1ePFij+eWLl2qnTt36sCBA3Y5eeWVV9S7d289//zzioyMNBEZAFDCBg0apB9//FEffvihFi9erLp165qOhEvkMysfR48eVf/+/TV9+nSVK1eu0PNfffWV4uPjPVZF2rZtq+zsbKWmpp73+2ZnZ8vtdns84Bvy8vK0Zs0a0zEAGPDCCy/o66+/pnj4KJ8oH5ZlqXfv3howYIASExPPeUxaWpqio6M95ipVqqTQ0FClpaWd93uPGTNGUVFR9iMuLq5Es6P0vPHGG2rZsqV69+6tn3/+2XQcAA4KCgpSxYoVTcdAMRktHyNHjpTL5brgY+PGjRo3bpzcbrdGjBhxwe/ncrkKzVmWdc75340YMUIZGRn248CBA3/494XSt2/fPvvPw7Rp01S/fn3NmzdPlmUZTgYAuBijez4GDx6su+6664LH1KpVS6NGjdK6desKvW87MTFRPXv21LRp0xQTE6P169d7PP/LL7/ozJkzhVZECgoLC+P94D5o0aJFyszMtMfp6enq1q2bunbtqgkTJpxzUzIAwDu4LB/4p+L+/fs99mIcPnxYbdu21bx583T99derZs2aWrx4sTp27KiDBw+qRo0akqTZs2fr3nvvVXp6epE3nLrdbkVFRSkjI4NNql5u5cqV6tevn77//nuP+aioKL3yyivq06fPBVe9AAAlq6ivoT5RPs62b98+1a5dW5s3b7Y/MCgvL0+NGjVSdHS0/vnPf+rnn39W79691bVrV40bN67I35vy4VtOnz6tZ599Vi+//LLy8vI8nrvppps0ZcoUNqQBgEOK+hrqExtOiyI4OFiffPKJwsPD1aJFC3Xv3l1du3bVyy+/bDoaSlHZsmX1wgsvaP369br22ms9nlu+fLkaNGigsWPHFiomAABzfHLlozSx8uG7zpw5o5dfflnPPvussrOzPZ5r2rSpUlJS1KBBA0PpAMD/BdzKB1CmTBmNGDFCW7ZsUYsWLTye+/rrr9W4cWM988wzhYoJAMBZlA/4nXr16mnVqlUaP368KlSoYM/n5ubqueeeU+PGjbVu3TqDCQEgsFE+4JeCgoI0aNAg7dixQ8nJyR7P7dy5U82bN9fQoUN18uRJQwkBIHBRPuDXLr/8ci1atEjTp09X5cqV7XnLsvT666+rQYMGWrZsmcGEABB4KB/wey6XS3/961+1a9euQje127dvn5KSktSnTx/98ssvhhICQGChfCBgVK9eXe+9954++uijQndAnTp1qurXr6/58+cbSgcAgYPygYDTuXNn7dy5Uw888IDH/NGjR3XHHXfooYceMpQMAAID5QMBKSoqSpMmTdIXX3yhK6+80uO5du3aGUoFAIGB8oGA1rp1a23dulV///vfFRQUpJ49e6p9+/amYwGAX+MOp2fhDqeBa+PGjapVq5aqVq1qOgoA+KSivoaGOJgJ8GqJiYmmIwBAQOCyCwAAcBTlAwAAOIryAQAAHEX5AIAAZ1mW1q5dqz59+qhfv36m4yAAsOEUAALUTz/9pOnTpyslJUW7du2SJIWGhurFF19UlSpVDKeDP2PlAwACSH5+vpYuXaru3bvrsssu07Bhw+ziIUk5OTmaMWOGwYQIBKx8AEAAOHjwoKZOnaq33npLP/7443mPu/nmm1WvXj0HkyEQUT4AwE+dOXNGCxcuVEpKipYsWaL8/PxzHhcbG6v77rtPffr0UZ06dRxOiUBE+QAAP7N792699dZbeuedd5Senn7OY4KDg9WxY0f169dPycnJCgnh5QDO4U8bAPiB06dPa/78+UpJSdHKlSvPe1zdunXVt29f9e7dWzVq1HAwIfA/lA8A8GFbtmxRSkqKZsyYoYyMjHMeExYWpr/85S/q16+fWrVqpaAg3msAsygfAOBjMjIy9N577yklJUWpqannPa5Bgwbq37+/evbsqcqVKzuYELgwygcA+JCZM2fq/vvv16lTp875fIUKFdSjRw/1799fiYmJcrlcDicELo7yAfi4X3/9VVFRUbzIBIgGDRqcs3g0a9ZM/fr1U/fu3VWhQgUDyYCio3wAPu7222/XN998o+bNm6tFixZq0aKFEhISFBYWZjoaSkHDhg3VtGlTff3116pSpYruuece9e3bV3/6059MRwOKzGVZlmU6hDdxu92KiopSRkaGIiMjTccBLujMmTOqWLFioX8Jh4WFKTEx0S4jzZo1U7Vq1QylRElbvHix3G63unbtSsmEVynqayjl4yyUD/iSjRs3qkmTJkU69uqrr7bLSIsWLfT//t//41INgBJF+Sgmygd8yZEjRzRnzhytWbNGa9as0eHDh4v8tVWqVPG4VJOYmKjw8PBSTAvA31E+ionyAV9lWZZ+/PFHu4isWbNG27dvV1H/Fw8NDVVCQoJHIalevXoppwbgTygfxUT5gD/JyMjQunXr7DKyfv16ZWZmFvnrr7zySrVo0UJ9+vTRjTfeWIpJAfgDykcxUT7gz3Jzc7Vt2zaP1ZGDBw9e9OtSUlLUt29fBxIC8GWUj2KifCDQ7N+/3y4ia9eu1datWwt9+umuXbu89mPW8/PzlZOTo+zsbOXk5Hg8zp4rOO7YsSPvFAFKGOWjmCgfCHQnTpzQ+vXr7ULy/fffa8+ePY69M2b48OFKTU29YHEoOM7LyyvWzzl69Ch7WoASVtTXUG4yBsBDRESEbrnlFt1yyy2SftvI6uRbcjdv3qzly5eX+s/Jzs4u9Z8B4Nz4aEMAF+T0vUBCQ0Md+Tk5OTmO/BwAhbHyAcCrNGzYUJmZmQoNDVVoaKjCwsLsX19sfCnHxsXFmf6tAgGLPR9nYc8HAADFU9TXUC67AAAAR1E+AACAoygfAADAUZQPAADgKMoHAABwFOUDAAA4ivIBAAAcRfkAAACOonwAAABHUT4AAICjKB8AAMBRlA8AAOAoygcAAHAU5QMAADiK8gEAABxF+QAAAI6ifAAAAEeFmA7gbSzLkiS53W7DSQAA8C2/v3b+/lp6PpSPs5w4cUKSFBcXZzgJAAC+6cSJE4qKijrv8y7rYvUkwOTn5+vw4cOKiIiQy+UyHcdRbrdbcXFxOnDggCIjI03H8Xmcz5LHOS15nNOSFejn07IsnThxQrGxsQoKOv/ODlY+zhIUFKSaNWuajmFUZGRkQP5PU1o4nyWPc1ryOKclK5DP54VWPH7HhlMAAOAoygcAAHAU5QO2sLAwPfPMMwoLCzMdxS9wPkse57TkcU5LFuezaNhwCgAAHMXKBwAAcBTlAwAAOIryAQAAHEX5AAAAjqJ8wEN2drYaNWokl8ulLVu2eDy3f/9+derUSeXLl1fVqlU1ZMgQ5eTkmAnqxfbt26e+ffuqdu3aKlu2rOrWratnnnmm0LnifF6aN954Q7Vr11Z4eLgSEhL05Zdfmo7kM8aMGaMmTZooIiJC1atXV9euXfXdd995HGNZlkaOHKnY2FiVLVtWrVu31o4dOwwl9i1jxoyRy+XS0KFD7TnO54VRPuBh+PDhio2NLTSfl5enDh06KDMzU6tXr9asWbM0f/58DRs2zEBK7/btt98qPz9fkydP1o4dO/Tqq69q0qRJeuKJJ+xjOJ+XZvbs2Ro6dKiefPJJbd68WTfccIPatWun/fv3m47mE1auXKlBgwZp3bp1WrZsmXJzc5WUlKTMzEz7mJdeekljx47V+PHjtWHDBsXExOjWW2+1P+8K57ZhwwZNmTJFDRs29JjnfF6EBfzXokWLrHr16lk7duywJFmbN2/2eC4oKMg6dOiQPffee+9ZYWFhVkZGhoG0vuWll16yateubY85n5emadOm1oABAzzm6tWrZz3++OOGEvm29PR0S5K1cuVKy7IsKz8/34qJibFeeOEF+5isrCwrKirKmjRpkqmYXu/EiRPWVVddZS1btsxq1aqV9fDDD1uWxfksClY+IEk6evSo+vfvr+nTp6tcuXKFnv/qq68UHx/vsSrStm1bZWdnKzU11cmoPikjI0OVK1e2x5zPosvJyVFqaqqSkpI85pOSkrR27VpDqXxbRkaGJNl/Jvfu3au0tDSPcxwWFqZWrVpxji9g0KBB6tChg2655RaPec7nxfHBcpBlWerdu7cGDBigxMRE7du3r9AxaWlpio6O9pirVKmSQkNDlZaW5lBS37Rnzx6NGzdOr7zyij3H+Sy6Y8eOKS8vr9D5io6O5lwVg2VZevTRR9WyZUvFx8dLkn0ez3WOf/zxR8cz+oJZs2Zp06ZN2rBhQ6HnOJ8Xx8qHHxs5cqRcLtcFHxs3btS4cePkdrs1YsSIC34/l8tVaM6yrHPO+6Oins+CDh8+rOTkZHXr1k39+vXzeC7Qz+elOvu8cK6KZ/Dgwdq2bZvee++9Qs9xjovmwIEDevjhhzVjxgyFh4ef9zjO5/mx8uHHBg8erLvuuuuCx9SqVUujRo3SunXrCn0WQWJionr27Klp06YpJiZG69ev93j+l19+0ZkzZwq1e39V1PP5u8OHD6tNmzZq1qyZpkyZ4nEc57PoqlatquDg4EKrHOnp6ZyrS/TQQw9pwYIFWrVqlWrWrGnPx8TESPrtX+w1atSw5znH55aamqr09HQlJCTYc3l5eVq1apXGjx9vv5OI83kBBvebwEv8+OOP1vbt2+3Hp59+akmy5s2bZx04cMCyrP9tkDx8+LD9dbNmzWKD5HkcPHjQuuqqq6y77rrLys3NLfQ85/PSNG3a1Bo4cKDHXP369dlwWkT5+fnWoEGDrNjYWGv37t3nfD4mJsZ68cUX7bns7Gw2SJ6H2+32+Dtz+/btVmJiovXXv/7V2r59O+ezCCgfKGTv3r2F3u2Sm5trxcfHWzfffLO1adMm67PPPrNq1qxpDR482FxQL3Xo0CHryiuvtG666Sbr4MGD1pEjR+zH7zifl2bWrFlWmTJlrLfeesvauXOnNXToUKt8+fLWvn37TEfzCQMHDrSioqKsFStWePx5PHXqlH3MCy+8YEVFRVnvv/++tX37dqtHjx5WjRo1LLfbbTC57yj4bhfL4nxeDOUDhZyrfFjWbyskHTp0sMqWLWtVrlzZGjx4sJWVlWUmpBebOnWqJemcj4I4n5dmwoQJ1hVXXGGFhoZajRs3tt8mios735/HqVOn2sfk5+dbzzzzjBUTE2OFhYVZN954o7V9+3ZzoX3M2eWD83lhLsuyLANXewAAQIDi3S4AAMBRlA8AAOAoygcAAHAU5QMAADiK8gEAABxF+QAAAI6ifAAAAEdRPgAAgKMoHwAAwFGUDwAA4CjKBwCv9tNPPykmJkajR4+259avX6/Q0FAtXbrUYDIAxcVnuwDweosWLVLXrl21du1a1atXT9ddd506dOig1157zXQ0AMVA+QDgEwYNGqTPPvtMTZo00datW7VhwwaFh4ebjgWgGCgfAHzC6dOnFR8frwMHDmjjxo1q2LCh6UgAiok9HwB8wg8//KDDhw8rPz9fP/74o+k4AP4AVj4AeL2cnBw1bdpUjRo1Ur169TR27Fht375d0dHRpqMBKAbKBwCv9/e//13z5s3T1q1bVaFCBbVp00YRERFauHCh6WgAioHLLgC82ooVK/Taa69p+vTpioyMVFBQkKZPn67Vq1dr4sSJpuMBKAZWPgAAgKNY+QAAAI6ifAAAAEdRPgAAgKMoHwAAwFGUDwAA4CjKBwAAcBTlAwAAOIryAQAAHEX5AAAAjqJ8AAAAR1E+AACAoygfAADAUf8fbrvOF6Q/tGwAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "cosmo = clmm.Cosmology(H0=70.0, Omega_dm0=0.27 - 0.045, Omega_b0=0.045, Omega_k0=0.0)\n", - "halo = clmm.Modeling(massdef=\"critical\", delta_mdef=200, halo_profile_model=\"nfw\")\n", - "halo.set_cosmo(cosmo)\n", - "halo.set_concentration(4)\n", - "halo.set_mass(1.0e15)\n", - "z_cl = 1.0\n", - "# source properties\n", - "z_source = 2.0 # all sources in the same plane\n", - "\n", - "shear_obj = dss.shear.ShearNFW(halo, z_cl)\n", - "# generate positions\n", - "radius = 50 # arcsec\n", - "n_gal = 20\n", - "theta = np.linspace(0, 360, n_gal) / n_gal\n", - "x = np.cos(theta) * radius\n", - "y = np.sin(theta) * radius\n", - "shifts = np.zeros(n_gal, dtype=[('dx', 'f8'), ('dy', 'f8')])\n", - "shifts['dx'] = x\n", - "shifts['dy'] = y\n", - "\n", - "shift_list = []\n", - "for ss in shifts:\n", - " shift_list.append(galsim.PositionD(ss['dx'], ss['dy']))\n", - "\n", - "# get the shear\n", - "shear_list = []\n", - "for ss in shift_list:\n", - " shear_list.append(shear_obj.get_shear(z_source, ss))\n", - "\n", - "gamma = []\n", - "for ss in shear_list:\n", - " gamma.append(ss.g1 + 1j * ss.g2) \n", - "gamma = np.array(gamma)\n", - "\n", - "angles = np.angle(gamma, deg=True) / 2.\n", - "lengths = np.abs(gamma) * 100.\n", - "\n", - "# Create whisker plot\n", - "plt.figure(figsize=(6, 6))\n", - "plt.quiver(x, y, np.cos(np.deg2rad(angles)), np.sin(np.deg2rad(angles)),\n", - " color=\"black\", headaxislength=0, headlength=0, headwidth=1, pivot = 'middle')\n", - "plt.xlabel('x')\n", - "plt.ylabel('y')\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 60, - "id": "a7ecb75e-dbff-48b4-a495-bfe7f544eb14", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[ 1 3 9 27 81 243 729 2187 6561 19683\n", - " 59049 177147]\n", - "[2.78361124e-01 2.74640017e-01 2.56551659e-01 1.98359090e-01\n", - " 1.02796620e-01 3.27933044e-02 7.20665320e-03 1.26455112e-03\n", - " 1.95016137e-04 2.78421302e-05 3.78395338e-06 4.97313342e-07]\n" - ] - }, - { - "data": { - "text/plain": [ - "Text(0, 0.5, '$|g|$')" - ] - }, - "execution_count": 60, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAG1CAYAAAAcMztGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABNQklEQVR4nO3deVhU9eIG8PfMDMMOyqoIKuYGoiADkriU1cVLqWFlZS5oZllWV723fnm9LdYty255KwdzzS3L0rSybkalaa6A4Ia7KCgIosgqDMx8f3+IU4TLjDCcWd7P88yTnDkz553zYPN6zvd7jiSEECAiIiIiKOQOQERERGQtWIyIiIiI6rEYEREREdVjMSIiIiKqx2JEREREVI/FiIiIiKgeixERERFRPRYjIiIionoquQPYGoPBgPz8fHh6ekKSJLnjEBERkQmEECgvL0dQUBAUiusfF2IxMlN+fj5CQkLkjkFERES3IC8vD8HBwdd9nsXIRFqtFlqtFnV1dQCu7FgvLy+ZUxEREZEpysrKEBISAk9PzxuuJ/FeaeYpKyuDt7c3SktLWYyIiIhshKnf3xx8TURERFSPxYiIiIioHosRERERUT0WIyIiIqJ6LEYm0mq1CA8PR2xsrNxRiIiIyEI4K81MnJVGRERkezgrjYiIiMhMLEZERERE9ViMiIiIiOqxGBERERHVYzEiIiIiqsdiZCJO1yciIrJ/nK5vJktN138/9Siy8i5BIQEKSYJCAiRJglKSoFBc+fPV5QpJgvSH9ZQKqf75q8saPq9Q/Pm1UuPtKG78vEKSoFRcWeaqVsJNrYSrkwpu9X92cVLW/1kFFycFJElqtn1DRETUVKZ+f6taMBPdwIGzpdhy9LzcMZqFJAGuTsorj6slSq2CW/3Prmol3Jx+X+5q/LPyT0VL1WD51fdTK1m8iIjIMliMrMQTA0IxpFdbGARgEAIGgzD+WYjf/2wQqH/uOs8bGq575bkrf9YbGr/X1ef1hobrXnlf1D/3+7q1BoFqnR5VtXW4rNPjsk6Pqlo9qnR66OoMAAAhgCrdlWWobP59pVRIDUqW6x+OVrmqlfB0UaGTnzs6B3igc4AHOvi6w0nJs8ZERHRzLEZWIv42P7kjNJneIHC5Vo8q3ZXSdLUcVdde/fPvyy/X6v/w57or/61ffvV1l3V1xp8v6/SoMwjjdspr6lBeU2dSLpVCQntfN3T29zCWpc4BHujk7wEPZ/4VICKi3/FbgZqNUiHBw1llsbKhqzP8oTzVGQvW76XqyrKSSh1OnK/E8aIKnDhfgSqdHifPV+Lk+Ur8mF3Y4D3berugc4AHbqsvTVf/6+eh5uk6IiIHxGJENkOtUkCtUsAbTia/xmAQOFdWjeNFFVce5ytwor4wFVfoUFBajYLSamw9Vtzgdd6uTvVF6fdTcp39PdGutSuUChYmIiJ7xVlpZuJNZO3HpSqd8ajSH4vTmZLLuN7fCmeVAqF/GL909dHR1x0uTsqW/QBERGQyU7+/WYzMxGJk/6prr5x6O15fmK4eYTpZXGkcYP5nCgkI8fl9HNNtfzgt5+1q+hEuIiKyDBYjC2Exclx6g0DexaqGR5nq/1teff2B4P6ezujs74HbAtzri5MnurXxhL+ncwumJyJybCxGFsJiRH8mhMD58hrj+KXfxzJV4lxZ9XVfN7CrP0bFtcfd3QOg4uUEiIgsisWomWm1Wmi1Wuj1ehw9epTFiExSXl3bYIbc1VNzORcqjeOY2ni54JHYEIzs0x5tvF3kDUxEZKdYjCyER4yoOeReqMJnabn4Ii0PFyp1AK5c7uDu7gEYdXsHDOjsBwVnvxERNRsWIwthMaLmVFOnx8aDhfh052nsyrloXN7exw2PxbXHCE0wfD04FomIqKlYjCyExYgs5XhROT7dlYu1GWdQVj+YW61U4K8RbTAqrj36hPrwopNERLeIxchCWIzI0i7r9NiwLx8rd+Vib94l4/IuAR4YFdcew6ODeQkAIiIzsRhZCIsRtaQDZ0vx6a5cfJ119spNeQG4OCkwLDIIo+I6IDKklbwBiYhsBIuRhbAYkRzKqmvxdeZZrNyZiyOF5cblPdt5Y1RcewyLCoKbmnf4ISK6HhYjC2ExIjkJIbAntwSf7szFhv0FxitxezqrMDy6HUbFdUC3Np4ypyQisj4sRhbCYkTW4mKlDmszzuDTXadx6kKVcXlMh9YYfXsH/DWiDe/fRkRUj8XIQliMyNoYDAI7Tl7Ap7tO48eDhagzXPkr3drNCSNiQvBYn/bo6Ocuc0oiInmxGFkIixFZs6KyaqxOy8Nnu3ORX/r77UgGdPG7cvuRsEA48fYjROSAWIwshMWIbIHeILDpcBE+3XUam4+eN95+JMDTGY/GhuDRPu0R1MpV3pBERC2IxegGhg8fjs2bN+Puu+/GmjVrzHotixHZmryLVfg8LRer0/JQXHHl9iMKCbireyBG3d4eA7v4Q8nbjxCRnWMxuoFNmzahoqICy5YtYzEih6GrMyA1uxArd57GjpMXjMuDW7tiZJ/2eDgmBP6evP0IEdknFqOb2Lx5M+bOnctiRA7peFEFPtudizUZZ1B6uRYA4KSUMLhHG4yK64DbO/H2I0RkX0z9/ra6UZhbtmzB0KFDERQUBEmSsH79+kbrpKSkIDQ0FC4uLtBoNNi6dWvLByWyYZ0DPPDykHDs+ufdeG9EJHq3b4VavcCGfQUYuXAn7n7/V3yyLcd4nSQiIkdhdZfKraysRGRkJMaPH48HH3yw0fOrV6/GlClTkJKSgn79+mH+/PlITExEdnY22rdvDwDQaDSoqalp9Noff/wRQUFBZuWpqalp8F5lZWVmfiIi6+XipMSDmmA8qAnGwfxSrNqVi/WZZ3HyfCVmfpuNNRln8MGjUegcwItGEpFjsOpTaZIkYd26dUhKSjIui4uLQ3R0NObNm2dcFhYWhqSkJMyaNcvk9zb1VNprr72GmTNnNlrOU2lkrypq6rAu8yze//EISqpq4eKkwIz7wjE6rj1PrxGRzbLZU2k3otPpkJGRgYSEhAbLExISsH37dotsc/r06SgtLTU+8vLyLLIdImvh4azCmNs74IcpAzGgix+qaw14ef0BPLEsHcUVjY/EEhHZE5sqRsXFxdDr9QgMDGywPDAwEOfOnTP5fQYPHowRI0bg+++/R3BwMNLS0q67rrOzM7y8vBo8iBxBoJcLlo3vg5eHhEOtUuDnw0X463+3YNPhIrmjERFZjNWNMTLFnw/nCyHMOsS/ceNGs7ep1Wqh1Wqh1+vNfi2RrVIoJEzoH4p+nX3xt8+ycKSwHOOXpmHM7R3wz3vD4KrmvdiIyL7Y1BEjPz8/KJXKRkeHioqKGh1Fam6TJ09Gdnb2DY8uEdmr7m288PWz/TC+X0cAwIqdpzF07m84cLZU3mBERM3MpoqRWq2GRqNBampqg+WpqamIj4+XKRWRY3BxUuLVoT2w/PE+8Pd0xvGiCgxP2Yb5v56AwWC1cziIiMxidcWooqICWVlZyMrKAgDk5OQgKysLubm5AIBp06Zh0aJFWLJkCQ4dOoSpU6ciNzcXkyZNsmgurVaL8PBwxMbGWnQ7RNZuYFd/bJwyEAnhgajVC8z632GMWrQL+Zcuyx2NiKjJrG66/ubNmzFo0KBGy5OTk7F06VIAVy7wOHv2bBQUFCAiIgJz5szBwIEDWyQfr3xNdIUQAqvT8jDz22xcrtXDy0WFtx7oiSG9zLtWGBFRS+AtQSyExYiooZziSkz5PBN7z1wZb/RAdDvMHNYDni5OMicjIvqdXV7HSE48lUZ0baF+7ljzdDyeHdQZCgn4as9Z3PvhVmScvih3NCIis/GIkZl4xIjo+tJOXcSUz7Nw9tJlKCTg2bu64Pm7OkOl5L/BiEhePGJERC0utqMP/jdlAIb3bgeDAD78+Rge+ngHThVXyh2NiMgkLEZE1Ky8XJww55EofDiyNzxdVMjKu4R7P9yKL9LywAPURGTtWIxMxDFGROYZFhmEH6YMRFyoD6p0ery4dh+eXrkHJZU6uaMREV0XxxiZiWOMiMyjNwgs2HIS7/14BHUGgUAvZ7w3Igr9u/jJHY2IHAjHGBGRVVAqJDx9521Y90w/dPJ3R2FZDUYv3oU3NmSjupb3HiQi68JiREQtomewN757bgBGxbUHACz+LQdJ2m04WlguczIiot+xGBFRi3FVK/Hm8J5YNDYGvu5qHD5XjiEf/YZPtuVwYDYRWQUWIxNx8DVR87knPBA/TBmIO7v5Q1dnwMxvs5H8SRqKyqrljkZEDo6Dr83EwddEzUcIgRU7T+PN7w6hps4AH3c13n6gJxJ6tJE7GhHZGQ6+JiKrJ0kSxvbtiA3P9UdYWy9crNThyRUZmP7VPlTp6uSOR0QOiMWIiGTXJdAT6yfH48mBnSBJwGe78zDkw9+w78wluaMRkYNhMSIiq+CsUuKf94bh0wlxaOPlgpPFlXggZTu0m45Db+AZfyJqGSxGRGRV4jv74YcpA3Bfz7aoMwi8u/EIRi7YiTMlVXJHIyIHwGJkIs5KI2o5rdzUmPtYb/xnRCTc1UrsPnURif/divWZZ+WORkR2jrPSzMRZaUQt6/SFSkxdnYU9uZcAXLkH2xtJEfB2dZI3GBHZFM5KIyK70MHXHV881RdT7ukCpULCN3vzce8HW7Hr5AW5oxGRHWIxIiKrp1IqMOWervhyUl+093HD2UuX8ejCnZj9w2HU6Q1yxyMiO8JiREQ2I7p9a3z/twEYoQmGEEDK5hOYvGoPaup4M1oiah4sRkRkUzycVXh3RCQ+GtkbaqUCGw8W4oll6bwgJBE1CxYjIrJJQyOD8Mn4WLipldh6rBijF+1C6eVauWMRkY1jMTIRp+sTWZ9+nf2w8ok4eLmosCf3Eh5dsBPny2vkjkVENozT9c3E6fpE1udQQRnGLN6N4ooahPq5Y+UTcWjXylXuWERkRThdn4gcRlhbL3w5qS/atXJFTnElRszbjhPnK+SORUQ2iMWIiOxCqJ87vpzUF5383ZFfWo2HP96Bg/mlcsciIhvDYkREdiOolSu+fKovegR54UKlDo8u2ImM0xfljkVENoTFiIjsiq+HMz578nbEdmyN8uo6jF60G1uPnZc7FhHZCBYjIrI7Xi5OWP54HO7o6o/LtXpMWJqOHw4UyB2LiGwAixER2SVXtRILx8bg3p5toNMb8Myne/Blep7csYjIyrEYEZHdUqsU+GhkNB6OCYZBAC+s2Yclv+XIHYuIrBiLERHZNaVCwjsP9sKE/qEAgNc3ZOODn46Bl3AjomthMTIRr3xNZLskScK/7gvD1Hu6AgDm/HQUb353iOWIiBrhla/NxCtfE9m2Jb/l4PUN2QCAR2JC8NYDPaFUSDKnIiJL45WviYiu4fH+oXj3oV5QSMDq9Dw8/1kmdHUGuWMRkZVgMSIihzMiJgQpo6LhpJTw3f4CTFyejss6vdyxiMgKsBgRkUP6a0RbLE6OhauTEr8ePY+xS3ahrLpW7lhEJDMWIyJyWAO7+mPFhD7wdFEh7VQJRi7YiQsVNXLHIiIZsRgRkUOL6eiDz5+8Hb7uahzML8PD83egoPSy3LGISCYsRkTk8HoEeeOLSX0R5O2CE+cr8dC8HcgprpQ7FhHJgMWIiAjAbf4e+PLpeIT6uePspcsY8fEOHCookzsWEbUwFiMionrtWrnii6f6onsbTxRX1OCR+TuwJ7dE7lhE1IJYjIiI/sDf0xmrn+yL6PatUFZdh9GLdmHb8WK5YxFRC2ExIiL6E283J6yYEIf+nf1QpdNj/Cdp+PHgObljEVELcLhilJeXhzvvvBPh4eHo1asXvvzyS7kjEZEVcndWYfG4GAzuEQid3oCnP92Dr/ackTsWEVmYw90rraCgAIWFhYiKikJRURGio6Nx5MgRuLu7m/R63iuNyLHU6Q14ce0+fLXnLADg9ft7YGzfjvKGIiKz8V5p19G2bVtERUUBAAICAuDj44OLFy/KG4qIrJZKqcB/HorEuPiOAIBXvj4I7abjcLB/UxI5DKsrRlu2bMHQoUMRFBQESZKwfv36RuukpKQgNDQULi4u0Gg02Lp16y1tKz09HQaDASEhIU1MTUT2TKGQ8OrQcDx/V2cAwLsbj+Dt/x1mOSKyQ1ZXjCorKxEZGYm5c+de8/nVq1djypQpmDFjBjIzMzFgwAAkJiYiNzfXuI5Go0FERESjR35+vnGdCxcuYOzYsViwYIHFPxMR2T5JkjAtoRtm3BsGAJi/5ST+ue4A9AaWIyJ7YtVjjCRJwrp165CUlGRcFhcXh+joaMybN8+4LCwsDElJSZg1a5ZJ71tTU4O//OUvmDhxIsaMGXPTdWtqfr93UllZGUJCQjjGiMiBfb47F9PX7YcQwNDIILz/cCSclFb370wi+gO7HGOk0+mQkZGBhISEBssTEhKwfft2k95DCIFx48bhrrvuumkpAoBZs2bB29vb+OBpNyJ6tE97fDSyN1QKCd/uzcdTKzJQXauXOxYRNQObKkbFxcXQ6/UIDAxssDwwMBDnzpl2jZFt27Zh9erVWL9+PaKiohAVFYX9+/dfd/3p06ejtLTU+MjLy2vSZyAi+zCkVxAWjo2Bs0qBXw4XYeyS3SivrpU7FhE1kUruALdCkqQGPwshGi27nv79+8NgMJi8LWdnZzg7O0Or1UKr1UKv578KieiKQd0DsPzxPpiwLB27cy5i1KJdWDq+D3zc1XJHI6JbZFNHjPz8/KBUKhsdHSoqKmp0FKm5TZ48GdnZ2UhLS7PodojItsR18sVnE2+Hj7sa+86U4pH5O3CutFruWER0i2yqGKnVamg0GqSmpjZYnpqaivj4eJlSEZGj6xnsjS+euh2BXs44VlSBEfO3I/dCldyxiOgWWF0xqqioQFZWFrKysgAAOTk5yMrKMk7HnzZtGhYtWoQlS5bg0KFDmDp1KnJzczFp0iSL5tJqtQgPD0dsbKxFt0NEtqlzgCfWTIpHB1835F28jIc+3o4j58rljkVEZrK66fqbN2/GoEGDGi1PTk7G0qVLAVy5wOPs2bNRUFCAiIgIzJkzBwMHDmyRfLwlCBHdSFFZNcYs3o0jheVo5eaEpeP7ICqkldyxiByeqd/fVleMrB2LERHdzKUqHZI/ScPevEtwVyuxfEIcNB1ayx2LyKHZ5XWMiIhsQSs3NT59Ig59O/miUqfH40vTcPhcmdyxiMgELEYm4hgjIjKHh7MKi8fFILp9K5RersWYxbs5IJvIBvBUmpl4Ko2IzHGpSodH5u/EkcJytPdxw5pJfRHg5SJ3LCKHw1NpRERWoJWbGism9EF7HzfkXqzCmMW7UVrFK2QTWSsWIyIiCwvwcsHKCXHw93TGkcJyjF+6G1W6OrljEdE1sBiZiGOMiKgp2vu6YcWEPvByUWFP7iU8tSIDujrTb09ERC2DY4zMxDFGRNQUGadLMHrRLlyu1eO+Xm3x4aO9oVSYdq9HIrp1HGNERGSFNB1aY/4YDZyUEr7bV4B/rT8A/vuUyHqwGBERtbCBXf3x30d6Q5KAz3bn4t2NR+SORET1WIxMxDFGRNSc7uvVFm8N7wkASNl8Agu2nJA5EREBHGNkNo4xIqLmNG/zCbzzw2EAwDsP9sQjse1lTkRknzjGiIjIBjx95214amAnAMD0r/bjhwMFMicicmwsRkREMnspsTseiQmBQQDPf5aF344Vyx2JyGGxGBERyUySJLz1QE8kRrSBTm/AkyvSkZlbIncsIofEYkREZAWUCgn/fTQK/Tv7oUqnx/ilaThaWC53LCKHw2JkIs5KIyJLc1YpMX+MBlEhrXCpqhZjFu9C3sUquWMRORTOSjMTZ6URkaVdqtLh4fk7cLSwAh193fDFpL4I8HSROxaRTeOsNCIiG9XKTY0VE+IQ3NoVpy5UIXlJGkov18odi8ghsBgREVmhQC8XrJwQBz8PZxwqKMOEpWm4rNPLHYvI7rEYERFZqY5+7lgxoQ+8XFRIP12Cpz/NgK7OIHcsIrvGYkREZMXC2nphybhYuDgpsPnIefz9y73QGzg0lMhSWIyIiKxcTEcffDxaAyelhG/35uPVbw6A82aILIPFyEScrk9EcrqzWwDefzgKkgSs3JmL91OPyh2JyC5xur6ZOF2fiOS0cudp/Gv9AQDAv+4LwxMDOsmciMg2cLo+EZEdGn17B7wwuBsA4N/fHcKX6XkyJyKyLyxGREQ25pk7b8PEAaEAgP9buw8bD56TORGR/WAxIiKyMZIk4Z/3huHhmGAYBPDcqkxsP14sdywiu8BiRERkgyRJwlvDe2Jwj0Do9AZMXJ6OvXmX5I5FZPNYjIiIbJRKqcAHj/ZGv86+qNTpMe6T3TheVC53LCKbxmJERGTDXJyUmD8mBpHB3iipqsXoRbtxpqRK7lhENovFiIjIxnk4q7B0fB90CfDAubJqjFm8G+fLa+SORWSTWIyIiOxAa3c1VkyIQ7tWrsgprkTykt0oq66VOxaRzWExIiKyE228XbDyiTj4eaiRXVCGJ5am47JOL3csIpvCYmQi3hKEiGxBqJ87lj3eB54uKuw+dRGTV+1Brd4gdywim8FbgpiJtwQhIluQduoixizehepaA+6PCsKch6OgUEhyxyKSDW8JQkTkwGI7+mDeKA1UCglfZ+Vj5rcHwX8HE90cixERkZ0a1D0A7z0cCUkClu04jTk/HZM7EpHVYzEiIrJj90e1w+v3RwAAPvz5GJb8liNzIiLrxmJERGTnxtzeAX//S1cAwOsbsrE244zMiYisF4sREZEDePauzpjQPxQA8OLafUjNLpQ5EZF1YjEiInIAkiRhxr1heDA6GHqDwORVe7DjxAW5YxFZHRYjIiIHoVBIeOfBnvhLeCB0dQZMXJ6O/WdK5Y5FZFVYjIiIHIhKqcBHI3ujbydfVNTUIfmT3TheVCF3LCKrwWJERORgXJyUWJgcg17B3rhYqcPYxbtQUHpZ7lhEVoHFiIjIAXk4q7B0fB/c5u+O/NJqjP8kDeW86SyR4xWj8vJyxMbGIioqCj179sTChQvljkREJAsfdzWWPd4H/p7OOHyuHM+uykQd76tGDs7h7pWm1+tRU1MDNzc3VFVVISIiAmlpafD19TXp9bxXGhHZm31nLuGR+TtxuVaPx+La482kCEgS76tG9oX3SrsOpVIJNzc3AEB1dTX0ej3vH0REDq1XcCt88GgUJAlYtSsXC7aclDsSkWysrhht2bIFQ4cORVBQECRJwvr16xutk5KSgtDQULi4uECj0WDr1q1mbePSpUuIjIxEcHAwXnzxRfj5+TVTeiIi25TQow1evi8cADDrf4fx/f4CmRMRycPqilFlZSUiIyMxd+7caz6/evVqTJkyBTNmzEBmZiYGDBiAxMRE5ObmGtfRaDSIiIho9MjPzwcAtGrVCnv37kVOTg5WrVqFwsLrXwG2pqYGZWVlDR5ERPbo8f6hGBffEQAwdXUW9uSWyBuISAZWPcZIkiSsW7cOSUlJxmVxcXGIjo7GvHnzjMvCwsKQlJSEWbNmmb2Np59+GnfddRdGjBhxzedfe+01zJw5s9FyjjEiInukNwg8tSIDPx0qhK+7Gl89E48Ovu5yxyJqMrscY6TT6ZCRkYGEhIQGyxMSErB9+3aT3qOwsNB41KesrAxbtmxBt27drrv+9OnTUVpaanzk5eXd+gcgIrJySoWED0dGoWc7b1yo1GH80jRcqtLJHYuoxdhUMSouLoZer0dgYGCD5YGBgTh37pxJ73HmzBkMHDgQkZGR6N+/P5599ln06tXruus7OzvDy8urwYOIyJ65qVVYnByDdq1ccfJ8JZ5ckYGaOr3csYhahEruALfiz9NIhRAmTy3VaDTIysoye5tarRZarRZ6Pf/nQET2L8DLBUvGxeKheduxO+ciXlq7H+8/HMlp/GT3bOqIkZ+fH5RKZaOjQ0VFRY2OIjW3yZMnIzs7G2lpaRbdDhGRtejWxhMpo6OhUkhYl3kWc346JnckIouzqWKkVquh0WiQmpraYHlqairi4+NlSkVEZL8GdPHHm8MjAAAf/nwMazLOyJyIyLKs7lRaRUUFjh8/bvw5JycHWVlZ8PHxQfv27TFt2jSMGTMGMTEx6Nu3LxYsWIDc3FxMmjTJorl4Ko2IHNUjse1x+kIVUjafwPSv9iGolQvib+P138g+Wd10/c2bN2PQoEGNlicnJ2Pp0qUArlzgcfbs2SgoKEBERATmzJmDgQMHtkg+3hKEiByRwSDw/OeZ2LCvAJ4uKqx7Jh6dAzzljkVkMlO/v62uGFk7FiMiclTVtXqMXrQL6adLENzaFeue6Qd/T2e5YxGZxC6vYyQnrVaL8PBwxMbGyh2FiEgWLk5KLBgbg46+bjhTchlPLEvDZR2HF5B94REjM/GIERE5upziSjyQsg0lVbUY3CMQKaM0UCo4jZ+sG48YERGRRYT6uWPB2BiolQpsPFiIWd8fkjsSUbNhMSIiIrPFdvTBfx6OBAAs+i0HK3ackjcQUTNhMTIRxxgRETU0LDIILwy+cq/JV785iF8OF8qciKjpOMbITBxjRET0OyEEXlq7H6vT8+CmVuKLp/oiop233LGIGuEYIyIisjhJkvDv4RHo39kPVTo9JixLQ/6ly3LHIrplLEZERNQkTkoFUkZHo2ugBwrLavD40jSUV9fKHYvolrAYERFRk3m5OGHJuFj4ezrj8LlyTF6ViVq9Qe5YRGZjMTIRB18TEd1YcGs3LEmOhauTEluOnscrXx8Eh7GSrTFr8HVoaCgkyfyLeE2ZMgXPP/+82a+zRhx8TUR0Y6nZhXhyRTqEAF5K7I5Jd9wmdyQik7+/Vea86dWbuJqrY8eOt/Q6IiKyPX8JD8QrQ8Ix89tsvP2/wwhp7Yb7erWVOxaRScwqRnfccYelchARkR0Z3y8Upy9UYen2U5j6RRbaeLtA06G13LGIbuqWxxjt378fdXV1zZmFiIjsyMtDwnFPWCB0dQZMXJ6O0xcq5Y5EdFO3XIwiIyPh4eGB6OhojB8/Hh988AE2b96MS5cuNWM868HB10RE5lEqJHw4Mgo923njYqUO4z9JQ0mlTu5YRDd0y8Xot99+g4+PD0JDQ1FTU4OlS5firrvugq+vL7p164aXX37ZrkrS5MmTkZ2djbS0NLmjEBHZDDe1CouTY9CulStOFlfiqRUZqKnTyx2L6LpuuRg9++yzSElJwdq1a7Fq1SpkZmZi06ZN6NSpE5KTk7F161b07t0b58+fb868RERkYwK8XLBkXCw8nVXYfeoiXlyzj9P4yWrdcjE6fPgwwsPDGyy74447MGfOHOzZswebNm1CTEwM/vnPfzY5JBER2bZubTwxb7QGKoWEr7PyMSf1qNyRiK7plotRbGwsVq5c2Wh5jx498OOPP0KSJLzwwgv46aefmhSQiIjsQ/8ufnhreE8AwIe/HMeX6XkyJyJq7JaLUUpKCv773//isccew+HDhwEAOp0Oc+bMgY+PDwDA398fhYWFzZOUiIhs3sOxIZg86MoFH6d/tR/bjxfLnIiooVsuRj169MCOHTtQUFCA8PBwuLq6wt3dHQsXLsTbb78NAMjMzERQUFCzhSUiItv39790w9DIINQZBJ5amYFjheVyRyIyMuuWINdz6tQp7N27FyqVChqNBm3atAEAbN26FYWFhXjooYeaHNRa8JYgRERNV12rx+hFu5B+ugTtWrli3eR4BHi6yB2L7Jip39/NUowcgVarhVarhV6vx9GjR1mMiIia6GKlDg+kbMOpC1WIDPbG50/2hataKXcsslMWKUa8iSyPGBERNaec4ko8kLINJVW1SAgPxLzRGigV5n/PEN2MRYrRr7/+ekthOnbsiA4dOtzSa60NixERUfNKO3URoxbugk5vwIT+oXh5SPjNX0RkJp5KsxAWIyKi5vfN3nw8/1kmAOD1+3tgbN+O8gYiu2Pq9/ctz0ojIiJqLsMig/DC4G4AgNe+OYifD/FSLyQPFiMiIrIKz9x5Gx6JCYFBAM99lokDZ0vljkQOiMWIiIisgiRJ+PfwCAzo4ocqnR6PL01D/qXLcsciB8NiREREVsNJqYB2VDS6BXqiqLwGjy9NQ3l1rdyxyIGwGBERkVXxcnHCkvGx8Pd0xuFz5Xjm0z2o1RvkjkUOgsWIiIisTrtWrliSHAtXJyW2HivGK18fACdRU0tgMTKRVqtFeHg4YmNj5Y5CROQQegZ748ORvSFJwGe787Bw60m5I5ED4HWMzMTrGBERtawlv+Xg9Q3ZkCRgSXIsBnUPkDsS2SBex4iIiOzC+H4dMbJPCET9NP6jheVyRyI7xmJERERWTZIkzBwWgbhQH1TU1OGJZem4WKmTOxbZKRYjIiKyemqVAvNGaxDi44rci1V4emUGdHWcqUbNj8WIiIhsgo+7GouTY+HhrMKunIt49ZuDnKlGzY7FiIiIbEbXQE98ODKqfqZaLpZtPyV3JLIzLEZERGRT7uoeiOmJ3QEAr2/Ixpaj52VORPaExYiIiGzOxAGd8GB0MAwCmLxqD06cr5A7EtkJFiMiIrI5kiThrQcioOnQGuXVV2aqlVbxnmrUdCxGRERkk5xVSnw8WoN2rVyRU1yJyav2oI73VKMmYjEiIiKb5e/pjIVjY+CmVuK348V4Y0O23JHIxjlsMaqqqkKHDh3wj3/8Q+4oRETUBOFBXpjzSBQAYNmO01i587S8gcimOWwxevPNNxEXFyd3DCIiagaDe7TBC4O7AQBe++Ygtp8oljkR2SqHLEbHjh3D4cOHce+998odhYiImskzd96G+6OCUGcQeObTPThVXCl3JLJBVleMtmzZgqFDhyIoKAiSJGH9+vWN1klJSUFoaChcXFyg0WiwdetWs7bxj3/8A7NmzWqmxEREZA0kScI7D/ZCZEgrXKqqxRPL01FWzZlqZB6rK0aVlZWIjIzE3Llzr/n86tWrMWXKFMyYMQOZmZkYMGAAEhMTkZuba1xHo9EgIiKi0SM/Px9ff/01unbtiq5du7bURyIiohbi4qTEwjEatPFywfGiCjz/WSb0Bt42hEwnCSu+0YwkSVi3bh2SkpKMy+Li4hAdHY158+YZl4WFhSEpKcmko0DTp0/HypUroVQqUVFRgdraWvz973/HK6+8cs31a2pqUFNTY/y5rKwMISEhKC0thZeX161/OCIispj9Z0oxYv52VNca8ET/UPxrSLjckUhmZWVl8Pb2vun3t9UdMboRnU6HjIwMJCQkNFiekJCA7du3m/Qes2bNQl5eHk6dOoX//Oc/mDhx4nVL0dX1vb29jY+QkJAmfQYiIrK8nsHeeG9EFABg0W85+CItT95AZDNsqhgVFxdDr9cjMDCwwfLAwECcO3fOItucPn06SktLjY+8PP7lIiKyBff1aou/3d0FADBj/X6knboocyKyBSq5A9wKSZIa/CyEaLTMFOPGjbvpOs7OznB2doZWq4VWq4Verzd7O0REJI+/3d0Fx4sq8N3+Ajy1IgNfT+6HEB83uWORFbOpI0Z+fn5QKpWNjg4VFRU1OorU3CZPnozs7GykpaVZdDtERNR8FAoJ/xkRiYh2XrhYqcPE5emoqKmTOxZZMZsqRmq1GhqNBqmpqQ2Wp6amIj4+XqZURERkzVzVSiwcGwN/T2ccPleOKZ9nwcCZanQdVleMKioqkJWVhaysLABATk4OsrKyjNPxp02bhkWLFmHJkiU4dOgQpk6ditzcXEyaNMmiubRaLcLDwxEbG2vR7RARUfNr6+2KBWM0UKsU+OlQId798YjckchKWd10/c2bN2PQoEGNlicnJ2Pp0qUArlzgcfbs2SgoKEBERATmzJmDgQMHtkg+U6f7ERGR9VmfeRZTVmcBAOY8EonhvYPlDUQtxtTvb6srRtaOxYiIyLbN/uEwUjafgFqlwOdP3o7o9q3ljkQtwC6vY0RERNRU/0johr+EB0JXZ8CTyzOQf+my3JHIirAYmYhjjIiI7INCIeG/j0ShextPFFfUYOLydFTpOFONruCpNDPxVBoRkX04U1KF++duw4VKHRIj2kD7WDQUCvOviUe2gafSiIiIbiC4tRvmj9HASSnhfwfO4b8/H5M7ElkBFiMiInJYMR198NbwngCAD38+hm/35suciOTGYmQijjEiIrJPI2JCMHFAKADgH1/uxb4zl+QNRLLiGCMzcYwREZH90RsEnliWhk1HziPQyxnfPNsfgV4ucseiZsQxRkRERCZSKiR8OLI3ugR4oLCsBk8uT0d1LW8a7ohYjIiIiAB4ujhhcXIsWrs5Ye+ZUrywZh94UsXxsBiZiGOMiIjsX3tfN6SM0kClkPDt3nxoNx2XOxK1MI4xMhPHGBER2b9Vu3Lxz3X7AQAfj9bgrxFtZE5ETcUxRkRERLfosbj2GBffEQAwdXUWDuaXyhuIWgyLERER0TX8674wDOjih8u1ekxclo7z5TVyR6IWwGJERER0DSqlAnNHRqOTnzvyS6vx1Ip01NRxppq9YzEiIiK6Dm83JyxKjoGXiwp7ci9h+lf7OVPNzrEYmYiz0oiIHFMnfw9oR0VDqZDw1Z6zWLDlpNyRyII4K81MnJVGROSYlm0/hVe/OQhJAhaNjcHdYYFyRyIzcFYaERFRMxrbtwNGxbWHEMDzn2XiyLlyuSORBbAYERERmUCSJLw2rAdu7+SDSp0eE5al4UIFZ6rZGxYjIiIiEzkpFZg3SoMOvm44U3IZT3+6B7o6g9yxqBmxGBEREZmhtbsai5Nj4Omswu6ci3jl6wOcqWZHWIyIiIjM1DnAEx8+1hsKCfg8LQ+fbDsldyRqJixGJuJ0fSIi+qNB3QLwz3vDAAD//i4bvx49L3Miag6crm8mTtcnIqKrhBD4v7X78EX6GXi6qLDumX7oHOAhdyy6Bk7XJyIisjBJkvBGUgRiO7ZGeXUdnlyRjrLqWrljUROwGBERETWBs0qJeaM1CPJ2wcnzlZjyeRb0Bp6MsVUsRkRERE3k5+GM+WNi4KxS4JfDRXg/9YjckegWsRgRERE1g57B3pj9UC8AgHbTCXy3r0DmRHQrWIyIiIiayf1R7fDkwE4AgH98uRfZ+WUyJyJzsRgRERE1o//7a3cM6OKHy7V6TFyejouVOrkjkRlYjIiIiJqRUiFh7shodPB1w9lLlzH50z2o1fO2IbaCxYiIiKiZebs5YeHYGLirldhx8gLe/O6Q3JHIRCxGREREFtA10BPvPxIFAFi6/RS+SM+TNxCZhMXIRLwlCBERmWtwjzaYck8XAMC/1h1AZm6JzInoZnhLEDPxliBERGQOg0Fg0soM/JhdiEAvZ3z7bH8EeLnIHcvh8JYgREREVkChkPD+I1HoGuiBwrIaPLUyAzV1erlj0XWwGBEREVmYh7MKC8bEwMtFhczcS3hl/UHwhI11YjEiIiJqAR393DH3sWgoJGB1eh5W7DwtdyS6BhYjIiKiFjKwqz9eSuwOAJj5bTZ2nLggcyL6MxYjIiKiFjRxQCckRQVBbxCYvGoPzpRUyR2J/oDFiIiIqAVJkoS3H+yFiHZeuFipw5PLM3BZx8HY1oLFiIiIqIW5OCkxf0wMfN3VyC4owwtr9nIwtpVgMSIiIpJBu1aumDdaA5VCwoZ9Bfj415NyRyKwGBEREcmmT6gPXhvWAwAwe+NhbDpSJHMicshipFKpEBUVhaioKDzxxBNyxyEiIgc2+vYOGNmnPYQAnv8sEyfPV8gdyaGp5A4gh1atWiErK0vuGERERACAmcN64FhhOdJPl2Di8nSsn9wPni5OcsdySA55xIiIiMiaqFUKpIyORhsvF5w4X4mpq7NgMHAwthysrhht2bIFQ4cORVBQECRJwvr16xutk5KSgtDQULi4uECj0WDr1q1mbaOsrAwajQb9+/fHr7/+2kzJiYiIbl2ApwsWjNVArVLgp0NFmPPTUbkjOSSrK0aVlZWIjIzE3Llzr/n86tWrMWXKFMyYMQOZmZkYMGAAEhMTkZuba1xHo9EgIiKi0SM/Px8AcOrUKWRkZODjjz/G2LFjUVZW1iKfjYiI6EZ6BbfC2w/0BAB89Mtx/G9/gcyJHI8krPjCCZIkYd26dUhKSjIui4uLQ3R0NObNm2dcFhYWhqSkJMyaNcvsbSQmJuKNN95ATEzMNZ+vqalBTU2N8eeysjKEhISgtLQUXl5eZm+PiIjoZt7YkI3Fv+XATa3EV8/Eo3sbft80VVlZGby9vW/6/W11R4xuRKfTISMjAwkJCQ2WJyQkYPv27Sa9R0lJibHonDlzBtnZ2ejUqdN11581axa8vb2Nj5CQkFv/AERERCaYntgd/Tv7oUqnx8Tl6Sip1MkdyWHYVDEqLi6GXq9HYGBgg+WBgYE4d+6cSe9x6NAhxMTEIDIyEkOGDMEHH3wAHx+f664/ffp0lJaWGh95eXlN+gxEREQ3o1Iq8NHI3gjxcUXexct49rM9qNMb5I7lEGxyur4kSQ1+FkI0WnY98fHx2L9/v8nbcnZ2hrOzs1n5iIiImqq1uxoLx8bggZTt2Hb8Amb97zBeHhIudyy7Z1NHjPz8/KBUKhsdHSoqKmp0FKm5abVahIeHIzY21qLbISIiuqp7Gy+8/3AkAGDxbzlYm3FG5kT2z6aKkVqthkajQWpqaoPlqampiI+Pt+i2J0+ejOzsbKSlpVl0O0RERH/014i2eP6uzgCA6ev2IyvvkryB7JzVFaOKigpkZWUZr0ydk5ODrKws43T8adOmYdGiRViyZAkOHTqEqVOnIjc3F5MmTZIxNRERkeVMuacr7gkLhK7OgEkrMlBUXi13JLtlddP1N2/ejEGDBjVanpycjKVLlwK4coHH2bNno6CgABEREZgzZw4GDhxo0VxarRZarRZ6vR5Hjx7ldH0iImpR5dW1GJ6yHceLKqDp0BqrJsbBWaWUO5bNMHW6vtUVI2tn6o4lIiJqbifPV+B+7TaUV9dhZJ8QvDW8p8mTjxydXV7HiIiIyJF18vfARyN7Q5KAz3bnYeWu3Ju/iMzCYmQizkojIiJrcGe3ALw4uDsAYOY3B7Hr5AWZE9kXnkozE0+lERGR3IQQeP7zLHy7Nx++7mp881x/tGvlKncsq8ZTaURERHZKkiTMfrAXwtt64UKlDk+tSMdlnV7uWHaBxYiIiMgGuaqVWDBWAx93NQ6cLcNLX+0DTwI1HYuRiTjGiIiIrE1wazekjIqGSiHh66x8LNhyUu5INo9jjMzEMUZERGRtlu84hVe+PgiFBHwyvg/u6OovdySrwzFGREREDmLM7R3wSEwIDAJ4btUenCqulDuSzWIxIiIisnGSJOH1pB6Ibt8KZdV1mLg8HRU1dXLHskksRkRERHbAWaXEx6M1CPRyxrGiCkxdnQWDgaNlzMViZCIOviYiImsX4OWCj0droFYqkJpdiA9+PiZ3JJvDwddm4uBrIiKydl+m5+GFNfsAAB+P1uCvEW1kTiQ/Dr4mIiJyUCNiQjAuviMA4O9fZOHIuXJ5A9kQFiMiIiI7NOO+MMTf5otKnR4Tl6fjUpVO7kg2gcWIiIjIDjkpFZj7WDSCW7si92IVnvssE3V6g9yxrB6LkYk4+JqIiGyNj7saC8fGwNVJia3HivHOD4fljmT1OPjaTBx8TUREtua7fQWYvGoPAOCDR6Nwf1Q7mRO1PA6+JiIiIgDAfb3aYvKg2wAA/7d2Hw7ml8qcyHqxGBERETmAaX/phju6+qO61oCnVmSgpJKDsa+FxYiIiMgBKBUSPny0N9r7uOFMyWU8/3km9LwydiMsRkRERA7C280J88dojIOx3914RO5IVofFiIiIyIGEtfXC7Id6AQA+/vUENuzLlzmRdWExIiIicjBDI4Pw1MBOAIAX1+zjlbH/gMXIRLyOERER2ZMXBndDv86+qNLp8eSKdJRW1codySrwOkZm4nWMiIjIXlys1GHoR7/h7KXLuLObPxYnx0KpkOSOZRG8jhERERHdkI+7GvPHaOCsUmDzkfP4709H5Y4kOxYjIiIiBxbRzhtvP9gTAPDRL8ex8eA5mRPJi8WIiIjIwQ3vHYzx/ToCAP7+xV4cL3LcwdgsRkRERIR/3huGuFAfVNTU4ckVGSirdszB2CxGREREBCelAtpR0Wjr7YKT5ysxbfVeGBzwytgsRkRERAQA8PNwxsejNVCrFPjpUCHmbjoud6QWx2JERERERpEhrfDvpAgAwJyfjuLnQ4UyJ2pZLEZERETUwMMxIRhzewcIAUxZnYWc4kq5I7UYFiMT8crXRETkSF4eEo6YDq1RXl2HJ5eno6KmTu5ILYJXvjYTr3xNRESOoqisGkM++g1F5TVIjGiDlFHRkCTbvDI2r3xNRERETRLg5YJ5ozVwUkr434FzmPfrCbkjWRyLEREREV2XpkNrvDasBwDg3Y1H8OvR8zInsiwWIyIiIrqhx/q0x6OxIRACeP6zTOReqJI7ksWwGBEREdENSZKEmff3QFRIK5RersWTK9JRpbPPwdgsRkRERHRTziol5o2Ohp+HGofPleP/1u6HPc7fYjEiIiIik7T1doX2sWioFBK+3ZuPxb/lyB2p2bEYERERkcniOvni5SHhAIC3vj+E7ceLZU7UvFiMiIiIyCxj+3bAA9HtYBDA5FV7cKbEfgZjsxgRERGRWSRJwlvDeyKinRdKqmoxaWUGqmv1csdqFixGREREZDYXJyU+Hq2Bj7saB86W4Z/r7GMwtkMWo5ycHAwaNAjh4eHo2bMnKisd5+Z4REREzSW4tRvmPtYbSoWEr/acxbLtp+SO1GQOWYzGjRuH119/HdnZ2fj111/h7OwsdyQiIiKbFH+bH6YndgcAvPHdIew6eUHmRE3jcMXo4MGDcHJywoABAwAAPj4+UKlUMqciIiKyXRP6h2JYZBD0BoHJq/agoPSy3JFumdUVoy1btmDo0KEICgqCJElYv359o3VSUlIQGhoKFxcXaDQabN261eT3P3bsGDw8PDBs2DBER0fjrbfeasb0REREjkeSJLzzYC+EtfVCcYUOk1busdnB2FZXjCorKxEZGYm5c+de8/nVq1djypQpmDFjBjIzMzFgwAAkJiYiNzfXuI5Go0FERESjR35+Pmpra7F161ZotVrs2LEDqampSE1NbamPR0REZJdc1UrMH62Bt6sT9uZdwqtfH7TJwdiSsOLUkiRh3bp1SEpKMi6Li4tDdHQ05s2bZ1wWFhaGpKQkzJo166bvuWPHDsycORM//PADAODdd98FALzwwgvXXL+mpgY1NTXGn8vKyhASEoLS0lJ4eXndysciIiKyW1uOnse4T3bDIIA3h0dgVFwHuSMBuPL97e3tfdPvb6s7YnQjOp0OGRkZSEhIaLA8ISEB27dvN+k9YmNjUVhYiJKSEhgMBmzZsgVhYWHXXX/WrFnw9vY2PkJCQpr0GYiIiOzZwK7+eGHwlcHYr31zEBmnL8qcyDw2VYyKi4uh1+sRGBjYYHlgYCDOnTtn0nuoVCq89dZbGDhwIHr16oUuXbpgyJAh111/+vTpKC0tNT7y8vKa9BmIiIjs3aQ7OuHenm1QqxeYtHIPisqq5Y5kMpucjiVJUoOfhRCNlt1IYmIiEhMTTVrX2dkZzs7O0Gq10Gq10OttczAZERFRS5EkCe8+FInjRRU4WliBpz/dg88m3g61yvqPx1h/wj/w8/ODUqlsdHSoqKio0VGk5jZ58mRkZ2cjLS3NotshIiKyB+7OKswfEwNPFxUyTpfg9Q0H5Y5kEpsqRmq1GhqNptEsstTUVMTHx8uUioiIiK4l1M8dHzwaBUkCVu7Mxeq03Ju/SGZWV4wqKiqQlZWFrKwsAFdu35GVlWWcjj9t2jQsWrQIS5YswaFDhzB16lTk5uZi0qRJFs2l1WoRHh6O2NhYi26HiIjIntzVPRBT7+kKAHh5/UFk5V2SN9BNWN10/c2bN2PQoEGNlicnJ2Pp0qUArlzgcfbs2SgoKEBERATmzJmDgQMHtkg+U6f7ERER0RUGg8BTKzOQml2INl4u+Pa5/vD3bNnbcZn6/W11xcjasRgRERGZr7y6Fvdrt+Hk+Ur0CfXBp0/EwUnZcieu7PI6RkRERGSbPF2csGBMDDycVdidcxFvfndI7kjXxGJkIo4xIiIiaprOAR547+FIAMDS7afw1Z4zMidqjKfSzMRTaURERE3z/o9H8OEvx+GsUmDt0/GIaOdt8W3yVBoRERFZpSn3dMWgbv6oqTPgqRUZuFipkzuSEYsRERERtSiFQsJ/H+2Njr5uOHvpMp5dtQd1eoPcsQCwGJmMY4yIiIiaj7erE+aPiYGbWontJy5g9sYjckcCwDFGZuMYIyIioubz3b4CTF61BwDw4cjeGBYZZJHtcIwRERERWb37erXFpDtuAwC8uGYvDhWUyZqHxYiIiIhk9cLgbhjQxQ/VtVcGY1+qkm8wNouRiTjGiIiIyDKUCgkfjeyNEB9X5F6swudpebJl4RgjM3GMERERkWVk55dh2/FiPDEgFJIkNet7m/r9rWrWrRIRERHdovAgL4QHyXvQgafSiIiIiOqxGBERERHVYzEiIiIiqsdiZCLOSiMiIrJ/nJVmJs5KIyIisj288jURERGRmViMiIiIiOqxGBERERHVYzEiIiIiqsdiRERERFSPxchEnK5PRERk/zhd30ycrk9ERGR7OF2fiIiIyEwquQPYmqsH2MrKymROQkRERKa6+r19sxNlLEZmKi8vBwCEhITInISIiIjMVV5eDm9v7+s+zzFGZjIYDMjPz4enpyckSbrhurGxsUhLS7ul7Zjz2pute6Pnr/fctZb/edkffy4rK0NISAjy8vIsPvaK+9UyuF8tg/vVMmx1v97KMu7Xmz9nyjIhBDQaDY4ePQqF4vojiXjEyEwKhQLBwcEmratUKm/5l9ic195s3Rs9f73nrrX8z8uutY6Xl5fF/+Jyv1oG96tlcL9ahq3u16Ys4369/nOmLlOr1TcsRQAHX1vU5MmTW+S1N1v3Rs9f77lrLf/zsqZ8vqbgfrUM7lfL4H61DFvdr01Z1hK4X3kqjZoJL2NgGdyvlsH9ahncr5bB/dqyeMSImoWzszNeffVVODs7yx3FrnC/Wgb3q2Vwv1oG92vL4hEjIiIiono8YkRERERUj8WIiIiIqB6LEREREVE9FiMiIiKieixGRERERPVYjKhFlZeXIzY2FlFRUejZsycWLlwodyS7kJeXhzvvvBPh4eHo1asXvvzyS7kj2Y3hw4ejdevWeOihh+SOYtM2bNiAbt26oUuXLli0aJHccewGfz+bH6frU4vS6/WoqamBm5sbqqqqEBERgbS0NPj6+sodzaYVFBSgsLAQUVFRKCoqQnR0NI4cOQJ3d3e5o9m8TZs2oaKiAsuWLcOaNWvkjmOT6urqEB4ejk2bNsHLywvR0dHYtWsXfHx85I5m8/j72fx4xIhalFKphJubGwCguroaer0e7OZN17ZtW0RFRQEAAgIC4OPjg4sXL8obyk4MGjQInp6ecsewabt370aPHj3Qrl07eHp64t5778XGjRvljmUX+PvZ/FiMqIEtW7Zg6NChCAoKgiRJWL9+faN1UlJSEBoaChcXF2g0GmzdutWsbVy6dAmRkZEIDg7Giy++CD8/v2ZKb71aYr9elZ6eDoPBgJCQkCamtn4tuV8dWVP3c35+Ptq1a2f8OTg4GGfPnm2J6FaNv7/WicWIGqisrERkZCTmzp17zedXr16NKVOmYMaMGcjMzMSAAQOQmJiI3Nxc4zoajQYRERGNHvn5+QCAVq1aYe/evcjJycGqVatQWFjYIp9NTi2xXwHgwoULGDt2LBYsWGDxz2QNWmq/Orqm7udrHRWWJMmimW1Bc/z+kgUIousAINatW9dgWZ8+fcSkSZMaLOvevbt46aWXbmkbkyZNEl988cWtRrRJltqv1dXVYsCAAWL58uXNEdPmWPL3ddOmTeLBBx9sakS7cCv7edu2bSIpKcn43PPPPy8+/fRTi2e1JU35/eXvZ/PiESMymU6nQ0ZGBhISEhosT0hIwPbt2016j8LCQpSVlQG4csfoLVu2oFu3bs2e1ZY0x34VQmDcuHG46667MGbMGEvEtDnNsV/p5kzZz3369MGBAwdw9uxZlJeX4/vvv8fgwYPliGsz+PsrH5XcAch2FBcXQ6/XIzAwsMHywMBAnDt3zqT3OHPmDCZMmAAhBIQQePbZZ9GrVy9LxLUZzbFft23bhtWrV6NXr17GcQorVqxAz549mzuuzWiO/QoAgwcPxp49e1BZWYng4GCsW7cOsbGxzR3XZpmyn1UqFd577z0MGjQIBoMBL774Imei3oSpv7/8/Wx+LEZktj+PDRBCmDxeQKPRICsrywKpbF9T9mv//v1hMBgsEcvmNWW/AuDsKRPdbD8PGzYMw4YNa+lYNu9m+5W/n82Pp9LIZH5+flAqlY3+tV1UVNToXzVkOu5Xy+B+bRncz5bB/SofFiMymVqthkajQWpqaoPlqampiI+PlymV7eN+tQzu15bB/WwZ3K/y4ak0aqCiogLHjx83/pyTk4OsrCz4+Pigffv2mDZtGsaMGYOYmBj07dsXCxYsQG5uLiZNmiRjauvH/WoZ3K8tg/vZMrhfrZR8E+LIGm3atEkAaPRITk42rqPVakWHDh2EWq0W0dHR4tdff5UvsI3gfrUM7teWwf1sGdyv1on3SiMiIiKqxzFGRERERPVYjIiIiIjqsRgRERER1WMxIiIiIqrHYkRERERUj8WIiIiIqB6LEREREVE9FiMiIiKieixGRGR37rzzTkyZMsWi29i8eTMkSYIkSUhKSpI9T3Pq2LGj8bNdunRJ7jhELYr3SiMim7V582YMGjQIJSUlaNWqlXH5V199BScnpxbJcOTIEQQEBLTItlpKWloatm7digcffFDuKEQtjsWIiKyOTqeDWq2+5df7+Pg0Y5obCwgIaFDK5FJbW9tsZdDf379F9yGRNeGpNCIHt2bNGvTs2ROurq7w9fXFPffcg8rKSuPzn3zyCcLCwuDi4oLu3bsjJSXF+NypU6cgSRI+//xzxMfHw8XFBT169MDmzZuN6+j1ekyYMAGhoaFwdXVFt27d8MEHHzTIMG7cOCQlJWHWrFkICgpC165dAQArV65ETEwMPD090aZNGzz22GMoKioybnvQoEEAgNatW0OSJIwbNw5A41NXJSUlGDt2LFq3bg03NzckJibi2LFjxueXLl2KVq1aYePGjQgLC4OHhwf++te/oqCgwOz9WVlZibFjx8LDwwNt27bFe++912gdnU6HF198Ee3atYO7uzvi4uIa7DMAWLhwIUJCQuDm5obhw4fj/fffb1DAXnvtNURFRWHJkiXo1KkTnJ2dIYRAaWkpnnzySQQEBMDLywt33XUX9u7d2+C9v/32W2g0Gri4uKBTp06YOXMm6urqzP6sRHZJ5pvYEpGM8vPzhUqlEu+//77IyckR+/btE1qtVpSXlwshhFiwYIFo27atWLt2rTh58qRYu3at8PHxEUuXLhVCCJGTkyMAiODgYLFmzRqRnZ0tnnjiCeHp6SmKi4uFEELodDrxyiuviN27d4uTJ0+KlStXCjc3N7F69WpjjuTkZOHh4SHGjBkjDhw4IPbv3y+EEGLx4sXi+++/FydOnBA7duwQt99+u0hMTBRCCFFXVyfWrl0rAIgjR46IgoICcenSJSGEEHfccYf429/+Znz/YcOGibCwMLFlyxaRlZUlBg8eLDp37ix0Op0QQohPPvlEODk5iXvuuUekpaWJjIwMERYWJh577LHr7rurd0YvKSlpsPzpp58WwcHB4scffxT79u0TQ4YMER4eHg3yPPbYYyI+Pl5s2bJFHD9+XLz77rvC2dlZHD16VAghxG+//SYUCoV49913xZEjR4RWqxU+Pj7C29vb+B6vvvqqcHd3F4MHDxZ79uwRe/fuFQaDQfTr108MHTpUpKWliaNHj4q///3vwtfXV1y4cEEIIcQPP/wgvLy8xNKlS8WJEyfEjz/+KDp27Chee+01kz4fkb1jMSJyYBkZGQKAOHXq1DWfDwkJEatWrWqw7I033hB9+/YVQvxejN5++23j87W1tSI4OFi88847193uM888Ix588EHjz8nJySIwMFDU1NTcMO/u3bsFAGNxu96X9x+L0dGjRwUAsW3bNuPzxcXFwtXVVXzxxRdCiCvFCIA4fvy4cR2tVisCAwOvm+Va2y4vLxdqtVp8/vnnxmUXLlwQrq6uxjzHjx8XkiSJs2fPNni/u+++W0yfPl0IIcQjjzwi7rvvvgbPjxo1qlExcnJyEkVFRcZlP//8s/Dy8hLV1dUNXnvbbbeJ+fPnCyGEGDBggHjrrbcaPL9ixQrRtm3bm34+IkfAMUZEDiwyMhJ33303evbsicGDByMhIQEPPfQQWrdujfPnzyMvLw8TJkzAxIkTja+pq6uDt7d3g/fp27ev8c8qlQoxMTE4dOiQcdnHH3+MRYsW4fTp07h8+TJ0Oh2ioqIavEfPnj0bjSvKzMzEa6+9hqysLFy8eBEGgwEAkJubi/DwcJM+46FDh6BSqRAXF2dc5uvri27dujXI6Obmhttuu834c9u2bY2n7Ux14sQJ6HS6BvvDx8cH3bp1M/68Z88eCCGMpwuvqqmpga+vL4ArA7qHDx/e4Pk+ffpgw4YNDZZ16NAB/v7+xp8zMjJQUVFhfJ+rLl++jBMnThjXSUtLw5tvvml8Xq/Xo7q6GlVVVXBzczPrMxPZGxYjIgemVCqRmpqK7du348cff8RHH32EGTNmYNeuXcYvyIULFzYoFVdfdzOSJAEAvvjiC0ydOhXvvfce+vbtC09PT7z77rvYtWtXg/Xd3d0b/FxZWYmEhAQkJCRg5cqV8Pf3R25uLgYPHgydTmfyZxRCXHf51YwAGg1cliTpuq81d1t/ZDAYoFQqkZGR0Wg/enh4XDPb9d77z/vMYDCgbdu2jcYrATCOTzIYDJg5cyYeeOCBRuu4uLjcND+RvWMxInJwkiShX79+6NevH1555RV06NAB69atw7Rp09CuXTucPHkSo0aNuuF77Ny5EwMHDgRw5YhSRkYGnn32WQDA1q1bER8fj2eeeca4/tWjFzdy+PBhFBcX4+2330ZISAgAID09vcE6V48w6fX6675PeHg46urqsGvXLsTHxwMALly4gKNHjyIsLOymOczRuXNnODk5YefOnWjfvj2AKwO/jx49ijvuuAMA0Lt3b+j1ehQVFWHAgAHXfJ/u3btj9+7dDZb9+bNfS3R0NM6dOweVSoWOHTted50jR46gc+fOZnwyIsfBYkTkwHbt2oWff/4ZCQkJCAgIwK5du3D+/HljYXjttdfw/PPPw8vLC4mJiaipqUF6ejpKSkowbdo04/totVp06dIFYWFhmDNnDkpKSvD4448DuFIWli9fjo0bNyI0NBQrVqxAWloaQkNDb5itffv2UKvV+OijjzBp0iQcOHAAb7zxRoN1OnToAEmSsGHDBtx7771wdXU1HnW5qkuXLrj//vsxceJEzJ8/H56ennjppZfQrl073H///c2xG408PDwwYcIEvPDCC/D19UVgYCBmzJgBheL3CcBdu3bFqFGjMHbsWLz33nvo3bs3iouL8csvv6Bnz56499578dxzz2HgwIF4//33MXToUPzyyy/43//+1+go0p/dc8896Nu3L5KSkvDOO++gW7duyM/Px/fff4+kpCTExMTglVdewZAhQxASEoIRI0ZAoVBg37592L9/P/7973836/4gskkyjm8iIpllZ2eLwYMHC39/f+Hs7Cy6du0qPvroowbrfPrppyIqKkqo1WrRunVrMXDgQPHVV18JIX4ffL1q1SoRFxcn1Gq1CAsLEz///LPx9dXV1WLcuHHC29tbtGrVSjz99NPipZdeEpGRkcZ1kpOTxf33398o36pVq0THjh2Fs7Oz6Nu3r/jmm28EAJGZmWlc5/XXXxdt2rQRkiSJ5ORkIUTjWWkXL14UY8aMEd7e3sLV1VUMHjzYOANMiCuDr/84sFkIIdatWydu9L/I6w1OLi8vF6NHjxZubm4iMDBQzJ49u1GeqzP1OnbsKJycnESbNm3E8OHDxb59+4zrLFiwQLRr1064urqKpKQk8e9//1u0adPG+Pyrr77aYB9eVVZWJp577jkRFBQknJycREhIiBg1apTIzc01rvPDDz+I+Ph44erqKry8vESfPn3EggULTPp8RPZOEsLMk+hERPVOnTqF0NBQZGZmNhpMbe+ud9VtS5k4cSIOHz6MrVu3WnxbQMt/PiJrwQs8EhE1QXBwMEaOHNns7/uf//wHe/fuxfHjx/HRRx9h2bJlSE5ObvbtXEuPHj2QmJjYItsisjYcY0REdAvi4uKMV8/+87im5rB7927Mnj0b5eXl6NSpEz788EM88cQTzb6da/n+++9RW1sLAPDy8mqRbRJZC55KIyIiIqrHU2lERERE9ViMiIiIiOqxGBERERHVYzEiIiIiqsdiRERERFSPxYiIiIioHosRERERUT0WIyIiIqJ6LEZERERE9f4fE0o2yCt94IMAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "n_gal = 1\n", - "d_array = []\n", - "g_array = []\n", - "for i in range(12):\n", - " position = galsim.PositionD(3.0 ** i, 0.)\n", - " # get the shear\n", - " shear = shear_obj.get_shear(z_source, position)\n", - " g1 = shear.g1\n", - " g2 = shear.g2\n", - " gabs = np.abs(g1 + 1j * g2)\n", - " d_array.append(3 ** i)\n", - " g_array.append(gabs)\n", - "d_array = np.array(d_array)\n", - "g_array = np.array(g_array)\n", - "\n", - "print(d_array)\n", - "print(g_array)\n", - "plt.close()\n", - "fig, ax = plt.subplots()\n", - "ax.plot(d_array / 3600., g_array)\n", - "ax.set_xscale(\"log\")\n", - "ax.set_yscale(\"log\")\n", - "ax.set_xlabel(\"separation [degree]\")\n", - "ax.set_ylabel(r\"$|g|$\")" - ] - }, - { - "cell_type": "code", - "execution_count": 61, - "id": "45d40de9-7fe9-413e-a481-347276e28c82", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAINCAYAAACeQx1BAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA8dElEQVR4nO3deVxVdeL/8fcFBFwAd5CkXKqfNmgmaONSagvibk1a5ljmUppmljOW1besMa2mrEbNJcpMnVxbzNS0TE1NU1xTy8k0VyStuIoCAuf3R9MZrrggwfnc5fV8PO7j4edzD/D2ZN63n/O557osy7IEAADgkCDTAQAAQGChfAAAAEdRPgAAgKMoHwAAwFGUDwAA4CjKBwAAcBTlAwAAOIryAQAAHBViOoC3yc/P1+HDhxURESGXy2U6DgAAPsOyLJ04cUKxsbEKCjr/+gbl4yyHDx9WXFyc6RgAAPisAwcOqGbNmud9nvJxloiICEm/nbjIyEjDaQAA8B1ut1txcXH2a+n5UD7O8vullsjISMoHAADFcLFtC2w4BQAAjqJ8AAAAR1E+AACAoygfAADAUZQPAADgKMoHAABwFOUDAAA4ivIBAAAcRfkAAACOonwAAABHUT4AAICjKB8AAMBRlA8AAOAoygcAAHAU5QMAADgqxHQAAIElOztbx48f93j8/PPPheYKzqekpKhTp06mowMoIZQPAMV28uRJHTly5ILF4ezHqVOnLvnnpKenl0J6AKZQPgAU25QpUzRs2LBS/znHjx8v9Z8BwDmUDwDFVqVKlRL9fuXKlVOVKlVUuXJlValSxX5ce+21JfpzAJhF+QBQbJUrVz7nfHBw8DlLxNnjs+fCw8Md/h04Iysry29/b0BxUD4AFFtCQoJmzpxZqERERkbK5XKZjuc1evbsqW+++Ubt2rVTcnKyWrVqpbJly5qOBRjjsizLMh3Cm7jdbkVFRSkjI0ORkZGm4wDwcWfOnFHVqlXldrvtufDwcLVq1couI1dffTVlDX6hqK+hrHwAfuLXX3/VggULFBERodtuu810HPzXunXrPIqH9NtlmE8//VSffvqpJKlWrVpKTk5Wu3bt1KZNG0VERJiICjiGlY+zsPIBX5KRkaEFCxZozpw5+vTTT3XmzBklJiZqw4YNpqPhv/bt26dp06ZpyZIlWr9+vS72V26ZMmXUsmVLJScnKzk5WQ0aNGBVBD6jqK+hlI+zUD7g7dxutz7++GPNmTNHS5YsUU5OTqFjfvjhB9WuXdtAOlzI8ePH9dlnn2nx4sVasmSJjh49etGviY2NtYvIrbfeqooVK5Z+UKCYKB/FRPmANzpx4oQWLlyoOXPmaPHixcrOzj7vsREREZo5cyZ3BPVy+fn52rZtm5YsWaLFixdr7dq1ys3NveDXBAcH689//rNdRho3bqygID4lA96D8lFMlA94i5MnT+qTTz7RnDlztGjRImVlZZ332AoVKqhz587q3r272rZty9s6fVBGRoaWL19ul5EDBw5c9GuqVaumtm3bKjk5WR07dlRUVJQDSYHzo3wUE+UDJmVmZmrRokWaM2eOPvnkE50+ffq8x5YvX16dOnVS9+7dlZyczFs3/YhlWdq1a5eWLFmiJUuWaOXKlee8vFZQamqqGjdu7FBC4NwoH8VE+YDTTp06pcWLF2vOnDlauHDhBT/7pFy5curYsaO6d++udu3aqVy5cg4mhSmZmZlasWKFXUa+//57j+erV6+uI0eOcAkGxvFWW8CLnT592qNwZGZmnvfYsmXLqkOHDurevbvat2+v8uXLO5gU3qB8+fLq0KGDOnToIEn6/vvv7SKyfPlyJScnUzzgU1j5OAsrHyhNubm5uvfee7VgwQKdPHnyvMeFh4erffv26t69uzp06KAKFSo4mBK+JCsrSxkZGYqOjjYdBWDlA/BGISEh+uGHH85ZPMLCwjwKBzeaQlGEh4ezwRg+h/IBOKx79+5at26dJCk0NFTt2rVT9+7d1bFjR1bbAAQEygfgsDvuuEPLly/XnXfeqU6dOvH2SAABh/IBOCwuLk4ff/yx6RgAYAzbowEAgKMoHwAAwFGUDwAA4CjKBwAAcBTlAwAAOIryAQAAHEX5AAAAjqJ8AAAAR1E+AACAoygfAADAUZQPAADgKMoHAABwFOUDAOCo3NxcnTx50nQMGET5AAA4atSoUWrcuLE2btxoOgoMoXwAABzz5Zdf6h//+If+85//qFmzZnrppZeUn59vOhYcRvkAADjCsiw9/vjjdtnIzc3VY489pqSkJB0+fNhwOjiJ8gEAcITL5dKCBQt02223ecx//vnnatiwoRYsWGAoGZxG+QAAOKZKlSqaP3++Jk+erLJly9rzx48fV5cuXTRo0CCdPn3aYEI4gfIBn5eVlaUNGzaYjgGgiFwul+6//36lpqbq2muv9XjujTfeUGJiorZt22YoHZxA+YBP279/v2644QbddNNN2rlzp+k4AC5B/fr1tX79ej3yyCMe8zt37lTTpk01btw4WZZlKB1Kk8+WjzFjxsjlcmno0KH2nGVZGjlypGJjY1W2bFm1bt1aO3bsMBcSpWrFihVKSEjQxo0bdfLkSd12223KyMgwHQvAJQgLC9PYsWO1ePFiVa9e3Z7Pzs7WkCFD1LFjR6WnpxtMiNLgk+Vjw4YNmjJliho2bOgx/9JLL2ns2LEaP368NmzYoJiYGN166606ceKEoaQoDZZl6bXXXtMtt9yiY8eO2fPHjx/X999/bzAZgOJKTk7Wtm3b1K5dO4/5RYsWqWHDhvr0008NJUNp8LnycfLkSfXs2VNvvvmmKlWqZM///oL05JNP6vbbb1d8fLymTZumU6dO6d///rfBxChJp06dUq9evfTII48oLy/Pnr/uuuuUmpqqhIQEg+kA/BHR0dH65JNP9Prrrys0NNSeP3r0qJKTkzVs2DBlZ2cbTIiS4nPlY9CgQerQoYNuueUWj/m9e/cqLS1NSUlJ9lxYWJhatWqltWvXnvf7ZWdny+12ezzgnfbt26cWLVpo5syZHvO9evXSmjVrdMUVVxhKBqCkuFwuDRkyRBs2bNA111zj8dzYsWP15z//Wd9++62hdCgpPlU+Zs2apU2bNmnMmDGFnktLS5P0W3MuKDo62n7uXMaMGaOoqCj7ERcXV7KhUSI+++wzJSQkaMuWLfZccHCw/vWvf2natGkeb9kD4PsaNmyoDRs2aODAgR7zW7ZsUUJCglJSUtiM6sN8pnwcOHBADz/8sGbMmKHw8PDzHudyuTzGlmUVmitoxIgRysjIsB8HDhwoscz44yzL0j//+U+1bdtWP//8sz1frVo1ff7553rooYcu+N8XgO8qV66c3njjDX344YeqXLmyPX/q1Cn1799f3bp18/h7Ab7DZ8pHamqq0tPTlZCQoJCQEIWEhGjlypX617/+pZCQEHvF4+xVjvT09EKrIQWFhYUpMjLS4wHvkJmZqbvuukvDhw/3+OyHJk2aKDU1Va1atTKYDoBTunTpom3btummm27ymJ8/f76uvfZarVy50lAyFJfPlI+bb75Z27dv15YtW+xHYmKievbsqS1btqhOnTqKiYnRsmXL7K/JycnRypUr1bx5c4PJURx79uxRs2bNNGfOHI/5++67T6tWreLyGBBgLrvsMi1btkwvvviiQkJC7PmDBw+qTZs2evrpp7kM40NCLn6Id4iIiFB8fLzHXPny5VWlShV7fujQoRo9erSuuuoqXXXVVRo9erTKlSunu+++20RkFNOSJUvUo0cP/frrr/ZcmTJl9Prrr2vAgAFcZgECVFBQkIYPH642bdro7rvvtt9ab1mWcnJy+LvBh/jMykdRDB8+XEOHDtWDDz6oxMREHTp0SEuXLlVERITpaCgCy7I0evRotW/f3qN4xMTE6IsvvtDAgQP5ywWAmjRpos2bN+u+++6TJCUmJuq5554znAqXwmWxTuXB7XYrKipKGRkZ7P9w0IkTJ9S7d2+9//77HvPNmjXTvHnzFBsbaygZAG82e/ZsNW7cWFdddZXpKFDRX0N95rIL/Nfu3bvVtWtX7dq1y2P+gQce0Ouvv66wsDBDyQB4uzvvvNN0BBSDX112ge9ZuHChmjRp4lE8QkND9eabb2rSpEkUDwDwQ5QPGJGfn69nn31WnTp18rir7GWXXaZVq1apX79+BtMBAEoTl11gxIMPPqjJkyd7zLVs2VJz585VTEyMoVQAACew8gEj+vbt63FJZfDgwfr8888pHgAQACgfMKJJkyaaOHGiwsLC9M4772jcuHEen2IJAPBfvNX2LLzV1ln79+/X5ZdfbjoGAKAEFPU1lJUPGEXxAIDAQ/kAAACOonwAAABHUT4AAICjKB8AAMBRlA8AAOAoygcAAHAU5QMAADiK8gEAwFncbrfWrl1rOobfonwAAFDADz/8oGbNmqlt27batm2b6Th+ifIBAMB/fffdd7r++uu1c+dOnTx5Up06ddLRo0dNx/I7lA8AAP6rTp06uvbaa+3x/v37dfvttysrK8tgKv9D+QAA4L/KlCmjuXPn6uqrr7bn1q5dq/79+4vPYS05lA8AAAqoVKmSPv74Y1WsWNGemzFjhl544QVzofwM5QMAgLNcffXVmjdvnoKDg+25J554Qu+//77BVP6D8gEAwDncfPPNmjBhgsdcr169tHnzZkOJ/AflAwCA83jggQc0ZMgQe3zq1Cl17txZR44cMZjK91E+AAC4gFdeeUVt27a1xwcPHlSXLl10+vRpg6l8G+UDAIALCAkJ0ezZs1W/fn17bsOGDbrvvvt4B0wxUT4AALiIqKgoffzxx6pSpYo9N3v2bP3jH/8wmMp3UT4AACiCunXr6v3331eZMmXsuWeeeUZz5swxmMo3UT4AACiiG2+8URMnTvSYu/fee7VhwwZDiXwT5QMAgEvQt29fDRs2zB5nZWWpS5cuOnjwoMFUvoXyAQDAJXrxxRfVsWNHe3zkyBF16dJFmZmZBlP5DsoHAACXKDg4WP/+978VHx9vz23atEn33HOP8vPzDSbzDZQPAACKISIiQh9//LGqVatmz73//vt6+umnDabyDZQPAACKqVatWvrggw8UGhpqzz3//POaOXOmwVTej/IBAMAf0KJFC6WkpHjM9e3bV1999ZWhRN6P8gEAwB/Uq1cvjRgxwh5nZ2dr8eLFBhN5N8oHAAAlYNSoUeratauCg4M1YcIEPffcc6Yjea0Q0wEAAPAHQUFBmjFjhjZt2qQbbrjBdByvxsoHAAAlpHz58hSPIqB8BKATJ05o7969pmMAAAIU5SMAjRw5Un/60580evRo5eTkmI4DAAgwLsuyLNMhvInb7VZUVJQyMjIUGRlpOk6J27Ztmxo3bqy8vDxJUlJSkj799FPDqQAA/qCor6GsfASQ/Px8DRgwwC4ekjRgwACDiQAAgYjyEUDefvttj5vedOjQQV27djUXCAAQkCgfAeLYsWN67LHH7HHZsmU1btw4uVwug6kAAIGI8hEghg8frp9//tkeP/XUU6pdu7bBRACAQEX5CACrV6/W1KlT7XG9evX0t7/9zWAiAEAgo3z4uTNnzmjgwIEec2+88YbHJzACAOAkyoefe+211/TNN9/Y47/+9a9q06aNwUQAgEDHfT7O4k/3+di/f7/q16+vU6dOSZIqVqyob7/9VtHR0YaTAQD8Eff5gB5++GG7eEjS6NGjKR4AAOMoH35q4cKF+vDDD+1xkyZNdP/995sLBADAf1E+/NCpU6f00EMP2eOgoCBNmjRJwcHBBlMBAPAbyocfGjVqlPbt22ePBw0apMaNG5sLBABAAWw4PYuvbzjdtWuXrr32Wp05c0aSFBMTo2+//VZRUVGGkwEA/B0bTgOQZVl68MEH7eIhSa+++irFAwDgVSgffmTGjBlasWKFPb7lllt05513mgsEAMA5UD78xC+//KJhw4bZ49DQUE2YMIEPjgMAeB3Kh5944okn9NNPP9njxx9/XFdffbXBRAAAnBvlww98/fXXmjx5sj2uU6eOHn/8cYOJAAA4P8qHj8vNzdWAAQNU8E1LEyZMUNmyZQ2mAgDg/CgfPu7zzz/X5s2b7fEdd9yh5ORkg4kAALgwyoePa9u2rb744gvVq1dPFSpU0GuvvWY6EgAAFxRiOgD+uNatW2vr1q3asmWLLrvsMtNxAAC4IFY+/ERoaKiaNm1qOgYAABdF+QAAAI6ifAAAAEdRPgAAgKMoHwAAwFGUDwAA4CjKBwAAcBTlAwAAOIryAQAAHOUz5WPMmDFq0qSJIiIiVL16dXXt2lXfffedxzGWZWnkyJGKjY1V2bJl1bp1a+3YscNQYgAAcC4+Uz5WrlypQYMGad26dVq2bJlyc3OVlJSkzMxM+5iXXnpJY8eO1fjx47VhwwbFxMTo1ltv1YkTJwwmBwAABbmsgp/F7kN++uknVa9eXStXrtSNN94oy7IUGxuroUOH6rHHHpMkZWdnKzo6Wi+++KIeeOCBIn1ft9utqKgoZWRkKDIysjR/CwAA+JWivob6zMrH2TIyMiRJlStXliTt3btXaWlpSkpKso8JCwtTq1attHbt2vN+n+zsbLndbo8HAADezrIs+ej6gW+WD8uy9Oijj6ply5aKj4+XJKWlpUmSoqOjPY6Njo62nzuXMWPGKCoqyn7ExcWVXnAAAP6g3bt36+mnn1bdunX15Zdfmo5TLCGmAxTH4MGDtW3bNq1evbrQcy6Xy2NsWVahuYJGjBihRx991B673W4KCADAKx09elT16tWzVzymT5+uG2+80XCqS+dzKx8PPfSQFixYoC+++EI1a9a052NiYiSp0CpHenp6odWQgsLCwhQZGenxAADAG0VHR6t169b2eO7cucrKyjIXqJh8pnxYlqXBgwfr/fff1/Lly1W7dm2P52vXrq2YmBgtW7bMnsvJydHKlSvVvHlzp+MCAFAqevXqZf86IyNDH3/8scE0xeMz5WPQoEGaMWOG/v3vfysiIkJpaWlKS0vT6dOnJf12uWXo0KEaPXq0PvjgA33zzTfq3bu3ypUrp7vvvttwegAASsZf/vIXhYeH2+Pp06cbTFM8PvNW2/Pt25g6dap69+4t6bfVkWeffVaTJ0/WL7/8ouuvv14TJkywN6UWBW+1BQB4ux49emjWrFmSpJCQEB0+fFjVqlUznKror6E+Uz6cQvkAAHi7RYsWqUOHDvZ43LhxGjx4sMFEv/H7+3wAABCokpKSVL16dXvsa5deKB8AAPiYkJAQ9ejRwx5//fXXhT7vzJtRPryMZVlauHChx2fWAABwtoLvepGkGTNmGEpy6SgfXmbTpk3q1KmTqlatqs6dO2v79u2mIwEAvFDjxo1Vv359ezxjxgzl5+cbTFR0lA8v89FHH0mSsrKy9PHHH3u8nQoAgN+5XC6P1Y99+/ZpzZo1BhMVHeXDy/xePiSpfv36uuqqqwymAQB4s549e3qMfWXjKeXDi+zdu1fbtm2zx126dDGYBgDg7S6//HKP263PmTPHJ263TvnwIgsWLPAYUz4AABdz9u3WFy5caDBN0VA+vEjBSy4xMTFq2rSpwTQAAF9wxx13+Nzt1ikfXuLnn3/WqlWr7HGnTp0UFMR/HgDAhUVGRnqslC9atEjHjh0zmOjieHXzEosWLVJeXp495pILAKCoCl56yc3N1ezZsw2muTjKh5coeMmlfPnyuvnmmw2mAQD4kqSkJI8PlvP2Sy+UDy+QnZ2tJUuW2OO2bdtyfw8AQJGVKVPG43br69ev1+7duw0mujDKhxdYvny5Tp48aY+55AIAuFS+dLt1yocXKHjJJTg42ONjkgEAKIqEhATVq1fPHs+YMUOWZRlMdH6UD8Py8/M97u/RsmVLValSxWAiAIAvOvt263v37vXa261TPgzbuHGjjhw5Yo+55AIAKC5fud065cOwgpdcJMoHAKD4rrjiCrVq1UrBwcFq166d2rVrZzrSOYWYDhDoCpaP+Ph41alTx2AaAICvGz9+vKpVq6bo6GjTUc6L8mHQnj17tGPHDnvMqgcA4I+Kj483HeGiuOxiEJdcAACBiPJhUMHyERsbq4SEBINpAABwBuXDkGPHjmn16tX2uHPnznyQHAAgIPBqZ8jChQuVn59vj7nkAgAIFJQPQwpecomIiFCbNm0MpgEAwDmUDwNOnz6tpUuX2uPk5GSFhYUZTAQAgHMoHwZ89tlnOnXqlD3u2rWruTAAADiM8mFAnTp1NGTIEF1xxRUKCQlR+/btTUcCAMAxLstbP/LOELfbraioKGVkZCgyMrJUf5ZlWfrhhx9Ut27dUv05AAA4oaivoax8GORyuSgeAICAQ/kAAACOonwAAABHUT4AAICjKB8AAMBRlA8AAOAoygcAAHAU5QMAADiK8gEAABxF+QAAAI6ifAAAAEdRPgAAgKMoHwAAwFGUDwAA4CjKBwAAcBTlAwAAOIryAQAAHEX5AAAAjqJ8AAAAR1E+AACAoygfAADAUZQPAADgKMoHAABwFOUDAAA4ivIBAAAcRfkAAACOonwAAABHUT4AAICjKB8AAMBRlA8AAOAoygcAAHAU5QMAADiK8gEAABxF+QAAAI6ifAAAAEdRPgAAgKNCTAcAAADOcrlc9q8ty3L857PyAQAAHEX5AAAAjqJ8AAAAR1E+AACAoygfAADAUZQPAADgKMoHAABwlF+WjzfeeEO1a9dWeHi4EhIS9OWXX5qOBAAA/svvysfs2bM1dOhQPfnkk9q8ebNuuOEGtWvXTvv373c8y8mTJ7V//37t2LFDmzZtcvznAwDgjS65fPTu3VurVq0qjSwlYuzYserbt6/69eun+vXr67XXXlNcXJwmTpzoeJb/+7//0xVXXKH4+HjdfPPNjv98AAC80SWXjxMnTigpKUlXXXWVRo8erUOHDpVGrmLJyclRamqqkpKSPOaTkpK0du3ac35Ndna23G63x6OkRERE2L8+ceKEkVvYAgDgbS65fMyfP1+HDh3S4MGDNXfuXNWqVUvt2rXTvHnzdObMmdLIWGTHjh1TXl6eoqOjPeajo6OVlpZ2zq8ZM2aMoqKi7EdcXFyJ5alQoYL967y8PGVnZ5fY9wYAwFcVa89HlSpV9PDDD2vz5s36+uuvdeWVV6pXr16KjY3VI488ov/85z8lnfOSFPzAHOm3D805e+53I0aMUEZGhv04cOBAieUouPIh/bb6AQBAoPtDG06PHDmipUuXaunSpQoODlb79u21Y8cOXXPNNXr11VdLKmORVa1aVcHBwYVWOdLT0wuthvwuLCxMkZGRHo+SUnDlQ/ptAyoAAIHuksvHmTNnNH/+fHXs2FFXXHGF5s6dq0ceeURHjhzRtGnTtHTpUk2fPl3PPfdcaeS9oNDQUCUkJGjZsmUe88uWLVPz5s0dz8PKBwAAhYVc6hfUqFFD+fn56tGjh77++ms1atSo0DFt27ZVxYoVSyDepXv00UfVq1cvJSYmqlmzZpoyZYr279+vAQMGOJ6FlQ8AAAq75PLx6quvqlu3bgoPDz/vMZUqVdLevXv/ULDiuvPOO3X8+HE999xzOnLkiOLj47Vo0SJdccUVjmdh5QMAgMIuuXz06tWrNHKUqAcffFAPPvig6RisfAAAcA5+d4dTb8LKBwAAhVE+StHZKx+UDwAAKB+l6uyVDy67AABA+ShVZcqUUVhYmD1m5QMAAMpHqSt46YWVDwAAKB+l7uwPlwMAINBd8lttcWlY+QAAeBvTn7LOykcpY+UDAABPlI9SxsoHAACeKB+ljJUPAAA8UT5KWcGVD8oHAACUj1JXcOWDyy4AAFA+Sh0rHwAAeKJ8lLKCKx9ZWVnKzc01mAYAAPMoH6Xs7A+X49ILACDQUT5KGR8uBwCAJ+5wWsrq1KmjTp06qXz58oqIiFBoaKjpSAAAGOWyTN9j1cu43W5FRUUpIyNDkZGRpuMAAOAzivoaymUXAADgKMoHAABwFOUDAAA4ivIBAAAcRfkAAACOonwAAABHUT4AAICjKB8AAMBRlA8AAOAoygcAAHAU5QMAADiK8gEAABxF+QAAAI6ifAAAAEdRPgAA8HO7du3Sr7/+ajqGjfIBAICfu/fee1WlShUlJibqX//6l+k4lA8AAPxZRkaGUlNTlZ+fr9TUVO3du9d0JMoHAAD+bNWqVcrPz7fHN910k8E0v6F8AADgx7744gv710FBQbrxxhsNpvlvDtMBAABA6Vm+fLn964SEBEVFRRlM8xvKBwAAfur48ePaunWrPW7Tpo3BNP9D+QAAwE+tWLHCY+wN+z0kygcAAH6r4H6PkJAQtWjRwmCa/6F8AADgpwru97j++utVoUIFg2n+h/IBAIAfOnLkiHbt2mWPvWW/h0T5AADAL3nrfg+J8gEAgF8qeMklLCxMzZo1M5jGE+UDAAA/VHCzafPmzRUeHm4wjSfKBwAAfmb//v3as2ePPfamSy4S5QMAAL9TcNVD8q7NphLlAwAAv1Nwv0f58uXVpEkTg2kKo3wAAOBHLMvyWPlo2bKlQkNDDSYqjPIBAIAf2bNnjw4cOGCPvW2/h0T5AADAr3j7fg+J8gEAgF8puN8jKipK1113ncE050b5AADAT5y93+PGG29USEiIwUTnRvkAAMBP7Nq1S0ePHrXH3rjfQ6J8AADgN3xhv4dE+QAAwG8U3O9RpUoVNWjQwGCa86N8AADgJ44fP27/unXr1goK8s6Xee/bhQIAAIplxYoVSk9P14oVKxQdHW06znlRPgAA8CPVq1dX9+7dTce4IO9cjwEAAH6L8gEAABxF+fAy+fn5Wrp0qZ599lnTUQAAKBXs+fAin376qYYMGaLdu3dLknr06KGrr77acCoAAEoWKx9epEKFCnbxkKSJEycaTAMAQOmgfHiR5s2bq1GjRvZ46tSpyszMNBcIAIBSQPnwIi6XS4MGDbLHGRkZmjlzpsFEAACUPMqHl7n77rtVsWJFezxhwgRZlmUuEAAAJYzy4WXKlSunPn362ONt27Zp9erVBhMBAFCyKB9eaODAgXK5XPZ4woQJBtMAAFCyKB9e6Morr1RycrI9nj9/vo4cOWIwEQAAJYfy4aUKbjzNzc3VlClTDKYBAKDkUD68VHJysurUqWOPJ0+erDNnzhhMBABAyfCJ8rFv3z717dtXtWvXVtmyZVW3bl0988wzysnJ8Thu//796tSpk8qXL6+qVatqyJAhhY7xFcHBwRo4cKA9PnLkiD744AODiQAAKBk+UT6+/fZb5efna/LkydqxY4deffVVTZo0SU888YR9TF5enjp06KDMzEytXr1as2bN0vz58zVs2DCDyf+YPn36KDw83B6z8RQA4A9clo/eROKf//ynJk6cqB9++EGStHjxYnXs2FEHDhxQbGysJGnWrFnq3bu30tPTFRkZWaTv63a7FRUVpYyMjCJ/TWnq27ev3n77bXu8bds2NWjQwGAiAADOraivoT6x8nEuGRkZqly5sj3+6quvFB8fbxcPSWrbtq2ys7OVmppqImKJKLjxVGL1AwDg+3yyfOzZs0fjxo3TgAED7Lm0tDRFR0d7HFepUiWFhoYqLS3tvN8rOztbbrfb4+FNGjdurGbNmtnj6dOn69dffzUXCACAP8ho+Rg5cqRcLtcFHxs3bvT4msOHDys5OVndunVTv379PJ4reGOu31mWdc75340ZM0ZRUVH2Iy4urmR+cyWo4OrHqVOnNG3aNINpAAD4Y4zu+Th27JiOHTt2wWNq1aplb7o8fPiw2rRpo+uvv17vvPOOgoL+152efvppffTRR9q6das998svv6hy5cpavny52rRpc87vn52drezsbHvsdrsVFxfnNXs+pN8yXn755UpPT5ckXX311dq1a5fH7x8AANOKuucjxMFMhVStWlVVq1Yt0rGHDh1SmzZtlJCQoKlTpxZ64W3WrJmef/55HTlyRDVq1JAkLV26VGFhYUpISDjv9w0LC1NYWFjxfxMOCAsLU//+/fX8889Lknbv3q3PP/9ct956q+FkAABcOp/4p/Phw4fVunVrxcXF6eWXX9ZPP/2ktLQ0j70cSUlJuuaaa9SrVy9t3rxZn3/+uf72t7+pf//+XrOC8Uc88MADCg4Otsfjx483mAYAgOLzifKxdOlSff/991q+fLlq1qypGjVq2I/fBQcH65NPPlF4eLhatGih7t27q2vXrnr55ZcNJi85cXFx6tKliz1euHCh9u3bZy4QAADF5LP3+Sgt3nafj4K++OIL3XTTTfb4scce0wsvvGAwEQAA/+P39/kIRK1bt9Y111xjj1NSUpSVlWUwEQAAl47y4UNcLpcefPBBe3z8+HHNmTPHYCIAAC4d5cPH3HPPPYqIiFDFihX16KOP6oYbbjAdCQCAS2L0rba4dBEREVqyZIkaNWqkcuXKmY4DAMAlo3z4oObNm5uOAABAsXHZBQAAOIryAQAAHEX5AAAAjqJ8AAAAR1E+AACAoygfAADAUZQPAADgKMoHAABwFOUDAAA4ivIBAAAcRfkAAACOonwAAGDI3Llz9euvv5qO4TjKBwAABqxdu1Z33XWX4uPjtXTpUtNxHEX5AADAYZmZmbrnnnuUn5+vQ4cOqW3bttq8ebPpWI6hfAAA4LDhw4drz5499vjuu+/WddddZzCRsygfAAA4aNmyZXrjjTfscWxsrMaPH28wkfMoHwAAOOTXX39Vnz59PObeeustVapUyVAiMygfAAA45OGHH9bBgwft8QMPPKDk5GSDicygfAAA4IAPP/xQ7777rj2uXbu2Xn75ZYOJzKF8AABQytLT03X//ffbY5fLpWnTpqlChQoGU5lD+QgwWVlZGjhwoGbPnm06CgAEBMuyNHDgQP3000/23KOPPqobbrjBYCqzKB8BZM+ePWrevLkmTZqk/v37a/fu3aYjAYDfmzlzpt5//317fM0112jUqFEGE5lH+Qgg06ZNs29ic+LECXXr1k2nT582nAoA/NfBgwc1ePBgexwcHKx3331X4eHhBlOZR/kIIE8//bTHMt+2bdv08MMPG0wEAP7Lsiz17dtXGRkZ9txTTz2lhIQEg6m8A+UjgISEhOi9995TtWrV7Lk333xT06dPN5gKAPzT5MmTPT6zJSEhQU8++aTBRN6D8hFgLrvsMs2cOVMul8ueGzBggHbu3GkwFQD4lz179uhvf/ubPQ4LC9O7776rMmXKGEzlPSgfAejWW2/V008/bY9PnTqlbt26KTMz02AqAPAPeXl5uvfeez3+Tn3++ed1zTXXGEzlXSgfAer//u//dPPNN9vjnTt3auDAgbIsy2AqAPB9Y8eO1Zo1a+zxDTfcoKFDh5oL5IUoHwEqODhYM2fOVExMjD03ffp0vf322wZTAYBv++abb/TUU0/Z4/Lly+udd95RcHCwwVTeh/IRwKKjozVr1iwFBf3vj8HgwYO1detWg6kAwDedOXNG99xzj3Jycuy5V155RXXq1DGYyjtRPgJcq1atPG52k5WVpW7dusntdhtMBQC+Z9SoUfa9lCQpOTnZ45bq+B/KB/TYY4+pXbt29vg///mP+vfvz/4PACiiDRs26Pnnn7fHFStWVEpKisc7C/E/lA8oKChI7777rmrWrGnPzZkzRxMnTjSYCgB8g2VZGjRokPLy8uy58ePH67LLLjOYyrtRPiBJqlq1qmbPnq2QkBB77pFHHtHGjRsNpgIA7+dyufTee++pZcuWkqS//OUvuvvuuw2n8m6UD9iaN2+uF1980R7n5OSoW7du+uWXXwymAgDvV7duXa1YsUKvv/66Jk6cyOWWi3BZXNj34Ha7FRUVpYyMDEVGRpqO4zjLsnTbbbfpo48+sue6dOmiDz74gP+ZAAAXVNTXUFY+4MHlcmnq1KmqVauWPffRRx/ptddeM5YJAOBfKB8opFKlSpo7d65CQ0PtueHDh+urr74ymAoA4C8oHzinxMREjR071h7n5uaqe/fuOnbsmMFUAAB/QPnAeT344IPq1q2bPT548KDuuece5efnG0wFAPB1lA+cl8vlUkpKiq688kp7bvHixZo7d67BVAAAX0f5wAVFRkZq3rx5CgsLU3BwsF566SV1797ddCwAgA8LufghCHTXXnutpk6dqssvv1wtWrQwHQcA4OMoHyiSHj16mI4AAPATXHYBAACOonwAAABHUT4AAICjKB8AAMBRlA8AAOAoygcAAHAU5QMAADiK8gEAABxF+QAABKSsrCx9++23pmMEJMoHACDg/Pzzz7r11lvVqlUr/fDDD6bjBBzKBwAgoOzdu1fNmzfX6tWrlZ6ernbt2un48eOmYwUUygcAIGBs3LhRzZo103fffWfPpaena8+ePQZTBR7KBwAgICxatEitWrXS0aNH7bnLL79ca9asUdOmTQ0mCzyUDwCA33vzzTfVuXNnnTp1yp5r1KiRvvrqK11zzTUGkwUmygcAwG9ZlqWnnnpK999/v/Ly8uz5tm3batWqVYqNjTWYLnCFmA4AAEBpyMnJUd++fTVjxgyP+T59+mjSpEkqU6aMoWRg5QMA4HcyMjLUvn37QsVj5MiRSklJoXgYxsoHAMCvHDx4UO3bt9f27dvtuZCQEE2ZMkX33XefwWT4HeUDAOA3tm3bpvbt2+vQoUP2XIUKFTR//nwlJSUZTIaCKB8AAL/w+eef6/bbb5fb7bbnatSooUWLFqlRo0bmgqEQ9nwAAHzeu+++q+TkZI/i8ac//Unr1q2jeHghygcAwGdZlqVRo0bp3nvvVW5urj3funVrrV69WpdffrnBdDgfLrsAAHxSbm6uBg4cqJSUFI/5u+++W2+//bbCwsIMJcPFsPIBAPA5J0+eVOfOnQsVj8cff1zTp0+neHg5Vj4AAD4lLS1NHTp00KZNm+y5oKAgjR8/XgMHDjSYDEXlcysf2dnZatSokVwul7Zs2eLx3P79+9WpUyeVL19eVatW1ZAhQ5STk2MmKACgxGVlZally5YexaNs2bL64IMPKB4+xOfKx/Dhw895L/68vDx16NBBmZmZWr16tWbNmqX58+dr2LBhBlICAEpDeHi4HnnkEXtcrVo1rVixQp07dzaYCpfKpy67LF68WEuXLtX8+fO1ePFij+eWLl2qnTt36sCBA3Y5eeWVV9S7d289//zzioyMNBEZAFDCBg0apB9//FEffvihFi9erLp165qOhEvkMysfR48eVf/+/TV9+nSVK1eu0PNfffWV4uPjPVZF2rZtq+zsbKWmpp73+2ZnZ8vtdns84Bvy8vK0Zs0a0zEAGPDCCy/o66+/pnj4KJ8oH5ZlqXfv3howYIASExPPeUxaWpqio6M95ipVqqTQ0FClpaWd93uPGTNGUVFR9iMuLq5Es6P0vPHGG2rZsqV69+6tn3/+2XQcAA4KCgpSxYoVTcdAMRktHyNHjpTL5brgY+PGjRo3bpzcbrdGjBhxwe/ncrkKzVmWdc75340YMUIZGRn248CBA3/494XSt2/fPvvPw7Rp01S/fn3NmzdPlmUZTgYAuBijez4GDx6su+6664LH1KpVS6NGjdK6desKvW87MTFRPXv21LRp0xQTE6P169d7PP/LL7/ozJkzhVZECgoLC+P94D5o0aJFyszMtMfp6enq1q2bunbtqgkTJpxzUzIAwDu4LB/4p+L+/fs99mIcPnxYbdu21bx583T99derZs2aWrx4sTp27KiDBw+qRo0akqTZs2fr3nvvVXp6epE3nLrdbkVFRSkjI4NNql5u5cqV6tevn77//nuP+aioKL3yyivq06fPBVe9AAAlq6ivoT5RPs62b98+1a5dW5s3b7Y/MCgvL0+NGjVSdHS0/vnPf+rnn39W79691bVrV40bN67I35vy4VtOnz6tZ599Vi+//LLy8vI8nrvppps0ZcoUNqQBgEOK+hrqExtOiyI4OFiffPKJwsPD1aJFC3Xv3l1du3bVyy+/bDoaSlHZsmX1wgsvaP369br22ms9nlu+fLkaNGigsWPHFiomAABzfHLlozSx8uG7zpw5o5dfflnPPvussrOzPZ5r2rSpUlJS1KBBA0PpAMD/BdzKB1CmTBmNGDFCW7ZsUYsWLTye+/rrr9W4cWM988wzhYoJAMBZlA/4nXr16mnVqlUaP368KlSoYM/n5ubqueeeU+PGjbVu3TqDCQEgsFE+4JeCgoI0aNAg7dixQ8nJyR7P7dy5U82bN9fQoUN18uRJQwkBIHBRPuDXLr/8ci1atEjTp09X5cqV7XnLsvT666+rQYMGWrZsmcGEABB4KB/wey6XS3/961+1a9euQje127dvn5KSktSnTx/98ssvhhICQGChfCBgVK9eXe+9954++uijQndAnTp1qurXr6/58+cbSgcAgYPygYDTuXNn7dy5Uw888IDH/NGjR3XHHXfooYceMpQMAAID5QMBKSoqSpMmTdIXX3yhK6+80uO5du3aGUoFAIGB8oGA1rp1a23dulV///vfFRQUpJ49e6p9+/amYwGAX+MOp2fhDqeBa+PGjapVq5aqVq1qOgoA+KSivoaGOJgJ8GqJiYmmIwBAQOCyCwAAcBTlAwAAOIryAQAAHEX5AIAAZ1mW1q5dqz59+qhfv36m4yAAsOEUAALUTz/9pOnTpyslJUW7du2SJIWGhurFF19UlSpVDKeDP2PlAwACSH5+vpYuXaru3bvrsssu07Bhw+ziIUk5OTmaMWOGwYQIBKx8AEAAOHjwoKZOnaq33npLP/7443mPu/nmm1WvXj0HkyEQUT4AwE+dOXNGCxcuVEpKipYsWaL8/PxzHhcbG6v77rtPffr0UZ06dRxOiUBE+QAAP7N792699dZbeuedd5Senn7OY4KDg9WxY0f169dPycnJCgnh5QDO4U8bAPiB06dPa/78+UpJSdHKlSvPe1zdunXVt29f9e7dWzVq1HAwIfA/lA8A8GFbtmxRSkqKZsyYoYyMjHMeExYWpr/85S/q16+fWrVqpaAg3msAsygfAOBjMjIy9N577yklJUWpqannPa5Bgwbq37+/evbsqcqVKzuYELgwygcA+JCZM2fq/vvv16lTp875fIUKFdSjRw/1799fiYmJcrlcDicELo7yAfi4X3/9VVFRUbzIBIgGDRqcs3g0a9ZM/fr1U/fu3VWhQgUDyYCio3wAPu7222/XN998o+bNm6tFixZq0aKFEhISFBYWZjoaSkHDhg3VtGlTff3116pSpYruuece9e3bV3/6059MRwOKzGVZlmU6hDdxu92KiopSRkaGIiMjTccBLujMmTOqWLFioX8Jh4WFKTEx0S4jzZo1U7Vq1QylRElbvHix3G63unbtSsmEVynqayjl4yyUD/iSjRs3qkmTJkU69uqrr7bLSIsWLfT//t//41INgBJF+Sgmygd8yZEjRzRnzhytWbNGa9as0eHDh4v8tVWqVPG4VJOYmKjw8PBSTAvA31E+ionyAV9lWZZ+/PFHu4isWbNG27dvV1H/Fw8NDVVCQoJHIalevXoppwbgTygfxUT5gD/JyMjQunXr7DKyfv16ZWZmFvnrr7zySrVo0UJ9+vTRjTfeWIpJAfgDykcxUT7gz3Jzc7Vt2zaP1ZGDBw9e9OtSUlLUt29fBxIC8GWUj2KifCDQ7N+/3y4ia9eu1datWwt9+umuXbu89mPW8/PzlZOTo+zsbOXk5Hg8zp4rOO7YsSPvFAFKGOWjmCgfCHQnTpzQ+vXr7ULy/fffa8+ePY69M2b48OFKTU29YHEoOM7LyyvWzzl69Ch7WoASVtTXUG4yBsBDRESEbrnlFt1yyy2SftvI6uRbcjdv3qzly5eX+s/Jzs4u9Z8B4Nz4aEMAF+T0vUBCQ0Md+Tk5OTmO/BwAhbHyAcCrNGzYUJmZmQoNDVVoaKjCwsLsX19sfCnHxsXFmf6tAgGLPR9nYc8HAADFU9TXUC67AAAAR1E+AACAoygfAADAUZQPAADgKMoHAABwFOUDAAA4ivIBAAAcRfkAAACOonwAAABHUT4AAICjKB8AAMBRlA8AAOAoygcAAHAU5QMAADiK8gEAABxF+QAAAI6ifAAAAEeFmA7gbSzLkiS53W7DSQAA8C2/v3b+/lp6PpSPs5w4cUKSFBcXZzgJAAC+6cSJE4qKijrv8y7rYvUkwOTn5+vw4cOKiIiQy+UyHcdRbrdbcXFxOnDggCIjI03H8Xmcz5LHOS15nNOSFejn07IsnThxQrGxsQoKOv/ODlY+zhIUFKSaNWuajmFUZGRkQP5PU1o4nyWPc1ryOKclK5DP54VWPH7HhlMAAOAoygcAAHAU5QO2sLAwPfPMMwoLCzMdxS9wPkse57TkcU5LFuezaNhwCgAAHMXKBwAAcBTlAwAAOIryAQAAHEX5AAAAjqJ8wEN2drYaNWokl8ulLVu2eDy3f/9+derUSeXLl1fVqlU1ZMgQ5eTkmAnqxfbt26e+ffuqdu3aKlu2rOrWratnnnmm0LnifF6aN954Q7Vr11Z4eLgSEhL05Zdfmo7kM8aMGaMmTZooIiJC1atXV9euXfXdd995HGNZlkaOHKnY2FiVLVtWrVu31o4dOwwl9i1jxoyRy+XS0KFD7TnO54VRPuBh+PDhio2NLTSfl5enDh06KDMzU6tXr9asWbM0f/58DRs2zEBK7/btt98qPz9fkydP1o4dO/Tqq69q0qRJeuKJJ+xjOJ+XZvbs2Ro6dKiefPJJbd68WTfccIPatWun/fv3m47mE1auXKlBgwZp3bp1WrZsmXJzc5WUlKTMzEz7mJdeekljx47V+PHjtWHDBsXExOjWW2+1P+8K57ZhwwZNmTJFDRs29JjnfF6EBfzXokWLrHr16lk7duywJFmbN2/2eC4oKMg6dOiQPffee+9ZYWFhVkZGhoG0vuWll16yateubY85n5emadOm1oABAzzm6tWrZz3++OOGEvm29PR0S5K1cuVKy7IsKz8/34qJibFeeOEF+5isrCwrKirKmjRpkqmYXu/EiRPWVVddZS1btsxq1aqV9fDDD1uWxfksClY+IEk6evSo+vfvr+nTp6tcuXKFnv/qq68UHx/vsSrStm1bZWdnKzU11cmoPikjI0OVK1e2x5zPosvJyVFqaqqSkpI85pOSkrR27VpDqXxbRkaGJNl/Jvfu3au0tDSPcxwWFqZWrVpxji9g0KBB6tChg2655RaPec7nxfHBcpBlWerdu7cGDBigxMRE7du3r9AxaWlpio6O9pirVKmSQkNDlZaW5lBS37Rnzx6NGzdOr7zyij3H+Sy6Y8eOKS8vr9D5io6O5lwVg2VZevTRR9WyZUvFx8dLkn0ez3WOf/zxR8cz+oJZs2Zp06ZN2rBhQ6HnOJ8Xx8qHHxs5cqRcLtcFHxs3btS4cePkdrs1YsSIC34/l8tVaM6yrHPO+6Oins+CDh8+rOTkZHXr1k39+vXzeC7Qz+elOvu8cK6KZ/Dgwdq2bZvee++9Qs9xjovmwIEDevjhhzVjxgyFh4ef9zjO5/mx8uHHBg8erLvuuuuCx9SqVUujRo3SunXrCn0WQWJionr27Klp06YpJiZG69ev93j+l19+0ZkzZwq1e39V1PP5u8OHD6tNmzZq1qyZpkyZ4nEc57PoqlatquDg4EKrHOnp6ZyrS/TQQw9pwYIFWrVqlWrWrGnPx8TESPrtX+w1atSw5znH55aamqr09HQlJCTYc3l5eVq1apXGjx9vv5OI83kBBvebwEv8+OOP1vbt2+3Hp59+akmy5s2bZx04cMCyrP9tkDx8+LD9dbNmzWKD5HkcPHjQuuqqq6y77rrLys3NLfQ85/PSNG3a1Bo4cKDHXP369dlwWkT5+fnWoEGDrNjYWGv37t3nfD4mJsZ68cUX7bns7Gw2SJ6H2+32+Dtz+/btVmJiovXXv/7V2r59O+ezCCgfKGTv3r2F3u2Sm5trxcfHWzfffLO1adMm67PPPrNq1qxpDR482FxQL3Xo0CHryiuvtG666Sbr4MGD1pEjR+zH7zifl2bWrFlWmTJlrLfeesvauXOnNXToUKt8+fLWvn37TEfzCQMHDrSioqKsFStWePx5PHXqlH3MCy+8YEVFRVnvv/++tX37dqtHjx5WjRo1LLfbbTC57yj4bhfL4nxeDOUDhZyrfFjWbyskHTp0sMqWLWtVrlzZGjx4sJWVlWUmpBebOnWqJemcj4I4n5dmwoQJ1hVXXGGFhoZajRs3tt8mios735/HqVOn2sfk5+dbzzzzjBUTE2OFhYVZN954o7V9+3ZzoX3M2eWD83lhLsuyLANXewAAQIDi3S4AAMBRlA8AAOAoygcAAHAU5QMAADiK8gEAABxF+QAAAI6ifAAAAEdRPgAAgKMoHwAAwFGUDwAA4CjKBwCv9tNPPykmJkajR4+259avX6/Q0FAtXbrUYDIAxcVnuwDweosWLVLXrl21du1a1atXT9ddd506dOig1157zXQ0AMVA+QDgEwYNGqTPPvtMTZo00datW7VhwwaFh4ebjgWgGCgfAHzC6dOnFR8frwMHDmjjxo1q2LCh6UgAiok9HwB8wg8//KDDhw8rPz9fP/74o+k4AP4AVj4AeL2cnBw1bdpUjRo1Ur169TR27Fht375d0dHRpqMBKAbKBwCv9/e//13z5s3T1q1bVaFCBbVp00YRERFauHCh6WgAioHLLgC82ooVK/Taa69p+vTpioyMVFBQkKZPn67Vq1dr4sSJpuMBKAZWPgAAgKNY+QAAAI6ifAAAAEdRPgAAgKMoHwAAwFGUDwAA4CjKBwAAcBTlAwAAOIryAQAAHEX5AAAAjqJ8AAAAR1E+AACAoygfAADAUf8fbrvOF6Q/tGwAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "cosmo = FlatLambdaCDM(H0=70.0, Om0=0.27, Ob0=0.045)\n", - "\n", - "shear_obj = ShearNFW(zl_list=[1.], M200_list=[1e15], c_list=[4.0], cosmo=cosmo)\n", - "# generate positions\n", - "radius = 50 # arcsec\n", - "n_gal = 20\n", - "theta = np.linspace(0, 360, n_gal) / n_gal\n", - "x = np.cos(theta) * radius\n", - "y = np.sin(theta) * radius\n", - "shifts = np.zeros(n_gal, dtype=[('dx', 'f8'), ('dy', 'f8')])\n", - "shifts['dx'] = x\n", - "shifts['dy'] = y\n", - "\n", - "shift_list = []\n", - "for ss in shifts:\n", - " shift_list.append(galsim.PositionD(ss['dx'], ss['dy']))\n", - "\n", - "# get the shear\n", - "shear_list = []\n", - "for ss in shift_list:\n", - " shear_list.append(shear_obj.get_shear(z_source, ss))\n", - " \n", - "gamma = []\n", - "for ss in shear_list:\n", - " gamma.append(ss.g1 + 1j * ss.g2) \n", - "gamma = np.array(gamma)\n", - "\n", - "angles = np.angle(gamma, deg=True) / 2.\n", - "lengths = np.abs(gamma) * 100.\n", - "\n", - "# Create whisker plot\n", - "plt.figure(figsize=(6, 6))\n", - "plt.quiver(x, y, np.cos(np.deg2rad(angles)), np.sin(np.deg2rad(angles)),\n", - " color=\"black\", headaxislength=0, headlength=0, headwidth=1, pivot = 'middle')\n", - "plt.xlabel('x')\n", - "plt.ylabel('y')\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 62, - "id": "b22ff0a9-6ce6-49e2-bef7-1a91a16ee4dd", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[ 1 3 9 27 81 243 729 2187 6561 19683\n", - " 59049 177147]\n", - "[8.26751816e-02 8.26215008e-02 8.22711368e-02 8.02829024e-02\n", - " 7.16882521e-02 4.92520061e-02 2.14542996e-02 5.89296747e-03\n", - " 1.17895828e-03 1.96054091e-04 2.92963630e-05 4.10083070e-06]\n" - ] - }, - { - "data": { - "text/plain": [ - "[]" - ] - }, - "execution_count": 62, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "n_gal = 1\n", - "d_array = []\n", - "g_array = []\n", - "for i in range(12):\n", - " position = galsim.PositionD(3.0 ** i, 0.)\n", - " # get the shear\n", - " shear = shear_obj.get_shear(z_source, position)\n", - " g1 = shear.g1\n", - " g2 = shear.g2\n", - " gabs = np.abs(g1 + 1j * g2)\n", - " d_array.append(3 ** i)\n", - " g_array.append(gabs)\n", - "d_array = np.array(d_array)\n", - "g_array = np.array(g_array)\n", - "print(d_array)\n", - "print(g_array)\n", - "ax.plot(d_array / 3600., g_array)" - ] - }, - { - "cell_type": "code", - "execution_count": 64, - "id": "0d0c3bed-89c3-4c13-aec1-ffedff1a0956", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[ 1 3 9 27 81 243 729 2187 6561 19683\n", - " 59049 177147]\n", - "[2.47424027e-01 5.30458122e-01 4.51641183e+00 3.92914418e-01\n", - " 1.43436687e-01 4.35660410e-02 9.72263335e-03 1.73440286e-03\n", - " 2.70341617e-04 3.88561182e-05 5.30434563e-06 6.99305314e-07]\n" - ] - }, - { - "data": { - "text/plain": [ - "[]" - ] - }, - "execution_count": 64, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "d_array = []\n", - "g_array = []\n", - "ghalo = galsim.NFWHalo(mass=1e15, conc=4, redshift=1.0, omega_m=0.27, omega_lam=0.73)\n", - "for i in range(12):\n", - " position = galsim.PositionD(3.0 ** i, 0.)\n", - " # get the shear\n", - " g1, g2 = ghalo.getShear(position, z_source)\n", - " gabs = np.abs(g1 + 1j * g2)\n", - " d_array.append(3 ** i)\n", - " g_array.append(gabs)\n", - "d_array = np.array(d_array)\n", - "g_array = np.array(g_array)\n", - "print(d_array)\n", - "print(g_array)\n", - "ax.plot(d_array / 3600., g_array)" - ] - }, - { - "cell_type": "code", - "execution_count": 65, - "id": "d6cb97de-5125-4fdf-927a-8b1dca7c4141", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAG9CAYAAADwYLkrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACBHElEQVR4nOzdd1gU1/7H8fcWuoACiqDYG4iiIBaMPWLUaNR0jV1jS1FTbvyZm2YSE40lUTR2EkvUFE0zURJrNCKi2HsDFUSKdFh2d35/LGK4xgSU3aV8X8/DgzszO+e7c8nlw5kz56gURVEQQgghhBCorV2AEEIIIURZIcFICCGEEKKABCMhhBBCiAISjIQQQgghCkgwEkIIIYQoIMFICCGEEKKABCMhhBBCiAISjIQQQgghCkgwEkIIIYQoIMFICCGEEKKABCMhhBBCiAKVMhgNHDiQatWq8cQTT1i7FCGEEEKUIZUyGL300kt8+eWX1i5DCCGEEGVMpQxG3bp1w9nZ2dplCCGEEKKMKXfBaPfu3fTr1w9vb29UKhWbN2++65hFixZRv3597O3tCQoKYs+ePZYvVAghhBDlTrkLRllZWQQEBLBw4cK/3b9hwwYmT57M9OnTOXz4MJ06daJ3797ExsZauFIhhBBClDdaaxdQUr1796Z379733D937lxGjx7NmDFjAJg/fz5bt25l8eLFzJw5s8Tt5eXlkZeXV/jaaDSSkpKCu7s7KpWq5B9ACCGEEBanKAoZGRl4e3ujVt+7X6jcBaN/otPpiI6O5o033iiyPTQ0lH379t3XOWfOnMm7775bGuUJIYQQwsri4uKoXbv2PfdXqGCUlJSEwWDA09OzyHZPT08SEhIKX/fq1YtDhw6RlZVF7dq12bRpE8HBwX97zmnTpjF16tTC12lpadSpU4e4uDhcXFzM80GEEEIIUarS09Px8fH514evKlQwuu1/b3EpilJk29atW4t9Ljs7O+zs7AgLCyMsLAyDwQCAi4uLBCMhhBCinPm3YTDlbvD1P/Hw8ECj0RTpHQJITEy8qxeppCZNmsTJkyeJiop6oPMIIYQQouyqUMHI1taWoKAgIiIiimyPiIggJCTkgc4dFhaGn5/fPW+5CSGEEKL8K3e30jIzMzl//nzh60uXLhETE4Obmxt16tRh6tSpDB06lDZt2tChQweWLl1KbGws48ePf6B2J02axKRJk0hPT8fV1fVBP4YQQgghyqByF4wOHjxIt27dCl/fHhg9fPhwwsPDefrpp0lOTua9994jPj4ef39/tmzZQt26da1VshBCCCHKCZWiKIq1iygP/jr4+uzZs6SlpcngayGEEKKcuH3H599+f0swKqHiXlghhBBClB3F/f1doQZfCyGEEEI8CAlGxSRPpQkhhBAVn9xKKyG5lSaEEEKUP3IrTQghhBCihCQYCSGEEEIUkGBUTDLGSAghhKj4ZIxRCckYo7Jt77W9/B77OxMCJlDdsbq1yxFCCFFGFPf3d7mb+VqIe9l3bR8vbH8BvVHPmdQzrOq1CluNrbXLEkIIUY7IrTRRIRy7eYzJOyejN+oBOHrzKB9Gfoh0iAohhCgJCUai3LuYdpGJv08kR59De6/2LOi+ALVKzbfnvuXrs19buzwhhBDliASjYpLB12VTQlYC4yPGcyvvFs3dmzO/23y6+nTlpdYvATDzwEwOJx62cpVCCCHKCxl8XUIy+LrsSMtLY/gvw7mQdoF6LvX4ovcXuNm7AaAoCq/uepVtV7bh4eDBhkc3UMOxhpUrFkIIYS0ywaOo0HL0OUz6fRIX0i5Qw6EGS3ouKQxFACqVihkdZ9C4WmOScpKYsnMKOoPOihULIYQoDyQYiXIn35jPKztf4cjNIzjbOvN5z8/xruJ913GONo582vVTXGxdZDC2EEKIYpFgJMoVo2Lk7b1vs+faHuw19oT1CKNxtcb3PN7HxYdZnWfJYGwhhBDFIsFIlBuKojDn4Bx+vPgjGpWGOV3n0LpG6399X8daHWUwthBCiGKRYFRM8lSa9a06sYovT34JwHsd36Nz7c7Ffu8o/1H0qtcLvVHPlB1TuJF1w1xlCiGEKMfkqbQSkqfSrGPTuU28te8tAF5t8yrDmw8v8Tmy87N57pfnOJd6jpYeLVn1iMyMLYQQlYU8lSYqjB2xO3j3z3cBGNl85H2FIigYjN2tYDB20lE+iPxABmMLIYQoQoKRKNOib0Tz2u7XMCgGHmv4GFOCpjzQ+XycfZjdeTZqlZrvzn3HxjMbS6lSIYQQFYEEI1FmnUk5w4u/v0ieIY8utbvwTsg7qFSqBz5vSK0QXg58GYCPDnzEoRuHHvicQgghKgYJRqJMuppxlQm/TSAjP4PWNVozu8tstGptqZ1/ZPORPFLvEfSKnqk7p5KQlVBq5xZCCFF+STASZU5yTjLjIsZxM+cmjao2YkH3BThoHUq1DZVKxbsh79KkWhOSc5OZunMqeYa8Um1DCCFE+SPBSJQpmbpMJvw2gdiMWLydvFnScwmudq5macvRxpH53ebjYuvCsaRjfLBfBmMLIURlJ8GomGQeI/PTGXRM3jGZUymnqGZXjSU9l5h94VcfZx9mdzENxt50fhMbzmwwa3tCCCHKNpnHqIRkHiPzMBgNvLb7NSKuROCodWRlr5U092husfZXHl/JvOh5aFValvdaTpBnkMXaFkIIYX4yj5EoNxRF4cPID4m4EoFWrWV+t/kWDUUgg7GFEEKYSDASVrf4yGI2nt2IChUzO82kg3cHi9fw18HYKbkpMhhbCCEqKQlGwqrWn17P4iOLAZjebjqP1HvEarXIYGwhhBASjITV/Hr5Vz6M/BCACQETeLrZ01auSAZjCyFEZSfBSFjFn9f/ZNqeaSgoPN30aSYETLB2SYVCvEOYHDgZgI8PfEz0jWjrFiSEEMJiJBgJizuRdIKXd7yM3qgntG4o09pOK5WlPkrTiOYj6F2vtwzGFkKISkaCkbCoy2mXmfDbBHL0ObTzasfMTjPRqDXWLusuKpWKd0LeKRyMPWXHFBmMLYQQlUClDEY//fQTTZs2pXHjxixfvtza5VQaidmJjIsYR2peKn7ufnza7VNsNbbWLuueHG0c+bTbp7jauXI8+Tjv739fBmMLIUQFV+mCkV6vZ+rUqWzfvp1Dhw7x8ccfk5KSYu2yKry0vDTGRYzjetZ16rrUZVGPRTjZOFm7rH9V27k2szubBmNvPr+Z9WfWW7skIYQQZlTpgtGBAwdo3rw5tWrVwtnZmT59+rB161Zrl1Wh5ehzeHH7i5y/dZ7qDtVZ0nMJ7g7u1i6r2Dp4d2BK4BQAZh2YxcGEg1auSAghhLmUu2C0e/du+vXrh7e3NyqVis2bN991zKJFi6hfvz729vYEBQWxZ8+ewn3Xr1+nVq1aha9r167NtWvXLFF6pZRvzOe1Xa9xOPEwzrbOfN7zc2pVqfXvbyxjhjcfTu/6psHYr+x6RQZjCyFEBVXuglFWVhYBAQEsXLjwb/dv2LCByZMnM336dA4fPkynTp3o3bs3sbGxAH87RqSsPRFVUSiKwjv73mHX1V3YaexY2H0hTao1sXZZ9+X2zNhNqzWVwdhCCFGBlbtg1Lt3b95//30GDRr0t/vnzp3L6NGjGTNmDL6+vsyfPx8fHx8WLzbNrlyrVq0iPURXr17Fy8vrnu3l5eWRnp5e5EsUz7zoefxw4Qc0Kg2fdPmEQM9Aa5f0QBy0DszvNr9wMPaMP2fIYGwhhKhgyl0w+ic6nY7o6GhCQ0OLbA8NDWXfvn0AtG3bluPHj3Pt2jUyMjLYsmULvXr1uuc5Z86ciaura+GXj4+PWT9DRRF+PJxVJ1YB8E7IO3T16WrdgkrJXwdjf3/he746/ZW1SxJCCFGKKlQwSkpKwmAw4OnpWWS7p6cnCQmmMSFarZY5c+bQrVs3WrduzWuvvYa7+70HAk+bNo20tLTCr7i4OLN+horg+/PfMyd6DgBTgqYwoNEA6xZUyv46GHt21GwZjC2EEBVIhQpGt/3vmCFFUYps69+/P2fPnuX8+fM8//zz/3guOzs7XFxcWL16Ne3bt6dHjx5mqbmi2BW3i7f3vQ3AcL/hjGw+0soVmYcMxhZCiIqpQgUjDw8PNBpNYe/QbYmJiXf1IpXUpEmTOHnyJFFRUQ90norscOJhXtn1CgbFQP+G/ZnaZmqFHdj+v4OxJ++YLIOxhRCiAqhQwcjW1pagoCAiIiKKbI+IiCAkJMRKVVUO51LPMen3SeQZ8uhcuzPvhLyDWlWhfrzu8tfB2CeST8hgbCGEqADK3W+uzMxMYmJiiImJAeDSpUvExMQUPo4/depUli9fzsqVKzl16hRTpkwhNjaW8ePHP1C7YWFh+Pn5ERwc/KAfocK5lnmN8RHjydBl0Kp6Kz7p8gk2ahtrl2URMhhbCCEqFpVSzv7E3blzJ926dbtr+/DhwwkPDwdMEzzOmjWL+Ph4/P39mTdvHp07dy6V9tPT03F1dSUtLQ0XF5dSOWd5lpKbwvBfhnM5/TKNqjYi/JFwXO1crV2WxX1x4gs+OfgJWpWWZaHLaFOzjbVLEkII8RfF/f1d7oKRtYSFhREWFobBYODs2bMSjICs/CxGbx3NieQTeDl5sbr3ajydHmwsV3mlKApv7HmDLZe24GbvxoZHN1DTqaa1yxJCCFFAgpGZSI+Ric6gY+LvE4mMj6SaXTW+6P0F9V3rW7ssq8rR5zDsl2GcTjlNc/fmhD8Sjr3W3tplCSGEoPi/v8vdGCNhfQajgf/74/+IjI/EQevAoocXVfpQBHcGY1e1q2oajL1fBmMLIUR5I8FIlIiiKHx04CO2Xt6KVq1lfrf5+Hv4W7usMqNWlVrM7mIajP3DhR9Yd3qdtUsSQghRAhKMikmeSjP5/OjnrD+zHhUqZj40kxBvmQbhf7X3as/UoKmAaWbsqASZ+0oIIcoLGWNUQpV1jNH51POsP7OeDWc2ADCt7TQG+w62clVl1/8Oxl7fdz1eVe69WLEQQgjzKu7vb60FaxLlTHZ+Nr9e/pVvz33L0ZtHC7ePazlOQtG/UKlUvBPyDhfTLnI65TSTd07mi0e+kMHYQghRxkmPUTFVlsf1FUXhWNIxvjv3Hb9c+oVsfTYAWpWWLj5deKLJE3T07lhhl/oobdcyr/HMT89wK+8W/Rv25/2O78u1E0IIK5DH9c2kot5KS81N5aeLP/Hdue84f+t84fZ6LvUY1HgQ/Rr2w8PBw4oVll/74/czLmIcRsXIG23fYIjvEGuXJIQQlY7cShP/yqgYiYyP5Ltz3/F77O/kG/MBsNfYE1ovlEGNBxFYI1B6OB7Q7cHYnxz8hNlRs2lSrQnBNSv3IH4hhCirJBhVQglZCXx//ns2nd/Etcxrhdt93Xx5vPHj9G7QGxfbitMbVhYM8xvGqZRT/HzxZ17Z+QobHt0gg7GFEKIMkmBUSeQb89kdt5vvzn/HH9f+wKgYAXC2caZPgz4MajwIP3c/K1dZcalUKt7u8DYXbl3gdMppXt7xMosfXoy7g7u1SxNCCPEXMsaomMrr4OvLaZf57vx3/HD+B5Jzkwu3t/Fsw6DGg3i47sM4aB2sWGHl8tfB2A5aB57zfY7hzYdXyoV3hRDCkmTwtZmUh8HXOfocfrvyG9+e+5boG9GF293t3Xms0WMMbDSQeq71rFdgJXci+QQz/pzBieQTgKnXbljzYTzn+xxVbKtYuTohhKiYJBiZSVkORqeST/HtuW/ZcnELGfkZAKhVah6q9RCDGg+ic+3O2KhtrFylANO0CDvidrAwZiHnUs8BUNWuKqP8R/FMs2ekF08IIUqZBCMzKWvBKF2XzpaLW/ju3HecSjlVuL1WlVoMbDSQxxo9Rk2nmlasUPwTo2Jk2+VthMWEcTn9MgAeDh6MaTGGJ5s8ia3G1roFCiFEBSHByEzKQjBSFIXoG9F8d+47tl3ZRp4hDwAbtQ0P13mYQU0G0bZmW9QqWQqvvNAb9fx88WcWH1lc+KRgTaeajGs5jscaPSY9fUII8YAkGJmJNYNRUk4SP1z4gU3nNhX2LgA0qtqIxxs/zqMNHqWqfVWL1iRKV74hn03nN7Hk6BISsxMBqF2lNhNbTaRP/T5o1BorVyiEEOWTBKNSZu6n0o5dTSMpKw+1SoVaBWqVCpUKFMXIyVtR/HHjZ44k78OgGACw0zgQ4vkw3Ws9SiNXPzRqdeF71CrT4+FqlQoVd86lVt95feeYe3+//T4V//NaJnw0uzxDHl+f+Zplx5aRkpsCQAPXBkxsNZGedXtKb6AQQpSQBCMzMVeP0ejwKH4/nVj4WmWTgo3rQWyqHkRtk1643ZBdh/xbweRntASjXam1XxJ2WjX2NhrsbQq+a03/trPRFLw2bb/ruCLbCrZrNf9zjBo7rQa7v5zbRqOqtGEsOz+br05/xcrjK0nXmX4OmlZrygutX6BL7S6V9roIIURJSTAyE3MFo/d+PEnk5QSyNEfItN1Hns3pwn0qoxP2uW2xzWmPWu+FUVFQFNNYI6MCxoLv8JfXRgUFUAr3Fxzzv6/LAbWKO2HqdugqEqxMYep2uKpip6VWNQfquDlSx82R2tUccbAt37egMnQZrDm5hi9OfkFWfhYALTxa8ELrF+jg1UECkhBC/AsJRmZijmCkKArzouex6fwmbuXdKtzewasDg5oMortPd7M9naQUhCzjX0IWFH2tGEEpCF16o5G8fCN5egO5+UZy8//yvcg2A3n6v/v37WNN3/Nub9MbiuzP0xtL9XNWd7ajjpsjPgWByafgq46bI54u9mjU5SNY3Mq9RfiJcNadXkeOPgeAIM8gXmz9IkGeQVauTgghyi4JRmZirh6jqTunEnElghqONRjYaCADGg2gtnPtUjt/eaMoCnl6Uwj739D012BlClemY/IK9qfl5HM1NYfYlGziUrLJyNP/Y1u2GjW1qzlQ282ROm4FwalaQXByd8TFvuw9EZaUk8SKYyvYeGYjOqMOgBDvEF5o9QItqrewcnVCCFH2SDAyE3MFoxPJJ0jOSaajd0d58qgUKYpCWk4+sSnZBUHpTmCKS83mWmoO+n+5p+jqYHPntpzbnVt0PtUc8a7qgK3WegOhE7ISWHZ0Gd+d+w69YgqAXX268kKrF2jq1tRqdQkhRFkjwchMysI8RqL06A1G4tNyiUs1hSVTgMoxBaeUbJKzdP/4frUKvFxv3567+zadu5OtRcb/xGXEseTIEn68+GPhAsG96vViYquJNHBtYPb2hRCirJNgZCYSjCqXrDw9canZxCabQtPtW3S3e53+bSyUo63mzm25v4SnBtWrUM/dsdRD06W0SyyOWcwvl38BTEvCPNrgUcYHjMfH2adU2xJCiPJEgpGZSDAStxmNCkmZeaaQlJpNbHLR23QJ6bn8039djWpUoW8LLx5t6UVjT+dSre1MyhkWxSxie9x2ALQqLQMaD2Bcy3GyRIwQolKSYFTKzD3Bo6h4cvMNXLt157bcX8c4nU/MRGe409vUxLMKfVt407elF41qVCm1Go4nHWdhzEL2XtsLmJaNearpU4xpMQYPB49Sa0cIIco6CUZmIj1GojSk5+bz28kb/Hw0nt3nbpJvuPOfYbOazvRt4UXfll40qF46IenQjUMsOLyAgzcOAuCgdeCZZs8wqvkoWUZGCFEpSDAyEwlGorSl5eQTcfIGPx+9zp5zSUWekvPzcqFvSy/6tvCinofTA7WjKAqRCZEsOLSAo0lHAXCycWKo31CG+Q3D2bZ0b+cJIURZIsHITCQYCXO6la1jW0FP0t7zRUOSfy0X0+22Fl7UcXe87zYURWHPtT0sOLyA0ymmGdZdbF0Y6T+Swc0G42hz/+cWQoiySoKRmUgwEpaSmqVj28kEfjoaz74LyRj+EpJa1nalbwsv+rTwwsft/oKMUTHye+zvhB0O40LaBQDc7N0Y7T+ap5s9jZ3GOmvxCSGEOUgwMhMJRsIakjPz2HriBj8fu86fF5KLrHMX4FOVR1t40aelF7WqOpT43AajgV8u/8KimEXEZcQBUMOhBs+3fJ7HmzyOVq0trY8hhBBWI8HITCQYCWtLyszj1+MJ/Hw0nshLRUNSYJ2q9G3pTZ8WNfFyLVlIyjfm8+OFH/n8yOfEZ8UD0KRaE/7b/r+0qtGqFD+BEEJYngQjM5FgJMqSxIxcth433W47cDmlyLxJbepWo29L0+02Txf7Yp9TZ9DxzdlvWHRkEWl5aQAMajyIyYGTqWZfrbQ/ghBCWIQEo38wcOBAdu7cSY8ePfjmm29K9F4JRqKsSkzPZcuxeH4+Fk/U5dTC7SoVBNd1o29LL3r716RGMUNSam4q8w/N57tz3wHgaufKlMApDGw8ELXKeuvDCSHE/ZBg9A927NhBZmYmX3zxhQQjUSElpN0JSdFXioaktvXceLSlF4/4e1Hd+d8HWMckxjBj/wzOpp4FoGX1lvy3/X9p5tbMbPULIURpk2D0L3bu3MnChQslGIkK7/qtnMKQdDj2VuF2tQraN3Cnb0svHmleE/cq9w5JeqOer05/xcLDC8nWZ6NWqRncbDCTWk2iim3pzdQthBDmUtzf32WuP3z37t3069cPb29vVCoVmzdvvuuYRYsWUb9+fezt7QkKCmLPnj2WL1SIcsK7qgNjOjVg08SO/PGfbkzv40uAT1WMCuy7kMz0TccJ/uA3nlseyVcHYknJ0t11Dq1ay1C/ofww4AceqfcIRsXImlNr6L+5P79c+oVK+veVEKICKnPBKCsri4CAABYuXPi3+zds2MDkyZOZPn06hw8fplOnTvTu3ZvY2NjCY4KCgvD397/r6/r165b6GEKUSbWrOTK2cwO+n9SRPa93443ezWhRyxWjAn+cT2Lad8cI/uA3hq6IZOPBOPL/sp4bgKeTJ7O7zGZJzyXUdanLzZybvL77dcZGjOVS2iUrfSohhCg9ZfpWmkqlYtOmTQwYMKBwW7t27QgMDGTx4sWF23x9fRkwYAAzZ84s9rmLeystLy+PvLy8wtfp6en4+PjIrTRRoVxJzuLnY/H8fDSeE9fTC7c3rO7E2/2a07lJ9bveozPoWHV8FcuOLSPPkIdWrWVk85GMbTkWB23J51MSQghzKre30v6JTqcjOjqa0NDQIttDQ0PZt2+fWdqcOXMmrq6uhV8+Pj5maUcIa6rr7sTEro34+aVO7Hi1K6+GNsHdyZYLN7MYtvIAY744yJXkrCLvsdXYMi5gHJse20SnWp3QG/UsO7aMgd8PZFfcLit9EiGEeDDlKhglJSVhMBjw9PQsst3T05OEhIRin6dXr148+eSTbNmyhdq1axMVFXXPY6dNm0ZaWlrhV1xc3H3XL0R5UN/DiRe6N2b7q10Z/VB9tGoVv526Qc+5u5m99TRZefoix/s4+xDWI4z5XedT06km1zKv8cL2F3h5+8tcz5Tb10KI8qVcBaPbVCpVkdeKoty17Z9s3bqVmzdvkp2dzdWrVwkODr7nsXZ2dri4uLB69Wrat29Pjx497rtuIcoTVwcb/vuoH79O7kSnxh7oDEbCdlyg+5ydfB9zrciAa5VKRY+6Pfj+se8Z6T8SrUrL9rjtDPh+ACuOrSDfkG/FTyKEEMVXrsYY6XQ6HB0d+frrrxk4cGDhcS+//DIxMTHs2mX+7nuzPa7/86twZW8xDy5+CKTYgbEk5/zLPwrPr/qf9v76+n73/W8b/MO+/zmnWgMqTcF3Nai197lNA+qC7f+6TfM3773HNo0N2LmYvuxdQFu2F2xVFIWIkzd4/+dTxKZkA6aZtd/p3xz/Wq53HX8+9TzvR75P9I1oABq4NuDN9m8SXPPef4QIIYQ5Fff3d7laHdLW1pagoCAiIiKKBKOIiAgee+wxK1ZWCtLiIPGktasQ1qKxMwUkO+c7YcnOBexdCwKU81+23WOfjWMJgnDJqFQqQpvXpHOT6qz44xILt5/n4JVU+i38g2eCfXg1tGmReZAaVWvEql6r+OniT3xy8BMupl1k1NZRPNrgUV5p8woeDh5mqVMIIR5UmesxyszM5Pz58wC0bt2auXPn0q1bN9zc3KhTpw4bNmxg6NChfP7553To0IGlS5eybNkyTpw4Qd26dc1WV1hYGGFhYRgMBs6ePVv6PUYJxyA7ueTvu+//+e7zfYXtKX85hXL3vsLX97vvdhv32vcP71OMoBjAaPjLdyMY9fe5reB7aW7T6yAvA3QZJbj4/0KtvTtYFQlSLv++z7aKqTfsX8Sn5fDRL6f5PsY0hsjZXsuUh5swtENdbDRF35+Wl8aCwwvYeGYjCgrONs68GPgiTzV5Co1aU3qfXwgh/kG5nfl6586ddOvW7a7tw4cPJzw8HDBN8Dhr1izi4+Px9/dn3rx5dO7c2SL1yczXolQZDaaAlJdu+p6bbvp3bjrkpRV8z/jLtr98/+u/FeO/t1UsqjvhyskdajQHr5ZQsyXUbGEKUH8RdTmFd344UfiIf+MaVXi7X3Meanx3j9CJpBPM2D+DE8knAPBz9+O/7f+Lv4d/KdUuhBD3Vm6DUVknwUiUOYoCuqx7h6Yi32+HrLS79xmLMUDarYEpJHm1hJoB4NUSg2N1NkTFMXvraVKzTefo1dyTN/v64ePmWOTtBqOBb85+w6eHPiUjPwMVKp5q+hQvtn4RV7u7xyoJIURpkWBUysx+K00Ia8vPLdpblR5vusWbcBTij0L61b9/X5Wa4BVAroc/3ye4s+iME1eMHthqNYzv3IDxXRviaFt0OGNSThJzD87lx4s/AuBm78YrbV6hX4N+JXrCVAghikuCkZlIj5GotLKSC0LSkTthKfk8fzdeLUtVhaP6OhxX6nHNvjFduvSga0gIKo1NkeOiEqL4YP8HXEi7AEBgjUDebP8mjas1tsQnEkJUIhKMzESCkRB/kZcJN04UBKUYU1hKPPW3t+V02GKo7odDndZ3bsV5+pGv1rL61Go+P/I5OfoctCrTgrXjA8bjaON4d5tCCHEfJBiVMrmVJkQx6XVw8zQkHEV/LYbEswdwTTuDkyr37mNVGqjeFGq2JN6jPh+nH+f35CMAeDp68kbbN+hRp4fcXhNCPDAJRmYiPUZClNy11CyWf/8bN89G0Vx9mVbaK7S2icM+P/WuY3c72PNh9RpcK3iS/6Gqzfi/ttPw8Qq0cNVCiIpEgpGZSDAS4v7tv5jMOz+c4HRCBqDwUA0dbwbqacalO+OX0uLIValY7urCyqou5KtU2BoVxmTrGeXih513qztPxlWrb7ZJLYUQFYsEIzORYCTEg9EbjHwVFcecbWe4VfB4f98WXkzr04za1RwhO6VwcPfl65F8kH6c/VrTPE118vOZnpxKSE7BbTlHd2g1GILHQLV6VvpEQojyQIJRKZMxRkKUrtQsHXMjzrI28gpGBey0aiZ0bcj4Lg2xt7kzI7aiKGy98AOzomZzU5cGQKjBltcTruKpuz1uSQVNe0Pb56FBV+lFEkLcRYKRmUiPkRCl61R8Ou/8cILISykA1KrqwPS+vvT2r1lk0HWmLpNFRxax7tQ6DIoBR60jE2t157krJ9Fc2nnnhB5NTAEp4BnTLN5CCIEEI7ORYCRE6VMUhZ+PxfPhz6e4nmbqBerQwJ23+/vRrGbR/87OpJxhxv4ZHLlpenqtvVd7PvZ7HrejGyFmHegyTQfauRTcZhsLHo0s+nmEEGWPBCMzkWAkhPnk6Aws3nWBJbsukKc3olGreK5dHab0bEJVR9vC44yKkU3nNvFx1Mfk6HOo4ViDOV3m0MqlARz5Cg4sLZh8skCjh6HtONP3YiySK4SoeCQYlTIZYySE5cSlZPPhllP8cjwBgGqONrwS2pRn29ZBo75ze+3CrQtM2TmFS2mX0Kq0TAmawlC/oagUBS5uhwPL4OxWCmfnrlYf2o6FVkPAoarlP5gQwmokGJmJ9BgJYTn7zifxzo8nOHvDdHvMz8uFd/o3p219t8JjsvKzeGffO/x6+VcAetbtyXsh71HFtorpgJSLELUCDq02rQEHYOMEAU+bxiLV8LXoZxJCWIcEIzORYCSEZekNRtbsv8LciLOk5+oB6BfgzbTezfCu6gCYxih9dforZh+cjd6op65LXeZ2nUuTak3unEiXBUc3QORSuHnqzvZ6naDdOGjSGzRFF7sVQlQcEozMRIKRENaRnJnHnIizfHUgFkUBBxsNk7o1ZFyXhthoTOOGjt48yiu7XiEhKwF7jT1vtn+Txxo9VvREigKX/4ADS+D0z6CY5kjC1QeCR0PgcHB0QwhRsUgwMhMJRkJY1/Frabz74wmiLpuWEwmuV42wwYHUcLEH4FbuLd744w32XtsLwOONH2dau2nYaezuPtmtODi4AqK/gBzTdAFo7aHFE6bbbF4BFvlMQgjzk2BkJhKMhLA+RVHYHHONtzafICNPj0cVOxYObk37Bu6A6am1pUeXsihmEQoKvm6+zOk6Bx9nn78/YX4OHP/O1IsUf+TOdp/20O558O0PGhsLfDIhhLlIMCpl8lSaEGXPpaQsJqyJ5nRCBhq1iv880pSxnRoUTgy57/o+3tj9Bql5qTjbOPPBQx/QrU63e59QUSDugCkgnfwejKYxTVSpCW1GQZuRUKWGBT6ZEKK0STAyE+kxEqJsydEZmL7pGN8dvgbAI81rMvvJljjbm3p4ErISeHXXq4UTQo7yH8WLrV9Eq/6XgdYZCXBwFRxcCVmJpm1qG2g+0DRYu3Ybs30mIUTpk2BkJhKMhCh7FEVhTWQs7/14gnyDQn0PJz5/LoimNU1LguQb8pkbPZc1p9YAEOQZxOzOs6nuWP3fT67XmXqPDiyBq1F3tnsHmgJS84Gg/ZvxS0KIMkWCkZlIMBKi7IqJu8XENdFcT8vFwUbDzEEtGNC6VuH+rZe38tbet8jWZ+Nu787sLrMJrhlc/AauHTJNGnn8GzDoTNucqkPQCNOtNhfv0v1AQohSI8HITCQYCVG2pWTpeHn9YfacSwJgWIe6vNnXD1ut6ZH+S2mXmLpzKudvnUetUvNS65cY6T8StaoES4VkJUF0uOk2W7rpFh4qDfj2M/Ui1ekAf1kAVwhhfRKMzESCkRBln8Go8OlvZ/lsu2m9tFY+VVk0JLBwQsjs/Gze3/8+P178EYCuPl15v+P7uNq5lrAhPZz+ybQ225W9d7Z7tjAtPdLiSbB1LJXPJIR4MBKMzESCkRDlx/bTN5i8Pob0XD1uTrYseLY1HRt5AKZxSd+c+4aZkTPJN+ZTq0ot5nadi5+73/01lnDcFJCObgR9jmmbQzXThJGdpoJ9CUOXEKJUSTAyEwlGQpQvcSnZjF8TzYnr6ahV8EpoUyZ0aYi6YDHaE8kneGXnK1zLvIat2pZp7abxeOPHCx/5L7HsFDi8BqKWwa1Y0zaXWtDvU2jcs5Q+lRCipCQYmYkEIyHKn9x8A299f5yNB68C8LBvDeY82QpXR9Mj/Wl5abz5x5vsvLoTgP4N+/Nm+zdx0Drcf6NGA5z9Fba9aVrIFiBgMDzyoaknSQhhURKMSplM8ChE+bchKpb/fn8Cnd5IHTdHFj8XSHNv0y0uo2Jk1fFVfHb4M4yKkcbVGjO3y1zqudZ7sEZ12bD9fdi/CFBMk0X2mw9Nez/oxxFClIAEIzORHiMhyrfj19IYvyaaq6k52GnVvD/Anyfb3FkqJCohitd2vUZybjJONk68F/IeofVCH7zh2Ej4fhIknzO9bvEU9P5YFqwVwkIkGJmJBCMhyr9b2TqmbIhhx5mbADzb1oe3+zXH3kYDwM3sm7y2+zWib0QDMNRvKFOCpmCjfsD10vJzYOdM2LcAFCM41YC+c8Cv/4OdVwjxryQYmYkEIyEqBqNRYeGO88z77SyKAi1qubJoSCA+bqbH6/VGPZ8d/oxVx1cB0Kp6K2Z3mU1Np5oP3vjVg6beo5unTa+bD4I+s8HJ48HPLYT4WxKMzESCkRAVy+6zN3l5/WFSs/NxdbBh/jOt6Nb0zkKx22O38+Yfb5KRn0E1u2p83PljOnh3ePCG9Xmw62P4Yz4oBnD0gL6fmJYYEUKUOglGZiLBSIiK52pqNpPWHuLI1TRUKnipe2Ne7tG48JH+uPQ4pu6ayumU06hQMbHVRJ5v+XzJZsu+l+uHYfMkSDxheu3b33R7rUqNf36fEKJEJBiZiQQjISqmPL2BGT+dZM1+09xDXZpUZ/7TrajmZAtArj6Xjw58xLfnvgWgY62OfPTQR1S1r/rgjet1sOcT2DMHjHpwcIPes6DFE7K0iBClRIKRmUgwEqJi++7QVf5v0zFy843UqurAoiGBBPhULdz//fnvmbF/BnmGPGo61WRul7m0qN6idBqPPwrfT4SEY6bXTfvAo/PAuRTGNQlRyRX393cp9AOXL3FxcXTt2hU/Pz9atmzJ119/be2ShBBlyKDA2mya2JF67o5cu5XDk5//ybrIWG7/DflYo8dY22ctdZzrkJCVwLBfh/HV6a8olb8xvVrC2B3QbTqobeDMFghrCzFfgfwNK4RFVLoeo/j4eG7cuEGrVq1ITEwkMDCQM2fO4OTkVKz3S4+REJVDWk4+r359hIiTNwB4PLA27w/wx8HW9Eh/hi6Dt/a+xW+xvwHQu15v3gl5B0ebUlo09sYJ2DwR4mNMrxuHmpYVcfEunfMLUcnIrbRiatmyJT///DM+Pj7/fjASjISoTBRFYcnui8z69TRGBXy9XFg8JJB6Hk6F+1efXM286HnoFT0NXBswt+tcGlZtWDoFGPSw71PY+REYdGDnAr0+gNZDZeyRECVUbm+l7d69m379+uHt7Y1KpWLz5s13HbNo0SLq16+Pvb09QUFB7Nmz577aOnjwIEajsdihSAhRuahUKsZ3aciaMe3wqGLLqfh0+i38o7AXSaVSMaz5MFY+spIaDjW4mHaRZ39+lp8v/lw6BWi00OkVGLcHarWBvHT44UVYMwhuxZVOG0KIIspcMMrKyiIgIICFCxf+7f4NGzYwefJkpk+fzuHDh+nUqRO9e/cmNja28JigoCD8/f3v+rp+/XrhMcnJyQwbNoylS5ea/TMJIcq3kIYe/PRiJwLrVCUjV8/YLw8y69fT6A1GAFrXaM3Gfhtp59WOHH0Ob+x5g/f3v4/OoCudAmo0g9HboOcM0NjBhe2wqAMcXCljj4QoZWX6VppKpWLTpk0MGDCgcFu7du0IDAxk8eLFhdt8fX0ZMGAAM2fOLNZ58/Ly6NmzJ2PHjmXo0KElqklupQlReen0Rmb+copVey8DENLQnc+ebY1HFTsADEYDi44sYulR0x9c/u7+zOk6B+8qpTguKOmcadbsuEjT6/pdoP8CqFa39NoQogIqt7fS/olOpyM6OprQ0KILOoaGhrJv375inUNRFEaMGEH37t2LFYry8vJIT08v8iWEqJxstWre7tecz55tjaOthn0Xknn0sz+IvpIKgEat4cXWL7KoxyJc7Vw5nnycp356iqiEqNIrwqMxjPwFes0ErQNc2mXqPTqwDIzG0mtHiEqqXAWjpKQkDAYDnp6eRbZ7enqSkJBQrHPs3buXDRs2sHnzZlq1akWrVq04duzYPY+fOXMmrq6uhV8yHkkI0T/Am+8ndaRhdScS0nN5esmfhO+9VPjIfqfandj46Eb83f1Jy0tjXMQ4frn0S+kVoNZAh4kwYS/U7Qj5WbDlVfiiH6RcLL12hKiEylUwuk31P09jKIpy17Z7eeihhzAajcTExBR+tWhx78nZpk2bRlpaWuFXXJwMeBRCQGNPZ75/4SH6tKiJ3qjwzo8neXl9DNk6PQDeVbxZ9cgqetbtSb4xn9d3v0748fDSme/oNveGMPwn6D0bbJzgyh+wKAT2L5beIyHuU7kKRh4eHmg0mrt6hxITE+/qRSotdnZ2uLi4sHr1atq3b0+PHj3M0o4QovypYqclbHAgb/b1RaNW8cOR6wwI28uFm5kA2Gvtmd15Ns/5PgfAnOg5fHTgIwxGQ+kVoVZDu+dh4j6o1wn0OfDrG7CqNySdL712hKgkylUwsrW1JSgoiIiIiCLbIyIiCAkJMWvbkyZN4uTJk0RFleJYASFEuadSqRjTqQFfjW1PDWc7zt7I5LGFe/nlWDxgGnf0n7b/4bU2rwGw7vQ6Xtn1Crn63NItpFo9GPYD9J0LtlUgbj983hH2LYDSDGJCVHBlLhhlZmYW3uICuHTpEjExMYWP40+dOpXly5ezcuVKTp06xZQpU4iNjWX8+PFmrSssLAw/Pz+Cg4PN2o4QonxqW9+Nn156iHb13cjM0zNh7SE++Pkk+QWP9A9rPozZXWZjo7bh99jfGbNtDKm5qaVbhFoNwaNh4p/QoBvoc2Hbm7CyF9w8U7ptCVFBlbnH9Xfu3Em3bt3u2j58+HDCw8MB0wSPs2bNIj4+Hn9/f+bNm0fnzp0tUp88ri+E+Cd6g5FZW8+wdLdpEHTbem4sfi4Q94JH+qNvRPPS9pdI16VT16Uuix9ejI+zGR7qUBQ49KUpGOWlm+Y/6voGhLxkmjhSiEpGlgQxEwlGQoji+PV4PK9+fZTMPD313B35YlRb6rqblhK5eOsiE36bwPWs67jZuxHWIwx/D3/zFJJ2DX58Gc4XDEHwbg2PLQJPP/O0J0QZVSHnMbImuZUmhCiJR/y92DypI7WqOnA5OZvHF+/j6NVbADSo2oA1fdbg6+ZLSm4Ko7aOYlfcLvMU4loLhnwNAxaDvStcPwxLOsOu2WDIN0+bQpRj0mNUQtJjJIQoicT0XEasiuJkfDqOthrChgTSrWkNALLys3hl5yvsvb4XtUrN9HbTearpU+YrJj0efpoCZwvmVKrZEgYsgpr3nrJEiIpCeoyEEKIMqOFiz4Zx7XmokQfZOgNjvjjI1wdN86E52TixoMcCBjQagFExMmP/DD479FnpznX0Vy5e8OxXMGgZOFSDhKOwtCvsmAkGvXnaFKKckWBUTHIrTQhxv5ztbVg5IpiBrWthMCq89s1RFvx+DkVRsFHb8F7Ie0wImADAsmPLmP7HdPLNdZtLpYKWT8HESGj2KBj1sOsjWPsE5JTyU3JClENyK62E5FaaEOJ+KYrCrK1nWLzzAgCD29Xhvf7N0WpMf6N+d+473vvzPQyKgXZe7ZjXdR7Ots7mLAiOfws/vAj52eDWAJ7dANWbmK9NIaxEbqUJIUQZo1Kp+M8jzXi3f3NUKlgXGcv4NYfI0ZkmYBzUeBALeyzEQetAZHwkI34dwY2sG+YsCFo8AaO3gWsd0zpry3vAuYh/f68QFZQEIyGEsLDhIfVYPCQQW62a307dYPDy/aRk6QB4qNZDhD8Sjru9O2dTzzJkyxDOpZ4zb0E1W8DY7VAnxDTn0bqnTDNmyw0FUQlJMComGWMkhChNj/h7sXZMO1wdbDgce4snFu8jLiUbAD93P9b2XUs9l3rcyL7B8F+GcyD+gHkLqlIdhn0PgcNAMZomhtw8EfJLeekSIco4GWNUQjLGSAhRms4nZjB8ZRTXbuXgUcWO8JHB+NdyBSAtL42Xtr/EocRDaNVa3u/4Pn0b9DVvQYoCB5bCr9NAMUDtYHh6LTibZ6FuISxFxhgJIUQ50KiGM99NDKFZTWeSMvN4esmf7D57EwBXO1eWhi6lZ92e6I163tjzBiuPrzTf4/xgGnfUbhw8961pQsirUbCsG1yPMV+bQpQhEoyEEMLKPF3s2Ti+AyEN3cnSGRgVHsV3h64CYKex45MunzDUbygA86Ln8UHkBxiMBvMW1bAbjN0BHk0g/RqsfMT0BJsQFZwEIyGEKANc7G0IH9mW/gHe6I0KUzceIWzHeRRFQa1S83rw67we/DoqVGw4s4EpO6eQo88xb1HuDWHMb9CoJ+hz4JtRsP19MBrN264QViTBqJhk8LUQwtxstWrmP92KcZ0bADB76xne+v4EBqPp1tlQv6F80uUTbNW27IjbwZitY0jJTTFvUfauMHgDhLxoer17NmwcCnmZ5m1XCCuRwdclJIOvhRCWsPKPS8z4+SSKAr2ae/LpM62xt9EAcOjGIV7c/iLpunTqONdh8cOLqeNSx/xFxayDH18Ggw5qNDctL1KtrvnbFaIUyOBrIYQox0Y9VJ+FzwZiq1Gz9cQNhiyP5Fa2aa6jQM9AVvdZjbeTN7EZsTy35TmO3jxq/qJaDYYRP4NTDUg8YRqUfXmv+dsVwoIkGAkhRBnVt6UXX45ui4u9lugrqTy+eB9XU01zHTVwbcDavmvxdfMlNS+V0VtHsyN2h/mL8mkLz+8ArwDIToYv+0N0uPnbFcJCJBgJIUQZ1r6BO99MCMHL1Z4LN7MYtGgfJ66nAeDh4EH4I+F0rNWRXEMuk3dOZuOZjeYvyrU2jPwVmg80LUL748uw5TUw6M3fthBmJsFICCHKuCaeprmOmno6k5iRx9NL9rP3fBIAjjaOLOi+gEGNB2FUjMzYP4P50fMxKmZ+cszWEZ5YBd3eNL0+sBTWDIJsMw8GF8LMJBgVkzyVJoSwJi9XBzaO70D7Bm5k5ukZseoAmw9fA8BGbcM7Hd5hYquJAKw4voL/++P/yDfkm7colQq6vAZPrwEbJ7i0y7QI7c0z5m1XCDOSp9JKSJ5KE0JYU57ewNSNR/j5aDwA03o34/nODVCpVABsOreJ9/58D72ip13NdszrNg9nW2fzF5ZwHL56FtJiwdYZnlgJTULN364QxSRPpQkhRAVkp9Ww4JnWjH6oPgAzfznNuz+eLJzraGDjgSzssRBHrSORCZEM/3U4CVkJ5i+spr9pUHadENBlwLqnYO+nprXXhChHJBgJIUQ5o1ar+O+jfrzZ1xeA8H2XefGrQ+Tmm5YJ6VirI+GPhOPh4MG51HMM2TKEs6lnzV+YkwcM+x4ChwMKRLwFm8ZDfq752xailEgwEkKIcmpMpwZ89mxrbDVqthxLYNiKA6Rlm8YV+br7srbPWhq4NiAxO5HhvwwnMj7S/EVpbaHfp9B7Fqg0cHQ9hPeFDAv0WglRCiQYCSFEOdY/wJvwUcE422k5cDmFJz7fx/VbpjXUvKt482XvLwnyDCIzP5Pxv43np4s/mb8olQrajYPnvgX7qnDtICztBtcOmb9tIR6QBCMhhCjnQhp68PWEDtR0sedcYiaDFu3jdEI6AK52rizpuYRe9XqhN+qZtmcay48txyLP3TTsBmO3g0cTyLgOq3rDsW/M364QD0CCkRBCVADNarrw3cQQGteoQkJ6Lk8u/pN9F0xzHdlp7JjVeRbD/YYD8OmhT3l///vojRaYkNG9IYz5DRqHgj4Xvh0Nv78HRjPPsyTEfSrR4/r169cvfCS0JCZPnsxLL71U4veVJWFhYYSFhWEwGDh79qw8ri+EKJPSsvMZ++VBDlxOwVaj5pOnAugf4F24f+2ptXx84GMUFLrW7srHnT/G0cbR/IUZDfDbO7DvM9Prpn1h0BKws8BUAkJQ/Mf1SxSMdu3adV/F1KtXj7p1K8YKzDKPkRCirMvNNzB1YwxbjpkGPL/Z15cxnRoU7v/tym+8secN8gx5tPBowYLuC3B3cLdMcTFfwY8vgUEHNfzg2a+gWj3LtC0qNbMEIyHBSAhRPhiMCjN+Okn4vssAjH6oPtP7+KJWm3r9Dyce5sXtL5KWl4aPsw9Lei7Bx9nHMsXFRcGGIZB5Axzc4OnVUO8hy7QtKi2zT/B47Ngx9HpZMFAIIcoijVrF2/38+L8+zQBY8cclXlx/mDy9aa6j1jVas7r3ampVqUVcRhwjfhnBxVsXLVOcTzCM3QFerSAnBb58DA6utEzbQvyL++4xUqvV2Nra4ufnR0BAAK1atSr8XrVq1VIus+yQHiMhRHnzfcw1Xv36CPkGhfYN3FgytA2uDjYA3My+yfMRz3P+1nmq2VVjSc8l+Lr7WqYwXTb88AIc/9b0OngsPDITNDaWaV9UKmbvMfrjjz9wc3Ojfv365OXlER4eTvfu3XF3d6dp06b897//5datW/d7eiGEEKXksVa1CB/Zlip2WvZfTOGpz/8kPs0011F1x+qs7LUSP3c/UvNSGb11NDGJMZYpzNYRHl8B3d80vY5aBmsGQXaKZdoX4m/cd49RYGAgb731FgMGDCjctmvXLsaMGcPIkSPZtm0bV65c4cCBA1SvXr206rU66TESQpRXJ6+nM2LVARIz8vByteeLUW1p4ml6KixDl8ELv7/AocRDOGgdWNB9Ae282lmuuNM/w7djIT8LqtWHZ9dDjWaWa19UeGbvMTp9+jR+fn5FtnXp0oV58+Zx6NAhduzYQZs2bfi///u/+21CCCFEKfLzNs111LC6E/FpuTyxeB+RF5MBcLZ1ZvHDi+ng1YEcfQ4Tf5vI7qu7LVdcs74wJgKq1oHUS7D8YTi71XLtC1HgvoNRcHAwa9asuWt78+bN2bZtGyqVitdee43ffvvtgQoUQghRempXc+TbCSG0qVuN9Fw9Q1cc4Oej8QA42jiyoMcCuvp0RWfU8fL2l9l62YLhxLO5aVB23Y6gy4B1T8Mf80EenhYWdN/BaNGiRcyfP5/Bgwdz+vRpAHQ6HfPmzcPNzQ2A6tWrc+PGjdKptJRkZGQQHBxMq1ataNGiBcuWLbN2SUIIYVFVHW1ZM6YdvZp7ojMYeeGrQ6yNvAKYZsme23Uuvev3Rq/oeX3362w+v9lyxTl5wNDNEDQSUOC3t2HTeMjPtVwNolK772DUvHlz/vzzT+Lj4/Hz88PBwQEnJyeWLVvGRx99BMDhw4fx9vb+lzNZlqOjI7t27SImJobIyEhmzpxJcnKytcsSQgiLsrfRsGhIEEPb10VRYPqm4yzfY3pc30Ztw8yHZvJ448cxKkb+u/e/rDu1znLFaW3h0XnQ5xNQaeDoegjvA5k3LVeDqLRKZYLHy5cvc+TIEbRaLUFBQdSsWROAPXv2cOPGDZ544okHLtQcUlJSaN26NdHR0Xh4eBTrPTL4WghRkSiKwqytZ1i88wIAr/RswgvdG6FSqUz7omax5pRp2MTLgS8zpsUYyxZ4cSdsHA65t8Ctgak3qVrFWElBWJbZB1//Vb169Xjsscfo27dvYSgC6NSpU4lD0e7du+nXrx/e3t6oVCo2b9581zGLFi2ifv362NvbExQUxJ49e0rUxq1btwgICKB27dq8/vrrxQ5FQghR0ahUKl7v1ZRXejYBYE7EWWZtPYOiKKZ9wa8zruU4wLT47GeHPsOiCyY06ApjfgfXOpByEVaEwo2TlmtfVDrakhxsiUVks7KyCAgIYOTIkTz++ON37d+wYQOTJ09m0aJFdOzYkSVLltC7d29OnjxJnTp1AAgKCiIvL++u927btg1vb2+qVq3KkSNHuHHjBoMGDeKJJ57A09OzxJ9LCCEqApVKxYs9GuNgq+H9n0+xeOcFcnQG3nrUD7VaxQutX8DRxpF50fNYdmwZOfocXg9+/b5+H9wXj0YweiusHgQ3T8GqR2Dw11DHgtMJiEqjTC8iq1Kp2LRpU5G5ktq1a0dgYCCLFy8u3Obr68uAAQOYOXNmiduYMGEC3bt358knn/zb/Xl5eUVCVnp6Oj4+PnIrTQhRIa2NvMKbm4+jKPBUm9rMHNQSTcH6autPr+eDyA8AGNR4EG+1fwuNWmO54rJT4KtnIC4StA7w1JfQJNRy7Ytyrbi30krUY9SlS5cHLuxB6HQ6oqOjeeONN4psDw0NZd++fcU6x40bN3BwcMDFxYX09HR2797NhAkT7nn8zJkzeffddx+obiGEKC+GtKuLg42GV78+wsaDV8nNNzLnqQBsNGqeafYMDloH3tr3Ft+d+47s/Gw+7PQhNmoLLeHh6GYaY7RxGJyPgPXPwoDF0PIpy7QvKoVSGWNkKUlJSRgMhrtue3l6epKQkFCsc1y9epXOnTsTEBDAQw89xAsvvEDLli3vefy0adNIS0sr/IqLi3ugzyCEEGXdoMDaLBwciFat4ocj15m49lDh4rOPNXqM2Z1no1Vr+fXyr0zdMZU8w91DF8zG1hGe/QpaPAVGPXw3FvYv/vf3CVFMJeoxKiv+97727UGCxREUFERMTEyx27Kzs8POzo6wsDDCwsIwGAwlKVUIIcqlPi28sLdRM37NISJO3mDMFwdZOrQNDrYaQuuFYq+1Z+rOqey8upNJv0/is26f4WjjaJniNDYwcAk4ukPkYvj1DchKMq25ZqlxT6LCKlc9Rh4eHmg0mrt6hxITE80+eHrSpEmcPHmSqKgos7YjhBBlRfdmnoSPCMbRVsOec0kMX3WAzDw9AJ1rd2ZRj0U4aB2IjI9k/G/jydBlWK44tRoemXlnAdo9n8BPU8Aof7yKB1OugpGtrS1BQUFEREQU2R4REUFISIhZ2w4LC8PPz4/g4GCztiOEEGVJSCMPVo9ui7OdlgOXUhiyPJK07HwA2nq1ZVnoMpxtnTmceJjRW0eTmptqueJUKuj8mmkySFQQvQq+GQl6C97aExVOmQtGmZmZxMTEFN7uunTpEjExMcTGxgIwdepUli9fzsqVKzl16hRTpkwhNjaW8ePHm7Uu6TESQlRWQXXdWDe2PVUdbTgSd4tnlu0nKdMUPgKqB7Cy10rc7N04lXKKkb+OJDE70bIFthkFT4aDxhZOfg9rn4A8C/ZeiQqlVGa+Lk07d+6kW7dud20fPnw44eHhgGmCx1mzZhEfH4+/vz/z5s2jc+fOFqlPZr4WQlRWZxIyGLI8kqTMPBpWd2LtmPbUdLUH4GLaRcZuG0tidiI+zj4sD12OdxULLwl1cSesHwK6TPBqBc99a1p7TQiK//u7zAWjsuqvg6/Pnj0rwUgIUSldvJnJkOWRxKflUsfNkbVj2uHjZhp0fTXjKmO2jeFa5jU8HT1ZHrqceq71LFvgtUOmHqPsZHBvZHq8v6qPZWsQZZIEIzORHiMhRGUXl5LNkOWRxKZk4+Vqz9ox7WhQvQoAN7JuMDZiLJfSLuFu786Snkto6tbUsgXePAurB0L6VXD2hqGboEYzy9YgyhyLrpUmhBCi8vBxc+Tr8R1oVKMK8Wm5PLVkP2cSTGN6PJ08WdVrFc3cmpGcm8yoraM4dvOYZQus3gRGbwOPppBx3bSESJyMDxXFI8FICCFEiXm62LPh+fb4ermQlJnH00v/5NjVNADcHdxZHrqcltVbkq5LZ8y2MRxMOGjZAl1rwahfoVYbyEmFL/vD+d8sW4MolyQYFZM8ri+EEEW5V7Fj/dj2tPKpyq3sfAYv28/ByykAuNq5srTnUtrWbEu2PpsJv01g77W9li3Q0Q2GfQ8Nu0N+Nqx7Bo59Y9kaRLkjY4xKSMYYCSFEUZl5ekaFR3HgUgoONhqWD29Dx0amp8Fy9bm8susVdl/djVat5ZPOn9Cjbg/LFqjXwebxcPxbQAV9ZkPbsZatQVidjDESQghhEVXstHwxsi2dGnuQk29gZHgU20/fAMBea8/8rvMJrRuK3qjnlV2v8OOFHy1boNYWBi2H4LGAAltehR0zQfoFxN+QYFRMcitNCCHuzcHW1FPU088Tnd7I819Gs+VYPAA2Ghs+7vwx/Rv2x6AYmP7HdDae2WjZAtVqU09R12mm17s+MgUkWUJE/A+5lVZCcitNCCHuLd9gZOrGI/x45DpqFcx+IoDHg2oDYFSMzIycyfoz6wF4tc2rDG8+3PJFHlgGW14DFGg+yLQgrdbW8nUIi5JbaUIIISzORqNm/tOteKpNbYwKvPL1EdbsvwKAWqXm/9r9H6P8RwHwycFPWByzGIv/fd52LDyxAtQ2cOI7WPcU5GVatgZRZkkwEkIIUao0ahUfDWrJiJB6ALy5+TjL91wEQKVSMSVoCi+1fgmARUcWMefgHMuHI//HYfAGsHGCiztMj/NnJVu2BlEmSTASQghR6tRqFW/382NC14YAvP/zKT77/VxhABrbciz/Cf4PAF+c/IIZ+2dgVIyWLbJRDxj+AzhUg2vRpokg065atgZR5kgwKiYZfC2EECWjUql4vVdTXunZBIC5EWf5+NczheHoOb/neDfkXVSo+Prs10z/Yzp6o96yRdZuA6O2gkstSDoLK3qZlhQRlZYMvi4hGXwthBAlt3zPRd7/+RQAwzvU5e1+zVGrVQBsubiF//vj/zAoBnrU6cGszrOw1Vh4MPStONP6asnnwMENnvsGagVZtgZhVjL4WgghRJkxplMDPhjoj0oFX/x5hTe+O4rBaPq7vE+DPsztOhcbtQ2/x/7OS9tfIkefY9kCq/qYeo68AyEnBcL7wYUdlq1BlAkSjIQQQljEkHZ1mfNkAGoVbDx4lckbYsg3mMYVda/TnYU9FuKgdWDv9b1M+G0CmToLPynm5G4ac9SgK+Rnwdon4cQmy9YgrE6CkRBCCIsZFFibhYMD0apV/HjkOhPXHiJPb5pkMcQ7hCU9l1DFpgrRN6IZu20saXlpli3QzhkGbwS/x8CYD1+PhKgVlq1BWJUEIyGEEBbVp4UXS4cFYatVE3HyBmO+OEiOzhSOWtdozfJey6lqV5XjyccZuXUkSTlJli1QawdPrII2owAFfp4Ku2bJEiKVhASjYpKn0oQQovR0b+ZJ+IhgHG017DmXxPCVB8jIzQeguXtzVvVahYeDB+dSzzHi1xEkZCVYtkC1BvrOhc6vm17v+AB++Q8YLTylgLA4eSqthOSpNCGEKD3RV1IYsTKKjDw9AT5V+WJkMFUdTU+kxabHMmbbGOKz4vF28mZ5r+X4OPtYvsj9n8OvpjmXaPEkPLZIlhAph+SpNCGEEGVeUF031o1tT1VHG47E3eLZZZEkZeYBUMelDl888gV1XepyPes6o7aOIi49zvJFth8Pg5aDWgvHvob1z4Iuy/J1CIuQYCSEEMKqWtR2ZcPzHfCoYsep+HSeXvInCWm5AHhV8WJVr1XUd61PQlYCI7eOJDY91vJFtnwSnl0PWgc4/xt8OQCyUyxfhzA7CUZCCCGsrmlNZzaOa4+Xqz0Xbmbx1JI/iUvJBqC6Y3VW9lpJfdf63Mi+wcitI7mSfsXyRTbuaXqc374qXD0Aq/pA+nXL1yHMSoKREEKIMqFB9SpsHNeBOm6OxKZk89SSP7l40zSXkYeDByt7raSha0MSsxMZ9esoLqddtnyRPm1h1K/g7AU3T8GKUEg6b/k6hNlIMBJCCFFm+Lg58vX4DjSqUYX4tFyeWrKf0wnpgCkcLe+1nEZVG5GYk8ioraO4lHbJ8kXW8DXNku3WENLiYGUoXD9s+TqEWUgwEkIIUaZ4utiz4fn2+Hq5kJSZxzNL93P06i2gIByFmsLRzZybjNo6iotpFy1fZLW6pnDkFQDZyRD+KFzabfk6RKmTYCSEEKLMca9ix/qx7WnlU5Vb2fkMWRZJ9JVU0z4Hd1b0WkHjao1Jykli1K+juHjLCuGoSnUY/hPU7wy6TFjzOJzeYvk6RKmSYFRMMsGjEEJYlqujDWvGtKNtfTcy8vQMX3mA6CumJ8Hc7N1YEbqCJtWakJybzMitI7lw64Lli7R3gcFfg28/MOhg41A4+b3l6xClRiZ4LCGZ4FEIISwrW6dndPhB/ryYjJOthi9HtyWorhsAt3JvMTZiLKdTTuNm78by0OU0rtbY8kUa9LB5vGmeI5UGBi2FFk9Yvg5xTzLBoxBCiArB0VbLyhHBdGjgTpbOwLAVBzh42dRzVNW+Kst6LsPXzZeU3BTGbBvD2dSzli9So4WBS6DVEFAM8O0YiFln+TrEA5NgJIQQosxzsNWwckQwIQ1N4Wj4ygNE/TUchf4lHG0dw5mUM5YvUq2B/gshaASgwOaJEB1u+TrEA5FgJIQQolxwsNWwYngwHRvdCUcHLpnCkaudK8tCl+Hn7kdqXipjtlkrHKnh0fnQ9nlAgR9fhgPLLF+HuG8SjIQQQpQbDrYalg8L5qFGHmTrDIxYdYDIi8nAnXDk7+7PrbxbjN42mtMppy1fpEoFvWdBhxdMr7e8CvsWWr4OcV8kGAkhhChXHGw1LB/epjAcjQyPKgxHLrYuLAldQguPFqTlpTF662hOJp+0fJEqFYS+D51eNb3eNh12f2L5OkSJSTASQghR7tjbmMJRp8a3e46i2P/XcNRzCS09WpKuS2fstrGcSD5h+SJVKujxX+g23fR6+wzYMRPkYfAyrdIGo+zsbOrWrcurr75q7VKEEELcB3sbDcuGmcJRTr6Bkaui+POCKRw52zqzpOcSAqoH3AlHSVYIRwBdXoeH3zH9e9dH8Pu7Eo7KsEobjD744APatWtn7TKEEEI8gNvhqHOT6uTkGxgVficcVbGtwucPf06r6q3I0GUwdttYjicdt06hD02BXjNN//5jHmydLuGojKqUwejcuXOcPn2aPn36WLsUIYQQD8jeRsPSoUGF4Whk+AH2XUgCCsJRz89pXaM1GfkZPL/teY7dPGadQjtMhL5zTP/eH2YalG00WqcWcU9lLhjt3r2bfv364e3tjUqlYvPmzXcds2jRIurXr4+9vT1BQUHs2bOnRG28+uqrzJw5s5QqFkIIYW23w1GXJtXJzTcyKjyKfedN4cjJxonFDy8msEagKRxFPM/Rm0etU2jwGOi/AFBB1HL46WUJR2VMmQtGWVlZBAQEsHDh3z/auGHDBiZPnsz06dM5fPgwnTp1onfv3sTGxhYeExQUhL+//11f169f5/vvv6dJkyY0adLEUh9JCCGEBdjbaFgyNIhuTQvC0RdR7P2fcBTkGURmfibPRzxPTGKMdQoNHAYDPweVGg59Cd9PBKPBOrWIu5TptdJUKhWbNm1iwIABhdvatWtHYGAgixcvLtzm6+vLgAEDitULNG3aNNasWYNGoyEzM5P8/HxeeeUV3nrrrb89Pi8vj7y8vMLX6enp+Pj4yFppQghRRuXpDYxfHc2OMzex06pZOSKYjo08AMjOz+aF7S8QlRCFk42TaQxSjVbWKfT4t/DtWNMSIv6Pm5YU0dhYp5ZKoEKulabT6YiOjiY0NLTI9tDQUPbt21esc8ycOZO4uDguX77MJ598wtixY+8Zim4f7+rqWvjl4+PzQJ9BCCGEedlpNXw+NIjuzWqQpzfdVvvjnKnnyNHGkYXdF9K2Zluy8rMYFzGOw4mHrVOo/+Pw1BegtjGFpK9HgF5nnVpEoXIVjJKSkjAYDHh6ehbZ7unpSUJCglnanDZtGmlpaYVfcXFxZmlHCCFE6bHTalj8XCA9CsLR6C+i2HPuJlAQjnospF3NdmTrsxkXMY7oG9HWKdS3Hzy9BjS2cPon2DgU8nOtU4sAylkwuk2lUhV5rSjKXduKY8SIEXzyyT/PRGpnZ4eLiwurV6+mffv29OjRo8TtCCGEsDw7rYZFzwXysK8pHI354iC7z5rCkYPWgQU9FtDeqz05+hwm/DaBgwkHrVNo00fg2fWgtYezv8L6ZyE/xzq1iPIVjDw8PNBoNHf1DiUmJt7Vi1TaJk2axMmTJ4mKijJrO0IIIUqPnVZD2JC/hKMvD7Lrr+Go+wI6eHUgR5/DxN8nEpVgpf+Pb9QDhnwNNo5wYTusfRJ0WdappZIrV8HI1taWoKAgIiIiimyPiIggJCTESlUJIYQoy+y0GhYNCeJhX090eiNjvzzIzjOJANhr7fms+2d09O5Ijj6HSb9P4kD8AesUWr8zPPcd2DrD5T2w5nHITbdOLZVYmQtGmZmZxMTEEBMTA8ClS5eIiYkpfBx/6tSpLF++nJUrV3Lq1CmmTJlCbGws48ePN2tdYWFh+Pn5ERwcbNZ2hBBClD5brZpFQwLp6WcKR8+vji4Sjj7t/ikda90JR5HxkdYptG4HGLYZ7Fwh9k9YPRByblmnlkqqzD2uv3PnTrp163bX9uHDhxMeHg6YJnicNWsW8fHx+Pv7M2/ePDp37myR+or7uJ8QQoiyR6c38sK6Q2w7eQNbjZolw4Lo1rQGAHmGPKbsmMKea3uw09iZbrN5d7BOodcPF4SiVPBqBUM3gaObdWqpIIr7+7vMBaOyToKREEKUbzq9kRe/OsTWEwXhaGgQ3ZqZwpHOoGPKzinsvrobO40dn3X/jBBvKw3VSDgGXw6A7CTw9Idh34OTh3VqqQAq5DxG1iS30oQQomKw1apZODiQXs090RmMjFsdzfbTN0z7NLbM6zqPrrW7kmfI48XfX2Tvtb3WKbRmCxjxM1TxhBvHIbwvZJhnahpxh/QYlZD0GAkhRMWQbzDy4rrD/HoiAVuN2jTvka9nwb58Xtn1CjvidmCrtuXT7p/yUK2HrFNo0nn4oh9kXAf3RjD8R3Dxtk4t5Zj0GAkhhBD/wEajZsHg1vT2r4nOYGT8mmh+P3WjYJ8Nc7rMobtPd3RGHS9tf4ndV3dbp1CPRjDyZ3D1geTzsKo33Ir99/eJ+yLBqJjkVpoQQlQ8Nho1nz3bmr4tvMg3KIxfE81vJ++Eo0+6fkKPOj3IN+Yzecdk64UjtwYwcgtUqwepl2FVH0i5aJ1aKji5lVZCcitNCCEqnnyDkcnrY/j5WDw2GhWLhgTR06/gtpoxn//s/g8RVyLQqrXM7zqfLj5drFNo+nXTbbXk8+DsDcN/AI/G1qmlnJFbaUIIIUQx2WjUfPpMK/q2NPUcTVwbzbYTpoHONmobPu78MT3r9kRv1DN552R2xu20TqEu3jBiC1RvZhpztKoPJJ62Ti0VlAQjIYQQAtBq1Hz6dCseLQhHk9Yduisc9arXC71Rz5SdU9geu906hTp7mp5W8/SHrETT02oJx61TSwUkwaiYZIyREEJUfFqNmvlPt6JfgHdBz9Ehfj1+Jxx91Okjetfrjd6o55Wdr/D7ld+tU6iTh+npNK9WpnmOvnjUNCmkeGAyxqiEZIyREEJUfHqDkakbj/DDketo1SoWDm7NI/5epn1GPf/3x//xy6Vf0Kq0zO4ym4frPmydQnNuwdon4GqUaRmR574FH/kD/u/IGCMhhBDiPmk1auY+FcBjrbzRGxVeWHeYX47Fm/aptXz40If0bdAXvaLn1V2vsu3yNusU6lDVtFxInQ6QlwarB8CVP61TSwUhwUgIIYT4G1qNmjlP/iUcfVU0HH3Q8QP6NeiHQTHw+u7X2Xp5q3UKtXM29RTV7wy6TFgzCC5ZaVqBCkCCUTHJGCMhhKh8TD1HrRjQyhtDQTjaUhCONGoNMzrOoH/D/hgUA//Z/R/rhSNbJxi8ERr2gPxsWPsknP/NOrWUczLGqIRkjJEQQlQ+BqPCq18fYdPha2jUKj57pjV9W3oV7DPw9r63+f7C92hUGuZ0mUOPuj2sU2h+Lnw9HM7+ChpbeGo1NH3EOrWUMTLGSAghhCglGrWKT54MYFDrWhiMCi+tP8xPR68X7NPwbsi7hbfVXt39qvXmObKxN4Uh335g0MGG5+DUj9appZySYCSEEEIUg0atYvaTAQwKNIWjl9fH8OORO+FoRscZhY/yT9051XrLh2ht4YlV4P84GPNh43A4/q11aimHJBgJIYQQxaRRq5j9RACPB9bGYFSYvKFoOPqw04eE1g0l35jPlB1T2Hdtn5UKtYFByyDgWVAM8O0YOLLeOrWUMxKMhBBCiBLQqFXMeqIlTwbVLug5OswPBeFIq9byUeeP6FGnBzqjjpd2vMT++P3WKVStgccWQeAwUIywaTwc+tI6tZQjEoyKSZ5KE0IIcZtGreLjx03hyKjA5PWH+T7mGmCaIXt259l0rd2VPEMeL/7+IlEJUdYpVK2GRz+F4DGAAj+8CAdXWaeWckKeSisheSpNCCHEbUajwhvfHWXjwauoVTD/mdb0D/AGQGfQMXnHZPZc24OD1oHPH/6cQM9A6xSqKLB1OuwPM73u9ykEjbBOLVYiT6UJIYQQZqZWq/hoUEuebuODUYEpG2IK5zmy1dgyr9s8QrxDyNHnMOG3CcQkxlinUJUKen0A7SeaXv/4stxWuwcJRkIIIcQDUKtVzBzUonBA9ktfHWbbCdPCs3YaOz7t9intarYjW5/NhN8mcOzmMesUqlJBrw+h3QTT6x9egkOrrVNLGSbBSAghhHhA6oIB2beXD5m07hDbT98AwF5rz2fdP6ONZxsy8zMZ99s4TiSfsE6hKhU8MhPajqNwzNHhNdappYySYCSEEEKUAo1axZwnA+jb0ot8g8L41YfYdfYmAI42joT1CCOwRiAZugye3/Y8p1NOW6dQlQp6fwxtnwcU+P4FiFlnnVrKIAlGQgghRCnRatTMf7oVvZp7ojMYef7Lg+w9nwSYwtGihxfRsnpL0nXpjN02lrOpZ61TqEoFvWfdeVpt80SI+co6tZQxEoyEEEKIUmSjUbPg2UAe9q1Bnt7I6C+i2H8xGQAnGyc+f/hz/N39uZV3i7HbxnLh1gXrFKpSQZ9PoM1oTOFoAhzZYJ1ayhAJRkIIIUQps9WqCRsSSNem1cnNNzIqPIqoyykAONs6syR0Cb5uvqTkpjB662gupl20TqGF4WgUpnA0Ho5utE4tZYQEo2KSCR6FEEKUhJ1Ww+fPBdGpsQfZOgMjVh7gUGwqAC62LiwLXUbTak1Jzk1mzNYxXEm/Yp1C1WroM8c0r5FihE3j4OjX1qmlDJAJHktIJngUQghREjk6A6PCo/jzYjLOdlrWjm1Hy9pVAUjNTWXU1lGcv3WeGo41CO8Vjo+Lj3UKNRrhp8lw6AtQqU1rrbV4wjq1mIFM8CiEEEKUAQ62GlaMaEPbem5k5Ol5bnkkx6+lAVDNvhrLQ5fT0LUhidmJjN42mmuZ16xTqFoNj86/s7bad2Ph+LfWqcWKJBgJIYQQZuZoq2XlyGCC6lYjPVfPcysiORWfDoC7gzvLey2nnks94rPiGb11NPGZ8dYp9Pbaaq2fM4Wjb8fC8e+sU4uVSDASQgghLKCKnZbwkcEE+FTlVnY+Q5ZHcvZGBgAeDh6s6LWCOs51uJZ5jdHbRpOQlWCdQtVq6LcAWj0HigG+HQMnNlmnFiuQYCSEEEJYiLO9DV+Oaot/LRdSsnQMXhbJ+cRMAGo41mBFrxXUrlKbuIw4xmwbQ2J2onUKVauh/wJoNcQUjr4ZDSc2W6cWC5NgJIQQQliQq4MNa0a3w9fLhaTMPAYv28+lpCwAajrVZEWvFXg7eXMl/Qpjto0hKSfJOoXeDkcBzxaEo1Fw8nvr1GJBEoyEEEIIC6vqaMvaMe1o6ulMYoYpHMUmZwPgXcWbFb1WUNOpJpfSLjFm6xhSclOsU6haA4+FQctn7oSjUz9apxYLqZTBSKvV0qpVK1q1asWYMWOsXY4QQohKyM3JlrVj29GoRhXi03J5dtl+rqaawlFt59qsCF1BDccaXEi7wJhtY0jNTbVOoWoNDFgELZ4Cox6+HgGnfrJOLRZQKecx8vDwICnp/romZR4jIYQQpSkxPZdnlu7nYlIWPm4ObHi+A95VHQC4nHaZUVtHcTPnJs3cmrE8dDmudq7WKdRoME3+eOxrUGvhqS+hWV/r1HIfZB4jIYQQohyo4WLPurHtqevuSFxKDoOX7SchLReAeq71WN5rOW72bpxOOc3zEc+Trku3TqFqDQz4HPyfMPUcbRwOp7dYpxYzKnPBaPfu3fTr1w9vb29UKhWbN2++65hFixZRv3597O3tCQoKYs+ePSVqIz09naCgIB566CF27dpVSpULIYQQ96emqykc1a7mwOXkbAYv309ihikcNXBtwIrQFVSzq8bJ5JOMjxhPhi7DOoVqtDBwCfg/DsZ82DgMzvxinVrMpMwFo6ysLAICAli4cOHf7t+wYQOTJ09m+vTpHD58mE6dOtG7d29iY2MLjwkKCsLf3/+ur+vXrwNw+fJloqOj+fzzzxk2bBjp6VZK30IIIUSBWlUd+Gpse7xd7bl4M4shyyJJyswDoFG1RiwLXYarnSvHko4x4bcJZOVnWadQjRYGLoXmA03haMNQOPOrdWoxgzI9xkilUrFp0yYGDBhQuK1du3YEBgayePHiwm2+vr4MGDCAmTNnlriN3r17M2PGDNq0afO3+/Py8sjLyyt8nZ6ejo+Pj4wxEkIIYRZXkrN4esl+EtJzaVbTmXVj2+PmZAvAqeRTjN42mgxdBoE1Aln88GIcbRytU6hBD9+OhpObQWMLT6+FJqHWqaUYKuQYI51OR3R0NKGhRS98aGgo+/btK9Y5UlNTC4PO1atXOXnyJA0aNLjn8TNnzsTV1bXwy8fHSov7CSGEqBTqujuxbmw7ajjbcTohg+eWR3IrWweAr7svy3ouw9nGmUOJh3hh+wvk6HOsU6hGC48vB7/HwKCDDUPgXIR1ailF5SoYJSUlYTAY8PT0LLLd09OThITiTZ1+6tQp2rRpQ0BAAI8++iiffvopbm5u9zx+2rRppKWlFX7FxcU90GcQQggh/k2D6lVYN7YdHlVsORmfzrCVB0jLyQeguUdzPu/5OU42TkQlRPHi9hfJ1edap1CNDTy+Anz7m8LR+iFw7jfr1FJKylUwuk2lUhV5rSjKXdvuJSQkhGPHjnHkyBFiYmKK3Kb7O3Z2dri4uBT5EkIIIcytUQ1n1o4x3UY7ejWN4SsPkJFrCkctq7fk84c/x1HrSGR8JJN3TCbPkPcvZzQTjQ08sRKaPQqGPFg/GM6X33BUroKRh4cHGo3mrt6hxMTEu3qRSltYWBh+fn4EBwebtR0hhBDitqY1nVkzuh1VHW2IibvFyFVRZOXpAWhVoxWLHl6Eg9aBvdf3MnXnVHQGnXUK1djAE6vuhKOvBsP5361TywMqV8HI1taWoKAgIiKK3sOMiIggJCTErG1PmjSJkydPEhUVZdZ2hBBCiL/y83Zhzeh2uNhrOXgllZHhUWTrTOEoyDOIsB5h2Gvs2X11N6/seoV8Q751CtXamsJR0753eo4u7LBOLQ+gzAWjzMxMYmJiiImJAeDSpUvExMQUPo4/depUli9fzsqVKzl16hRTpkwhNjaW8ePHm7Uu6TESQghhLf61XFk9uh3OdloOXEphzBcHyc03ABBcM5jPun+GncaOnXE7eX336+QbrRiOngyHpn1AnwtfPQMXd1qnlvtU5h7X37lzJ926dbtr+/DhwwkPDwdMEzzOmjWL+Ph4/P39mTdvHp07d7ZIfbIkiBBCCGuJvpLKsBWRZOkMdGrswbJhbbC30QCw99peXtz+IvnGfHrV68VHnT5Cq9Zap1C9zjT549lfQOsAgzdAgy7WqaVAcX9/l7lgVNZJMBJCCGFNBy6lMHzlAXLyDXRrWp3PhwZhpzWFo91Xd/PyjpfRG/X0qd+HDx/6EI1aY51C9XmmyR/PbTWFoyEbob5lOjH+ToWcx8ia5FaaEEKIsqBtfTdWjgjG3kbNjjM3eWHdYfINRgA61+7M3C5z0aq0bLm0hbf2vYXBaLBOoVo7eHo1NA4FfQ6sfQoulWwJL2uQHqMSkh4jIYQQZcEf55IY9UUUOr2R3v41+ezZ1thoTP0dEVcieG3XaxgUAwMbDeSdkHdQq6zUF5KfCxueg/MRYOMIQ76Geg9ZvAzpMRJCCCEqsIcae7B0aBC2GjW/HE9g6sYj6At6jnrW7clHnT5CrVKz6fwmZuyfgVExWqdQG3t4eg00ehjys2Htk3B5r3VqKQYJRsUkt9KEEEKUNV2b1mDxc4HYaFT8eOQ6r31zFIPRdCPokfqP8OFDH6JWqfnm7Dd8GPkhVrtJZGNvWkutYY874ehK8ZbysjS5lVZCcitNCCFEWbP1RAKT1h5Cb1R4Iqg2sx5viVptWhHihws/8OYfb6Kg8Jzvc7we/HqxV4sodfm5sP5ZuLAdbJzguW+hbgeLNC230oQQQohKolfzmnz6TGs0ahXfRF9l+uZjGAt6jvo37M+7Ie8CsObUGuYdmmfdnqNn1kGDrpCfBWufgNj91qnlHiQYCSGEEBVA35ZezH0qALUKvjoQx9s/nCgMQAMbD+S/7f8LwKrjq1h8ZLH1CrVxgGe+gvpdQJcJax6H2Ejr1fM/JBgVk4wxEkIIUdY91qoWnzwZgEoFq/df4b2fThaGo6eaPsV/gv8DwOIji1lxbIX1CrV1hGfXm+Y1uh2O4g5Yr56/kDFGJSRjjIQQQpR1G6PieP3bowA837kB03o3KxxXtPzYcj499CkA/wn+D8/5PWe1OtFlw7qn4PIesHWGoZvAxzwdEDLGSAghhKikngr24YOB/gAs3X2R2VvPFPYcjWkxhvEBpvVFP476mK/Pfm21OrF1NC0XUq8T6DJgzSC4etB69SDBSAghhKiQhrSry3uPNQdg0c4LzP/tXOG+iQETGdl8JAAz/pzBDxd+sEqNANg6mcJR3YcgLx1WD4Sr0VYrR4KREEIIUUEN61CPN/v6AvDp7+dYuN0UjlQqFVOCpjC42WAUFP6797/8eulX6xVq62RaS61uR9M8R+nXrFaKlZbdLX/CwsIICwvDYLDSmjNCCCHEfRjTqQF6o8JHv5zmk21nsdWqeb5zQ1QqFf9p+x/yDHl8e+5b3tjzBrYaW7rX6W6dQm2dYPBGuHbQ9Di/lcjg6xKSwddCCCHKo4Xbz/HJtrMAvPdYc4Z1qAeAwWjgzb1v8tPFn7BR2/BZ9894qJbl1zIzNxl8LYQQQohCL3RvzAvdGgHw1vcn2BAVC4BGrWFGxxmE1g0l35jP5B2TiYwvO/MKWZoEIyGEEKKSeCW0CaMfqg/AG98d4/sY01gerVrLR50/omvtruQZ8nhx+4scTjxszVKtRoKREEIIUUmoVCre7OvLkHZ1UBSYuvEIvxyLB8BGbcMnXT8hxDuEHH0OE36bwPGk41au2PIkGAkhhBCViEqlYsZj/jwRVBuDUeGl9YfZfvoGAHYaO+Z3m08bzzZk5WcxLmIcZ1LOWLliy5JgVEyyJIgQQoiKQq1W8fHjLekX4E2+QWH8mkP8cS4JAAetAwt7LCSgegDpunTGbhvLhVsXrFyx5chTaSUkT6UJIYSoKPINRiatPcS2kzewt1Hz5ah2tK3vBkC6Lp0xW8dwKuUU1R2qE/5IOHVc6li54vsnT6UJIYQQ4h/ZaNQsGNyaLk2qk5tvZOSqAxyOTQXAxdaFpT2X0rhaY27m3GT0ttFcy7TexIuWIsFICCGEqMTstBqWDA2iQwN3snQGhq88wPFraQBUta/K0p5Lqe9an4SsBMZsHcONrBtWrti8JBgJIYQQlZy9jYblw9vQpm410nP1DFt5gLM3MgDwcPBgWc9l1K5Sm6uZVxmzbQxJOUlWrth8JBgJIYQQAic7LStHBtOytispWTqGLI/kUlIWAJ5OnqzotQIvJy8up19m7LaxpOamWrli85BgJIQQQggAXOxt+HJUW5rVdOZmRh6Dl+0nLiUbAO8q3iwPXU51h+qcv3WecRHjSNelW7ni0ifBSAghhBCFqjrasmZMOxrVqEJ8Wi6Dl+8nPi0HgDoudVgeuhw3ezdOpZxiwm8TyMrPsnLFpUuCUTHJPEZCCCEqC48qdqwd04667o7EpeQwZFkkiRm5ADSo2oClPZfiaufK0ZtHmfT7JHL0OVauuPTIPEYlJPMYCSGEqCyupmbz9JL9XLuVQ1NPZ756vj1uTrYAnEg+wZitY8jMz6S9V3sW9liIncbOyhXfm8xjJIQQQogHUruaI+vGtqOGsx1nbmQwdEUkaTn5ADR3b87ihxfjoHVgf/x+pu6cSr4h38oVPzgJRkIIIYS4p7ruTqwb2w53J1tOXE9nxKoDZObpAWhVoxVhPcKw09ix++pu/rPnP+iNeitX/GAkGAkhhBDiHzWq4cyaMe2o6mjD4dhbjAqPIkdnACC4ZjCfdfsMG7UNEVcimP7HdAxGg5Urvn8SjIQQQgjxr3y9XPhyVFuc7bQcuJTC86sPkptvCkAhtUKY23UuWpWWLZe28O6f72JUjFau+P5IMBJCCCFEsbSsXZXwUcE42mrYcy6JF9YdQqc3BaCuPl35qPNHqFVqNp3fxIeRH1Ien++SYCSEEEKIYguq68by4W2w06r57VQikzccRm8whaNe9Xrxfsf3UaFiw5kNzDk4p9yFIwlGQgghhCiRkIYeLBkahK1GzZZjCbz2zVGMRlMA6tewH291eAuAL05+wcKYhdYstcQqZTC6dOkS3bp1w8/PjxYtWpCVVbFm7RRCCCHMrWvTGiwc3BqNWsWmw9eYvvlYYe/QE02e4I22bwCw9OhSlh1dZs1SS6RSBqMRI0bw3nvvcfLkSXbt2oWdXdmdkEoIIYQoq0Kb12T+061Qq+CrA3G8++PJwnA0xHcIU4KmAPDZ4c/48sSX1iy12CpdMDpx4gQ2NjZ06tQJADc3N7RarZWrEkIIIcqnfgHezHoiAIDwfZf5+NczheFolP8oJgZMBGD2wdlsOL3BanUWV5kLRrt376Zfv354e3ujUqnYvHnzXccsWrSI+vXrY29vT1BQEHv27Cn2+c+dO0eVKlXo378/gYGBfPjhh6VYvRBCCFH5PBFUmw8G+gPw+a4LfPr7ucJ94wPGM8p/FADvR77PpnObrFJjcZW5rpKsrCwCAgIYOXIkjz/++F37N2zYwOTJk1m0aBEdO3ZkyZIl9O7dm5MnT1KnTh0AgoKCyMvLu+u927ZtIz8/nz179hATE0ONGjV45JFHCA4OpmfPnmb/bEIIIURFNaRdXXLzjcz46STzfzuHvY2G8V0aolKpmBw4mTxDHmtPreXtfW9jp7GjT4M+1i75b5XpRWRVKhWbNm1iwIABhdvatWtHYGAgixcvLtzm6+vLgAEDmDlz5r+e888//+Tdd9/l119/BWD27NkAvPbaa397fF5eXpGQlZ6ejo+PjywiK4QQQvyNsB3nmb31DADv9PNjRMf6ACiKwnv73+Obs9+gUWn4pMsnPFz3YYvVVSEXkdXpdERHRxMaGlpke2hoKPv27SvWOYKDg7lx4wapqakYjUZ2796Nr6/vPY+fOXMmrq6uhV8+Pj4P9BmEEEKIimxSt0a82L0RAO/8eJL1B2IBU2fHf9v/l/4N+2NQDLy2+zV2X91tzVL/VrkKRklJSRgMBjw9PYts9/T0JCEhoVjn0Gq1fPjhh3Tu3JmWLVvSuHFjHn300XseP23aNNLS0gq/4uLiHugzCCGEEBXd1J5NGNvJ1FM0bdMxNh2+CoBapebdkHfpVa8XeqOeKTum8Of1P61Z6l3K3Bij4lCpVEVeK4py17Z/0rt3b3r37l2sY+3s7LCzsyMsLIywsDAMhvK7MJ4QQghhCSqViv/r40tuvpHV+6/wysYj2Gk19GnhhVatZWanmegMOnbE7eDlHS+z+OHFBHkGWbtsoJz1GHl4eKDRaO7qHUpMTLyrF6m0TZo0iZMnTxIVFWXWdoQQQoiKQKVS8W7/5jzVpjZGBV766jC/n7oBgI3ahk+6fELHWh3J0ecw6fdJHLt5zMoVm5SrYGRra0tQUBARERFFtkdERBASEmLWtsPCwvDz8yM4ONis7QghhBAVhVqtYuaglvQP8EZvVJiw5hB7zt0EwFZjy/yu82lbsy1Z+VmM+20cp5JPWbniMhiMMjMziYmJISYmBjAt3xETE0NsrGnw1tSpU1m+fDkrV67k1KlTTJkyhdjYWMaPH2/WuqTHSAghhCg5jVrFnKcC6NXcE53ByNgvDxJ5MRkAe609C7ovoHWN1mToMng+4nnOp563ar1l7nH9nTt30q1bt7u2Dx8+nPDwcMA0weOsWbOIj4/H39+fefPm0blzZ4vUV9zH/YQQQghxh05vZNzqg+w4cxMnWw2rx7QjsE41ADJ0GYzdNpYTySdwt3cn/JFw6rnWK9X2i/v7u8wFo7Lqr4Ovz549K8FICCGEKKHcfAOjwqPYdyEZZ3stX41tj38tVwDS8tIYtXUUZ1PP8l7IewxsPLBU25ZgZCbSYySEEELcv2ydnuErDxB1OZVqjjasf74DTWs6A5Cck0xUQhSP1H+k1NutkBM8CiGEEKJ8c7TVsnJEMAG1XUnNzmfI8kgu3swEwN3B3SyhqCQkGBWTPJUmhBBClA5nexu+GNUWXy8XkjLzGLI8kriUbGuXBcittBKTW2lCCCFE6UjOzOPppfs5n5hJ7WoObBzXAe+qDmZpS26lCSGEEKJMc69ix7ox7ajn7sjV1ByGLI8kMSPXqjVJMBJCCCGE1dRwsWft2PbUqurApaQsnlseSUqWzmr1SDAqJhljJIQQQphHraoOrBvbDk8XO87eyOTb6KtWq0XGGJWQjDESQgghzOPCzUx+ORbPpG6NSrQ4fHEU9/e3tlRbFUIIIYS4Tw2rV+GF7o2tWoPcShNCCCGEKCDBSAghhBCigASjYpLB10IIIUTFJ4OvS0gGXwshhBDlj0zwKIQQQghRQhKMhBBCCCEKSDASQgghhCggwUgIIYQQooAEo2KSp9KEEEKIik+eSisheSpNCCGEKH/kqTQhhBBCiBKSYCSEEEIIUUCCkRBCCCFEAa21Cyhvbg/JSk9Pt3IlQgghhCiu27+3/21otQSjEsrIyADAx8fHypUIIYQQoqQyMjJwdXW95355Kq2EjEYj169fx9nZGZVK9Y/HBgcHExUVdV/tlOS9/3bsP+2/176/2/6/2/76Oj09HR8fH+Li4sz+tJ5cV/OQ62oecl3No7xe1/vZJtf13/cVZ5uiKAQFBXH27FnU6nuPJJIeoxJSq9XUrl27WMdqNJr7/iEuyXv/7dh/2n+vfX+3/X+3/d0xLi4uZv8PV66rech1NQ+5ruZRXq/rg2yT63rvfcXdZmtr+4+hCGTwtVlNmjTJIu/9t2P/af+99v3d9v/d9iCf70HIdTUPua7mIdfVPMrrdX2QbZYg11VupYlSIhNfmodcV/OQ62oecl3NQ66rZUmPkSgVdnZ2vP3229jZ2Vm7lApFrqt5yHU1D7mu5iHX1bKkx0gIIYQQooD0GAkhhBBCFJBgJIQQQghRQIKREEIIIUQBCUZCCCGEEAUkGAkhhBBCFJBgJCwqIyOD4OBgWrVqRYsWLVi2bJm1S6oQ4uLi6Nq1K35+frRs2ZKvv/7a2iVVGAMHDqRatWo88cQT1i6lXPvpp59o2rQpjRs3Zvny5dYup8KQn8/SJ4/rC4syGAzk5eXh6OhIdnY2/v7+REVF4e7ubu3SyrX4+Hhu3LhBq1atSExMJDAwkDNnzuDk5GTt0sq9HTt2kJmZyRdffME333xj7XLKJb1ej5+fHzt27MDFxYXAwEAiIyNxc3Ozdmnlnvx8lj7pMRIWpdFocHR0BCA3NxeDwYBk8wfn5eVFq1atAKhRowZubm6kpKRYt6gKolu3bjg7O1u7jHLtwIEDNG/enFq1auHs7EyfPn3YunWrtcuqEOTns/RJMBJF7N69m379+uHt7Y1KpWLz5s13HbNo0SLq16+Pvb09QUFB7Nmzp0Rt3Lp1i4CAAGrXrs3rr7+Oh4dHKVVfdlniut528OBBjEYjPj4+D1h12WfJ61qZPeh1vn79OrVq1Sp8Xbt2ba5du2aJ0ss0+fktmyQYiSKysrIICAhg4cKFf7t/w4YNTJ48menTp3P48GE6depE7969iY2NLTwmKCgIf3//u76uX78OQNWqVTly5AiXLl1i3bp13LhxwyKfzZoscV0BkpOTGTZsGEuXLjX7ZyoLLHVdK7sHvc5/1yusUqnMWnN5UBo/v8IMFCHuAVA2bdpUZFvbtm2V8ePHF9nWrFkz5Y033rivNsaPH69s3Ljxfkssl8x1XXNzc5VOnTopX375ZWmUWe6Y8+d1x44dyuOPP/6gJVYI93Od9+7dqwwYMKBw30svvaSsXbvW7LWWJw/y8ys/n6VLeoxEsel0OqKjowkNDS2yPTQ0lH379hXrHDdu3CA9PR0wrRi9e/dumjZtWuq1lielcV0VRWHEiBF0796doUOHmqPMcqc0rqv4d8W5zm3btuX48eNcu3aNjIwMtmzZQq9evaxRbrkhP7/Wo7V2AaL8SEpKwmAw4OnpWWS7p6cnCQkJxTrH1atXGT16NIqioCgKL7zwAi1btjRHueVGaVzXvXv3smHDBlq2bFk4TmH16tW0aNGitMstN0rjugL06tWLQ4cOkZWVRe3atdm0aRPBwcGlXW65VZzrrNVqmTNnDt26dcNoNPL666/Lk6j/org/v/LzWfokGIkS+9+xAYqiFHu8QFBQEDExMWaoqvx7kOv60EMPYTQazVFWufcg1xWQp6eK6d+uc//+/enfv7+lyyr3/u26ys9n6ZNbaaLYPDw80Gg0d/21nZiYeNdfNaL45Lqah1xXy5DrbB5yXa1HgpEoNltbW4KCgoiIiCiyPSIigpCQECtVVf7JdTUPua6WIdfZPOS6Wo/cShNFZGZmcv78+cLXly5dIiYmBjc3N+rUqcPUqVMZOnQobdq0oUOHDixdupTY2FjGjx9vxarLPrmu5iHX1TLkOpuHXNcyynoPxImyaMeOHQpw19fw4cMLjwkLC1Pq1q2r2NraKoGBgcquXbusV3A5IdfVPOS6WoZcZ/OQ61o2yVppQgghhBAFZIyREEIIIUQBCUZCCCGEEAUkGAkhhBBCFJBgJIQQQghRQIKREEIIIUQBCUZCCCGEEAUkGAkhhBBCFJBgJIQQQghRQIKREKLC6dq1K5MnTzZrGzt37kSlUqFSqRgwYIDV6ylN9erVK/xst27dsnY5QliUrJUmhCi3du7cSbdu3UhNTaVq1aqF27/77jtsbGwsUsOZM2eoUaOGRdqylKioKPbs2cPjjz9u7VKEsDgJRkKIMken02Fra3vf73dzcyvFav5ZjRo1ioQya8nPzy+1MFi9enWLXkMhyhK5lSZEJffNN9/QokULHBwccHd35+GHHyYrK6tw/6pVq/D19cXe3p5mzZqxaNGiwn2XL19GpVKxfv16QkJCsLe3p3nz5uzcubPwGIPBwOjRo6lfvz4ODg40bdqUTz/9tEgNI0aMYMCAAcycORNvb2+aNGkCwJo1a2jTpg3Ozs7UrFmTwYMHk5iYWNh2t27dAKhWrRoqlYoRI0YAd9+6Sk1NZdiwYVSrVg1HR0d69+7NuXPnCveHh4dTtWpVtm7diq+vL1WqVOGRRx4hPj6+xNczKyuLYcOGUaVKFby8vJgzZ85dx+h0Ol5//XVq1aqFk5MT7dq1K3LNAJYtW4aPjw+Ojo4MHDiQuXPnFglg77zzDq1atWLlypU0aNAAOzs7FEUhLS2N559/nho1auDi4kL37t05cuRIkXP/+OOPBAUFYW9vT4MGDXj33XfR6/Ul/qxCVEhWXsRWCGFF169fV7RarTJ37lzl0qVLytGjR5WwsDAlIyNDURRFWbp0qeLl5aV8++23ysWLF5Vvv/1WcXNzU8LDwxVFUZRLly4pgFK7dm3lm2++UU6ePKmMGTNGcXZ2VpKSkhRFURSdTqe89dZbyoEDB5SLFy8qa9asURwdHZUNGzYU1jF8+HClSpUqytChQ5Xjx48rx44dUxRFUVasWKFs2bJFuXDhgvLnn38q7du3V3r37q0oiqLo9Xrl22+/VQDlzJkzSnx8vHLr1i1FURSlS5cuyssvv1x4/v79+yu+vr7K7t27lZiYGKVXr15Ko0aNFJ1OpyiKoqxatUqxsbFRHn74YSUqKkqJjo5WfH19lcGDB9/z2t1eGT01NbXI9gkTJii1a9dWtm3bphw9elR59NFHlSpVqhSpZ/DgwUpISIiye/du5fz588rs2bMVOzs75ezZs4qiKMoff/yhqNVqZfbs2cqZM2eUsLAwxc3NTXF1dS08x9tvv604OTkpvXr1Ug4dOqQcOXJEMRqNSseOHZV+/fopUVFRytmzZ5VXXnlFcXd3V5KTkxVFUZRff/1VcXFxUcLDw5ULFy4o27ZtU+rVq6e88847xfp8QlR0EoyEqMSio6MVQLl8+fLf7vfx8VHWrVtXZNuMGTOUDh06KIpyJxh99NFHhfvz8/OV2rVrKx9//PE92504caLy+OOPF74ePny44unpqeTl5f1jvQcOHFCAwuB2r1/efw1GZ8+eVQBl7969hfuTkpIUBwcHZePGjYqimIIRoJw/f77wmLCwMMXT0/Oetfxd2xkZGYqtra2yfv36wm3JycmKg4NDYT3nz59XVCqVcu3atSLn69GjhzJt2jRFURTl6aefVvr27Vtk/5AhQ+4KRjY2NkpiYmLhtt9//11xcXFRcnNzi7y3YcOGypIlSxRFUZROnTopH374YZH9q1evVry8vP718wlRGcgYIyEqsYCAAHr06EGLFi3o1asXoaGhPPHEE1SrVo2bN28SFxfH6NGjGTt2bOF79Ho9rq6uRc7ToUOHwn9rtVratGnDqVOnCrd9/vnnLF++nCtXrpCTk4NOp6NVq1ZFztGiRYu7xhUdPnyYd955h5iYGFJSUjAajQDExsbi5+dXrM946tQptFot7dq1K9zm7u5O06ZNi9To6OhIw4YNC197eXkV3rYrrgsXLqDT6YpcDzc3N5o2bVr4+tChQyiKUni78La8vDzc3d0B04DugQMHFtnftm1bfvrppyLb6tatS/Xq1QtfR0dHk5mZWXie23Jycrhw4ULhMVFRUXzwwQeF+w0GA7m5uWRnZ+Po6FiizyxERSPBSIhKTKPREBERwb59+9i2bRsLFixg+vTpREZGFv6CXLZsWZFQcft9/0alUgGwceNGpkyZwpw5c+jQoQPOzs7Mnj2byMjIIsc7OTkVeZ2VlUVoaCihoaGsWbOG6tWrExsbS69evdDpdMX+jIqi3HP77RqBuwYuq1Sqe763pG39ldFoRKPREB0dfdd1rFKlyt/Wdq9z/+81MxqNeHl53TVeCSgcn2Q0Gnn33XcZNGjQXcfY29v/a/1CVHQSjISo5FQqFR07dqRjx4689dZb1K1bl02bNjF16lRq1arFxYsXGTJkyD+eY//+/XTu3Bkw9ShFR0fzwgsvALBnzx5CQkKYOHFi4fG3ey/+yenTp0lKSuKjjz7Cx8cHgIMHDxY55nYPk8FguOd5/Pz80Ov1REZGEhISAkBycjJnz57F19f3X+soiUaNGmFjY8P+/fupU6cOYBr4ffbsWbp06QJA69atMRgMJCYm0qlTp789T7NmzThw4ECRbf/72f9OYGAgCQkJaLVa6tWrd89jzpw5Q6NGjUrwyYSoPCQYCVGJRUZG8vvvvxMaGkqNGjWIjIzk5s2bhYHhnXfe4aWXXsLFxYXevXuTl5fHwYMHSU1NZerUqYXnCQsLo3Hjxvj6+jJv3jxSU1MZNWoUYAoLX375JVu3bqV+/fqsXr2aqKgo6tev/4+11alTB1tbWxYsWMD48eM5fvw4M2bMKHJM3bp1UalU/PTTT/Tp0wcHB4fCXpfbGjduzGOPPcbYsWNZsmQJzs7OvPHGG9SqVYvHHnusNC5joSpVqjB69Ghee+013N3d8fT0ZPr06ajVdx4AbtKkCUOGDGHYsGHMmTOH1q1bk5SUxPbt22nRogV9+vThxRdfpHPnzsydO5d+/fqxfft2fvnll7t6kf7Xww8/TIcOHRgwYAAff/wxTZs25fr162zZsoUBAwbQpk0b3nrrLR599FF8fHx48sknUavVHD16lGPHjvH++++X6vUQolyy4vgmIYSVnTx5UunVq5dSvXp1xc7OTmnSpImyYMGCIsesXbtWadWqlWJra6tUq1ZN6dy5s/Ldd98pinJn8PW6deuUdu3aKba2toqvr6/y+++/F74/NzdXGTFihOLq6qpUrVpVmTBhgvLGG28oAQEBhccMHz5ceeyxx+6qb926dUq9evUUOzs7pUOHDsoPP/ygAMrhw4cLj3nvvfeUmjVrKiqVShk+fLiiKHc/lZaSkqIMHTpUcXV1VRwcHJRevXoVPgGmKKbB138d2KwoirJp0ybln/4v8l6DkzMyMpTnnntOcXR0VDw9PZVZs2bdVc/tJ/Xq1aun2NjYKDVr1lQGDhyoHD16tPCY/2/nfnUUBoI4js8JRM1qUkCAxUPSN8DVEgSmlTwDBtWgilvHSzR4HIbUIRCER6CyYjB7JHfHJfenNIR8P7abTnbVL5nJWGu11Wqp53kahqEuFgttNpu37/P5/MMbvrtcLjqbzdT3fW00GtrpdHQymej5fL6d2Ww2GgSBep6nxhgdDAZqrf3R/YBX96b6yyY6ADin00m63a7s9/svw9Sv7rut248Sx7EcDgfZbrcPryVS//2AZ8GCRwD4h3a7LePxuPL/LpdLyfNcjsejrFYrWa/XMp1OK69zT7/fl9FoVEst4NkwYwQAfzAcDm/bsz/PNVVht9tJkiRSFIX0ej1J01SiKKq8zj1ZlklZliIiYoyppSbwLGilAQAAOLTSAAAAHIIRAACAQzACAABwCEYAAAAOwQgAAMAhGAEAADgEIwAAAIdgBAAA4BCMAAAAnCsG8foMnYz/fAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "execution_count": 65, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "fig" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "472f1e75-9cbf-4c5d-93ce-4d06c7b16f15", - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "wl_shear_sim", - "language": "python", - "name": "wl_shear_sim" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.4" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/examples/example_NFWShear_imsim.ipynb b/examples/example_NFWShear_imsim.ipynb deleted file mode 100644 index 0d41fec1..00000000 --- a/examples/example_NFWShear_imsim.ipynb +++ /dev/null @@ -1,141 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 24, - "id": "177f93ce-ec8b-4c36-9ff4-d16951a4941f", - "metadata": {}, - "outputs": [], - "source": [ - "%matplotlib inline\n", - "%reload_ext autoreload\n", - "%autoreload 2\n", - "import clmm\n", - "import numpy as np\n", - "\n", - "from descwl_shear_sims.galaxies import make_galaxy_catalog\n", - "from descwl_shear_sims.galaxies import WLDeblendGalaxyCatalog\n", - "from descwl_shear_sims.psfs import make_fixed_psf\n", - "from descwl_shear_sims.surveys import get_survey\n", - "\n", - "from descwl_shear_sims.sim import make_sim\n", - "from descwl_shear_sims.shear import ShearNFW\n", - "\n", - "\n", - "import matplotlib.pyplot as plt\n", - "\n", - "\n", - "cosmo = clmm.Cosmology(H0=70.0, Omega_dm0=0.27 - 0.045, Omega_b0=0.045, Omega_k0=0.0)\n", - "halo = clmm.Modeling(massdef=\"mean\", delta_mdef=200, halo_profile_model=\"nfw\")\n", - "halo.set_cosmo(cosmo)\n", - "halo.set_concentration(4)\n", - "halo.set_mass(1.0e16)\n", - "z_cl = 1.0\n", - "# source properties\n", - "z_source = 2.0 # all sources in the same plane\n", - "\n", - "shear_obj = ShearNFW(halo, z_cl)\n", - "\n", - "seed = 74321\n", - "rng = np.random.RandomState(seed)\n", - "\n", - "coadd_dim = 1000\n", - "se_dim = 1000\n", - "psf_dim = 41\n", - "\n", - "galaxy_catalog = WLDeblendGalaxyCatalog(\n", - " rng=rng,\n", - " coadd_dim=coadd_dim,\n", - " buff=2,\n", - " layout=\"random_disk\",\n", - ")\n", - "psf = make_fixed_psf(psf_type=\"gauss\")\n", - "band_list = [\"r\"]\n", - "\n", - "sim_data = make_sim(\n", - " rng=rng,\n", - " galaxy_catalog=galaxy_catalog,\n", - " coadd_dim=coadd_dim,\n", - " shear_obj=shear_obj,\n", - " psf=psf,\n", - " noise_factor=0.0,\n", - " bands=band_list,\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "id": "5db4e4bf-7d48-4bab-9692-1d21f6f0952b", - "metadata": {}, - "outputs": [], - "source": [ - "exp = sim_data[\"band_data\"][\"r\"][0]\n", - "img = exp.getImage().getArray()" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "id": "516ec59d-c0d9-4a63-9d84-1f7a8cdb405d", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(-0.5, 1009.5, -0.5, 1009.5)" - ] - }, - "execution_count": 28, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAGFCAYAAAASI+9IAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3Qc5dXGfzOzs00rrXq33LuNO6aYGnonhAApkF5ID6lfGumFkEISQiohBQi9F2OMbXDv3ZKs3qWVVqtdbZv2/TE765UsybItF8g+5/iApN2Zd2Zn733vvc99rmAYhkEaaaSRRhppAOKpXkAaaaSRRhqnD9JOIY000kgjjSTSTiGNNNJII40k0k4hjTTSSCONJNJOIY000kgjjSTSTiGNNNJII40k0k4hjTTSSCONJNJOIY000kgjjSRso33honMfOJHrSCONNNJI4wRj69pPHfE16UghjTTSSCONJNJOIY000kgjjSRGnT5KI423EwRJMP8rChi6Ke9laKdO5it1PQCGbpzS9aSRxnBIO4U03lEQJAHRYUOURWyZdkSHDS2smP9iGoainXRjLMoikltGcsvYMu1oYQUlEEOPquiKflLXkkYaR0LaKaTxjoEgCQiyhOx14CrLZO45FUwo87K/ykdtZRfBA92ooThw8hyDIAmIThueGfnMXlLG+YvK2VPbzernDhBpCaL4I4etxYoq0pFEGqcCaaeQxjsKgmgaYWeWg2kTcllQkU1M0fD7+gk7e1FDJ39NosNG+eRcrjlnApfkr+HM0kuo2t9FY18MNRAdYPxFpw2bx56MbtJI42Qj7RTSOKkQJAFHYQbe6XkEKruJ+8JjmkIxdAM1GCfU3s/GLc00dwZprPXT3R5Ci2pjdp6jgSAJOF0yeS4ZeprJKW4gI9OOKIsgiQj6IadQdE45yy6cxOsvV+Hf1JKOFtI46Ug7hTROKgRRoHRxKZ963wL+89J+DiyvIdbRPybHNg2ohhqIooUVKjv7qZZFdEVHj6noUfWUFHjVYJyqLS3cr2osO/MGanYGqNnZTrwnCprpEAVRQHLLjJucR3GeG0lOEwPTODVIO4U0TioM3aCz0sdza+torOoe8xSJZfCNmIqhHIoMThUDydAMDEUj0hKkOqLQWNODGowTaQkmr10QBeRcFzd87iwWTc7nqdU19Df1ndR1ppGGhbRTSOOkwtAMQlU9rK3ZnPz5RJzjRB37WKArOoo/ghqIEm5MGHtNx9ANBFEgY2oeb/zeySPOa+gArqldx45nD5zSNafxv4u0U0hjTCFIQjIVMhIF9HQx2CcLhpZIW6XUTyyW0Y13LGDb3CuTv2/u6U8XmdM4ZUgnLtMYUwiyRNbcQh5/7Gauuusc7PnupPFLYyAMzQBJZH+Vj4Wvf45x5XBb5//xj5+uQQsr/3OOM43TA2mnkMaYQhAFJs4tomz797nzojxcZZmnekmnNzSd/W/W89lVZ1H17Aou+YGXuC+crIGkkcbJRjp9lMaYwlA0qtc3senab/P8iiaibaegMeBtBEM3iLaF2L++ifamAP01/rQERhqnFGmnkMaYQld0+mv8fP72J0zjdgpkJd5OMDQDz9Rcfnv3pczOeovLegroWd98qpeVxv8w0umjNMYchmaghRWzLyDtEIaFJYExfnYhs7XHMF56nPwSz6leVhr/40hHCmmkMQQGF8dPhHOTvQ5Kzx5HpD9OV+YVFFyaR+eK3jE/TxppHA3STiGNNAbBotUKsgRYjW9jmwYTJAHP9Hx++4Ul3PPcQT5xzx4E0U3fvvoxO0caaRwL0k4hjbc9xmJXL0gChmYkHYLotCG5ZQRRQI+pqGEYS8dgaAbBfV189197qNvRTri+15TjiKpjcvw00jhWpJ1CGm9bDNf/cLTS05JbRvY6zBkHMdMoWw141lAcIaox1gkkNRRn7zMHklIY1trTdZg0TiXSheY0Tks4ijLInFWAq8KL6Dx875I6yUyQpYH/xET6ZxRNc84SD5//1ZW8dW837//eRcmUESS6kPVD/8YahmYkIwPJLSM6beb6081+aZxCpJ1CGqcdXOWZfPTbF/Lj71/C+DPLDvt7as5fkCVzsplDSv4TZMmUpB6FYzj/g/O49nfv45EJ9/OpzV9F9jowdAMtpqH4Iyg9EdRgPKlmOpaw2EfOEg+eqblkTs/DnuN8RzqGd9r1vJORTh+lcVpBkAQ8k3KQRIHVe9tp2NA0IM9uOQQkEVEWER02JKd0qCisaGhRU3NJVwRIpGWGS8mEwwr28kygDVtF1iExPUVDT3EEY91QZl2H7HUwbVkFi+aVkumWeXF5FQ1rm1ACMQzt7V9fsKbhAQiinm7MexsgHSmkcVpBEAUqJufizbCze1fbsLMWRFlMzj62ZTmx5zhx5LmQc1zmbGanzdydSuYjPtxOdefKOnru+hfv/skMti+7DzUUT4rXpaaOToghk0RsHjtLFpRxy3yD98+p5PxlE5G9DkRZfNvvri2H4Mh3kTHBi83rHHVaL41Th3SkkMZRw/qyC6Jg5to1fcympxm6Qd0BH6sy7LQd6B5w3MFRguSWsec4ySnPwpvrwm63EfCH6UqZfWxoCljrHAKhSh/ved9zZEz4CKEPPzEgKjkZO1pPaSY3zpHJ3nYfyvYabvrwb3m22EPcF+bUzIkbOwiigD3HyZd+eCkXjw/xkxdDvPnXrYk52Wmcrkg7hTSOCqLThj3HScXZ5ZRPzGX35mZCtX5iHf1j4hgMzaBnfTNrRxhFadUTRIcNT0EGk2YUMKnMS162k6oGP7s1g25NN7uqYypGQoV6KGaPoRnEfWHivvBxr/1oIcoin/zQYrIfvJN4KI59XjlRzYsoCiC+M4J4QRLIdsp45A7cTu+pXk4ao0DaKaQxaoiyiOx14J2ex+3vnsvkHDe/iyjs9kWI+SIDZgUcLwYb79SUQ7KXQBaRHRIFOS4mFXkoy3QSjigczDDTR4hiMrJAP3333bZx2TChgu6pH2JDQxAxcW2C+Pampxq6Qbwnyve/vRx7jpNIS016TsTbAGmncBrBVZ6JozCDSEtwzOYWnwjEQ3G2H/RRn+WkZl8nij9yQtg5I8HK9eu6QX9EIRBTcdoU+iMqmqq/LYypruj84787KfjwPdglkXEEuHJSD/UXT+a1iIoSiCG8TQqzYmKmdGq0aGgGekwl0hIk2hY6sfWZNMYMaadwmsBV4eXN+8HY8jrrZ/+IL37w8dOqu9WqIxiKRripj5f+ugVd0VGDcTNFcwK/6IIkIDpsyfSP9U+LagR7ItTV9BDqj+PJsNPZ2Y/f128WjBUtWfM43WDeL42Wtxr5a76b771vLhnf+Sgb/13PV/59BQs+9z2+/41XibUFT3sj6izx8L67lmG3i/zz1+sI1/Um/2Zdp8H/3rS9tyvSTuE0gbPQjdG+D0SR9lDstDJkoiyaLJKiDOw5TnRFJ9bZb9ImT7A0tiAJ2Dx2MibnIMgSkcZA8rxaGOK+MK2ajq89iM0mEY0qxHuiqKHDndXpZJSsdJgt084v7ijB8dUbePnPTcRiEFtby7xzYthznMQ6+0/7aMFV4eWmeRkYiDyS5Tjs76fz2tM4HGmncJqgv9bPb7reiy4ZvPDz1WPG5jleWLROyS3jKstkwtQ8goEozaE4ajA+5tIPQ0Fyy+SWZWGTRZoSQ3t0RUcEtLBCHFMywopk1FDc1BFS9BG7kQXpkJSFFlZO2j1P7cYGUHUHrhwni89zU3hOGc5Pv4flLbak5Ib1ntPVuPbX+Pnhkw0oMZVwfe+pXk4axwnBMIxRPWmLzn3gRK/lfx6n4xffSt3IXgfFC0uYMrOAro4QB9eZU9VORupI9jpwjTOZK5GmgNlhnOg/sPoVEMVD6aVE2khXdND0pFMYvE7Z62DODTMoK/fy1stVBHZ2nPD7P8AhJPoUvLPymXdmOXnZLlrag/jaQ7TX9tBf4zdnNQ/h1E7H5wROv3WlMRBb137qiK9JRwqnEU7XL5Shm0NzfNXdBDpCqGHV7AM4CVPVDM1ADcYJVfck6wOGboCumQqmHMpbp64XSL52pDVmZDooLfCQkeum7ySxfSxKraMog3vuuZJ+ReeeP66nd2dHcv1W85z1euv3yWOcZkb4dFlHGsePtFNIY0QYmoEg6uiKQLwnmsznq2H1pA2X1xUdYajdsm4goGMMwTYdzdrUUJxNj+5hq1tGDURP+PUMptUWzirgzE13waQJrDr3Rl7b2ZFMeVkQnbakgzBd4OntHNJ4+yPtFNI4MiQRW6Yd97gstJhmNnqFj5w2SnYgw7ApnNEi9X2pxnWwIRcGdS+PdD5DM0zRO3/kuNZ2rAh0hBDuupFeZnLgxfrDIgPJKZE5qwA1GDfTZmEVNP1tETmk8fZF2imkMSJEWcQ7r4gbb57LzfMdPLkrzvPP7cO3qXXE9wmSgJzjomB+MRlZduperzOLwYPqJifCmAmyNKCWMBJOlBE9kr6PrugEK7u56LNe9NjmpGNKrTk4y7L42EcW09gW5JWn9xKs7MZIcXoC+gBHIrnlZA3Cui5RNh06kBDZe/s4DdFpw+axI8oiWlhJ6lKlcWKRdgppjAib18lNt5zBp6a+hf7sci647I+syLCPaHCtCMFRmMH118+kIi+D729qSRqsVMNnpUdGW7AeydgKsoTNY8eWaUePqsT9UcZ6jKYFURZN0T1RQItpyfqKVRi357uTkYgajB9+vzQdHZN1lhzkkyIJbhnCRx7fTSyioPTFkNxyQv3VbM4zEJMppYypeUxaVMKB5TVJyQ5BEvDOK+KS62bSH1FY8afNbxvHIEgCkkMiY3IOBWWZdHf2E9zXZfbFnCbMvHcq0k4hjWEhSKbcQjAcp8d9Ht73TuBP/z1Ax+7O5KSw4WDoBpGmAA/9Zh2iw0bMFxmY7hBNg3XxNTOoqvKx96n9I0pFH2nnLYimEfHOyqd8Yg7tTQG6d7SjBMZe3kKQBNwTs7n0tjPI87p4+aVKOjY2Y2gGrvJMvvadi7lq4l6a+pfw1fs30rCq/pBDFEdwagmHILllbG4bNq8TTdGx2SQchRkINskUkwsrh5wDphxGVmkmmV7nYQZfi2m0tAfp9YVNSfETzBQbDkd7XkMzyQ39NX7ivjC6opvrP0l1rP9lpJ1CGiNCj6lsXN9IIFREXMlk+8v7ifvCo/qS61GVSGMAJHFIJ1IyKZfLzijF6bCx//lKDGVo9s9opZYFWSLT6ySvIINgb5TuEyQqJ8gSFfNL+NalbdDTjHjNBTy0uwNBFJh53gSujPyJ4J0rKL/9LKbMfD+NbzaY77McgnT4ugRJSDphyWlGPAVlmUyalk+m205XT5ia/V30NvWZDgHMpraEkQw09rKrI3SYAmm4vpdtvjB6TB3Q9zCm9yO1gG5pTaXAULRjolvrim5GWoGoeZzTvInvnYK0U3gb4mQVFS06aMtbjbSubzJ3a2HliOe10ijJXd0wYnT1m1v4eUShp6VvSEmPo9XdNxSN7sYA/cEY4c7wiTOCokBuYQa0bMBoa6U090ozd++xM2F8NrR3YvPYEcrLaNzkP5TuSEyDS653iF2vIAlILhl3tot580u566JupLVPIVy+hPtKFvP6awcJqJqZklKEZGE93Ng3oI5iGWE1aDYZnigMHosqOU31WkGWQDefFy0qJDcFxxIxpB3ByUXaKbyNYA2Yt+e7UfyRo5artvSLjkZTSVd0jMTu83hz/qkwdINocx/1baHDisLDHWOk1AuYqZJwfS+RJsHsaD5B2lGGorFzRQ13ey8k021n+RMbifdE0RWddWvqWf/JHzBuqczTO9qp27DR/IwSDsESjhuuIc2in+q6jk0SsbXtpOfP68m+roszzrqULbkugh0hhKiGIKkI+qGZFicbSYcgS9jcNiSPA3dFFsXlXpwuG8FAlM76XsKNfWhhME6Qk05jbJF2CmMA0WlLfim0sIIaiI55MUx02ph+zTS+cOt85uRV89PlTpb/aUtymMyR4CrP5LN3v4tbxm/iA3/K5sAT+0Z97tE6A4sBoyv6kOmiwYbQakIbfJzDjp3YhQ6bT7YMoqajhU/cCE0LuqLTX+Pnlfs2JH82FA3DLZNf4uHsmh8RengLn//2Lbw2ZQKdKYXf5NjQhIEcfE26oqOG4oRFgZ0723im7N1c9Ld30RIvY+PGZsL9hzNwTIntMb/MEZEaIUgOCdc4L2XT83nvNTM5tzyEKCjs7irg0ZUH2RuuI9Z5+DNhFdStaCf1uUlHB6cOaadwnBAkk2UzbnEJ114xnZ1VXax9dPeYDZ2xIHsdfOrmM1i459vE19dx7cf/w+vO7aij7MIdd2YZt3ieoPW9/+BDf1jON5/eP2ZfPMtA2PPdLL5pFu1NAepeqz3cCAzBrz/isWWJzOl5OHOchJr6iHX2DxS5041DOWzt8OauEwWzycycDZBcj65js4kQ6icWiJOpxpLrSUY5+tDPRJKVpZsRjioKtDcFePqVKjZVeNH1g7Q2BujriZhpscRxUjufTwUEWcKWaadsej5XXjKFa7JfRnvsVQS3zLIrb6Rq9gIqt7SYTDDJZEuJTlM2JWtKLvnFmRi6QVd7kFB9AMUfQY+eWOmUNEZG2ikcJ0SHjbmXT+H+O8LUXXA5N103hT985h6e/vNmIo2BMXm4Bckca3hGQSvxfzegh+K0hWLD6uIMhdY9nay8+f1c/HAhX35g55itK/n/ooB3eh7fuqGEnZ0T+N6G5gEDVQbINgzRmTvk8UWBnMUl/Of781B1F794vpEdb9RhKFrSOaRGAwbiSU2jDL6HajDOnpeq+foHPsXsr+Wy6oUGfFurzPRYYhy6ziBjrh2qN1ibCENTkoJ+jf4Izfu7zPcqOnpMTYr3nWpqppUOc5Zlceu1M7nK8QSPFf0aLbEXuP7LLXzkl9/i+RfcRNtDZkRRkcv7Pr6Yjy2sIfrdX2K06TivnEPtGT/gR//exsE19cQ147RXhn0nI+0UjhOGbiBKAvR3U7k7huSoY8EtubyY4zSZN2MEJRDjl68ZXP+hf9EVjvPrX6wxi42j/OKEqnr4xu2PI8gSWrjnmNcxOL2Tyqjx7+niE/fsob8vhiCafH1IDFuxUiy6YZrFRGfusAqmCRaLFlZ4YqdGVX0ju9c1cvWtZ1Be5OGBX601d5UpxwWS3P3BBdeTAV3RiXX088Zv1rNq0LVZchyGPjCqSSLxs04iXaYbCXlwaWAHd4rg32DHcqTeEev9YwbJ7NUonZjDZROqCXzikaRDAOhvCSFpmeiaD0GW8EzN5UtfOJd3PfExHlm8P/m68f+p5ZyDl2B3eA8p26YdwilD2ikcLzSdyi0tPHPWMq5/7DKYUMGfdyTC5TGCoRkogRirn97P5rUNRP1RQtU9R71T1BX9mEdmHol2KIgmw6RrV4c5xznfjeSWzTx/zJSz1hL8eiDpGCwFViUQG5It1F/j5+HfrU++r60rhDfTjj3XiZFg4egAg8T5RnI4JxqDGTOpTCwrSoJBMhWWc01EFVbKSRjU25AqF3KkAnPqZyZ7HWbHczQhLT5GRXhRFsnIdGALNxHuHDjnOueiCpY3VhAOtiCIAgUVXs4sjdK1qmnA66adm8/evmXUV68a8IykcWqQdgrHCV3RCezs4J6vv8pfZl6Frhv0VW4f885RLazQX91Nf3X3Sd1JpXbZWnRD0WkzO26jWvJLbElsOwoz8JZmcva541kwKY+2QIR1W1pobzajJlXRCDb3EevoR3I7ufCO+dx1mYcvPNDEgaf3D1l4VXoiyaau/TvaKMrP4OprZ7J7Xwc129rMiEESADXZ0HU6DSmyKLow/G5+gO6RtfNPOIdhoQ3tYFIhex2c/5GF/DjwczRfBPtdn+Pyb4Txb2wZm/RTohdEdZdQcO0UeH4bAOdd6UH76Nd49h8Hzb4W3SAe09jW7uKyP3+U965Yi9oWwvH5D/NUyzncf/drBA90n3Ap9jSOjLRTGANYaQOLZXKiHupj/RLbc5187meX47JL3PP1V0c9/9lyCJYGTfHCEi551xSmFGei6gZrdrWy5c0GYp396DEVm8csOL7rgoncXvddDt68gYu/vIRZV/+eiqwQBc4qdncv4nsPbKDdF0Z02vB6HPQr+XS07j103pSdsdXUJbllbB47FZPz+NS5OplCLavGn8nvfWG6NSOpi5Pa0JV6jFNtaEbblDc45XTE444wa0F02rjs02fyPeVXPPrhLQC8t+hvGNqtgElxNnTjuKIGQ9HwtQdZ1TSfCz/6eW4963WE/EJ6cy/hhy+Hqd5Sn9R16tjZzi/a3uTPJdOx2WYS6IsQ+lgANfBiWtfoNELaKYwhTteH+sYvn4v33AsJh+HOrW/w6089d8T3WA7BlmnHnu8mszyLj9w6jysbfkzwx9txVGRx/jd+zNf6iqnc0kKsO2JOSCvMYFZxFn2/r2HrFo3yre0sunENsXv+hD49l5JrJxPs6jfTGOEQT93zFk/L0uHS1QlevyCaEYjNbcOe68Sb40Q1HCDbyXHKFI/zErQ6XhXtUEPXoNrC6YjDqKWDnMSxrN06ptUd7esOE7/tTm74ShOuL9/Et7ecQ+/2DbgnZnPvz66kIRDhni++iBKIDXtMQRJwlngABrLqNLPw3dPSxyubGunoG8/EvM+xq7GXXa92UrmpmWhLX1LdVQ3GiXX007e7M3l9p+t35n8ZaafwDocgCaiqTm4OuF2wL3Tk7tZUh+CekE3+OC+l47M5uyyE7/828sYT3cyZ1casL1Zjt09M1hcMzaA/GONAZ5Al37uZmy/YgHT5u8Duxr6gFOGiq3h4S5xISzCZD9fCOoY+/JpSI4WMTAc5WU56Y8WIgoJNFCgp8tDeFCAQVVFDEoKkgjLs4U4KrJnWlj7RaJFq0I8Wg42roZkRwM4XKnn3gVwmnvFj9v+wif7aTRiKxpnXzmDO3z/AwlkFPDDrBnrWNw97bDnHxbd+dgVuWeJbd71INDESFRLpvUAMf3eYQChOj9vOgdpuGqp9xDpN5z/S9Ls0Tj+kncI7HJJbZu+eDrwPv4ovEOGl768c8fWpTWgFC0v56AcXMDU3g+5IHIEevIuLOdsfpfj6KeyPX0Fd5VpTsCzBrW+s6WGlojPxhg+w6LZlNIem8+Z2H13OL7PqhwcJVq8zi/CjkLYWJAFEEdFhw5XtpLjcy7kzCpmoPomxv4bZFVPxz76SltYgsYhC3B9FE0VSp7CdbIiySOasAs67ZjotzQF2P7X/qGUmjhRBDPe6wdAVnUhzkEhzkI5VDQP+5nHLRKr9oBlkZDkYiY/mLPFwhfsZjF4fRfMW09B20Dx/ouFM8Udo2NtJLKKyJ8dF9a52oi19yYFM6Yjg7YW0U3iHwzuviL9/3s3TVU4e/cOGURko0WkqdJZNzGFitot8V4C6Xpk/rlG46o5/UnxnhLXdNh7460Z8ezuTekgWnbBFM6jpClGWOYMNjd08+vBO+mv9o9JNspAqJ20xXMaVZbGsYD2rxv+AtnaYPhWWVZaysrgQX3uQUEJCYoDuknW8UdQVJLdMxuQcDEWjvz4wqly7JZUNiXkFuoGnIIOPnD+J7rDCXdvaCO7rOi6jONx7j4dm+sofN5N514MEw3HafrN+xNeGqnt4z98mkumdQev66oFrUzTUoE6ouoeaGj+CJCTVTIfqTnaVZzLjXZOo291B77b2o153GiceaafwDseicyoQH/opN33oc/yt2EO4rnfY1yaZRqLZWVu9q53vt/ahxDT6WoMYqsbePR1c/q7JOB06HdU9xHuiA+iTqq4Tjqo8/MhOns10EGgNEmkKoEVNhlLG5BzOuXoaG9+oI7CtbVR5c0GWcGXYKch1YaxdTlvCllRWw4KDm8j23ITdYUtew7FAdNq4857Lud31HyKTr+Kqj+8nXNc74i5XkARcFV7u/eVVOG0in/vqS4TreunY2MwXf/MWNptIrHN0Rf2jXq8sDpAUOVoSQtwX5pHvvg4cmcBgKBqNr9clm9VEh+2wCMCiFkdagsNKVQiSwNm3zOUX13Xw3+qzuPfTz53yBrw0DkfaKbzD0euPIs0cT1tkJmpo+NTRAOqpW8bQDCKNAcL1vehRk+opSALNtPMqINsls6vYMgAJ+qQVMYSqewhhGhQtag6hkZx2Sqfn8/lLCnjQbefpfV0Dup5HBdvAR1ZwOFBUHT1F9uFYYHPbuHaGjvr3rbgnzMHQDGyZdrSoNixNUhAF5CwHM3LbkMQ4cpYZMajBOC2rGxAkYcwkG1KjAkESkHNd5M8twl/TY+b4j8G4HpWYYiKlaE13U0MDdavKzy5n3sJSXnlw+7BNm4ZmUL2ng1VLFrNybeVpTQL4X0baKZxAWKwNyS0T94WJ94xdQ9tI54RDxnHvylr+vfCzvPrnXYTre4d9j+gw2T3Z0/K4/oZZrN/czJ4n9w/oFgazmawqEW0MRZ80NDCUhMEZxKNXg3EaNrVw35RcqvZ2jtpYGppBLKrQ3RtFuOgKlpz1Eps3qFxySx6B4ivp3h4hGlGPy8jois4PnvaxaNmvefbeA+hKH1Mvm0IwEKVrdwfRttBh67Wc3/t+WAdA3z5f0tAetbMbAaIsYvM6EWWRuC+MoyiDqz62mI+fl8Fdf6mn6uXqE6YICyS7011lmRRUePH7wvRVdicYS6ZjUFWdyChUUJtX1PK11Q3JSXVpnH5IO4UTCGdZFg/8/jomZNXzmzcknrtn7Zgai1RYCpw2t23A3INIY4A//3QNij8y4rklt8yC62bw3gsn09IXJdgbHTYtkdqMNew85CFmKBi6QbSlj+X3rkv+nHqswa+16gB6TKW/L05Tax+rWhZy4epfMiXQiZo3jaers2hr7qQ/GDPXquvHZGzUYJx1f9rCusTPOUvL+P0nC3DZerj3jSU89bM3h7x/WlihbWX9UZ/vaCC5ZYoWlVA2MYdtT+zDWexh0dR8HKKPns4QWmz4wro1K1tySkM6ttFAkCVcFV4WnTee65aOZ09LgMcf2Ul/jT9JJW5eUUvzG/VHnsinGSNO2Evj1OPEjKZKAwB7jpPZuZvIaH+DeZPzjznfPRoIooDNY8c1zmsOeElRJI119o+qyLtkbjHLxMc4Z1wWNvnIj4bklik4q4yMyTmjXqeVXrLmDB/pteimw4n0x+n1hdle18PG7nPYK76HVU3T2V3tI5BweMcrj5Bcl27gdMpkdr6O9Np/eO+SClOyYwxh1QRsmfZRPReyXSI3x4Uoiyh9MZZvbuL3q6Fnb9eI1y17HUy6cAIz3jUpKdt9NLAowXnFHs6fV8o5nld5z1wonZhjrl2WkpIi6d3/OwPpSOEEItIU4O6Xp1NaMJkXX9h2YkN8WcKR76JidiH1SntyePtodmZGoiN4f10PhsPPuIwXOOfsJdS9Xoc+QlNT5vQ8fvD5ZSzf1crTP3tzVLvE4X4/Eu1Sj6oogRhdUpAdO9to8/VjkwTCYYXWhl76EmMorahGlMWk8N6xNLAZmkGgsZfegivInqEQVXUk59Eb1OEgSAL2fDd5swspLMtk//Ka5BzioaCFFVq3tOJvCyby+XHW/XuXyfw5Qiew6LCRkWknHtOOWfpDlEXKJ+Zw6fha/B/5HdnXvMQlF/yYJ3xhejQDNRA1oxVt5LqOKIvIuS7sOU4QRdRQPPnetEM5fZB2CicQ8Z4oL1mpkpPw0KthlZY6vzl45ygNoR5VWf3QDr7/sWup6M9k+y5TtGwkKmeouoe7f7+WYHPfqHbpRxUppQjDWYNn0HVaFZ3ehMNTVY1YXywppmdoBq5xXpZePgV/d4Q9r1abdZxEXeRo5C7CjX185J5aliy9gqqq7Ufda2DpQwGHRWmSW2buVdMoKc2kKiGLPRJ0RSfW2Y8SiCXHfppqt9aAneGvKdbZz84n9h2z1LYgmr0idruErHbRtLkTURa54hqR2HUzWPF6De37u4j7wmaj2hDMI1umnYxJOfz5p1cwaeVnMFQdcdk5PBW8gT8+sJH+Gn9SCiONU4+0UxgjDGdwTmR0kApD0cy6QSiGGj42xkvcF+aV+zZg89gxdGPYXLVl3LWwQn9XmOKZBbRDksI55HtSlFWTCqbDNLClDqWxpKL1mICqm4ZNDURNITbdVGBNZUctuGgiP1m4GqO9nWfP+zy//OZy4v7oiBGDRS1Vg/FkhKVHVVpWN9CxrQ1DMw6rJ9gy7Uy7ciqqqlHzSs2Av4tOG3lnlnLJ5dMozHXx4P0bB/QqGJpBuD9Oe3uIujcbTMG4UaTSDEXDlu9mwTXTuGRpBQuLXfx3SzuvPLefwLa2Yes/xzKjOenAJRFBEujri9GqnsuMj89B6wqTteqHfOzs8xGFc3m2X6En4fi0lM2BVc+4/f8u4JPiX3g0+xtsSvwtL3c9F7dewgMJdd10lHD6IF1TGAM4SzxkLyjGUZRxytZgUUklt3zEWcbDwTJ+cV8YpScy5Jc1dbdvy7TzgU8s4befncM5N8wcNmdtUV1tHjv2HCe2TDuSQzpskP1hSDgNK19tqbKqYdVMPYTVpEOwCszBQBSjsYn+f6zjqkmNo6oF2PPd3PqZs5h3/Yzk7h5Aj6koPRHTCQ1C3qIS/vnpEP/4ogf3hOykXLh7YjYZk3KYMDWfK+aWcOPMPsbPLRpwb/SYSvWKWna9UGne59GysHSz6O7x2DmnPEbZG1/mrukr+foXzsVV4R2zmtVgmXTRYUNTdFqCIvLiSfTX9+F7aAfG5rVMKvDgypDN2kLq+xLEh5w5BXxq3m52fvDxAeeYMFFkTVOm2cNygsgXaRwb0k7hOCF7HTzyj3ez/AObeeSfNye7W08mRFkkc0YeS26ezdL3zMae7z5mAzFSIXioY3Z0h6n2yzTW+s3XiMLAf4lxjRmTc5hy8USmXzKJrOl5ZpFyBIeQuqtPHdJjTR6z/ukxNcmSMhSNyrWNvF7+dez3/YLfvZlt0iZHkNSwOqa9HjvSoOK6NbNAznVRdF4F9lxn8h6Mn5qPsXUN9tYNFE3N5Yovnc26ByWWT/sPjwXv5Y/X7MUuiTy9P4uWOv9hx437wkTbQketjRT3hVn3zH7uWxFAOHMpRmc755XVM+P88chexzF/7lZBOXX2sjVDWfY68OY4sUtmdBZsDqIrGrjdqLqBbg38GfS82Dx2xk/Nh0iQ8UsLk7+/5YlzaHxyLfd8a/lR34OTgcH34n8N6fTRccLQDXxhjXGFBXQfxXjMsYYSiNFQ3Y2eKPyNdTg+1MQ1NRjn2XvX8lzCuFvDclJnAwiSgM3rpHhqLjNnFRJTNNqbAkmWz0gwdMNM+wwYOiPAIEnp1LRMtC3Edz//gjnvIayYRcwUMbbBVFpd0Ym2hfjdV185FHWkQHTYKDuzjE+9bwE//c1bZhe2ZrDj6f184urriGxQCAb6uXpROZGffplnflkPwIXh+5n6oI0/7p9DpCkwZvMdDM2gv8bPK79ez7pZ+UyeNxt9Y4yGqm4QxSPWGAZjKMNnpfos2XTJLeN02NANAyrKKb91BrazZxGdewMbV3biT7DbBn+mhqJRtbWFb3hnM/cr/8X7XTsrtzRx/xMHiN3/1ElLrR4NkhReq0kvED3tnNaJhmAYxqieoEXnPnCi13LCIMqimc/WTsyoP9nrwJ7vNtMuI7B1TiSsjmQ49rkLIx07+f+pu/uUGkHpeRV8+vaF/PpPG+nd2ZHM8Qui6RScJR6cGTLRfoVIYyAplgYkUzxDzZxOHfc5+HeHOZUhDO9ghyB7HVScN57vfPRMntnaxAu/WT8ig0eURdwTs5m4uIzK5TVmEd+SdpDNcZSZ0/MomZTLOWdVcONcN0XSJpa3ncWTK6rZ91rNQLnpMUbycz+G53u4aXqpulOSW8ZVlsnUBaXMnVnIRdMLyXFG2NUJGw50svHNegKJRrZU6QsrfeSuyGLOxZPIynKwe0sL3Tvax3wA1VjCnutk6mVTGD8xh63rG/Ftan1Hpbe2rv3UEV/zjo8UrIdTckpmzjymAWNb2FICsVPmDCwMFb6PBYYNoVPqAYIk4MqQKcpw4Mqw0+e0AYc6jLWwQrSljygMmNaGJOKZmsuXv3o+jZ0hHv3DBrPBKqVYmSw6pwy4H+AMRnAEyZ9T7os93821V05n1o7/Y8Yl7+X1p7yEDviGvXe6ohNu7KMy4fBTX2edR3TaiMdUHvnDBv4TUxFkCTXw/IgSGWOF5Od+lE4nNU0EmPOWZTEZ3aVGX2ooTntzAFXV8AVMllBTYy/tTQGCDYHk55nqkAzNQHKLFE7P59NXzcTrMPhVVKVn75HZVqcKVmd/SXkWpQUedtqk/0kpjne+UxAFJKeEsywLQ9GI+SInJL1yPLBl2ilaWk5PVfewujGnAwbvJpN6SZJA06YWvtIYoGRSLhU3z2bnihrTwOsGRkxNGsfkXGFJZMpVU3j49gYeKTyXj3x7CluXfYu9zxwYwGCBgWyk4dIwI00gS/051tHPqytruP7OT7GpuRgl0HjE69ajKvEhUh1WD0W4vpdoW8icQDdECup0wwCHkHAGkls2SQAeOwCx7kMNgUogRndVN70NvdTuaE9ShK36jh5VD4tQLAM7YVo+E721AGbt4TSfv6yFFbatbWSvy4Z/v++0X++JwDveKVgPq5HCVT+dILllFt46l/uv3MVL/ddz98efOW1yrcOljSxHIMqimcdO7CwFWeKfn4mCr5KPBmax/8UqIGX+sFXAc0gIssSM2UUY7W8xrhycn7yag//XNOy1H82ObSSHrwRi7H9yH5e+mqDdJqiUxzqy06pJJLt6T6PNxkhIdQiy10HZolJuvHYmRR4HW2u6Wf5yJeHGPpSwAgnZlMFpO9FhQ85xmY13Q6RY9JjKzo1NfFcrI9yvsHdlLWrw9B27aUVFgZ0d/9Md2u94pwCgxcwIAcwH9bSEzU5UPb13mMkRmVYeWxSTU8YESSAr1wXBTjB0YhEzjYJoIOg6iCKSUzJHa3pMaYf29hD6ZRex5JObWGXcRqzz6eNe4mi+xIZmDEj3yV4HrgovoeqeY3LIJyp1dyJwGN1UFnGN8/L5Dyzk7OADELfhnfUJ3lpTRzjxusMiH01HdNpwFGZQcUYRteuaiLb0DUytpajl7gYyvU6zdnOap2Msra23y+d5IvCOdwrmh6sluebHsps7nmEmR4IWVtj+2B6urCyir/LVURul1C/3iX6AB1NHU+mKotOGlNj5R/rj3LtzCcFwnNbKA8kCsuSQ8JRmMu/Mcs6cWcTMfA+V3f1s2t/BHzfkc/XnH+OBB9YfToFNSVclJRSGMSrHeg+sSWnvueUM/v3bdSPOmzgSUuXHU5+Z0RoZQRLIP3ccTpdMx+aWE6uqm4gSbF4nV143kzOf/yRPf2E7i89zU/TMRwn3xw/tlIeg9Bqagc1tY9r0fHo6Q3QnmiZTn189qqLJIo98fy45b97D8+/9Lj/62NOHHed0w+m4ppOJd7xTgKPfyR1WhLN+Lw6c6DVWD48SiNG15lBuW5RF7PluANRQfEiZBHdFFp7STKL9Cv3V3UfF6BhSlfQo3is6bXim5pojOMMqklNC9tix2STWvFFLNKokBfpEWSS7JJMFi8t431kTmGhfAd3NuIvfx7ZqkXXrG3jywW3E2oMDpbhTehxEWUQNxk2SQIr66ljcf13R6dvTyX861xNt7jvm41g5dMkt4yzx4Mhx4s1xMeuMYmqqu6l6ufqIOkWOwgxe/nYcug9y9+JLeOHHa455PcOtEQ71kkhuGUdhBksm56FvirPgTAfj7lzAb7Z2E20LDckGSxaSFY3+Wj9bNjRxzvkTKbhhFjv2dbLtiX3JrvDU1xNXcMsSotM24BgDXpPGaYH/CacwWgxu3EnmzRNIbaJK/d1IxzraB172Oig+q5zPfWgx6w908MbzB+jbfWj2gNWodu93L2Ge9ijxgvl88oFc9j9feUQl1KGcXWq+/0hrtQzJ2bfN5Z7cB1EvfD83fLcbVdXJ9DpxumTiifRcOHGfBFFAiWm0tAZ5flcrJQVLiMcX8tarB6je3pos/FuiaEkkdrKOwgxkr4NwfS+GHksWoVPvhy3TnswHH4uBUYPxY5KCsGClUiSnhD3PzbuunMaiKfn4owoum8T44kxaqnyEqntGPI8SiLG860omZrvZueWtY17PESGZhWXZ68CZIbOvtY/Zn/sV9k/n8nxbjGhdz6GRpilRQuq91RUdNRgn1Bvl0+fLZPzlLj46MY8/fuMb/OuHbyQ/Cy2scN0H1pAx+VrC/341qduEbr7fonumHcPpg3esU7CUKA1FG1UYnmowRafN3PU5paRshK7oh7ppSRhTXTvMmA5peI9iF27PdzN3YSkLi/wcaHEOaAgSJDOdklXkYV72WmK/fgH7BbVMmXo7lQ4belRNrnWk6xvA+T9KFVHRYeO6sydQec0rTP+1iCvjGvqDMURRQHZIqKqGmJo6UXRCXf0c7I/TUO0DIB5RiXX2JxuDBg/kARI/S8ljpMK6n9Z4z4984RxqmgO8ct/oZlCPJQRJwJHvYsZFE8w6iihw3YJyZhpPQkUFv19fwbr1DcR8R5az0MIKP/zmcmxuG+HGY49aRlxvoo4gex24iz24MuzsqeqitctFb6CHpWeUcOcFIrt3FdIQiCXTQUOt3dDNDuuwmouxuR1jYxs3/9nBY0UZppNPqPNa/Tuy14GzxIPssaNYTmNQ9JfGqcc71ilkzirgDz+5gh1tAX7zxZdG1YAiyBKSQ0LOdeEqyyQnz01+SSY2m4jfF6bXF6avOUDMF0GPqaY08yBxN8upWL83DdroWAzWe/bsaOPuYC47V9TQXx8YwP0WRJ3e5j6Wt1zAZV/4OJ36Ynb/bh+GouGq8DJhSRkH36gj1nFoNnBqg5NF0RUdNnPIekJL6Eiyx0CSrfOvl/bzlzfuZk3/lQSeWQ2SSCyqIkoC8ZhGPCE9oUXMLtfB+kRJR2fdM9m853pUTaYsLEG+WHuQWKdo3u8hnN2Sq6fzAfmfCO86g1WPewgFe454n8cagiyR6XUCUVRFpzijE+2xVxGLc5gz4wc8/e8dA0aXjoRUSrLVYzPWLBhRFvGMy2LJuePRE8/b7lX1GKqGquosGz+LX3yyhMCHlvCVX66me33z0E5BM4i0BPni77bx77//GrtvJ7v7M5FzXIhtIXRrLyaZJIOMyTksPW8COVlOmtr62Lm63qS2asc2GMmCqzwTR2EGfbs7T3s68NsB71ynUORhincPUXXmEWmoyQa3hEPIn5HP2eeOZ8mUfBYVdaIZMjs6J7K1ppv16xroUnwoAZDcAotumsWtF01hW30Pj/7KnKwm57qQHBJqKG7KOo/C4IqyyIQrprBk6TjWvVnP+r9vTzoyqyPbMq6h6h5++M3l/CLfhRZeYw5L1wzs+W7mzCmifnNL0ikMLn5Kbhl7nptpS8uYNDGXhqYAe1aYev7W+Ua6X3pMZe/zlZy/xgm8khzknjHOy8UXTORAvZ/Kne2Eo4dmM1sGfUCfAodSV66yTN7/ubPZdaCTnS9UpkwI01CDA187mOGy7uFdfPWWK+lcHiTc2Dbi53wiYGgG0eY+Nvx7J4IsYc9x8q/NJdz5/s+go1O1NXjMjBtXhZef/eJKGvxh/vK79fTt7jyutQqiOdvZnudG1w1UTUfXDfqDMeLd5ue/7bE9/LPIw1f3fxvH+lb+9Y/HuO4W34A6QSr0qEr9Kwe5rDKbzPIydP3NJBMpNTq1eZ3MWzqOL16SicvWw+b2idRV+og0BQ45j2O5Jklgybtncfb8Un79tVeHXWcao8c71il0bGzmmv9TiHXWj5hSsBxCxgQvzsIMbDaRRWeW89GzHeRU/4GmjzxJ/ux8LvzxZ8hxXkJdUy89jWYXp5zj4r5LdvBI8fuYkQ8/27GRb37lZew5TlNZMiE9PSqjIInMmFPEudMLOVjTTYuiJdMjL/x5Lh6lmht/6aJldQN6VDU7hFvMFINlKAM7O3imvhelZ6A2fVJB1WkqlTrzXUybks+y6QXUl2ZxcE8HajCeTD9Z6aWhdraGZqBjylcLsoThMFNt114xjVtyX2Rz6c38uq4Hf41ySKguUegfUKRP0UdadPU0Pu77GcLNV/Hhvgns+e+eAdc1kjONtoVY9ZsNR76/JxC6ohPviSJIph7U0w9tZ/vOYlwZdppqEoXXY9A+mnnhBKZ95Somx1Qu+tdLXHfVk8e1E3YUZfD+Ly/jjkV+PvmHIBuWHwQg5oskm9D0KKx4fC+f/8OPKbjhFdb4PCbteISak67o9Nf4TebWILkNqy5n89hZMruInIZ/gKoyc9JHcDiP3/wYmsHmp/ax44269EyGMcI71imowTj+jS2jMsg2t40vfOMCziy1c//KZqaNzyFXeZPYs5tYuyJMyZ5GLvxSAzl5Nmy2Q/l4LaIk86FdPritcCM2t82sO0RNnf/RGDYwDfCbzx5gz442uvZ2oSs6kltm8VXT6L/1Q1Tt7uUzr63n7l1DD5EXZRFniYfSM4po29NJpDGQTM3YMu3Y89xITikp4Xygqov+qEKPP2Lq+aToENm8zsRcBrPwbaV1rME3AIZo7uQNUUCPqdS39uGf9C5WreugqyV4aL6zPqhmMYRxzPY6UfZ3YJ9Tjze31LyeRArutO0rGQJWk2S0pY+aiGKK8kW1JD//aFMkrQ29ZC0pJrLXR1yImwb3OJyCIEvMKM3CWf0wEyZfR83q+uSaU2tX/bV+bv1+LZNnLaOhatOoCvgjyW1YjsEhiSDZEVwuIloO8fjYpMWibaFjnj+dxuF4xzoFGL0wnOSWuXxiK86aV7nxzDsp9hgQ7EUqyqCsFOZcXAClMzjYFsHvCyfTIWoozKdfns/9m26G9k5eaV6MGnolyQKymEqjbagK7usiuO+QNoyhG1Tv6aTwKxeTf7CJr29qNCeQDYIoi5zzycX85vxN+P/vD8QfeIqbbn+VuD+KozCD826dQ3FeBvUtAXztIcL9cRpreqjd0U7cH0XxR9AVsyFp/IUTyMnPoGpLC6Is8sK943ixtpzf/GBlkrJp1UpEzFx/XNF58cFtvPq4/dAUtMR1JzvKh0gbWf+/9o1a4j/6ER2x8fR0bsVRmMEHvnoeAP/51VtEmoOj+hyPFlZqzVICtZyQlfY6FkOuKzpGgkZ8vCKMHW828vGbvsSs2wpZefe245ZciLaF+Mlv13Lwtvez/rXtSVlxGJieMzSVzjcb6XyzMfm744GhGWhRjb11PZx57u0E425e3tFKoDU4KrXc0Rx/KBwP9Xq0sKjIwDtGOO8d7RRGCzUY584/9XPtpR/m3dlrMF56EsPpRDprNudvfReR/MU8XlPCxl0NtNb5k4ZPj6ps/ecOzi+aiS1rAcpDLxP3Rwd80Y72IbQ6hK05w21vNbJs9ywEcTaxzo1DHk9yy5w9vxRj317ioTitISd6TMXmtnHue2fzk2U7UHOm8ErdVHbW+GjrCKHENIKBWFLyGE1H9NjJyc9AVc3dreSWUQwXSmoh0Lo2RFMJNSFlrSjagLTVAHG04RxCStrrxYOLuGXqWs45axr5xR4+VfIslM/m0VEMyTkWWFTWzFkFzF1cxi3nTULRDZ5aW8f+HW307vcd1QCcVByrSN1g6IrO3kf3sG+Mmif1qIp/Uwt/3t5+RFr1WBpPQzdQ+6Js3dxMMBynry9G08Eeou2hE6YtNCTbbhS1vaNFxuQcLn/fPDJcMo/+fM2JbTg8SfifcAr2fDeiLJoMkCEeCEGWsDsklpY5qb/8/1i/2vxgr7i9EOHPD/Gn1SpbN+/F3xYk0hIcoB1vaAaR5iCCFEoe74h8/8TuwsrV6pa2jCzhLPFQOKuApWdX0NAcoHJLC337fCPuQpwlHiob/Hxf/zRNl97G/o8/ja7o2PPdzJyYC6KNiJpLWaYD+7QCdttt+NqC9A8aKqPHVPatqksWyA1F47L3hJJUXEih2moD5xykFhYHOIPEawf8PAh6VOXp5/fTfOZEXn1hNw6Xjf+e8V7WPtJCuLFuxHt5LLAa8FzjvFx7/Sw+sMjAu+ZbUFFO/KxP0B+M01fba7K1RnDsFgFgQOotIeER74mix8wajbM8KznR7lidzFjBigROJqyehq4DPnrbzO+PGjJ7Q4bbOFnfkWOJ2JLv1Y0k/dbmsaOG4gm5m7Fjc4kOG0V5bgq9rmTE8HbHO+MqRoDotHHxxxaS6bbz9D1vDVt0zivIoMy+nkdWH/L0r/yzk5sf7KC+QcJX34syaGediqPqCHbYcE/IJm9iNjabiK8pQPBANwAZ47K47NKpfGJBJS2xpfwx28mqluCIUgnOwgxuO2sC29oCLP/TFtRA1CwsOyTau8M0T7kWWY1Qnhki25lDW28Eu/UA63oyxaFH1aR0tfVFjPvCAyU1BiuWSgMdw3AYdk4Cpkqsquq8taaO/lo/IUXjD3WrUHoiJ1Qc0NANevqitPWPJ3vhmSjZ09m4qovmup5kDWU4CJKAd14ROSWZNK1pQItpOAozyJ6Yg8Nlo217G/GeKPZcJ7++92r2tAX42y/fOi4ZjSPBIk0Ap42Ym0Wj1mKYM8QT35/UFONQ8EzPZ8Elk9j0+N6jdqaiw8b4d02ks9JHvCfK+LPG8bH3zGX9gU5e+OOmZEQ7FvcnXN/LIw9tw+6xm1mCdwDe8U7BnuPkG1dIqLqN5/4gj9zcpB2+G7epvXR3OohZ06Wi6oD869FCdNjInJHHT791MfMKqqj0z+Bvr1WxoboHQzMQRQGvxw4dNZSViEwfP4M3E/nu4c7X39RHSzBKht2W3L3aMu3YvE7znIJKUWwFxPopKJpKdfYcJJt42HF0RT/6lEeKYxBlMdkBPqAfYYh7MPHSSXS39BFpCfK+u5Zxx+J+XqrN54H2EH17OgeE4QNE3GQJm9uGIEtmAXxQJ/Ro6zd6VCXSGOD1h3fx5vKDZOaWEOzpINJYlTRcZudtoqA+WJdJlrjw6uksmlrAz6u76a8x04rBjhBht5ysZzkKM1ik/ItFc6by8hlFHDxKpzBa9VZRFk069dwiMrLstFf30F/jP6Lu0rGqwx4NrEZPNQyEE05+hBGpklvmqd8vwv2rL/D7z97L4z9bg66MvinRWeLhmx9Zwt9erWTnS9V85Ka5nP3Ih7ng6iW8NXMhvk2tGGNEYFCDcfxbhqdCu8ozyZ9diG9v5wmrjY013vFOIe6P8pkHugkGoiNymNua+9jbfxHnXenhzZfNVNCSs2w0xS/A3/n6sLrxRwvJLTN1QSmLI3+DLV3s8XyOvZtbkumZ3v0+/va3LVRecgGhjQr7t+822UEjFOMijQG++01TQkALK2a/RY6L0ok5XDy7mNLuf6C+vA5kEdtV4LTNQ1OHnsM8EobKz1r/b9Fe7XlubG4balhNOlIjJW1saKbzmDarkAaXjM9j59NnNSGEu3n+lR5TzmKoDvFEncVZ4uGTXzmPZeO9PLyxmRf+utXcSaZIo4/mmqyCsBqKE67vJZDg0ktuGckN7sIMBEkg2hYaUn9Kj6q89MBmlnvsRBrN8aJxX3gALdLQDPp2d3L9X6YQjcYJ7Gwa/b2WTO0oZ4knuYYRrysxsOgnnz+X2blbWNl0ET/6yRuEqnsY0qlJAo7CDFxlmcS6IyZb7QQ5h0PHHdp5W/MctJiW/I692ZTBdR+9gc3/GF5OfThEGgN89YevJ+/b/f/exvQv/JMav0648/Xk6060Q5TcMm/+Ox/fHXeT/9cvsfTd0bdFMfod7xT0qMqB5yqHNOZWuC1IArGowsaGHj7yx9s579P/xJ3nIufzF/K3Sl+SnXOsDmFwrj0aURAKxkNeGWueaBpgCJWeCMGoyop20zFZujwjpmYSDVRW6kByy7jyXIybkM2c/FrUB9fje6WWjOIMPBcE0O1GsuvY6h4eicGRnLCWMMyCLB3qME5xDqLDRva4LPKLPQR6IrRHzF6FwXpFWljhzWcPoMdUZK+Dqt4LCCsaDVtfGpJdlTy/KCBnOVhY6mWc402mVyzgZaeU0OkRj1ouYYDzEQVKl5ZRPjGHhupucgszUBWdhlB82C9yrKP/sNTG4PuoKzqtb9QN+bcjIWNyDu/5wAKeenw3gZ0dR9z1G5pBlkMAfzPT8xbgynMRrheHbJ4URIG82YVcfc0M2rv7eeUPG09KkXSo76Cc62LGZZNp3N9lzjJQNH7901U8PH0C9Svrjro3Q1f0AY1+rRtb+ND/mQOfYp39J02+W5RFjJXP89ojPm6+5Ckk9xVpp3C6YLgPovySSXz8AwtYvrGRugM+tuxqJzztOi7450fxA2/1Rlj7ahXxnuhx5WizFxQzfXEZe1fVEW7so3ZjM18rmUk8prLntcoB2v66oqMHYgOM42h3voJumINPvA7GT83n4nllONf/hI0/2UZjEyxYGGKKrtMTUegPJqSOR/jCpXZDW2yduVdO44plE3j61SoOvFiFFk55v64j2US8OS5kuw1ffa+ZrpMG6tvoik6o0ocgCsTdMnd+61WUvtiQu9WkzhFmXjrc1MeXf7kab66L9uq3iLaFjpjSG3X0oBvYbCKSTUyws6Im02yEezTadNWxQItqqJqOlCAkwNDXYv0t0hLkp0/sZeHc8+jobiUeipuGSZMOS5cYukE4GEPXDcYXZyJ5HHACnUJyAybqA+6nIEtMPG88f7u5hhbn9dz8vmdQ/BFC1T2EEinVY4F1DkESUANRAntSNhsngIU0FNRQnCcmfIfbGmewWb4d9Z+PntDzjRX+J5zCUBAkga9+7EzO3vlNzrvpC1x1RyW9dX4ObGjiOY+dsok5nDG3mJx8d1Kz51ggyiLf//qFnL31qwh/vY1zrusn0hLkrQe3mfxtq3A9CEd7viTnPiG7PX92EeeW1uH72lrq6s3XKFENIa+Uhj1BIr0mO2ZwMXXAIHgOKaPKXgdZ47285+IpXFy8geD586h6vdbs2tbMfgyLYRLoCIEkJhlMg89hOZiMSTkUTcjBlSFTs63NTCEMofRqUTxFSWTpLXPIy3Hxwm/WJx3ncI5AkCWyFxSz+Lzx1Fb6qF9ZN6ySrK7oNK+opW1dk2lkRZNVlNRiOgVF2/7qbv7zo1XJKNXSxho8KMdK3dk8dtoae1kTiKInGhcljwOIHSZTbWgGgW1t/LO6G8ktJ4dQnUhkTPAiOmwE93UdeuY1Hb+vH7zF6FHbgJrUWMB6doQR5nafKBiawT2ffJZfuTPQYo+9bXSZ/medgqEZfO/nq7jqprtY+8t6Ym1mEchKJ/XX+qnbYub6U3fyR4Ioi2RMzUOLKITrejF0gwPtfZztdkHTbiRPAUoghhIYXeQhuWVsmfbRMTASksg5hRksGZ+Do/UZdr7enfxz8bwCQpkLqWnwE/dHD1PAtIauOEtMaQNL/sCR7yJnYg433zibuKbz9z1zeGX5gYH3MyGWF20LJWs3yZRbilG16KDeOYX86IvnsYjHMA7sI/ShT/C9p8NsfbEqmaMfDJvbxo9vEnC1rWDVjPH0bmk9rP5gMbuySjOZvbCEL12WT/6+P6Jecw1XNuXSt7sz6ehsXiey15Fctx5TD0tfnUoGj3VPB6japsz0sOiu+TPymTKrEK/HzuyJuXjsNrpCMdbvaGW/ohHVdbMhb1C0YMlznMgIIRX2fDfzlo5jbXsoqc2lKzpdG1q4/Fsl6NHXjpm2eyScqs/RivzfTvifdQoAvdvb+W9l94Bh69aOQo+qZvPSUe4SbV4n131wPl3+MCvu24geVfnPX7dQeNd3cBoiWui5UR9PdNrIXljMhKl57Hxi36hkoQVZwpvrotQTxahuIZQQSy3Ih6xl5VT2VdDTuTl5zQPmJyc0oM69fCoZLpn1axvwHfBh89gpLvdy88x6NN3BY8EiIv3x5LAWA/GQBHdKDQGG7k0wNAM1rOCPKuDNAFUls3cdFy66hj2bWwYohaZCDau82TyOZeUXoAarDh+CJEt4pubyoU+dyTnjc8l1dmAT+hBmn0lV72yUQF3ydYVLysjMdpLpddIfjFG/ueUQHTfFgcleh9l8dRIkua0oLdXoW8q2YDYMpkZdgiwxYUkZ93x8BoWbf4ZwzmWgHQQ1Tm/xfCKxQprr/Ch9saMy/Cdiqp+hGUTbQnS1BZMjXa1j61E1yeA5EbtpMaGxdLrQdE93/E87BUM7/MueGl4fC/SYStXBbvqDhyQEAjs7+MEnnkkqp44WgigktZaO2BAnHhIeKyjykOuoA183hQXg64Zld07FdvO1vHGgk66EoN9ggy05JSbNLeLTFxbgtvWgquNY3mAaaEM3ENCxiRFskkhhWRaFZVl0tvQRajWb+lJz+8Ot2UqZBfZ08f1vvMqvJ2UzedbtTJSzWbNqB6FK36HB8IlUgmUo9KjK3Z97HkdxJmpfFHu++5AsRSK9ois6vt4oLbkxNjU7eHlFEw1b+1ECT5osLs1Adsu869Ip9PRF2b6xGUk2FWgHp7lsHjuXf3Yp0ZjKG/dvPqFFQiul5p6QjeyxE2kPEWkOHpYuMrRDhXfJKXHmknJy/vQpHv3yHuAFFi4QTJLB55dw+cW/ZOM2D4HW4MCUU4LZZMs0ZUnUYPy4O4BHM1QqXN9LZaLXZzBORD+KIAk4y7L44S+uQNUNfvvXTbSvbkg7hiPgf9opnAiowThb/rEdGDSpKqoe9YOvhRW61jbRtbbpiAXh5Mxdt408rwtZ7MHIymTmhYU4C90477yRSuFGtu/aQaw7MqQuk67oNNb08OzeUjLdWezfd9DUu4+p1Ozr5JvPVFCQ4yLTHedvN9fQ982/kfnRczgw9dt8/kevmxPiRjmP2OoTiDQG6HyzkfWD7pezxMPUiyYSiyocfOlgcoobQPa4LJadP4/+qMLaN2oJ1/diy3IiOSWCB7p55Ptv8Ghixz3U7lANxXnigU3IWQ4e+sWllAsr+MCfK6h8ej+OwgycJR5C1T3ois6eHW1oqn6YcR6M4zU0liMsm5bPJRdMpK61jzee3EekaeioSZBN2nEkpmK/6QL4sqksu227AYRZJm6h/JqdOFzuId+fMTmHsy6bwoHdHTS9UQ+YTYTWnA01GB/QyT4cRKeNsgvGM25yLtV7Ouje1Drsc57aDHkyDLPklrn0jvlM+/Sl2Nwyf3voGa7d0DLiNVlqwlpUG/Vs7aPBybr240HaKZwAjOWHPtpwWhDN4qjotOGwS0Q0L64pk8n+gIowcyaV9tt4bkcLjVXdqIHoYZozVkNX784O/tNi7iytDm5LMmD76joqZhbwwatnEvj6X3npb+2cXfUiM19YTGZuFsEjzK0YDsPdLyWuEeiJHNrBS2bN49JLp3LnGTvot0+lan8mbcE4Cy6aiM0msqq654iGzNAMwnW92DLtdIUNyvMz0XUdQRSYf/0Mrlk2kV8/sIGe9c00Lq8x3zMopWNzJ0T0EkNwlMSUssM6txNzOqSEhpMeM+daD3ZWhmagBGJUr6ilvTmAzSZiqBqiw5Y0TsljJ4bWuMsyOXd6IYb/8KaoYFs/cS2DWCR+aN0p5+qv8bNxRQ1q2KQFZ07NZeqcIpwumY6WPhp3dRDr7B+g9DsYgiRw/deXced/Po6yR6Xw0R9x3m2uIzZpnWijmBq17NvVTsm3LgW3i7/ti42otWSNui2ckE1HjZ/gvq4xXWvmjDxyJubQtbdr2BTp6YC0U3gHQZDMdJOi6oSUIlwFExDcXkJZi1m7u5uq6uF7LpJTvhJcbjjkkJwlTirmlxAKxuhs6WNrTTcXfOYiljU9R/kPruCtwMX4G14/6ma4kRD3haldWWvu2BTd/KInWE7+YBTVVURvZBzB3hbi3WH2bmtFTTQ/jXR/TFrkoal4X//FakrGZ1O/phZDN6jZ18nKDDvRtlCSdTWYbGAVqj2Tcigu95KZ7aRmXyf+PV0mmyxR0E1lg+VOySU7z03AH6Frb1fiHh8exWhhJRn5yDkuBJtEvDuc7N62jivIEt4cF5Oz4xhrqw+71tzJXnyxKQQD27Bl2slfVEJvVbc5FjTBqgpV9yC5ZYoXlnDLTXM4uyyDiCrxwq5WWuv8xLtHHlgjuWXuvMDJK5ebPQG3/nwXhlYwqs/3RCE1DWYoGo1rm/jOzPcTV3Q2Pb9h5E2WJOLKdlJc7sXvCx+3VHkqRKeNi26ew+JpBfz14R00JQYRnY5IO4V3CKwipa4bBEIxqv35RLMuRpVFNlT5eXN9Lc01PaZQ2yDDaeWyp59ZTn21j96dHcmagyBLnHXdDL5zjUSVv4IvfuUlnv3rFt6adi6FN19B/VPdhOtfTBqb0a51MIZq+kptpko29wVivPH8Aaoq8wkGNuHb3YHSExlSTz/VQFhigwuunEpZcSbbt7XQtKmFvj2d9Kaohnavb2bVplYAKt41keuvmcHGnW1s+c+uQ2ytBCtIjWm4Muyct7ic8WVeVokCgbpe4r7wAGaXrug4nDaKSjMpKMkk0m+mZqwUjbVG0WkjY1IOt310EdfPkvHaW3i6qpx/P7yD3oN+dF8YAzE57c6b6yLT3o7eezi7pejbV/CnPX66GgPklGTyyNccSLrEz1eP56mfvQmAe0I25141jR8s3UL4xz8D3cB19QwuXPBTljsqB0YnQ32OosBeXzbXf6EC180L+WP7jcR9y4d9/YlGqhS6Pd+NGjQbD5ffu250hBFNJ1DXy67e6KjHp44WoiwiSyKt/jCh3tNbIyntFN4BSE0NaIqOrzvMjgY/NRky/r4Yew900nSg65DsRMoXxJKOKJ9ZgCtDJtI+UFJBEHW2b2jioeLZNLbXJcd2tjT30cJAHf4jrjNR4Jx86WT6gzE6d7Sn7ICHlmIQHbZkjleURbLmFjJhah7NdX6CDYHDlDZF2UyhyTkunCWe5NB4QRLwjMtiwcxCSrJd1Nb5aZYl830pBWZLp0cQBboO+HjZUW0ODdKMAdRQNawS3NfFrsYAVVtbkNyy2eSoGYeKtZop/BZrC9IQiNK8qSXZDW6tWxAFbJl2kyKb5eSC62bwsfynCX3lWVRJ5Npf/ZoX8zPoawiYRi9B6ZWcZvd6b2wcJefMYek5u9myUWHhEhuTvnIme8Z/jZV/3US4qY9oZxhJKMV3+9187TPLWLX4AtSwwsM/OxPPDz/CI9fWJq/roqY+nH+TKCzNwm630bm5JblObVAkpobi/N/XXyFv2tfo/mM30bYVp56LL4l45xXxi69cwAvbm3ntkV0mNXyUDaDR5j6izX1j3puihRVe+OMmMiblMH5aHnpMNbu3T8No4bRxCql0vLG8USfquCcDo2F0pMIqrAZ7ozS292GzifR0R2ht6CXujw5gHKV2K6vBOI072qhX9AE7btFpwzM1l3B9L4/+YQN6VB2xYexI1yI6bDjLsnjvtTPpDET4b3eYaHsIXYky1NEE0RxHWjo9n9ZEB/QVV89g5rhsHnlhP6GmvuRuzuqxcFdkkZHrZvy0PPLz3Kx9ozaRMjMINgR46ul9yA6J7pqeAZpJqee0EG0LUe+PpDjIgRGOVQewZM+B5KS5wVRdNaGzlKSXJs5p89gpWlLG5JkFdHf2k+m2g9ODY2YeUomH7d0T6Gp/MynDLTpt2Dx2JJeMqurU9kLpzLOY+JUaSja24lxainD9+3nylUZ89b3mFMCwQk9sIj1VPWRtqaF0/PWcvaSc2E3XsOLl0IBrUsIqHf0xbrxiGopucH9zgJJZBVx84SR2Hehi0792Jhl7hmYQaQzQ0tx3UpzBaIu0OXlu5uVvpWPaHFZlOY7qvSfyOgzN4O4vn8c56kNsvf7D3PmBx05L2YvTwilYYfN5189g97bW5Bzi44E1pF5yyyb1NBTnZOvIHyssKp27Iou4L0x/fWBU98O6Tl970ExR6AbBQNQUBgtEkxPFAOQcF66yTPSYSrixb8hZE+d/ajH3nPEqj+l3cN+3Xks2HB3ttVjFVpvXiT3XSXVzgGjcvJ6RptMJskTx1FwuvWgSr4sCgZ4I0ZjK9oM+mvZ2JnVsRIeZLjj75tncdPZ4anvCNLYH2bevk3B9L0BSSryvOYAaNlk1yeJvokAsuWUyJuWgRcxmtlRlWslpdgfbc5zoij5kesFkgUnYUnT1retLdn4PimpmXD2NH9yxgPKMrTx7cDoPP7mHYPgcxi+7nObOEBt+v5b+JtPo2rxOPBO8lI7Pxm43z/Hmvg584bksvPR+vFc30adm8/z2CGtf3U60pS/53Pzk+R5++dY97O2/iHEbG7j17x/i+UEOAaDklhn8bnMTE0qy8Aej6IrON+9YzLS/fwD7zEK++tE7WfOHTUnjaXUMn2hYKrB6VB25mVTTadnezpcfm0Fd5TbCTQPnmJ8KCJKAq8LL3T+5nIayM2kAXK4/kP+l3xyRWXgqcFo4BUe+iytuncvX57zJzqW38JkE8+FYP0hBEnCWeJh20URcGXYObGqmb59vjFd9YiBIAu4J2fz5t9dS5mngT2tlnvjFm0d0CoZmgK6jhlXCnWGi/uihHWogiho+xMMXZAlXWSYFE7Lpbhk6VBYkAbtdArudgC9+1PlV0WkbyNDRTHVUJRBjxatVxAMxou2hZBplKOgxlYa1TfyrvjfZXf3i3s7k7jc1/eKZ4GVCSRYHOoK8+vpB2g50o/gjZEzO4SMfWsTVU/x4YvvZH7+Cl3a10h2I8NUrMrl/dZRXHtxOrC2IozCDm+9YSGtXiK3rG7ny6hm8/OIB+mp7sbltLLl6OpctKqfFH+bf/9yeFDK0ZhCLDpvpoHKdFJVmkZ3vJivLQU93hJr9nclub2vtkltm0YJSDETebJnLi2/sp3l9M81rG0EUcZVlctMHFzCr3MuuBj8bNjYy94wS3rOkAresUNers6uxlzXbWni1v55oRKGns45gR4hoS5/Jckrc2zUPbOG8J1x4Jq3m5S938cjVLYfd70WLRHy3/o5Nn3mdt3zh5Cbih3/dxMNf+zqCECf6b9WMik6yIZPcMud+YB5Ou8SKv2wdUvHYeoZjbUHWPbjddFiDIsFTAUGWKJxVwEUtv8BSP4pEYPaiMtZsbTsqWfCTgdPCKajBOBvXN7Ju5nt4bl3tqAaFDwfLIXzvF1dySelm6iIX8Kk9HcMOTDndeMOSW6ZsXhHTeRa0TKLxKUnWyXAw8+BmQZOwYg7O4VCj2OBdqiDq9Nf6iTSZu+ahHI6hGbz++02srygn3PjaqMNcyxlkTMrBW+RBU3V6m8xIRImpiLKIK8/F0sunsH1DE4F9vmSxdag1WEqkqb+zkNqfoYTirFpdi78tSH+tH0QR76x8PvmRxVzPQ8R+uoaoZjDz7jx2FEyjtCCDnNAKCnIuSNx4kbgvzOMPbcPQDZZdM51PLu2iuaOMzQkHe3BfJ6G+GH3+CGowITYnJtYjimSN9zJuch6hQJSZswo5e0YhF5bvgGAX+9VreGVPGyteraLvYA9aVMMzNZer55TgsXWycleIvc8fEkcURAHbjDzeM99FgXMPk3KWkJPlYFyOm6nO16G3nTKXi2VLCvmzbTr/fXDroRShomHzOik9exzddb1EmkzZEFuWk5tvnsuWsy8Z8n6Xrn+Kj/16F5HmgUOd6l6q5rw1dgRZGsCuOpmQ3DK/uLYNY/nTzP7Z3fzyk88O2xwJA0UwUyMzOddlkgROQod68vyKRtcBH82f/w6S9BSaBld/vIR/bGw6rWyPhdPDKYTitG9s5rsdoWQx9Fhh89iZcv4E3hX9C8aKBrIvnm4WAAfzx1OE3wR59C3wqVLSJ6pOEeiJsF25hj1Nfax6ZfQD262dkQZJET9L3jp1rSYlVUFj5LBaCyvJiXCjgei0Yc8xtZMqZhagKjqdrX0o/kiyFiG5ZRacNY4LzyjlwO4OAvrIO06rOG2J5R22YdD0pJJpxowCXBl2qmv9ZsieYcdpkxCcXhzziqC0mJ2+RWzdd5DmOj/1C85kxdOHdp2GbhBpCSLKIru3tfKXvKlU7T2YjASCPRFCvYd6PESHzby/uvmvfGIu5y0pZ/mqWto6Q3SUe801+tuYVHaARZMmUTU5jyq/mZaZOCOfifozGNUHuXHJF3ntr1sHXHukJci/NgYpzpuMP9iG22kjquoExalkFmUSUErpjxUQCHUlZz5ITgmcEktumMH3bvTwzL7p/PvBrQQruymamss1M+28XnP4fb7yw0X84HmF1l0dQ/awHI3+14mCsW01+7/5Bre8fja/dg8/MGs4gURHSSYf/uoyalsCvHbfxpOWzzc087m68+dreF55AGPNC2yZ/j2CH3/qlDjYI+G0cAqGZhDviRLvaT+u4wiSQOasAj77njNQn/wttivP5vFd4mGDW8AM6Rz5LuQcl6nL0tI3rGKpBYtznjk1F103G4DivvCY5QRFWURXdPy7OvjS119OUhZtHvuh3PtwjigxM9mS0E7SCbWh50CMeTFflpC9DpwlHlzZTtqbAoSa+gakS6wc/e4trezb2U7X7g4cxZkULCylt85PpCV4mHP2TM3lr7+6hkJXI39eJ/HEL95MGigrn23oZn3gjutmEYpr/PSNOvSoSqA1yO76Hq44dxzk1yAUFdISjOLvDtOyvX2AVr+l42RdS29TH08/vhtnhkxmQQayXUJMUH5jEZWoUznU9Ztg5VRuaqa1oZfeOtMpVe5qZ+vScSyaeQvxfRqtXZ2E++PJoTJ5BRns168jXqzz33V1hxnjWEc/z/xxI85iD94iDwXFmUiyyLocFxmuEjp8IT54UTEfOsvDqhVZhOUQH/viuXT6zdpLhs2H2zUp+dmcc854CnufPezzu+L2Qh779L/Z+Lv1qIHomD8fYwElEENYeAFZ5a9iHNiDnLPwqHb7giiQNSmbD2c+CnNsbF44jZ71zSftOvWoSvvqBpbdnIGccw7RlidPC0c7FE4LpzBWEB02Csuy8EcVwh/7MT99McLaR988bEdg7fbteW7KZxZgk0UOxtRE4XJoaWWL3XLZxxbx5XdBT2wiX75vrSkRMAZOwTuviCWXTmbtY3vRYyr5U/P44h2LWJa/FmPdCoQLb+CTf3NwYE3DkMbT0iYyNMyBM5ZuzXFGM0diQKUWkkVZJNZpSoMn8/6D3qf4I7Strkdyy1zw8UXcdUUBuY5avvRIHpv+tXOAmJ4oi0xaUsYk3/2gqsys+Gjy91ajndVxq/RE+PEv11BQ4WXBjTPpbOmjPxijND8DQ/YgzD+bJuMyVi0/iCgKzL18CnWVXQRTOqBFpy1ZkJa9DrJyXXhzXbgy7Lgz7IiCOZ3TSiEF7GFiERUSDKVom5nLtxxN3BdmXY2fDU7bAB0n63xrO/vZuq6RuC+cjKRsHrNnRHTaCB3wJVVSi8d50RSdfWsbD7GhJIGlZ5Tglr3EQ3Hi/ih7a7uJRlU2Pb6Xlx+yoQYq0aIa7oosKoo8IEosXCCwbbvBkrNsTP7FVfxS/QSvPLiVyz4wD4AVj+8lXN97QmQeUnE0wntaWOHdP5f4zWNrOagaGMqTR3UuXdHp3trG7668iYoiD5GWlce05uOB9YxYzaH2XCfOsiy8pZn49vuIniYNbe8opyBIAp0tffzjqT3c2xnCv719yBDRSrPEOvtpxjQGw+nsJ5GYe3zG5Dw80TWodkdSE2csYPc6mFSezUaPHSnfxdc/soTyT7yLR57vS7ziJX58Wz6Z//wdd/wqMORsgORaUgbaHM9DZs91Mvva6dQf8NG3u3NY52r9v2ucF8UfIdzYN6RBSaV22jLt9AVirKwXaO4oYvtzGw8XJ9QNqlY3cFfOxQT8EarfWoEWVrBl2plw4QTyizPZ82YDij9iOvhp+dx29QyWlARZ3zKBfz6xm+0HOvEHy2ls91JftYGbb5zNzeM2or/8NNqPPs2df8uhZlubqckjS0guU6o8K9dFYWkWZaWZ5GQ6yclyYLOJqKpOdyBKa1eINrtEMBAlYEVwioaugCCaTX+2TDuFs8wO346d7QMG9giikIxMPRO8FM4voaQ8i3BYYdHsIvIynfz63jcJVfegBuN4PHZKCzwcWNtgMqMSg4/u/+lq8yNPRJRv/GnLgH4CiwosyBLNXf20lt7E9JdhekYOr3RdwE9freTA8g2IssiEkixyMux0XDgBX3uQhrVNx8Q4OxJSU7fmECBjWJ2qVDSvqOWDVd14xmUd0y5bDcb51/+9lpQmOVUG2NAM7Pluvvubq7ls21f473vW8e4fTudLl3+H7Y/tOeURxDvKKVi5u8b2EEpPZERDb+hGsjBnFdBGfFA0HT2qsmpLM86zLmJ3fQ89B3vGrOuxd2cHj/giRFv6kHNd1PrDTM13AX3J16x5yseNH/8XN13/DX63q4NIYyBZKB9Nl/DRwj0hm1sun84jusG+Az5SrzR5PmsYjyyx+LzxtDX3UZlgCg2GZQwyJueQVe6lclMz+9c2Eu8OD8smGcAkSTB2bF4n02YWsmx2Mbk5LlRNZ+6UfMZ5XcQ1nbXNHtbsbKWj0kfrrg42iwJ6TDXTMA4bBLvQ2kLIWjeZ3mIcOeZsZjUQRXJK2F02Mr1O8vPdlBd6KPK6KMqwY5dE4ppOh9uOKAhEo6qZRkxMsRMkAUEXQDfvjSibO3yPx46/uS8h2RE3ozhRSl5nTr6b+fNKuHlhEaKgsqk1Tn1HMOnkI00BNr5QibMwg5jPlCkRAcnrwF2WiSvDjjfHxaxZhaxcXo1/ezv6oKZZQ9GoquvhJYdERd4N7N7vZ8WrGwnV+pNG6KGHtpGR5SC/2MOChWV0dx4+bnQsYPXH2DLtpjR5omZhRkvDfwd1RSfSEjw0vOkYYKYcT30eX3LLXDFhF8/MXgfAU9+p5CfRPG7elX/YnJCTjXeWU0js/tH0I+b5rYcj9eEa6YOwnMimR/ew9Zn9SQbDSO+xdmnW2kZakzl4pwswQ+Xf3/06XV94iM/+aiOVF9+N5JCY/O+P4C+7mcYNwcMG5JyIhyjaFuKB/2ynfVub6TxTIgMgudOzzn9wfxeR/jjo+oC0kqEbOAozsOc4cWe7+Ms35lFo28Hdr01n89oG1L7oAOG3VJj3TEXOdZExKYf551TQ1RakqbGXnW47E0uz8GbYccsS2+p7WLmyhq7dHcmmMguCbHZF/+HBraxZvJRzrrqern1RdL2TuUvKWXZGCQ8/tYeAP0JGpoOcfDcVJZnMKfFSlhkn37kHG2E0nHRnTsEtZ6NqOqIoEOmPo4YV9JgNQTaQHM7kDIadL1SaDieYuC+igOiQ8czIx5PtpLepj67GAHXFmRgLSyh1b2dc1mL21vWYNFdZTOoUhap7ktdj6BK6ojNhaj6XLpvAjVMrEVpe4/alN/Pz55tZ/9COQ42Guml0965t5MD2NrPLurP/0JjZRIrRv6kFP9BVmEGkX0G05mWcoPrTpPPG86Xb5uOWJX75+E72L685VPQfzjFEVZR3wFyEuC/M41WzuPauKTz9o4MA2MQYnmwngTG+50cLwTCMUZ190bkPnOi1vC0w2i5jURZxT8zm8vfNo6I4k7c2N7Pz2QNJTf/RnMcyqvZ8N6LDhhZRkmMvj4e2ezSwHJslxaBH1aTxFmTJZLuI5hwHdB01FMdZ7EGQJabMKeKa8yeyfGMjs6bk45BF8jKdXB26H3Sd+snf4I2DXTz++G56d3YMeU1WE6JrnJeSGXlMmpbPvp3t9NSYBjJVfkEJxIZ0LKmaOHKOC2ehm4qZBRSVZNLd1U+kXyG3MIOafZ2Ioog318WU6fmcOb2QxSUR8qW9GPW7wNcDngyEibPoEM9jfYtBdXOAA5VdtDcFkr0hpdPzyc53U7Ovk96dHYBZMPcWefA39xFpCVIwv5ipc8whOE0bmhFEgcypucycX4LdLtHW3EfjjjaibaFhR4KKThuZ0/M475rpfK/sCVZf8R8Azv78DF69+a/c+4OVRFqCoOnJdBNwZNIC5k7Wckhj2VxlfZ7OEg/fvvsSZn/ucrpr+5iw/Rlu/EoVfQmK8tvd6I8Gtkw7OQuK+fqdZ9MbVfjDHzcSOuA7oemjrWs/deR1nbCzv0NxNAa9dE4h37yoEWP/Rq583+3csqeDwLboqI5hvkZDTShaJo99EvOhFh00a24hBcWZRCMKvupu1JS/WY5r6oJSfO2mZPIVl00lEIqjajoTs91cuLicmKrT2B7E6bAhzFiEYc+ipTVKm6+fSHto5FSfZqD4I7Tu6aS9uodYZ/+hprdh+k+GO44lXR2LqDTW+ulMsM5aKn0IkkBGrhvJJuKQJTx2iUxbJ/jbYV8l8X1dSPluJE8GWeMmUeKZSI/XiTfHhc0mIk4W6Q/GzC7yiELcYknppm5SpteJEjsUMdZW+gi0BpP6T707O9irG5x70SS8uS6zh2QEg6xHVfpr/bz1chXcdxHZ3v+wvxL2P3SA6z76AiuvnMfmx/cm0y1ayv06EgFBCyvoxyiFPhoYmkFU1ZGcNkQRJCF2SCrkCLD0rU5mr8GJgBqM41vbxDe2tydrTKe60Q5OkVOwmDyWDr2FkYaYwLGnSAZIJh9hh3S8sM5l7cqIBKC2ntzpe8nMdRE4Cjne1NSQIAnMvGkW932qjJZQER99/39P6JdCkAQchRlc++kz+fi5TvrVfH77chX+5j5sHjvZJZnYbKYRdLhkxo/z0uePMHtOEZdP99IblfjV4zvp8PVzx0VTeGRtHRtersbmsfN0YQYBf5Bwy6tJ5s1IDsFMd6hJ1kYq+0b2OsibX0xuoYfO1j4C+3zmvIjBg9oTo0Jlr4MLbpzJ3efsIuKZwR2/VGnf04mhGcheB6IkIEoCLocNr8OGQ+/A8LUS3dhC3Qu15EzIonhKMa6cAyzN7yDffT4A180SyNv6O3A6WFv8ZX5431qz5ybRONi3u5PKGj+SU2LcmWVcctFkdlV2sWlza9IYaJpO3BcmwynjKs1it9tGLOFQRDkRoQ5KQ2phhb7dnVx2l8SP3tjEbbZnMNqbQHZyzTkTaKjuxrffl0yrWrIgNrecHKIz0r0f6fmwnvMjkjQGQVfMiPLp16qY9/fXyRP7+f7zbUnZkiPBUZLJebfO4a3H9xJpDLytowpDOzmjXo8Gp8QpeOcVcfE1M9i8sYmm5TUDCqWHzaVN4dofS/dxMv1QlmkqWfqjCdG3kYtNotOG5JAOU4YcCZJbJnNGHqLDRqTFZG+8j3HMmH0XdX/poWNb7XEVpr9023zs/3cTMxYV4Sq77qgay44GlrGdfcUUPrnMRrZUSbXfS3Odn0nzixlXkU1ulpOquh72b20l1BrklZoeEEXmnlFMc5/BxpoOqlY3YCga29+oI5wQZwPo5eiosqkdqZbKqCAK2PPdfOPnV3DF6s+jNgcRfvh93vtDU9kTzEHxkltOSj6gmXTQHn8EXJkAOF1mmkTHzPfLdgmbTUTTDZL2SRSxlXooWVCIsyQDPBng9BCiAl84TjSmATb0hlaMfpUFH2qhuNxLQ1KV1hz3qfhVVFGgaUsbz/bFCXUdUq210luSW8blsKEbhnletw3P9HxKxmcTiyh0t/TRX+s3R2jKZmrRUDQCOzv4/O1P4CjKIGPcQiom5wJVxBOsJPRDTX6y18Him2aRm+Ni/eo6utc3H1WKyHo+pl42hS/eMo97/7OdqheqRhXBWh31elTliosmU/zPD2FbOoPaygvNesIwkZ81rlQNq6DrFOS4cRZ7TEXTt7FTOB1xSpyCzS0jigKxiGkkkg4hsfOwvvxwaGdk5UGPxTFIbpmK+SWMm5BN1d5OmgPREYtVoiySd2Yp884sZ+uqOlNvfxQ1hPwzS/n6p89mfWUny5/cS3BfFwefr+LgSweHbSIbbY3C0Ay+/M1XuPHDD9De3U9/zfqjuAOjgxWWWwZXdth4dIfEwcYC2pt3suTMcbx7YTkuWz/b2g02bW4m2hY6NPvY6+C1Z/ax/EmT525FANG2w4XXjha2TDvl549nydJxvPjgNtRAlNLFpVzdex+PftTsBL71/W/gzT2TyKwCMrIclE3MwWYT2bW6PukYlECMLY/t5dJNXjx5XTicNrwV2YSDMaaeUczdt1TQFfbwwo4WmvqilHrmUzBewza3k+ypRZCbjTB5Jr3CLLa15VDV1suB2m6+uTvOhAnfwllqo+Y/fjRVp3hmAY6FpQBUr6hNDjiKtvTR1hYcsCu2HMPkecXcubgSbHa2bi+m6YDEF+88i6sm7KRXmci+7jz+9txeDiyvoWhhCQ/cNZd+xcsn7n6N0AEf86+cytIzSnj40Z34d3WQMTWPi26ahUOWePHBbSg9EZwlHn5+Mxg/+RqOD5zFzZln0bym4eh2rKJIXmEGC+QX+NR7r+QbaxuJ+6OMxB5KvVYtphEIxdA6wtgam3G6ZLTY8FF89uJS3nvbGaxcVcvB56t4/N616LGR02tpHBtOiVPoq+xmRVihv/7QSDqro1SURSSPw3QMkplnI6phaAokJLCPFoZmEIsoxI/iAXJl2MnLdiE6R3eLBFmidHw2BW47/r4oSt8hTvpw6SJRFnGUZCLKYnLw/UgIVffw7++ZTTdj/WUQJIGyiycyc14xbz66B13Rqd7TQd2BLhwumTMWlvKJczQyw8+gOcfRHZpAR2sfaiCalNIwGVSxZFPZcLDUa5PvHQUKlpTyr6/l4dz6D+ovvoFdL1Sa7JhxE1m4QCCrPJOOkg+h63tZfN548rwu2rpC1Fd3m2vSjOSGQ5RFkETOv3ASH14q0NBXyJ9e3M+c6QUUhl4hO3c2MSWD9t4w7d5ccnLzkEL9UJiPMGEqavYk+iP5hOIxAqEY/cEY7U0B6nZ3oCs6kltm9pIyZkzK45rZeXRH4AvbWs20ltWFPcTmQFd0utpD9GgzkYwYotSF5JbJdsoQ6sblzqEv5iUWMQuxnkwHheIWcMCkWQVUBePcd3Mnxup/4LrjO9z7jVf5xTcuZH7Hb4nOvIZXHpZQZYnMggwc3dt59O4qZj1axeeXf4Yf+sIEdnYc8RlMMtB0nd0bm3lqwbvYdbA1uaHTrZrFSEy+RL3sv//czrnfewx/VKHppRUj1of0mEo8rqMnqMlDUZjTGBucEqcQ94UH8J9Thc0kjymV4Ml2ItlEAh0hcwei66jWAJSjiBYMzVQKbdnaSkd1j6kREz2ywFzbuiaeS1AbjwRrt99Q1c0PH9xE4/rmUT20lhZLZoad+3/5FqFK3xG/TCeKYy17HTz9TR1jz5NcM2kpPYnGv6zpeXzzY2eyRP03yl9XYbxrEd2Oi1ixuppQdY85E7ooIznMJnX9lvG1oiQwu86vvuscrl5Qzte+v4Lgvq4jOgZBEnjgG+fwZtESunvgO6Gv8e7H9tC6q4PPvjqXJX9fQV1rH2u/vQ5PtpM8r4ucLAcHa3vorulBC8UOpWgcNmSvg6JxXm5eWIR30/eZN38phYWz2LCpiUDoLPzBGN2dfuKKhkOWiKqzWXjlB4nrGfTFywgFPYzz7GVm/mx213YT7I0SD8UH0GCrXTZKCj2UBx+mvHj6YbMYBsOqnbS+1citvVFkh0SwwcyX3//fnbwx+ww6uvrZvWqVKXAXVanb0My985ZQXuTB79uHzW2DcACiMWyiwIIbZ1L66Ut49KlebmvIArEMZ4mHkopsKLRzxhyIx+Gc0v0sOm88a1v6iHX0H9lRSyJ584tZcu54Xlx5kPamQFIfSlfEAc2TI11vYGcHH73jMRDFARpAVsoXSNYrAjs7+Gf1yhFnRqcxNjglTiH1Qx3cFSs5Jbz5borHeXFn2KkFehMS0IKoDYgWknIHR+gBMBSNWEc/MV9k2DTO4PVZzTSjZQpZed3e7e2jrkFoYYVdlV3YHTbUvtGxkk4U1LDK33fPoiJvCb37XwTAPS6LL31yKYve/DzND+4mb34hwfG3cd9rXdSua0ILK8y+YQbTpubzysM7Dyl8SgJyjotLPr6Is2YVsXJrMxuf2EvMF0GURXoDUfa0BYj7Dy8IDwVBFNANG4UF0N0D29pNZddocx+b/7mTLdKuZCQQzbTzQlMfgiSYn2EgOmC2MYkcfvOudj7/mw1Mmv5+uv4Ronl/JVpEoWlPJ5JTwpXtRNcMVFWntauffe3jcbtkdF0jrvQwLmcyLb1+WlqDyeY1y7DpMRX/rg5WhOJMr7iBdU+3E2mpSd6bkQq7Wlihd3tCA0zTQRKpea2G2pW15t9jWjJ3H2sL8vTvN5hRV8iUN7/+16UUj/sI/Qf384EbZuOtK+SGSdk81PNuRHkzM88ex/hyL49XVXDp5pfJlNt4eE8FOzftPOJmaTBkSURVdOIR9VA94SjYYNY1Sw4RyelAwfxOiA4bM6+dTl5hBuv+uSO52TjdCrInCpbSsxbVRk1hH9Pznw59CoM5+dkTcyhMdGo21fTQ1x46pL2foo/unpBN3rQ8fAd8hOt6T9j6ThRSWVEni5stOs2dsqFoh8lmiwmNHpvHjqvCy/XvmcNnp79F9L7/Isgijm/dxUf/JHNwXZPJfwcyJuWYCqKV3ckiuiAKZC8u5amfTiaj/gX8427hwz89QE9VN1mTslFiGn17OpO7wJFYZ4Jo7hrHnT+eez97Fi5bDzd9Yi39NX7z74miZ8bUPM67bAo7trTQvtEsnFrOOjltTjzUhZ26EbGE8BBFJKdksnM8dpw5TnLyM3BlyGR6neZ8CUBVdXTdwOm0keGSsUkie/d00NbQy+wlZUwZn8PjD2xC8UeQPA7UQBQ510XxnEKCgSjdm1qPaojUcBpBqdPzLLaY7HWYCqzzi/nsu+eyIH8TvcpE/rJOY9WKg9hsEvklHtqbAoiigCiK9PeE6a/xD9sPMXgtVp+BFd1YzkxX9KN6jq3Ng6sskwlnFOFrC9G1zezmPfuO+cyYlMe/frV2zDWBjnai4cmGq8LLI3+5lpf29/DPn68Zk5qchbdXn4KmmyyNmEq4N0InIDskQr1Rs2nLomem7Czt+W5mzC1iS2/0bUlNO5kt95YDKjirjJnzS9ixpp5QdU9SDsH6oogOG97peUyeVcgF0wow+nw4LpuNMHcR960dR83GLYdSY5o5lwHMaMwy4ACebCcerQajvpHcydUUj8tCkkWWLB3H1s3N9KZo81iOEQ6xzWxeJ47CDARJoHR6Ph1NAb7+p00ASYdkGaiMqXmce8lkPrxsPH9SNDp3tIOoH+LmJ9IZA7ShkuczqcOiLCKIRoKbr6JJAnGnjWhEQbZLxOMakX4FVdWIxzTsDokJZUW8a2YRs6XnCV8wmz++VcIls4uZkVPF6ytyad/QnKTRFk7O5dZ3z6E/qvDn+kByFOhoaiqHNa0l0nKGoiXTrnKui6U3zOSqJeN4ak0tvvagmW7tbcfr38FXz51FYc5c1mxopL0pQDhlFrel9DpaRljJOeP44K3zeHHlQfY9V2nWkBJ1paOFoWiIThtnLynHZbfxj2CM/upudq6up67Sl1RtHQsM3nycaOcgOm2jUlcYDNnroMi1j5ys8SdkXUfC6eMUOKQgGW036wiCJJh6MbFEF+0gOme0LcSB3cc3pe10xFg/rPZcJzlnFFE6PpvvvG8BkhDns/u7kqMqZa+DzFkF5BZmoOsGt998BpNz3BS4e4hnX8Au1xSeX9PEm89uByB3QTFRf9R0KomUieiwsfRD85k/s5CVq+tQFY29/Rcx/sLJKIqLcxbb2FnZRSAUw1fdDZKI5BSTOX7Z6zCnxAXjOEs83POdd7HA9Sor/Rfz1r52ohGFBQvLmFzm5ZdrGlEUDdFhw1WWydQzinHIEv9c18jmtxpMefMiD6qq0bvfh9ITGWDwBElI1hgsckPynisaWuJ1ksuMEObMLmL6uGw27e+goc6Prz1IPKLi94WJKRqzz/bg7lrPJbPfxwFfiM2N+fjrDiZTPQA9B7p49tUq8gozmHhWORMm59LRHmTvKweHfH6tCMjmdRJtCyUjC1d5Jj//9TUUZdj51HeXE6ruwZ7vZvbFk7jrihIK997LvPd8jFu+1caaA50smRkl9o+V1D//Z97/6QXc8YH30iJcwr0v1LDl+Uq08MCpfNa5RYcZNQ5FyZ69oIQbp1aiaFPZ8+T+AdHY0TyzVjos1tmP1+PghikNBG85gycf3kFgT9eo6k2jwWC6e6o0y2hlbo4WstfB5Esn01Hvp2+f76hmN/TX+Lnt5146972R3FScTJwWTiH5ZUVPdnEKYjyZf7V2IoMfvFhbkFZ/5LjnOZ8uOExbKIHjeVhFWWTKJZP562dd2MUga1qiNPnDZOe56ZQlRKeN8RdO4EM3n4HHLhFWNC5V/o4glLM1cA3dERdrdjeyfUMThqpx7R0LmVru5cGHdxCsNPskBFHAXZHFl66djU3UWbupiYYNTXyxfSXTF5TwjRvHMb8MXl9dR9OeTuK+MI58F+4J2TidMpIsMml6Ps11fnxNASbOLWJKdisE+qlq6+OVP24GXWcjUFucOeALpsU0erv76e3up3l7O4aice6tc7n5nIkEYio//8M6/FvaDit+CrKEs8TD/Cuncu7CMrxOmWffqOHA2oYknz/uj9LZ2kddlgOHXaLHH6HPHyHSbQr+dbSFeG53J6887qRk6gzisU30tPSZNN1A7FD3sGYQaQ6y/8l92LxOZl45hWsXjyMY1/h9e4jWtxoHpNJsHjui08aCG2dy7sIynn+lksb1zSiBGPmzCzlH+QdGY5CKmRezL6GHNGtaPkXaapi1mN1d2SiBGK88t58Fk97NRR/qpe8/B1nz3e1MeaKSvrZv8quV3+DDvmm01PkJVfrMvoeUZ8+e66RsUSmiJFDzSk3ynhuawet/3MzGN/KJ+1abrKnYsTeD6lGVaFuIh/+7C+/tC7HLYfLKsghWdqOOwfd6MN3dWeJh/MJSgoEoPTU9SYd7rH1Qw8Ge7+Y918xgzbYWNjb1HZVT0MIK9S9Wj8k6jgWnhVOAgY5BTxTYktAOdwhAon/h+ItPg8PKUxF1pNZVBFkCXU/OyD2u9UgiHq8Te38taBoH2vqobw3QdKALLazgnVfEne9bwMRsO8/u6uATS7tR/7QZ+eZCAjGVyTluXgkrhNtDGJrB9u2trH2rnvYNzUlNHTCn533rLxvo7uxPpKXMbllN0dnREeWtXa007jCF9WxepymOl2FPLrO9uY/uRIRY9VYjN1V1Y+i5hA6sTBawG145SAOHPh89ppI3LY+/fiGPsJrDbV8PEOuOcNmicSwSnoC8HP5VUUDvtnasO2jdZ0dhBouvnc6vLq8k9vvvowdiXPyzH/MFxlO1pcWcCRGK0bvfx86DPexxy2aqZQjdIEUSuPSiSWS67fzlwS30+cLDPq+KP8K+5yr5v/1diE6bKTOeshuWvQ7O/8hC5k0r4NbQ79BmXsuq9U6mXzKJSH+cpk0tvPtfsxFFAZstxmd/fjmvrqxh5coazp58OTZRYO3+FtB1+mv8/Oy+tWy+8lq+vkom8rsXMRSdzNIoODO49tKpeOwS/352H5UvVGHoBja3lIzQAc5aWkHbvq4BjZJaTEOURa744HyWTi/k70/upuqFqsM2Z6Odl6BHVVrfbOQXXf1kFmQQ6o0m6zzHo2KQ/P9ENCjnuLj9c2dz+9avIU3IZN+nf82nPvucuRsfBWPqaBD3hXn06b101feaDvc0r2Ok4rRxCjDohulmjnpAg88Y39DhCpwne26ztTvMXVDM+Kn59AdjtB7spr8+gBYGkWPvSzAUjertrTy37CLcsoS/z0dLY4BwYx+iLDJzUSkFbjvVPTG272ojtjgPz7lz8GW+i3CfRo0/TOWudmK+CJJToml7G2oobq5HOsT716IajYnOWKvJUAsr1FZ28ffWPnoTnadWzUENxQmJAiWTcsnIdHBwZxuRlmDy2JaQW+p1D/eZRFUvgVgeSp/JUslx2jCa6hDy+7DJRQNeKzpsuCdkM+PscYwryQIlhhHTENwyhiGyYK5ZDK5tCZoRq2agRxl6pyea1+4ozGBGUSaiYI4AHWm9FrMtsLNjAF03VdJEVXXiigZZZtd1a0MvOfkZFJZm0Sy30/xGPYIo8PU/XMu7s56j6IZ38/1vvMo9D20hvyQTX1swmbqKNAVYs7KGBZPfz2XfnwB9nbiBdtu7yHdLFGXYmTI9n4MrahLGy+ygjneHadvTyTrMZy9Vol2UReYtHcc3L6il77Of5OIffpBL6wvMPodBz+loVYL1mEoooWsFjIqVNhyG+l5bjmFGcRbN/9mHrznKohd/j809iRMhP6eG4jSubUqmvR2FGQBjOqnxROG0cgow8It0PIY5VbZ6JOXMo5XUsOe7KV5Sir/OP6LMhCiLeGbkUzo9n4ZNLcQ6+4dMc0luGc/UXJ777TQ2V7ybtna44OpM5Mef53v/bWb+7CJsksCDP19DpDk47LXC8EYosKeLX3zjVXPtU3PpqPGDruNI1BDue2YPtZVd6FGVx/eMI9vzKTa81M6kMi8HG/307vchOSXmXjmNztY+YhGF0vHZHFjTwIzzx3P5+ZN4ceVBDq5rQoip6JKpMaX4IyiBGGGnZM5B8NjNJiS/Kdks57hwuGx0tPYRSkxAO1r5i5bVDVy/31TWVHoiyLkuJnq7iN6zEceiYiL9C5LRlui0sfC2uXznlmmUurZy75pcXgldwxU/mEB7ZA6v7YtSmuugfEI2dYnP30xlCjDIJ5jGEQRZJjPXxeNv1dFc56drd8eo1q4r+pBNjUogxlt/28Y6WeTFc5cyY04WofZWevZ2USeLSXE7A1i1uYl517yfFeur0WMqDavqaUxEbklWUFQj0h1hw4FOxnsvwe4W6YkoBLtVzi6pxf7i/XyzpY/i7/6Sv/3fa2hRjSlzirjqvIks39DA5v/sOkTpTTCcXBVePG4ZY+1yXvxLG/zlF/ysfQt3feNlwnW9uCq8gEkIkL0O8zmLqabTT6GVWt9B6zNXg3HzOyKJx1S0Tj3m4GNYKeiHXtrPfSseZPzeF2gp+wxK4JkBab6xgqGZDXbWhm/uVdMA2PHEXoyTpHB8rDjtnMJYQXTYmHHddKZNz+eN5w8Q2NkxoNBoac1Y/zU0I5myIaVwNuCYssjdv72aSyu/R+CrX+aK61cNyZ0WZRFneRYP/fIKxgX/zc/PuJAX/rqVSGPgsNe5J2Rz8x0LidzxPtoS9PTVLwa5LbyC+26fQvyLH8E+O58X5n6MxkFOwaL05cwpoHe/b9iBKHrUFJNTAjHqGgNm163T1HXas7I2qatv8zp58sk96LrBlVfP4JOef1N72ZfZ+MRebB47SlzFZhP5zueXMS/yd35ccRkXzSnhnMJN9IZmmKyWTlPgTsccLWnPcSI6bRSXe7nximlUNwd47oFNxAIxQgd87DngOyp9qcOu3+sgd1oe8bhKYE8najDOtx/r4QvfeoYdHX3UPbY86eRtbhu6rrO6PkJ79wSef2grL7lk/jEhm5z8GsL9cXztQfpbg4cUKzVzxCkwIKVpGRld0enc0Y7vgJmXT1W6tD4fR74rOaJ0NMbAeqbqX6tF1w0uuXk2b71Ri29t04D3b/jLVrY8tpeMyTnc8uVzefH5/fTt7hxQi7Oc88FKH+qSCryOfnRDZlKOCw0ZRJG1P9zJx5/4A8+eeSG+Ta0c2NDErZdM5YbzJrF7Vf2ApkrRaePCK6bS3NzH08u+yTWf2oGhGezRdOQsB6LTxtIbZuJ22lj+py3IXgcX3zCTCSVZLF9VS+WLVcnrE2TJ/EwSBBPLCR/reFvrey25ZVMTSjdQA2YhXZRFsiZlM2NaAXf8qpGOypnE/U8nO/BPlJG2rqm+2oeekPc4nR0CvIOdgiAJzJ9Xwk0Ly/AHoqzZ50vSPy1ut+iwISV2sUAijxobsXO6LNOJ3h3AJsaO+OGG4oC3mA5f/4COzVQYqkZ9a4C8T58DjzwHwCW35NGTcQGyGsG9pBjp4mX0fLvnsPcKskTGBC+zF5WxvrZ3xLVY1EM9lmgGk4SkzIR1HVooRt/BHtPRZDnA6WR3Z2LeclSj6q1G7Plu+hUN7G6cdhv72gLI4lICoS5y8jOI9cUwVAlXWSbnXDyJmRNz0XWDcdkulhkPo10wjxWvZBPr6EcNacm1HS2s2kD2zHxufe9cuvwRnmoPEW7sY9sT+/jEqjrUUNxkHiXSHmpYZe8rBzmwpsHsbA8r2Dx2OnUDV4adnHw37c0Bs5YzVCPWELtXXdOJJ6KJwVLegiwx5eKJfOD6Wfzjyd3Ur6on3jM6iqUV/fUHYwRCcfSUTYqlUQWJZi9ZZFqZlw2FGYS9TpwlHhR/hEhzEFumHVuWk+b9Xdz39G4mTcylojiTWXlNuDvWwoL5XPCAjjBtFuX7cwhUdqOG4vzrpf2Mq8hG9joGDNqJ+8Js39KCEtP448712O56jPnFmfz7id3Euk1tp8qd7bgy5GTtZen0Qi6p2M15E5fyob2dBPd1mZ+JaDpNXdHHtFPZnu/molvnIttE1q2uw7fJlOHw5rooznMTj5uMJ6tmd6Khx9TkXI2Tcb7jxWnRvHYiIEgChedVsOzCSezd05EshFnGxOa2Yc93Y89zU1iWBYDf10+wIXBolOcQO4isuYXMOreCfWsb6dvdOez5rWjB5rHTX+MftqlHdNqwuW3kzS/m6mtm8t55Arm2Srb3nMV9j+8ydXX2dA7ZhyE6TUqmPcdJYE/XqHfbw7GcrJ2wzW0jY1IOJZNyqVldjxKIJXOyNq+T3Gl5nHluBZPKvFw00Y5NjLCjw81zb9XRVNNDSUU2d904h8n6MxiN1Qi5uTTmfAyA9U29/P4HbxzWkCS55aRcxmg6V63P0TM1lzMumEBPZz8HV9ah+CMDXjfUPbd28J6puUmdpkWXTOY71zhY25LP7/66Cd+m1gFUy9FigMyH08a8W2bzvffN5c+rGlj16O5RN1kKkilKeMY101kyv8SU2X50D2ogirM8i/lXTmXWlHwefWAjsY5+3BOyibaHEGWRcWeWAdC4vhn3hGzmLCkjGlHZ+dwBAArnF/PbL59HyT8+iNrQh+unX+HHK8exbnUdNpvE1z+5lBc2N7L+uQOooXgykgSS0tupGybJKSUNu1V/sJyknOPi27++iiuD90NjM7/xfp3//mQ1WlhBcsvkLSrB4ZJp39g8aoc50j0TZIlF7z+D+8f9C7Wynf6P/5xrP7QRxR9JNsrlFmZw+3vmohvwm9+8NSCL8E7H26t5bYxhaAadbzbyzKZW8+dE8RNIauA4CjOomJzL2YvLcTls7KzqYmtENY2SpA3JSOjb3cmGEZyBBV3RR2UArPGC3TvaeVkUKc1bwOyCZexq7aa5ykd/fWDYVnc9qhKu7yVcf/T88KEgSJhy4VGNwJ4usxjKITqf5JZx5Lvw5rrM3Z/9CbTHViMWZLL00i+xsSCDD186jQU8Ab3rqPZ+gjpvmL11vSy/fyV9ld1m1DEojSJIAovefwafvmYmv39mD9v+ufOI12M1/gX3dbGuumfUTUKW4ZhwfgV/+lwJYTWXP6zspLa6m6ByBjlOAW+uCx+jL3YOt1Y9qrLzv3u57fXaZGrJgnU/rbGdQ16fojFzWj4fmbQW5hfw0cAU9j5zAC2sEOiJYJdF5CwHkeYgfXvMZ1IQBepX1SN5HEhumQ/evoBrp8d4qzmL/WsbiTQF6GsP8eS2Fr708Q9h27QKuuqYN3kB9fV+HC6Z2fmd7CrO4s2wSqyj32TFWdF0TBtAm7XnOE1F3JRrMD8b856ogej/s/ef4XGU5/s//NnZ3rTqvdqWe8XGNsY22BgDpkPoLUAgQID0AgkhPZBCSEJCElqAAKYbsMEY4967bEmWrN67VqvtZWafF7Mz2pVkY1NCfs/3fx1HjmBJu9Puua92XufJP58/QNpd32ReyYdM6ksmbXaOPD/iChIcDGIwypThGtfo2fepAj+0eoFIdSf9G5vJunEPOpuBYIebYIebUK+P0+45nXPe+BpNr1Wz/oMfcdZ3k9UJ+c9iphwbeodxCJL8/6j9/61TgCEuGcXiKQ0Ek46UNAtjSlKZmJ2EFI3SnmJBZ9QmOI8vOoJQqCUAvP0+1u1sYl+Kmca6fjkdP07ZSbH4Pol6zidRIx3+Oa1Fz/gLSjFb9VSsrY3RIIMxy8r4JSW4BwL0NbsompLJhUvHcU7lT1h54ccIAkyfChNnz+H+sxfhv3E5jd0+ij/8Dfc8sB5PrGcQDytWjqueg16LoNXQ5g4S8EdO6b4PnwpX+gyCUSfraA9r6sllC4meNjft3rmY9QJStIvm/e189eFBfvrthXztqhk8vKdNpRcYDaQw2s9HNVHuU5lybLLiW7eXaFjEWprG+ddOw24x8J9Htozq+CPuEKv+c4iM+84iw2UEqtA7jIRdQY59UEPN+nqZXmJYFhp2BYm4QxizrJw7zoRj7cNcqNMx4fd/4ufP7eXGy6ZwfspHvHRsMSl581hh+IClGR0svCULdzib5/d0suo/+1XRG0GrwVKcjMFhxNPoIuIKYC50MGl2Lj+5Ip8Xd7t59ZebRs1Uo1KUrt2tPNDl4fZvLOR64R+ct7Sblgce5Ybb38TXOECw1z8qukt5llqbEdETHEG4OOJYYhQQOfJRHR/97Elm3xbl72Vews5t6tqTfGG2v1aB4eXvMib9SZBkWLOvceAzvetai54Jy8ZgNOkpX1/3/zmF/9dMKYWkpFsZV5iMWSdwuN1FV7+PSDBuwvELlsbTaDVy+SfdIqe3NgPtTQN0trhwdclcTycLX9PZDOjsBsSAqFI0n/R56LWYCxxce/EkGrs8VKytVcnYsmZkc8tFk9lf38d69zHGjEllcWGIj874mGgURFFm2kRvxLb7aWoO9VNyRiav1J6Gp2rtCClRBS+u0DxEpSimHBs/uHwqhe4XyLrmOr6xvv6UqZEVtJkh3cKMFaXYbAZ2v1+Dt6ZvxL2QwhLuyh5+8Pg2rEkGuuqcau/BqBXIsOiGoJQnuI+fNN+iBB/jlpbwtSun0eUN8uSfZN4mnd2A3WIgLdmE1qQdDm5SmYPDTj9vv3cUk1lPR9OAzM8Um5lQ7t/wUqDy74g7xPtVPm6dOoljVz1FweJL+OfvH2dnuwZ0BrqdfrbtbWXOdcvRi35Sulfj8Li564xz2bZNjp6jyKCNwimZjCtNY/+eVjp2tCDoBYryHGRqDzBrzHzetOhGaJSoZSQxKkuoihJdP32H+gMuzliVgjFzpqzJHNfXGn4dluJkiqZk0nysD9eBjhNkuUMlq2C3l2dXluG9UqYVGW6BtkFWPOjmggt/hVgdxdlw4DMHgFEpSmuDEykQ+X+e1vv/plPQatDotFjtBtLMBpyBCLsPddDRPCDjiAORTw2JOxUTjDomn13CmJIUmlpdnDEzl5dXluFpGVQboTL6ZRQKhBQzIOOhBb1A0dnFjJmQTtmeVrmx9gnzHYqSldZmBEnClG6mutXF1i0NapagETR43UHWHWylsbYfq93IpOJU0sNb6Ivre0/74zlEU4thcDuz3ruN7bav87dvrpYzhBjkV2vRo7MbKJmXz71XTefVrfU01vTRdaQbR0kyBQcfovfJHcz6sxG9w5QQOZ+IME8xnc3Aoq/NZv7UbBYXhmgZdLDnw9pRHbsyQ9GxuXHEzx/49QY0giamzjf6ZxVTYLb6FLO86cVkQBP6CkYdFy4vZVH1w2Cx0HHjHbz+15040i2yrrOgwZRtS6Dd1ui16GwGJiwfy4+un8UE43q6OIO7Hysj4g6RND6N1Ewr3e2DDNbKUN54qgqFIE8w6Xjp6X2EbvkK1895j20vNrOQbyF9ayW/2DYJn99Lc10ft/yil998exGO7XuJBiIYrFamzjyX1p2tSMEIWpOWGy6axLKMbTTMX86tde/iaxyg6lgP+yctZENZkzyzYdQlZLY6mwFTjg2dw4ToC7NjXys3/3QFGeW1DEz+KsHu7TKtSPj4gANzsomi4hT83pDcwztOkOSYkcWcpWPY+1Ed7soe/N4Qc3IcFCaZWGM3JFCJRMUoPVuaeXF7S4JDVdCIp0rqB4AoyZPzsWdgn5hGUr6Drt2tx+2RjVYW01r0pM7Jwdsy+KWRfP7fcwoKrFCS6Gwd5H2a8HnD1JZ3EerzqRQHn5epPCujlHSiYZGq7U3UlncRDYsM9vsZrO1Xz+F4SAXBqGPKhaVkZNnY/WGtjP+OSHR1uPHEaKOtY1MQAyLBDveoTmXWjdO56YKJVHUO8torh/E0unjj8R0qDl6Julzl3WxudKGzGcgqTcUfjOA0zOHad88iuKcN0wNf52hgGXavRM/pM/n103voPLBa5q6KOQP7xDTGTMhAI2jQ6QVaBgM8dKmV5sFx/PLpPXSUdfHy1d9m6p8f5hfrqgl0HFLPM+G8415gJULWOUwYUuVNJxIWaWgf5KNt/fR1H1NlO1U4pV7AkG7BXOjAkW6ht6YPf6usgDbxkgk8f8k+NHofW7ieXzy6CXdV33HLd8rGnTIpnbPPGUdZWQe1GxpiFO9DpbKIJ8Sz/95P1r0/w6rXsueVQ4i+ML01fRzMtnPT+RNYetFEPgpW4KnqBeTa9PTzxvHXqat5J+82mKhh/JNXMH7Ktezv8XLhRRO5arrE/s5JvPhuJb2dbhUgEZWiqi5JxpQMLr9kElaTnvXfe40rfvke0fLDzMiU+MMTdfJshyuIFIyQZNRR/+d9RMUo6df9ms2PHEygtpidPUjwsWcoLHqdhVf8kI+f3EvVxkbqzxrDitkF7PygBn+bW9VsRivf6ylnl1BSkExtfT9V25tYfmQWGv0c/Ku3H9fxxj/jvkOdbGgdVFFWgsOYAGFWMoQF55XywPlh/pI0hTcrN9G7p53bvv0eUSmKr3l0ltX43ofObsBSnMzMJSX0dnpo3Nv2iSSbo5I5xtbGWVdO4bozirn/kY0493WMYCN2TM0gJcdOT00fnpp+omIUQ7qFnz5+IeesuYvK7zzHHVe9/KUMuv3XnUI88uWLxAcf12KRtxgU6Wpx0dftIewJqXVN0RceQWPwaU0wyc1srUlLqD8wQmlMCkt4aoZC7sHK3qFBmhMcPxoWcfX7caSYZailJ0TrliZaY9+ZMT+PpeeWsndPC/Xd3hHRldai56YLJrIwZQsdnnmyYppz9LquWqaIyCyhZTW9eAPJjJn+CJ6JEZoPePAHW4mIEi5PiN6aPjV7sY5JYfaysTxwYRIpQjVlA2ey+mArL64sY8+0LDpaD+HscDProvHML0zhtT3NlH1Ym+AM1UGkYaZBVji7+N55nDExk+dWVbDz+UMAnHvPXJ68tpOwsZhltzbgrXOqjKqZM7NZtLiEkhw7b6yuoiGGrPrDneNZaZERUl/560Zuuv1PPPOHbbIGcHwvJHY+WqPMGxX0R2jpGCQ924Z7dk4izXtsTsC5u40HjqzCmGUld2omOoeJUK+Pyk0N7Bufjk4nDNGbAKZsG/Nm5BBaewi/AqZKduCqCBDo9rFtRxM6bTF2a5iLlpcSCokcqe3l4K4WfM2D6Cw69ClmBEHDVyb3YDr4BuLsC7nnhelMn7SMi6OyVOnR96rlmRWjll3NTi6clMZAvQsNkqp1oRHkrGp/ZxLnzC0mXN7GLSvGsvX1CgIdHl55/QjXXDkVW4aVUJ8PbapJzXqkYITOFhdBf5jOFlk/w1vnPOl3S5n+jrhDmPKTuP2X55CdbOFvT++hb2erTFeSZUVr1LL17UraWvOo31+nzjqcioa5oBconZPLHyevIdxyAMOzd3D21wU8x0ZCwSGRliY+w4j4ZB6lzW9WUFvdK2/48etZq0Fr1DL77BIWTs9l7Y5G9sWG+mylqZyfvpGaFyqw3Kj9wsvXx7P/ilNQXkh9ipkxCwqYODGDvgE/h3e34qnpHzXt/iJNgSGGnX4iggYxKA417KTo5/IwlIefMSUDk1lHR2XPqDTAidd8chhmKSzRtqeNnpo+gr3+hBRco9eSmZuE0aDF75XLT8PTVCks8dqmOuqmnMaqdw8j+sNqOWpUxxAb1PK5g7Q3DeAeCFBl1WMy6SjOddA74Mdo0HL2zFwObm4g2OVFa9Eze9lYvn9BBo7VDxLVack6dw6iFGWgZZCdtf0YUkzkjEllxYJipCg0NjmHSijDtA+GT79GiTXnA2E6BgMMxpyaRq/la2ePJfjnBzEsGIfesSjhugdaBzl4sJ26JjNdjU6ZutlmxBmwc/E9eQh6LfrrLmH3ex3HpW1WSm+OkmQmTM/musVjmZDaSpdvIdsa+njv/Wq6jnQjeoJEfMjN5qCI1qzn7MVj+MAbxtngRJ9i5mBZB35vSM4wYplRxBOioq4P4z03c6X+JbRZFugfwJFiQvQEaT7UwWp3kDMXFrN8ajaZFj9zC0p5N8XC9m2NWKwGcouSqS7rZHNLAeePm4Iu1IfJnMemzfWMy56BI9UsK6UFIohB2LSzieu/fwFJ5dVUe7OH7jcCUSnK6h2NzLvyHuwTPiYkytPwoV4fnbtbeTks4emRyzP6JCP6JKPqGLuOdNMTyx4UR3kqpqzbwtm5fK3gY6LufvYtuoAP9nWgsxtIG59GcpqFmo0NVKyq+tTkmFJYIhQUCX94gDe/X8EFlb9lzoq/sKVhzwmjdWXeSVadi/2dKPNO1TQPjihFKeCX/Zsa6GgdpO1Yr3rOwW4vmwaWc/YHfq5/ZveXBpP9wp2CYNJhK03lez9YzAWaF1k55mcAFAO/e2MBq+58lL89vh1/i+sT0QXHs1PV/FUejPK3Ci/Lp6UAPp4JJh02u/Gk//5Ujhns8o46wazRQ3NFN80V3fhb4jSw4x2DKFGxXebVT8+28fZ9vRDycesbE6l4vWKEoHxUHHKiHYEIXTHFu8mzc8lOMVPfOkD5oQ6OVnSrutvmQgeXzCskw/MO4Q4PurNm8FFtgP07Wwh2y05jzLQsLl06jvOKK9nZMZ3OlkH5JYtNmCvNY61Fj6AXVGeuPDsxKLLhX/vYGGtg6xwmpGCEVYfaue9H32Nnx3S8dW+p91b0hfFU9VJV048px8bYMwpoN+nwNQ7wvce2YC16iN4WF8F7vAR7y9RykxSMDNWFY05KZzMwaVYuXz+nlKKVt9LyUiUZE1O5+fYFLL73p/zz42Mc3NUiBz2xzTDQ6WHTlnokMcrSa6Zx6ewCZqTvpc03m7fL+njrhYP4GgfwN7vY/loFF+5LJr/k+/zzomaiNeUEArFItMtLb1iiKtPKium5ZEW3k1m2le8U5HLL965BQMKkc/Gfgok8+ptN/LMgnRlz8uhs7aa73snfXzzApRdNJOO++WxaU42rrIuqjY08M/sG5i1JZfX+FnQ2mcNJEbY6srWJhyhi1qRLqGttRBtzjMFePx3bmtUyKcCss0ro6/ZQta6OYMewKfxPYAEeDdmlETTYHSYQw2gMRvqdciAUDYt4B4PoDdqEqWjle5S1IwUjnzhNLvrC1GxsgFcfZOFHd2JMMzNveg7bLXqkEyGJpJiwUFiTMMsRFaPH7X9IYbn/MHCwM+GcfI0DPHjPOyAIhHqrjn/ML9i+UKeg4JnHnpbDitxd9Hz19YTfD6yqoWSRWZ3O/DRmSDUx6cLxTJ6YyVt/2Umw68T841EpCmERCdSHFs95BJ/dISgLW/SFadjRjBSWPlWU9Ek2ap00LMoc+6kmzAUOwoNBuXYbHuKvsZam8fIfFpIlbQWdjw1FP6N4nJ6iH79GxSjHiIZFJEkiLCVCfMucfip2tRAeDBLq9anMmlqTFp1Ry+HmAcxjriD15mtYdaiN1Sv3qHQPxnQz9142lWlpeyEcwKgVMJrlCXNRL4BedvZJ41KZMD2bgD9Cd/sgfQ0DsWwurGL87ZMzuOqW0wBY+Y/dHKns4rttNvavWUvEk9jkk8ISGiVTDInqZtK5uWnE4FnWvHzSc2w0HOpUywAaJKSwLPVZW9nNxqJkbj97FvmihK4gGdLTKN79fR6ZO4V3p13JE//Yjb/NrQYcTdtbyDoth/uXGLE+dSuv3HcYgNu+U0Tx91/mD7/agK95ELHDTU+Hm9497SwrS8OcvADn0Uq1nBOVotQd6OD98RlkzT8N26H/UHX3aooWvEvS3WehKSjhjtR+IrddyVsvH8LjDWF3mOgEsnKTuGVSGVHjYa7++be49WtvEnEFWPnvA6wvcCBJUbJLUxEEgY6aPpm3KyzR2uDE7QrIpSBXEJ0thnbzhNRoN9DtY0yeg6sWFPNKipkdzx1UWUKVoVFFk/lEUX18EBOVopR/WMOt/imEQyL1G47IjLMxYsFBrWbERLRG0JB8WjZnnFVCR/sgZW9UntAxKAipc2+t46qH3yQrzcI771ef+J0VZap/jRDnDE5hYnlEj1GMfuIA36cV7jkV+8KcgpJ+SsEIjVW9rO1YwPl/uYNp5Y9wpALmLdCT8sJv+fYTZXjrnPKm+Sk2Y8Gow2w1IEVP8YHEVKuAz9UhKKaklcpL85kpsE/BtBY9P/zNeZxT1MpTu5JY+egWwi5RLXvo7AY8YRt2aykh0coZNxdjWjGZHWvqE18CUVLLB1FJLtiIcfdYDIho9Fr0KWYVAaNEgkFngN37WjnW2I/fG6KurBNf44A6syCFJTIsQQh62dK7kA2HW3A5ZZoEBXZpyrRw/bUzuGHKUXZ3zeHNnU0MxCLP4eUwrz+M0SA3f2dMzcZi0lFmaxz1/kTFKCFngIatTaMO08EQQMDV75cdS1yvh7D8THurennbH0Z/1Q3MueZepGgUm0FHcf33iTY3MWWyjYmzcvCPTyMv38Gxo920HuxEpxNINjTR+n69erx3Hmviul/v4qnCZPytbqRwbD0GIwwe6cZjktlddXaDTLcd0yHYvauZ3IxJXDt/PJ2/OELjyk6W6LdiKCzjw19XcfcHnfiv/DptXW70Rrn2HfCH8QhjsHKYbEsz5jy7LHDkCdFV04/eYaRofBpmq4HutkE1yAkHRfzeEKFYqStrQjqhEpGOHS2IPvn+RFwB3L4Q41L6+c6FpRzZ0axGxIJRBgbok4yEB4MEu+Q5CA1xG1wcc6zK4SRGCXZ5qVoj03vHN8AVIMBo71bEHWLQHdMNH22Cf5R14Wsc4JU/bMOQYhpiAz7O34Lc21K4sT7vPWS4CXqBpMnpRMXo5yZANJp9ITQXGq0G24R0ciam0VHZg7fOKdM52AyY8+xo9FqZm+UUSMKOZ8pGB5zUmPyJ4I2fm0OIpa7pc3NJz7ZTu7GBcL//v4IkEPQCc746i0d3/4Dqj9qZeezfLL68BkEvMP2iCZSOSWXV0/uISlG5SWbUkVbooKdOFltJuI5RNI3jzVKYxDV3zkWn0/DyU/vUprmCOtKa5Map4jASGm56LVkL8snMS6L5WB/jpmbh7PXSFhPKMeXYGD87j7+fu5/ubz9P5ks/47ebiln3WjnBTrcKwVSaoVqLXn62gkDx4kKMJj2125pl9NUp9qvUqNZmGCJJREaoKE5EuQb1Wi16tcG75LxSxhUmY9VrWZG/l67rfkbZpgHOXX8dN21aSsAf5udfn8+Ed+7g9dv3q8e9dt81fLPqUvatPDJiRkUw6chfUkxKuoWjH9Sq/Q59qhnrmBR+cN8Clu75DrWP7saSacGSZubD//Twlb/N4OMLnuS3D69XNZQFo47kcSksPbeUiCixY2sj5ywbR++An20fHCPY68dSmITBoMXdOkioPyBnfzaDXKb1hNAnGTn7wgksm5bDT36/hcEj3WrGXbh8LH/71nQyP3qA3uW/5IqvbiDQ4ZGPG4veB91B9q85JpdAFdROfM/oM5Zy40kvAVVIR+8wEhWjI4YaR/v8yRz7ZDUjPg/T2Q1c/J0FWEx6Xntky6cakPvSaC40ei3Lr57KrWem89z2Xt5+ZCsRtyy1+HmKUEOsQXQKnClKrXr4zz6NncjBKL8zGLWy1KQ79KnZH0/JtAKDTj/2P3yTOZ4+7n1Jj+gL872/Xczl7ifQTJnL2/+KMvaMAu64fCobyzt459FtCRA/xdTBqFGYQgW9gClGvd3c4ZEHdlQKYoh4okRcoyOpNDFq7a6tzXTFkDzG0/OwJ5vk40tDtOftydeS+69kXq2dwf69FYSVbEJMRHFJrqC6mTdualQ/r7XoEyLLTzIh1i9RaB2Ujfn0m2dw+3kT+Nfqo+x/4ZBaKogiZ50RV4CQXoumzc3qeieW4mTOWDqGC8KH2fDWAABtP36Ph1/+IR8d7eLNvc0sO/9Jrl31XbpfOELynGwGp91E/5YO9Vx0dgOGdIuMgAqLdB3owF2QhLXYQcRnxVsvD925AxF+99cd9Nz6W677aBPR8gMgSVz3x6lsCl7Gmx9UqXV1BPn5DTa5eO/lMnInpDNnfgGSFGX5zDy6Oj0ceqMCd2UQBEHttymfF4w62RnqIuzb1UIwJKIzauWyX0AkKkLHvnZe2F3IvbvbiL50BQ/9bjW//OFagr1+BEHD0um52A1autvdNO1pUx2A0qyVAhHEmOCP4oROJngc7X2ML1HpbAbO/8Y8JCnK2r/s+sRy0snYqczSfFYTfWE+fqtSXtPBk6+KnKp9IU4hGhbZ+GENTneQiv1t/7PMgF+EM4BYSavAwYKzSjha0a1O7/43TCNoMJp17B5cgjcsUb7hI3m4zWFGk1TIqpa5hPvX8Ow9EtWz5nLvnGx2LXhArakPd5oj4JixzViwyayi+8vaaTzcpQ68JZAAhhN1kZWJZmBoDkMSEUWJPS8fVjchwaQj7ApSd7Sbv28w86uLsrjGWobr3Ek8v689QZp1hMXOT2vRY8mzE3QG8De7PnFTURByxkyrygwa7PMTCsokimOLUsixhTCadbJjlEYOXEXj5iJ8jQPs+LCGjdPvZOHyV/H3+Umfnwt/uZq7r1rA4XH3sbe5n622H5D9kIVgWGLvv9toPdypZibL753HA+eHueQHLbgOdBBxhxBMOh7+5kL0goYHf7sRV1kXoi+Mr3GATTubmHrZxUw7I53oke1gcSAFICXdiiHNQiDsQSNoMKSYyJuQjt6oJSXNwqLJ2byxuY6y8k68g0G1gRx/P6OSoK4PrUX+VcAfpvJwJ5GgrJcdFaOIUpRwv581Lxzke99byKqpL3DF9Ftx/eIpfn/Pe3gaXWwq76C0IBmzVebSUpyORtCo0a/WqGXqZROZNjmLjRvqaNvQcFKRfbxGynDiRyVrMCtoIeHksoETmSZGATL57BIOvVHxhdJbRMVoAjX6F2VfjFMQowwc7GSbIpzyJUGrhtvn4c1P5js0Wg1akxaDXkvAL9NO/7cwx5bCJH5240wyTVXs7hyjNrhf2lTL7sJlvP7sVsSgiC+SCsBAvYv0WXa64oa8RsumgIQ0X9ALhIIifd1OAp1yI1sw6pi6bCypaWY2PneQoFJmiZXTbKWppBU6CIdEeiu6VThtVIqq/Qgli4gMBohGRLo63OB1gruX/LTZCY5JOdf4/9YIGnW6Ni3ThksnqI1SzXHKSAogwlKcrG6W/d1egn3yVLWgF9i7t4WmNheV+9txTM3A3+ZOoDNQ7pkKZAhECPb6eWtzHY9/8De0W9/A/2YZO15pYXp5LzOeyKZ0xhye3GbmjTfLCfojhPp8CeUUo0GLXhgcouWWophMejIsBiz6MI4sGy5tD4jyzMalS8cxzbIB2huRymvRZmajEzSYDNohBJcoiw3NmJHD0slZ9PhC1Ha70ekE0jJtzJudzwagcUODWnKR7xFqb0kKSzLqJm49yFPUQ1G5v9VNVc63ycp8gbrXqrnqW9v5c4qJiCvA7q2NNBU4cPX75dIbEOqPJkDCBb1ARpaNlCQjWt3IOZXhzy/eGWhNMZhobH4gfhPdvrF+aN1oBbWf8akDREFDckkKFywuoWJD/efuFEYrY33hZaov6oulQITQ5yC8/Xna0OLVqGnlqdaaT8aksISveZD3Xz4sb0ifQGr3eZmgF3j1icVUjZtF/urreL/xCnXj2vHcQbaLQ026y75Xy0Ord1OQZKLunlUjnNYnpcVSMEJXWac8ERv3nHs73erMgGIavZaic0p47dt+ohveQLNoGV9fOZbDbx1FVKgZYi8vxLKIWLmxcm0tX+nNxWrPpPnwZnWoKv4cE847VtYR9AKpmVZ8XnmQ7njXoQiyTD13LBefPQaLXsuxTjdrVlep8zM6u4Fp03OYMTaNxy84Rui51zn6k+f59kPrMKeZ8bQMjiBUE4MiuAJUbm/mZ8nj+fEFN2H2+Uld24Kr0YXjmVUIvje486HHWPtumEDboLqh6B1GBL3ApjXVbPlYFwddFOmv6uHFbfWMzXdgMst9DIWBNSRKIEXAaEXITAZHJk31XvpjdOLycJzssEpyk5hZ8VOk1h7E67/F4ORsolEtYclMJFJC59EeAh2ehLkRFXYqSSqqyxUr9yANPceoKK+Pe374ARv3foPGm58h8srrLLzhATY/tR/n4S4G6wfQWXQkFyVjtRvpcIcIdsvT1Yp40fY3K9mpFwh0eEbtx6nZgQJJjvU8LHl28ktSyMt3YLcYEAQNzsEAAzHkVH/bIDq7AY1enk/iBDQbn2RSWKLnQDt/dQc/99K4ArM25dgIdHhOGnL/We3/DM2FRquRB46mZjJ2ciaHP6wl0DoInNxiON6mMrwBqzTbIq6Auqmc6Ls+T69vzLLSffpi2tqh7/cf0Xf2eeoiksKJ0MyBg51875Y30Bq1J2y6jUaRoUBBI76YM4hFXNGwSNPHDfLxgkPaFcZ0M1ddPgXfgzdR+U4Ts/8UwWq/W703gknH4jvnYNAL7FhzLFZ6ks9bDIo0r6uTz+UkG4/6VDOX3ziTq2ba+MbjAwkzKfHXobMZKD1vHDdeOpnllnchsIv21JvZWxvE1TygNnuDXV42fHCMH/0xmT1jH6auAa676gWKps3gjLkFbN/VzNHhlAiihBhERgitr+PXjGXF7N+yYPf7RDsbIRSG3j4aPAVohJqhc08xM+28cZy/sJiLKx6AzAyutJ9D6/p6pLBEoMPDuid2q3MESqkp1Ovjjz/5iDfmFzB+0iQWT7mClnof6zc30N0+KHNJxfoD4cEgh471cHnUS++qGlLdv4NtbYj+MJkXj+Pq639H7fmlHFxXq1JK6+wySEQw6vDWO9V7qqwBVZhIub+CBm+9k6+vm8s//tRPaO1BHrloF3f0TOPIW0cRe31IdgP26SbGlKbhHgjgaxxQsxPlvQp0eEbAipXnp2QHijZKemkaYyZmcNn8IhakbiW6fxUMuiE7E838eXRF5rD2WJAtu5ppYihTFaXocUW1TsZC/QFCu9tO+XOfZDqHieLFhdz2lem8+G4lNZ+CKPJTHfcLP8L/kBmz7Xzzznmcb3id32YvYdXvthE9iSh+NIdwPIjbcB6U432PEt0oL8HnMRuROjGDI6/J/069vJTGbSN1H5SXSecwIcQ0f0f7m+PpW8eXSbQmebhLGQxTxFZEXxiNoMGUn0TJvHy87iC7D3fwlT88xJwHG1k7uIL9D69XMwzHjCweLXgNdDr+euPNvPTzjYkQ0FMwZdDuSGUXvQN+Ova1j9AFBlmd67L75vM907P0/uiH1LcMUvKrc9nuD7JtU0MMFqo4VJlVdWXlHK59+wZO21/FH2uXc+zjnTTsayPUnxjBRcUoGr0WQ4oJ69gUDAYtVUe6qDrSxVulkxhXuIDCDCu2NB1vfViVMLQpBSOy7KmgofuFI7SUDfDwzh/zzbp+PMdkjhwFtDH8mQW7vNRvqKdpTxtb0s0yTcRgcGiNxSJi0QcHd7fAL24iIxQmfKyfj16JIc9W7edq4Yc8dvNt/KN4Li/8ZrNMlZ1n55JrpnPZzFx+vfIQR96RdR0U4SqF6TQqRdVsPG12DqGgiCa3gIZXXyHwfBU/2HWIW9bUyFFvIEJ6to35k7IIBCN0721Tn7elJJl3/jmLtXV2nvjZxwn65CoFvl5ucBuz7RROz+Ly88ezpMhF0ppvs+Gu7XTFln9GOpz1cAVZlzUwM+9mjqT10hITCpJvyMlF3/FcR8og5Rdt+SWpLMhr4/1MK7X/hWY2/B9zCgBJRh3RpiYKs+2fusdwMphntQ482u/0WhxTM8godNC4pfmUqa6PZ9YkA1MmQcVRaL/gCbwvvJF43DiHkH16LoKgoWNfO6FhjtGQbiFzZjaegQAD+9pHHEepSxszrSQVOfAPBBADBiyZFjwtg+rLYi9yMG9OPuXVPRzc2MBdrhy0uolU79kiD9TFIkKTSQ8+P9is8vd/AtXIJ0V0IWeAI+8d4wiMyNYUmOLUFaV8L/klVp4mTzwX5MOY6aex7s16+o/1jQAGSIEIz/xjN2VLL8OQqWXDE7sI9fqOG7lpjVocE9K4+7bT6XMHEKUo+w53cmhLI3UZPcw9o5DTx2cgCBpEvzyMprMZiHhC1Oxs4Z9tbla++k9m133I40e7VGesQGCH61or9yPik8svoifm7AUBY6YVS6YFZ3mPDEkFvD0+/nNkGpdf8gOs5a9S9I8qmppj9+9YP7p//JO77r6b13JseDwhrKkWrpiZSe4Hd/HLGx7lyo8bEJWJ+lilULnPisTtgrNKmFScCsYWLBkWDL4w3kjcoJcUJS3FzJQMM87xGWw16SCWtepsBhz9m1lafCFPZVpVp6C+s1pBFSoypZspGZvK6bkmHM736Hm1SnUIAD29EA2IoNXhDkXweRM5zobfw+OZRq/FmGmVn9NggGCX9wst5yjcUQ2u02is2TkqBc0XYf+nnEKgbZA/PLuX2677Lu+9eeSklboS/h3vEEYhagOGKIxHcQwK/n3pRROZXZrOIzX9eDyh4zZBh5/Lico8rQc7mV7xL6aLIZbc/eGQQHoMWSMYdUTDIpbCJOadUYhzMEDXke4EJlGNVkPWaTl89doZbNrfyrZROOwFvaA6BJ1eS1SU8d8g1+jtkzMIdnvxdXr44P0qBptc+JtdHKzuGyG2A7K4UN+8b+OPpLLrn3vioK0j6Q8U0jiNcHziwOP1szRaDcYsK5PPHcs/Mp5m5Wlb1d+dft8knqheSNXHO2T5yWHnKIUlXGVdfFzWpTpW69gU2TGMAomWwhKCoOG0bB09Scm0DAYoKUrmyIe1+BoH2DgYpKvXS0OVzH0z+8rJ/PjyQm78yS5cBzrwNQywZHcrjhlTychuk+cwBA1Ziwp58ocL2dfh45H7Vo+kZRYlpNi9i0pRrMUOHvnFMuYJb3DzyvHUbW5ECkTU8tPKw1Zm5X+XBVtSKLjzeZLHODCdUUDfKxWkFbzCnOX3srV5P4JWQ350La9cvZNzrrqMqef/mUNvVIy6UelTzKSOS8XpClDX5uK3TbO4+o0dmHRhnl7fIPd4Yu9RTrqVAs06LhlfylMxPiUAT00/vz96Fi3t7fiaBxOzbGEoUxCMOqx2I6lJJozaQYhGsRXYcTj6cMVYXi79ThGGO6+lLnox72+qpaG6h5AzoJbATjYb1Rq1TD6nhAVz8tl7pJMDr5V/ZgnRE5noC1PzYS33Hu6Up9z/P6fw+ZpS4mjb3MSjR7pUTpdTajTHDXMl/Dv+OFJUncpU/iaeUtda7MCWa2fv7hY2rZc3CI2gwZhjI9jrP25KGs8tc7xzDnZ5uf6xKJKoI9Qnv1waraz1mzMnF783hPNwF4EOD+vXVKupv2DSybQRMchh96FOnojVeKNSVB2tVyJ769gUzrhkIlVHuug+1Kk6V61Jy60/XMzFk3S0e+z8+pk9tO9rH+Kyj/1dPC9NNCzirXNyyy+PEPJH8FT1HrecpkBGNVoNN993BrdNr+JfByfw9PfXfqKDVzQoLrt7Ht8tXc8r+UMOYdYMOHTT87z3+DYVbRSV5KbsaKgPjaBhztVT+OmVWbxbGeWfP1w34oWVghG6d7Vx6y+2IwgafG3yEF3YKT/jgYOd7IzJnWpNWtLTLGSZK8ktScFd2aOWZgwGLeMmpON1B/HU9JOaaSPf/TL54ybwp0zrCKcgmHSqzoMypfzevhbGLFvBtOkeklLNVO9rI9jtZcuuZkJBkb3mds5bfB0XvX8mhtbtiNv34ViQC0l2FuRmsyvVzEDTANWRC3E4fsxA/QDnLiymYkO9Srmh3BfFSiakk5FqYc0LBwn1+lhj3IveYcSSbZMdXCyYSE8yET28G4u0k9wJF1Jd2QPIG+Ibv9ki3/cTwLmlsITbFeBYQz8fp+UzNfM6Jv9uAiu+dwwiYXBk0spynj3cw5HKMuore9AZtZjz7PgaRRiltBhvw9eh3qgjJ9lMZoZ1hFb1521RUWaJ/W+ruP2fcQoQiyqDMlTwZOqICdjnT/ib4ccZ7hhAjjQKZ+aw7KwSmjvdfPjCIaSwhCnHxrIbZ7Dx9fJR6X6VIaZgl/e4PRAVZ2/SI8U16jSChoL5+SxcWMz+g+307e8g4pMjYUtxMqXTszi2uSmBOybY7ZVRPmERnU0+tkKvrbXoSSlJIT/Tzt7+RrkerpQNLFbOLEkjvfYx0m1Wxk1aRsfBjpHnqtdiKU7Glm3F0+7G1zxIz6421fHEQ2LjN2KtRU/W5AzMVgM37/0+r8w+yB2rl/Bvx4Lj6lgr90aj15IyNYP7F/Xjuf819XezZsDEjx7k1wc7SEmzEHGH5Gt3+pFGyVgUy8u2k+76kPMnXMnTcQNy6hqIUTA493UMBQbxay42EKjU+je8eoQBVyk5+VraJ2fIYvJhEU+7m6ryLlztbhAl6ne08NLZF9FXFyDsbEi8zhhCyJBmoWBqJqFghI7ybra/W41OO4nbFo8h5UyJVTPm8O9/7KF6SxOCXiB3aiZiNEp/sIRs3T5CB+Xai640SJHDjDHTir/ZxZNrq/jTc2ciuYJs8wQTApV4SGjEE8LZ62NcYYrM1RQQQRCI+CKkZ8vIoOrtzfhb3Ri0AlJDK+FqJ2NOv5ljcetWjeDj5kLU+xu7b1JQQ6g/QEttP5vCEhWZVgpzish0TMSkE5B6oLm3n7LyTprrZEbmKcvGkpVuZcuGOvriyn8JNO2jZLRSWOJYWSerBQ2dLa5TEuP5f8n+bzkFFYd/8g0irUWPrTQV0ReW1bXi+H3UhtdxRuKjCCOcz7w5+dyUsYaou47gtTez7ondOEqSuWlBCeWHOkY4BUEvcP7981k6PZeHHvxwVOEPjVZD8pxc7r5rHheNbeZv21OoWSerjplybFx+8STMei0f9/nUzctWmsp3757PlAw9Xz0mk56pBIGirHssmHQULC4iLdNG1fYmwjFo40DrIG+9fEgVoVE2ca1Ji0UPRCJokrOpPdozgvlWQf1MPKMAe7KJQ/5moo2uRBESvYAxxw5AsENu+Gr08mT45OnZmI06Qu/IjdGoT6ZgiOhHRvbq9xl1WAqTuPu209Gu+j7dh7opyIczfjmH2kuf4n2nj4tmmZg2Jo212xppqO7BHRYJi3IQMRr1+NqVR8i973yq97QeF3Ks3MfhpY8RfydF8dY52fn8IWZ+ZYqq/BcVo3gbXTS2udUyh7/ZxZ+/9b78uXAiYiYqRUEQSMq189AtcyiNrmJ3YAV/f+MIZqOOgppHCK7ax43nTyN4+928+sJBAp0eJDHKmflGQpIJMWcaIecrlH3QycSmQWa9eoBJs3Op1gtU7G3jN+f/gNNnZbDutcMJWYrWosc6NoWiKZk0HOqkbmcLXndQpZaYsGwM82bnc0fnrzj28BYmvHs/C7+VhC8sEmkapPbNGpZ+LZcP9VqIDTAKRp08DxGWkOL5yWJ8SVJYQ1QKExS99HtCDLa6qI5pHJiSjJROzWJqaTpjMm205zvo7fTgax4kK93KDWcUIUWjvLuvQx06VBrXyhClPDU8tKakYARXWRf7YuSIX1Q5R2vRyywIMaLB/7bQzv8pp3AqpkSXWfPy+e4dc3l/bzO73q1CbHUnOgMhDgMvRNFIEhJxyBklY4hFIG5fCEx2SE1G55Z/1neok2/9cQs9B0Y2dTV6LROKUsizG4/bGDfl2PjoUQO+H92IdnYWHabvqy+sLsnEwapuKg6007tfjtpT5ubxw28sYFpGgCM9AoG2QVV3IeHYMTlOZ7dXdhrIab2npj8hqlcs1B/ggaf2UTjmSo6+10n71oZRXxwpGKF6TyvRsJjA4Krc95R5ebz5qzGEJTNXfe+QHDXHYLCVhzsJh0S6zvw9y79dyN0f16BPaY/RDftGRG+CSXYIkxYVc1ZBH5reHEoeuYCiMy/jsc2ZeHc2MmdCJmMcbaSZ86jIS6K/24PXpEPjCY3oCwl6AX2qGX+Li7/94EP1npyMjcolFcfQG/GE2P/S4YSyphSIIA0rW6uMt6M4GCkYwecOUmrZxJaSn1Ew9rc8v+anEGnhjaxXOO10PSXXL2JWcgqOe+ZzsKqbHauO8stXj5GTa2fqmFIuv30ByTveov9YPxl7PmTFgu8ydXwGgWCEd14uYwNHCTkDCVDRvIWF/Pzr85li/pgtFy3ll49tpXW73LmOilG62wYJTRdpeGQHBw5GEVf8GesFj1Fe38flM/MQXqlibIoxRi8iTzoLRh3hweAQD9Qo2YJyP6SgRtaIjv0skmLCMjefs8amMza4kjOXz+KN/Mk8176bvgE/Zq2TjBTL0JfFGteGdAtas57wYJBory+BAFIpQQ8n4VNo3T+PrEHQCzhmZHHRZZPZsaOJll2tn8j8/Hnb/5RTOFkSqv/GeQhGneytIyKbyjso29OqNpXUEfpYo0s977CIFNYgMDRdqzoG5EW87s0KjtUUcebchdxztobdW3Po2dVG+8bRx/ijUpSXV5bxQbp11AaooBdYctNMAr/9Ea2bWxj/4E3s/vZRudGpF4gMBtj59lHCTr9Mmz02hXU/j+C85xKSb5vLqtbrEQOiSuqm0WoSJo2d5T2JUVEMF66ohykT61FRrpcfW32MY7F7Mer1iEO6BsebO5hyWi7W9/8IFjMFE69VSykhZ4C2PW1oBA2udjfOXh/LFpcwflw6Bw+207C1KUE8XslKMkrTGFucQqsnl9CYB9nf4uSdnx/F3XWE5PwkBlwB+tyZ+IN9NDY5ccUw/cPXhNz7sXPR12azf28rjR/Vy870ePDkWNSqMMMq90/QC6owiwJtVPU8TrLPFT+IGRWHCOSkQARf4wBbui8mPQ327wqS9+xKtvzqCOEw7N4RJpp9Py++f5Rlcwu56PRC6qt7KXuniqOpJg6XplF654+Z9mcPod1N0NvPeXMreU+cSHXLAFIwgj+WucT3mVacP57Jtb8mCqSMXYot2YQrFphEpShdW5t5+XA3Z72zi2u33o/m0hvwXdfJ4QPtaH50JcXra+lDnsi3plooGp+G3xuisaL7Eym2Ff1vTbxgVlgixW5irHUb/fc+g96m56YHr2T3mfPZv7aGu2v66G92JThYBQSitxnk7DTW0B5RAYj7t3VsCmPm5dNc0Y0r1iM6kSlBhUbQyEHMKFmA3qjFZtFjMH452/P/hFMYjixRFMi+LOegETSkzsmhZEIGNQfb2fDqEVUvQKMdyhAEvYDWJFNHawSNrOTmCSGKcnqrkRKjzKgoC63UekLcf+V00sp+w9jJV9K7px3pOPQLgl5Ap9fKsFFp5ALSWvTMHJ+BUcyidEYW/6hdjL/tI/X3YVcQQR8me14+FqtBTukb9xBwBsAiSzbaSlMJu4KkFDnwuuXGliTKMo06u0Hmw9dLEBYx59mZsnQMJUXJvP/y4QRmVaVc8kmmOJH464y3usoeND+7iaBop3V1y9AvRFmXQmc3kD8pQxaTT91A97hFQC7N+9sJ9/vV79To5fO3J5sIhUU+ruqi8livXB6q6ZednhjF6w7S2ylPo/Z0utVnrVIhaBlCRIVFXJ4hfp6olAgAUHsHWgFLYRKTzyrh6NZGWVNBwfHH+iM6mwGdRY6GFdnJU5muVSZeNVoN4X6/2vSNuEM883Y5/371qxQ/+TH6mUVYLEfUz5V1uTm8uRFnr4+JEzMwmmXyv1B/gL6GAV7f1cT482/FMG4zDLhg34ecf5qZQ7VWFfLKsHJOc6cbzZxScGTy4pp6BloSZUyjUpSIK8A3vrWaSWffSfvDAwR7/Qx0uDk6sJyJiwsJRDQUTMxg/Ph0ppSkUt0yQGuDLKU6Wg9QI8jBmyHdQnZpKpIYpa/TQ6At7tiD3ex4pwe3G873vcryh67h8Ie1tO9sSaCfkWlEhoR6FJjwJ0Gjc6ZmcvaZRbzV7cV13L8cMkO6hTGLijBb9Rx+6+gIAZ+oFGWwtp933jnKQINzJLrsv2BfulNQonKd3SCLdvjCqnj85+EUTjX7UGCLL/9sMinBPXw9UsjBV8rl38UiB4Xv35BiYtxpOfzqhiJCkpXv/+MA7eVyk04MgEaIjig/RNxynfD9Q23kLryPoy/vGVEbVs5Do5dREucsG0dtk5OmYdegtegxZllp7fbw0YxHWX+gjS0PfzxE4RHjqXHMyOL1B834xVRu+FULH1ru4rw/GkCn4/HSY2w48zze2FCLxaqn4kC7OoeQt7CQcZMy2L+pAW+jC43WwEO/PJdz6n8Jg256LrifTTV9n5435jhw367drSy50wFSN77mQfX3Cq+Qzmbgxksnc07776m69C0m/PkiFk74KauN2qF7J2jQWXSkjE3lX3dGEcpeobLw+0hSlN5ON64YnUIw7CbU58PXOADEEfUhR4ELL5rAlLFpHG3oZ9sHxwg5A+xcfUymaJiRhU4nIAgCgUAYg0FLKCSqFOKFM3P45qVT+KtWQzgYQavTcnh1NaIvjM6iI60kmWuunEqe3cSqXU3sfPWInI2ehGNQHN6ZV09h8YxcXl1TRfWaYzJgICzSuLeNNSvu4KJHpuDVj2VB4yWYJtzJlJsncNlz+4iKUZoPd9Gwu1VtGEdjOhFHDrTzB0MBiybfyvzptYg//gmu36zjp2/9nvX/GTmcGRWjfPz8Qbo6p+DzhqhZd0CmShfj1PNMsgZ1sMvLwf8cVj8f6PDw+p4mfnrOCojAgzecRql1C4SOssl4Fts2HYcIL5Zx6ewGzr1yCj9Keh7N+Gk8cXQ+bzy1F9EXpqvfB3oj7tjc29oXurnuT+v4W14yzljZUgU1iDJFerDbm8AO+0nWebSH11wB+g92fuLfglzqXbigiJQkI5Uf1Y1gE4iKUQIdHjpiWhNfRmD8pToFJfVLmprJuKlZpKdbOHKgna79HUQ80c9MNW1It2CfmIYUiOAq7/nENFQxwajDG05HY5xDQ1Xl6Oc8Jpkrr5zK+Cw7Gf0rIS2f1MxsepJcculGjCJJEoRJaEwrMpLv/WUn7z9rJNjtVek3nAc7VZUqc6EDQ4qJ05aM4drT9DzeZ1CnRkGOEguWFDNmYgYbN9TxxrE+gl3eIa4araxpseyqKVQf7aHdN4uKHj+u5iOcV/8LVi5bC8CiC2yc+e54XpeiHPi4Hn+zHO/YJ2fw9HdLsOp6ubM9naagSGqhgzPzmgm9XI++JJm+Ac/nQvQXj1xRLD7aG45E0TuMTE43In7UyIALsFlpcwdVygX1+/Raps3JpXXZjezY6Ofa9U5S5v+cifkOngyJdO1NpCZQaJtBXjtX3DyLb2ifwv/PvVx95Uzeuf/7bDnQhs1qYOHUbKZnglXXSyRqpD+QRaHtCJGogfufTaVqYyONe9v4TreH4GCQl393Bpn+9TyYMoMNT+4l4gkRDopcOLYb84d/Y8Hl13FFZRade9uJeKLHJWpT1sa135jPuBw7OkFgSUE5zXMLqdvcSCgWxUc8IY7U9zE3dx7Huo38641+sh95nfamAYKtvax9sgRjzz5e6b+YP3/3A6SwnBnmzcrmsW/M4umtHbz4/lEqZ+Ry1zevIPro69DbSP6sInrSXPjb3CqlNcib+4FX5GwkgfdKkIOstPFppGZaqd/bJku2SvKGHPGEOLSvjdaFyxnn2If49N/p39KCY3kxGSvOxe8NDRHliYlEjUq555tLQqzUv8np89/hKx9v4U2dFikcpL6qh/bzlgE/Vj8Tef09xkz4DgfLutR+gXqPwyIRZZ2N0jMbblExiudYP94650lv3t46J6//56DsIHtHR8wNz6T/2/blOgW9FltpKj/7ziIWpG4Fo52fCXl8XNFN5DNyS2m0GhyT01m6vJSGpgH2VyYKyChRhhgQE9AjShno9l9uVukNlJ8rZSO9w8iE6dlcPElHp1fHWvdVdFX5EYQuLMlmNUoiLKHRSuhTzBjTzQR7/XIkEiuDKHV/S3EyF1w4kdcbXXJ5xGZg8TVTcdiMfG2BnhTnWgYHZ42ocztSzaTYjfTX9o9AJWkEDZZMC2dMzGLzulpuum81of6APGQWkl/akmLI+9uN/G1PClXb98mKXsEIhnQLsxYW4TjwFJqCAsaPP4dFZxQyLtPO9jaJvK+/wkeVnRx9actnyhKUzVsZZhJMuhH1dkXwXQyKslbvxDSSsmzsafdxxe1fY/7ycnbov8pbr5apwjOKSYEIu9fX8bP1T3Lt0Q28Y7iDbe83MntyFqmZVnotegxpFjKKkykcl0Zni4uWw53qYNP+g+0M3nErjsJiIlnT0DUIXLN4DPOMq/H/4T/sfb6ezi7IzoI51xahu3EB+smnM3niRJqO9RHo9NAXa+6/tNfD9XOWIwhy3TnsCtJf1cOv1uRw77JHqG8Hk/mQqiksgVy2Goao0tkMTFk6hntOryHaUs59mxexSrBQU56orR12BVm38jAV5Vlyeayim5rYmjPn2zH27CP4zGqu+NEcnrDo5elkvUB6jp2cY49zwxk/5Ht7tvFBWzV9Zy7mx4/kEn72BR5+6TDjf76Y5/Ie4pXnD8j9HgX9FB6dDVhnM5CebUOnG+qvDCEBo7j7/fgjWkKP/IG3HpS1iS/NtNCxOEiob0jmdTSLhkXW1GVyzSvzES68mF9s6Ub0yzMefXX9vLirm/t/WMKqR2X4rugKUDjLQVmMOjv+PORFk9hYPhk7lXcg7AoyEMsqvuze6fHsS3UKgl6gaEomC0yriTz/HtqF0zAbrxohovJpzdfmZuf2Jlzt7hEbqjHLSsmCQtqqe3FX9qi1XmX4RylhaS16iI98YpGKs9dHRa+JgiQtBq2A3WIgJ9NGf7cXb78PKSggxq4xfVI6OYXJHN3erKJ40MqbnxSMEOz2snFDnQr5BPB4QlxzRjHJh35D1Galt9M9okZbu6OF5qM96ncO10Fwlvfwp6d2q8NQSt30vdKfc53rbHr0i/jDLg/rVh2WoxZpKAsRNKCZOB2PbSbXJhVRIrwP1jT+ta+EVz6oonZHC2FF2EYYYjcdzY6rKxvLDhS6Ap3NgM5hIiXTisGoI+AP42wdVOGYxkwr1371NFq7POwq7wSmkWw6jVffP0pbZc8I4REpLOGp6eeC7wk40ufTU7URjVZDxYF2/LEegi3DyvjJmSyflUd5nos1vV5cQZFwv5/abc183RuicNx80hwmzpyoY17WPnzf+Tfv/LlZPU5bO7Q91sQV6WaMuQUUZZ9OUqpZbu7Hmp+rnt7H3r1Z9LQNcSqFXUF2vltFa+MAWp1An/IcBblB7picTqDbqxIEarQaufxwej4NvumEks+kYssHMgpIksteCkspooS/zU1jbI5EHdaU5PLE810r+MoPz+Slg3Y1O5ICESq3N9N+xXfYVtOHN9brCEckOq7+OZvek0t5By7ZzDL3X3gzNhWtnLMmBieNp+RQnnFahkxhEj/spqxZQS+Qb6tm8x+GxOq1KSaq2lwq9fuoEXVYJOKL8Pbqo4SW/5Yj63sp29OgHiPsCnJwfxvm715HzvO/obcP9CXJGPTauP5l3Pf9lzbp/1VnoNiX5hQUZMjUyVlEG9YiugLocoqp2tQzYuF8GouKstCJUiseXq83ZlqZP7eAXUBVdZ/cGI7pDZfMz+fsRcUAbNjcQNOeNkRPMCGq6O10U9U+yIxMFwW2XsSojkxrMX0Dfvq6ZcphuVYrYDTp8LgC8pRxzNnpLDqZErdtkGCXl9aOevX7RV+YQ+tqmXZlF/63D2D+9lV0VPaMqD3K1xe7ptgLKDc/o2pqPlyQPuIO8ci31/BYugWNsA0xKKo9DeV7omKUYxXd/Cv/TCbmJLGo5gECG45hvG0ZrV3p1O9tU8tMeocMI5Rr4SOdgjHLyr+euoJD7TK+XpmiVvozWpMWncOEOc9OcWkaUyZmsmRiJgAdniBrdzezf80xomERQ7qFwjQrx5oG2L++jrLdLTJzqEI7rQgAxaRfDekWgt1eBo9044obHvM1DKgoKm+/j7ZWF8dykwAZ+VRvNdC2p42w00/b/nb62gY587xSZmc1Ev3wzQSHEG+dHzVReHYt2UVGTGb90MYjSvgaB6iN3TNlbUuiTLFe2+1VUWyK7nXx4kJevrmJaPoYln5NLjsocwgTM+0EIhK/fn5fYkAgCGi0ktz8FqUE6dD4dSP6wvztu2v5p82gIsuUkoWnqpdrv7aG5HEp2JJN+PUCP1weYtWFQ70djQZe2d2Mq7ov4T2VJ86T8bfIWat9Yhq549II+MOMK0xmRl4yez6sVSGWGq0GvcPImAkZmPa+Sl9/3Lq5dQVbXmxQg7P481d6AFJYg+gJ0rKvg6djQYFyzVJYIuwK0n64i6ebl3D76joiO48inL0E997QSfGX/V+1L88pxMoxXX1euufch2naAH/fJVC3c2/CdO1nseN9R1SM4q7qY+XfdsklhxhaRIlaktMtnFGchs0APU4/nfX9+Hxh2XHEzlsQBPzBCEn6TqJP/RUCERbecweH8sZTX91LyBhEo5XT9bb97YgBuYmnRE76FDOZY1Jo7fWBO7HZpEiMrms/h3N+8xD/2JuPr3n9qNehONeSc0q47SvTWeZYh982kWf2ONi2rZGWXa2J+tBaGbGSXpoGwECHjIpREDBKyabvWB9brI2cefNspKZuPHUDGAdcdHW61azClGNj3lem4POGOfTm6Dw45jw7kzsfZ8rEOfzNohviJIonNMu2MWlmDlcsGsOivCOw7UnIzmSawcCCK5ZzzeEk+rq9eKp6+dVPPlJ55VW2yrjMUpkt+fsP5pMXfI9bXirh2Ac1svOLDzQkkYhbziSq2tw0VXQzf/k47lhaSsfcQn7vjyTMjQiCBgFJBhloQRylopF9bhGaSTOoqh/E1e8bEdzEQ3AVptloMKZdPWwosqvOSb99CWG/GYRu9XPeeie/f34fF54/nqVnldDV4iLU61P7VfLdjajT2KO9BwpKLDwKfYQUlgh2ezFOy+SMBUW0dbmpHRjHBbdmse6FLk5fYOTovzfwzjdl3qWEwTngrMsn4QtEOLK3le/eNZ+le76DsHgRW8Kn4QpGMKaYEtCGpmwbs2dkE9lZq57D+TdnsjrwFTrL1x8f2ixFQYrK5d+wn4grTt9Zmf0QZUrx1187QvrX7mX+bVra3AbaWsuHoOKfsm85YiBRK3xu4Jgv2740pxCNPdCyPa082OXB7w3RVtZ1XEGNz9ukYESNdlW66xjXSMX2Zh7zhjBbDbQ2OFWpSRiqhWv1AqlJRoStb7HyroMAXGV6jsJz/orBoE2YXQjHIheNoGH6VZO5avl4Nhxso6/nxEMpq7c3sqMyhc1v7xt1alYw6TCkmLj+uwu5/eP7eau4mldiv/tG/V3kX34Df67ulaPoWPlBKU1kFzgQY7wxof6ADH0Th6iiw64grn4fPb4QE7UaDDY9msmnU//vLiKeEFqLnl//8UIWWz9gi/cCDr5WPuo1DFb2csv6xfS97BnB4aLMeaRmWpk8Lp2p6YNoOo8SHXSjmXUGvbq5rDos4W0fwsUrA1OjRXoKIqd0aiZ5oTVEq8uBogSKieHZVlQKq4i3ra4gfT0+NIIGd5dHvRcRT4iGun52TpnM2cuv4rLfd7DnsXJaWuXvKSmG0x+eQ+TG7/J+cyEbNlcy2ORS9aSVDdOUYyNvdi5NmxrVe6E4ByQRlHUYBndlDxdds0mFm8YPanVV95Jy5TQujDxD4Tfv4B8vHUSMSISCETwtg0Q8sVr5cWr88dc/6s/DIn0NA9TlJhEMhPnOLz/GMe5h+AX8vaaPwD3vDukeKHMSsQxkZmk6l1newn3REjp9Zhof34f+6cMsfsPBTzZNJOQKqmI4USlKSo6d4nQbujw7C5dbyfvadLyXPsBTvz4wgoVURUnFN4NFhmDBo9CtS4EI7qo+nvr3fj4oSUFv1NFcJ08kf5oStaAXEvpgOrsBc4GD1EwrbQc7ZYDE/+OO4UvtKUjBCP5ODy0xDv7wKENDX7QNR75EwyKBTg/HtjWr6bxCs5uAUBI06LQCYtUQgmVwWyuW87UIcXV2SJx8vGnFJBaLz1N09h38/Nk9KrIi4ZxiGYvfG6LDH07oNcT/jc6iwzo2hStnWKm+vTrx98Uz2bWqUx1EU85DmZxtqe1HkuSMJOz0J5yH0nsIDAbp8gQR5s/APnkM77fNw9+2FkQJ2+R0FjmfQNpWQ8qyi4/ryKNhkap3qxOai8NN0GoQBPBFUknJnoRmSTb73UtYc7CVbevrCPUHhmrlxNWvSdwA9A4j5kIHdUd7eHbsQpLTzqFx78YTBhnx1Cf+Zhdlb1eCIKiT0UIsUGhvHmD9oTYCkamcf99dnLlwM7R3gsGAZupkejMu4439IgeP1NIec8RiQEzIYFInZnDjldP4o+KoiSuHDLsWIOG5JzgzKYrNoCW6t5Lpl4bJzE1CjIiEgiLBwaAqcBSNJW6nStoWFaME2gap2tWC1qjFW+9kMAbUUKPwUZxNNCzS3OUh6q/ANsbLEfEmLn9wIZGGPjDZSXPIesyGdAvjFhTgHghgthqQolGYOY38H9jxLb6Tp3fqcCobd8wUqnZln4i/XwpSa7R7qKx3d5OLxoiEyaQ/7tDYJ5kCE9c7jPKwnE5LWkkyl140kSVjHDz0fBkVbx09qVmd/2X78jIFUZ6+DLuCTFpUzOwZ2dQ2D7Dl34c+s7qQEhGPNjE7Gg+NOqGsNEwDEVVfOH46Nv7fkhTFH4qgnTMekDOFpCWFBCKJi234y/jW1nrSln+N1Qda6azpl2vIgmbE3xrSLdx16VT8EZEHPj6+aHnYFeSF3QN8/9DjTNu6FgJBDs/9A+d84yN8jY0jcdBhkWCXl17l+mLNuvjUVyPEMNt9fvaWdzJu8V2QBKs/kBuBGr2W+cvHEdn8Erpz5/DK9oZRMxljlpXx54xBjEiyYxj+Ikry5uIeCFBZ20coJGEyFtPjzOLg/n30NA4Q6PSosyMg90QMqSZSSlLwDgbx1jtlh63XMmHZGM5eUMQL/z7Avx/briKXjreJKc9VARhExaja2FTvl6RVG9Y7XEEO7mrhnbFp5OTegDlJhz8YoXuTl/amKgZaZYUzBS2VmJ3IUpovvC5LtCoMsfEwY82wYEKhSImPyEGGf/7p6b2k3Ps31u3qYKDPS35JKoJGlkONeGIiPIoi3qfoz0U8Ibx1TnkDdJiAgLpORruHSsDxzstl3PL4/Th0zZSv62Mg58dMOS2JonCEb5+2mZ07UnC7Atxy0WQEDTy/5ij1XR5ap3ydXqvIMyurObrz2IgswZhu5syrp9DaOMCxd6rUxrv8jEaWxxJNRGvUcv6FE0lNMvLMH7adEmW2co2CUYc5387UpWOYOTmTTIcZKRrlsuKDRNe9zTUrfs0v1tYkTNX/v2hfbqYQw4Wfu7CYy7t+T+OfPuSRt7/P4m8mj0r8diKL3+x1NgNJ0zJxV/WNgCmOMCUV1CeWfOLrk6NJbophCedgkMCiK7jmjRai7hDaG26m9YCXUHBo8EWj1aCRhmrF5Tua+dauFoJ98gSqId2CpTAJd2VPAo1GenEys1O24dEUJ7BRqucQi2Aj7l7efHQrqyx6NMLpcmT0+Ksj+FniP6fRajCkWRD9YYJdQ2WjhJcsLBJxh6gp7yZ5+QRyrdUsW1DEsf1tQ+iZu37KQ+9F2fLs/hHH0Vr0FJ1ZwB2XT6Wqc5Dq1ceGnpWgQRsbNBN9YTydXo5GOmio7iUSFvEPBAh2x2YuYiIx084uZvaULAC8/gj5GVZ2HOlgT4yfyOAwYrYaONrQryKaIseZElfuga00lfOvn0Fhtp0jtb3sfLdqFMy5XNYJu4KIPllL2VXdR7nSRI4RtikbfHx/w5hjp2R+PrWxbMff6qahw4PeYWTiJRMY6PXRsbkxYfOzjk3BlGnF3+lBo9PKGVucVrJSpunY1sy9VT0yPYlZjyRGMVsNhEKJ6J8on16cXqPVkD83j8nTs9m5uQFXZe+ookXx5qnp57dr/CyYNp2O9gY2v1uFYNJRPDGd5WedibNjF+HBIM+vrqSoOIW+bi8Hj3TQ2O6itXGAloMdo+qai74w9dW9OLuHSq6nAhmNeEJ09XnR6wT5Xn6K0pHWpCV3aiY/uyqbtCP/QNrWgPaWO+n0z8F6bjHr3m7+r5PXfRH2pU80i0ERbyBM4INydm0Nsiv9V/yieRcP3vveSWcMSlqnmCHdwrxFxWztj5F2SaNEN3FlI4XhU+F4lwDNcQZIFGchSRKRiERvYDwF518KUYnm4Fl0OxsIB4ecikavxZxtVwd9UvOSMFsNNA22EwmLpM/MZv6ZRaztl2v7ysbscvrZ27+Iqm73ce+DUstV6uJqxnEcTiHFLMXJzFxSQvXhTkK9PqJSjMoBhoZ2JJn6WW/UMjb6DvQMkm65Gr3NgEarobG2n0fWprF95aFR+d6TpmVy3jnjONDYz8fr5SaiMnugTzUz9qxiWg7L5a3IYAB/RCQgDOk/i76wPKiVZ5epPCZlcsuMGqK71sH8FbxxbDyDriDWDAu5RclkZNmwWwz09PuwJhljnx86r/jNS9GEWPvPsWifexitLpe0GQ+y/c3K0csiUoyVU5SQwgKaUXDzWpNWdd5iDBpqzrOzeGERTfvbVYcfFWUEUU5+EhargU69dkhnQtCQMzmDBWcUsWdvK0azjowsG7tjwjzxBHTRsEioP4A2IKK1iPTpB9HFoNRK9qEEO0iSSpdw0pP9gowMuviCCVhNOo4d7SEQc9QKfbuSYSnaDco09dFDnZiMOno63QQ65cnhijonx7Y1k1TkICXHTv3eNpqPyjNAQX+Y9qYBPJ1eNbMdfp4Rd4jWna0nPWk83IJdXra9dBid3aACKk4p6IyVLJPTrKRH9uB/cx8dW1sZs7SMNuNpvL0nzKGNDZ8JJPO/wv32pTsFKRDh5VfKuPHGhfDbegDG3LaU63/+Fs//aN0n3iDBJBPXmfPshJwBQr0+wq4guzY1EOx0H5czRfl/FSOfZFI1hpVGnWbYKL+66UZEIhFZWavXJzIgLMMdEqns6Kat1YXfG1LT7MyZ2fzk6/PZ3+zkP3/ewenzClg8MZMXk00ceKMSz0CAphZXoji5VsDf5ubB321WI+YT1YVHDOCc6H7pBUpmZnP61GzcrgADR3sRRJne2JhpxZpkjE2Uy8ipMxcWE/zXX9GXJLN4mZ0Ni2awvqafpj1t1G9qHFXHQDDp+M+v5mP+1lUk/fIm3v5PKqddN42ag+14avqZdfkk/nS9xLdfLuHAG5WqE1CuQSkNWIqTOeuSiezd3kQoLBHd9C4rl74PvMW15TfjnHITp03L4pppfuzU42Ic6xpyZKTSQCDhfHQ2A4JJJ2dnaRY2/CuTN43XEQ7DV/4a4e26upEDgHEw3YT7rfRoYlmkzmFiwvKxlIxNxeMLc2BjPYOVvXiqe1n57wMEOhInMcNOPzvfPprwXcr3ddb0U5ubhM8bIrvAwbJZ+QwOBqkIRuRJYMSE8xB98v/7YyU0tSQlRTEXOHjgx2dTkGTml8/toaOqD9EfPqUs3OkOotMJXHHhRJpm5/HBu0cZLO9WBy/HnDuGx++ZxFNbnax9Zj+BDg89B9rZPuBX9bqVpnTEFaBgVg75xcl0V/fiqelHa9ETiJ23Rqth4vKxdLcNjoBSS2HpM5WVpbCccTFS3uOkTHnWBXlJoDNgWlRMns0AuZMoOzzAzg9qVFGqUzWVXFMvyA7xUzq+z8u+dKcA0LezlVuyF/O9SS9QcRS6G3zcerqPlx3GE8rdabQaLIVJnHZ+KSvmF/Hqh9VUvFdNxBNiYF/7qA8onr5Y0AvyhpFkwpZtRW/UEQ5G8MRS9OEMiWqWEJaI+MI0tbjYbtYTDIkEQhGcrgBpGVY6WwblFDgsMdA0wKvbG2RRjkCE08elMy/yItOvW8iKTWYGj3RzIDZcppjWKIu+R8OJOryn2jA8nrkHAuh0AhPHZ1C7u1Wux8/N555LJpNhCfLAc1U0Huok2OkmM8WMLseGZnIpeJ1IMciqGAyMCsFTmuQ2fTfdVf3Ya48xZuZl3HT+BP7S68VT00/1vjYey51E+YZDic5QMVFCazJgSTMz4ArgahhgzeqjfP0XVwCylsDKqS9wx/puNHMX0X/743R6QmQ/fgN2w42EQ6IasWkteuwT05gxrwBJlDh6qINpc/LQ9B7kkt9MwXDXjfzoo3Hs//OuhBcx/kXVCLJ63RmXT2LulGwOVHez+eUjBDtkUh1jppXbL5vCwvTtRFur8F18Ppc/oMNV1sXAgUROHGXNjTY/ExWjuCt72Fknk8D1VPXSXNtHMBCRZwBiU/HxTomwiCgNlTnj1/ykMws5t+uPRHe18dUrH6O5z4vLHeLNP+0AUKG9IGfXgl4g5AzIa04rIIUlduxs4sdfPZ3JjY+CFU7/9nf4+e82o7PoueqqadyW+yHR9S9z9aI/s2ltDcEuL2GXrBJnLnRgKU6WuaAkeaOr+6iOxlhGo9FqYrBdOQAxppvJyLLhHQyOyk76ZZsx08qPTE9TOfddJv1yEfX3rOStDc3s31Mt61J8yixBMOqwFCejNcnUF6Fe30nJ835R9j/hFKSwxNE3K/nj3c/w/A1N4Hdz0FmI1nYYTuAUBKOOkjl53HfBJEp069iWP44KSKD0HdWUspFeFhi3ZFrIL0nFaNbhdgUI+iNyGhsWVVHyoZOV68fhwSAN1T0M9HnR6bRIUpTcomR+c04NB884lx/9cQthp59Ah4etT+8nKsnpvEErEHlvG1rfRsaf8X0O1h1GCg4tAI1eiz7VzMS5+bgHAjR5ZCWw0RqGeocRwaSTS0BxC0hnN8g1dV9kBN+TMcfOtVdM5YqUD3AWn8UHb+qJilGKi5KZFn0TegZ44s5lNA7O5LHXyzja2M/g1b9iXb2J9e83ULn2AGJQVMkLpWBE5aCJuALqAODP3xO59/09/PVQO7V7D/Jom5ueA+2IvjADBzt5M6aRMJopG4KrYYB9DQNEXAEGap3c9nc7f7uvgHf+KjOndj2xk6wH7ejMOsx5NsL5Z7Drwy66GmUYsd5hJG9GFrmFyRRm26lvGSDkj1BxoJ1bWsfS0Xkbg1/pRvTtHJEhKH0PY5YVfZKRFVdO5Vvu39N63x4uvWUKf7n7Z7zx+A5Vke6NLfUUXnwOBb6DWFrXMX3eEna3uUdAFI05duZdMYndbx2VdSyGmdIzADmLbur1kTormyuun8lNs4M8v8/Ay7/dnFiyEyUS4srY3E3Fhnr+OenrZJ5mZuXKMsIhkYA/zNxrp/L45e38dH0J657YjegLk39GPkuXjOWD96tp39iAzmZg8vnjuOeyqSSbRMSyWkKHe1j4y/VMmlvCmaflcXX9z3hl9kYK8qHwqAZbsolBvZZoMILoC+PItTP/zCLee3KPOmQXdgWJeEJo9FrS5+bi7/PLfZwYAGLri2VDswb/YyboBcL76ik7AuM7Pfz2xf007W9Xr+lEYIbjIu/0AqYcG6dfUIpnMEjN4U55UFaSwQlfhmM4jvL8f9+iYpSjq6q4+l85/KVhOS9urAVppPBLvGm0GgSthsFghAHtVJoanEMN3riMQP2f8m+GIlqtUYsj1UxOrp2CnCTSMm2YrYa4CdFhpYNYpiAGRILOAH3dXpy9Xlz9Plz9PoiESLdoMRiGIJOqgxIE6no9aHOTENs9FBeljLwevYAp28aiOfkUlaSgjdEaDyeME/QCeQsLmbqiVBVhB7lUkrOggIzTchN+rnz/1HPHcnlpNdEDe0kxNCEGZJ2CphYXJKUTrapBePh7lP7nFh6+8TQ8nhCvHIB33q/i6Lo6Iu4QxnQzhWcWYMqxobMZGLdiHNf/cBGm/CQM6RYypmSg02r49cpDvPvqYXyNA3TGaDGUenE86mbEWogNpCmMstYxKVgKk2it6+fQj97k3OvSmTIJkqdnoikoJumnV2P+2b28V1dMVXkXwT4ZYmtIMVE8Lo1QSGTv/jYOb2vCW+ek71AnVe9W49zTljCAlWBaOaI3pFlwZNlw+0Jopk4iY34uwrQJdPV5Vax7yBlg/7vVPPZeJa7x1+MvWEZ3u3tUqnONVkNhThLGdPMJp2qVdSf6wgQHg+RnWLF9/GfunbybtJnZsipZ7Hkb0i1y416UhkASYRF/m5uXHtvGk//YjdlqYKBlEFd5N0tPLyDwu39y15I8jJkyqkunFyjOtJFdkKT2Qx66fhYzK35KurEW3cXnYb58Otgy0OkE9pZ3ojn7fLIyYeysJLwhCWOMu0q5rsFODz39PlmnYxhEW9ALTJqZQ3Zp6lDZRIqisxmwjk1Rr+9/xaJiFF/LIJ67/8S1689n4JY/0HxIboorAeSIwEI7hGoU9ELCz5S/UQge0xwmDEYtJqsencOk3scT7X/Hs0/zmXj7n7rzUiBCw/s1tGxpQqPXfqKiVVSM0lTRzeNiGZIUpW5z41BkrJU9cMrYVDw9Xhm6GEuvFYoFwSSLxeQWJjNnfAZJRh1VnYO0Nw3g0o/uEDSCRi7rAGFXbDgt1uSu7fNze6QQV/9OBmqHUCxKw09nM/Dhx3Us//qvycz/G1ZvTMA8DmmhdxhZuGws15TsY71lAbu3NqoLRPTFbTJaAbvDJDuwOLEVU46NX31jAQ0Dfp7iQAK6RSNoyMi0IkZFdPMWsqFlOqG+1bJD3trIS7PP5Kojz7Aq1tu5tO4ixl37FJ19XmbMzMXV78dZ3oMpL4lxkzLorndSck4JL989SHT7Y1QsvYm0DAuXnl6IMxDmT//cja9x4ITP8Xg1fK1JiynHxvSzillxRhEbDraxf1MDP/nFx5x989Pc/Uwyoq6fisFidrb1Ubt3gIoDBxiodaoIGX+bmz3r62SVMFfghDw6yvETYMqx/w4HRbauq+WCzaU4UqbT95wHT9X+OD4pkUDbIHtePsxtdfkYDFqat7eMWhoLtA7y1jP7Yg3+kaU3RZhHn2rGnGfHW+fEXdXHX/68nZm/fQybrpvMvFYGUvsI9vpJmprJ1NPzqD7cKetcS/HMnyJhV5CsGRZ+ctNsttb38tLT+3ju5UMsfeB3PP2x3DvSCBoatzTz5GCIwXaZY0sw6bDrOwkfasY4pYwnas/G7jgH984wjTV19B3rY/luK7dv2kxOVhLbG3oxGHVy3ybGQRXo9GAx6xkzL59qV1B9LgocveJAOyFXUP17jaAha3IGE6dmsbFtEP8XJHf5aS3U6+Pi6zdjSFtM+MlNCc9wtEwzfshNeT+Vfo9GGHonpbBET7+PZIeJ3KJkQiFRDYhO1cyFDlLHp+Gs65fpXD6F/U85BRiCWsIn19CjYRFvnZPq5sERmql6h5G3nl5I0hP3Y7j/cpb8wI6/za1+r0avRWvWY081M3FMKvNzfRi1biJSLrut+oRNIeGY6ossO4aIJA0NUolRqtfXx6QD48o9whClQ1ejk5+tbOCui79H69Z6OUoKDx3HNiaFe862E/jtP5j5wEwMBq0aacVfnxSIULmqCq1JS/6ZhfQ1u3BX9xENi3x8tItgWCSvJIWeA0PIFykssfm1ch41zKAwu5ANWytJn5bFBSsmsGlzPWvWHeP6eWNBLsLRfbiHmT9MYeHpx4ge28eEr97B73/4Id6aPja3DRLs9dNrM7DfvYTChaeT8XE/vzjrKNHuD9lj+Rq+NrdKZ32yz16JnhxTM7nvjrlMy7SwpqKHxpo+0vKS6Ov0sPHNSg7uSSIpxQw46W4fJNDrJ9TnSyB+U3S1le8+kcVvyIo+sEarIdTnUyeT/b4wrmBEFmeJmxZWvjvUH6B1ff0JKQ+MOXZyp2bStL1lxPG1Fj0Zp+dy6WWTyU+1Mjs7xCv7/bz62HZ8zYNc/9U31GBJgVVGPCF6Oz2EPKERA4LKJuTq9ZFpaeW23M1Y77uIP967mmU7WlSAhtaiJ9jlpXNHi3re7soebv5VFd++42lCXol339opD40JggxCiLHpGnUCYx2VZE3JRJKKaCnvVhvLUTHKscpuvG75fRZMOjSCRgUx9O1sVdelOd+OKdtGZ3k3/QqX1X/BRouqTwToCPX61Ib3aH+nfl+cQqHOZlCzdqXUJHqCKvurFIxw/wUTseh6+cv6KPVHPlnB7XjXkjElgysvncz6LQ1UxMgkT9W+dKdwMqia45kyrRjfYFM8NIAU1SPYDWCyE5VC6vFUzp10M9n5Dmblp5Dqeg1CfoocX5OVqITRK2vDMewSJAxlKeiB+Ig0GhZlzIjTT1gQOLq1kb+EIqSkWZh8yQTq93fgrekDILcomXTfZrqP9hEWkwj65TLIcAZQ5XvzzynhtZuOsUm6hoe+9z7BLi+vPrYdvcOIIc2C1mZE4xoi8wt2e2luHuD2hRkY9GPZeaid2UUp7E82Ub2lia3X/JjLf1JJ59ZWin65HK9JT3TXeujtwzBDUJ224mgG9rVz351vYy128NHjSfi++Q/MSwrZktxNsNv7qSbUNYIGg0FHICKxo2WQ158/wKQzCjhjZi5r1h2jZU8bvRUBehna+KTgkKTlyOd0gmMp5Hwx0XZjtp20kmSmzszBbNRRWdlNf7eHwGCQoFIKDEvqtPBwk8LScfl0BL3AQ79dztKP7mXbn//OQz9Yq1KpK+vXajeyZFwGKcYeIlEjKUlGzrplJoun57LlcDubnt6fMA3tqeqlOkaWN9oGEA2LuCt7+OO6MXx/+SJcLfJ7EHGHMOfZGT87j95ON85M+Vn5mgdVdldPp5c/PbUbX59fzviCQ4OWWpMWR7qFy8YdJbppFSkmE1fM+gZrcu3qxLFGq6HtYKf8bIIRTDk2sidlqDQfyvkKeoGbvreIRWPTufPutxk80v2F9xSGs7jC0LS2cm9Hs5NZVyqq0WbEXuQgtyiZaZOzyEgx09nno6FlgKqDHWoWLQZEml0BBoMmDu4ux9cyeNK638PPrXN3K891eVSgy6exL5UlFYbS9E/C1o9mSmQ5YgHFGCLv/XMFF57/B3a92k6oVxbLUfQLjElGsgscjC1OoTDJQ3RfFUgSxjmJje3joSDiMwbVgUjSiCaZ8rJqYnVeGXEh0FLbz1XnTWB6ppa/5yXx0V92y2m7oIGkTNIuHstbrbK8p85hQhoNjqcVGDcpA2nHCxQsv0WmZwhLhPv9GDOtTJ6dS2uqk+YY6R3EuHwiEjrBD+io2NXCX7u9NO1vJ+IK8P7eZhZ//UIKp+9BM/dsdD4NDLohyU59p3vEUJEUloi4AliSs6GzBsFhRDPnNHa/2PyZMNvuLg8r3yrH7Qrgb3PT3jTAXp1AT7MrJu6OOlA2Qh7yFI6paHHrHUbEoIgh1URxaRq3Ly6mwLKTg9PmsvVYD/UtA1TsaiGgOHitMOr8y4lMo9eyPG8fe357gLO/dghLYZJMpxEWY8RuEm0HO/nj2+Wkp1vw+ftxOf386dZkrGsf4PwLLmfJarvamwH5/guxunRolLo2yH2Jza+V0+8cS9OxBtVxhl1BOpoHALj0K1MZk23n9Q+qqVxVhSnHxpTFRaSnWdj8ZoXKphslVvLQavB7QxAFqakb0Rkgffo+ktPTGYg9H2VqG5sByRbBmGll8aISXq/uHXpuMWvv8VCdbEqQyPyicPvxyDIlIxyCgmpOSRL1RCboBRypZsaUpHLB1BzGOfbhF5OpcU7gRYOWQzHafNEX5vHn9+N2BfDU9Ktlyfj7cLLnEnYFP7NT/VKcwvCHokyFyovk1Dru8RQBMIQnlsISTR838OSmRvXvtCYt9skZvPizOUQkIwDJxhYsoUqikgQWM/6IkfBx9JDjj5ngjMRErLmaIcRxCQ1/SMFuL3l2I7nGnYzJm6h+n9cdpMx5BmOvzeedJ2R4rd5hTBjLV0oNUTFK2Z5WGn7wJA89vXtIqwGYf0Ep3zw3m9cPpfDCxw1q9BoNixzb2MBd/X766vrx1PSroh9ai56eLg/kTkCYL3HQtZhjfYNMWHEN/cGxfPy76hEbvUYr92bGTs6AbCPCz37OX3am0r5zyylHKsozNKSamHveOJx9Plq3NxPxRWjf1kzHjhYM6RZuuO8MJucmsXpPM5uf2n/K2YFigklH3llFfPXaGUxIs/LrF/bT2eIiFBJJNx0j+s5LzDqtnPHzllE/cTy/7/bSPBgcsaGdig1IpUy/YRz7u+cwdlIVmWeV0O/001LXT2+FnF3t+/dB+Y+1ArbSVGwXH6HjqYNk63TYsi9J0MXWaDXYJ6Rx/lVTefcfe/C3DpVIlTUiBSP4GgfY8+9DCfcp2O2lY0cL9glp3Fv4Ab0/eIkLfv0VlteN4+avnsZN2euI9rRz39nnseeZAyNKU4P1A7xUcRbXnzkTdpVBOIAj1SxPWVv0ZOTZMZr03H/VdHSChof/sYuUJCNjTs+jJcWMq6xLvZdr/7KLdXpBpQ5HlNDZDSrrweeF21foKhT+ImOmFZNJTyQ2eySFJZWqJOwKqhxYJ2vxM0NRKYpOpyUt2UypZROhPz5FuKqP6ReO5TsrHuORkEj14U48Nf20bmkausbRZqu0mhHHON7xP6sz+687hXiHYMy0YitIQqfT4hvw42tRaolDjSdI3GhPxpQJ1CiCupEqDigrN4lMaSfi66/j2daKdnwKXLsUzaSp4Mikpt2HV2lIjkKupZxX/MMfHtHEszgez4LdXh598QBjSnPZueGQrDOg1yKJUfY291Pe6aCrpVadXI2fWLZPzuCO+87g2X/toW9/B1+9861ErhitgLPPz/5ODXv3tyWcR1SURVaaOmpHbY71d3tZVTcDk24mr685gnsgwM5DybQ31dK1t23Ey6lMvhoMWt5vmMJ7m+qp3LT3M9WEBaOO/Cy7+pJGw6I6JZw1OYPbjvyIt87Yz49uziJw0+Nsf3LvqU2nxjYGrUXPxGlZnFU4gEN3mNzCDLraB6k62MGvk4q569y/oBf8NPcZ2Vnbjavfj0anxZBugf7ACMqHTzIpGOGanx5l3qLfYSxr4/tXTKO44ueQAtJ1F/HQe9PZ9noFAaUWHJZ1GH5ftYRbX1vBhx1mBv69dsS1Bjo97NzelHDPNXotjpiG9MDRXoJdXoYTtUVFeXo82OcnGg5SvrGX+c+uZ9Lsxdw08TANy/5EV0uQq7d+Q3Yow5696Avz9ntHWXT/fRSe9wp+20QkKYKgF7CnmllwRhEOm4EOT5BARMLZ4OSD9bX87e5M7JFerv5LCfXvyfQnEXdIVkN0mGI3S2LM0jF43UG69neMOiR5qqY8d0O6hfRJ6RSVpjF7ShZz8lOYFHqZaEMdmonTebVzCe+8X0XjpsZROb1OxpSeVk+nm9qWAQamT8Bq0tJ3tA+9RU/usvXMnjIf90CA+g7PUFM57l0dzlAQfx3wxU0+f+5OYTTEzmgm6OWUt2RiBulpFtpaXdTGqCCU26IIuETcoYRBm5O2GF5bMZ3dgNmqB5+L/b/YR10DLLrAQ/5NJsT08bhCBbQ7fQT84ZEbfPw1xfcvhl3j8TaJ4T+XwhL5xclMK01n99ZGuXSk1ZBfkoLdYiDFrMeRbiHQJktk6h1GuTYbiDBxfgHXjT/MpmlZHKrsTXAIGq0sQFJzsJ3/OH20Huw8CcKwGOLHoicUjLDjSCeewSANh+R6cE+dk8hgQKVKSPhcTMXK2edj7c4mqrY3yb2EU6jpD7dgt5e3/3NIbUjGn3N+SQqvX7sfgA+e6+JPz3iZ/6wuQZt6tOuMRxZpLXpsE9MJO/0cq+jmzYLxpNqnkZI0wIx5BRza0cyudbV0tA2SkWUjFBJx9voQtBpM6WasdiPO1kE8cZQPJ2NRMYqrrIttriDX3j6HEuF9yu94i9Y2WHzbfu79xWscq+imtddHVAqrMwvvPbOfLRuSZU6oXv+I7wz1+mjb3DRCG7m4NI2c3CS2e0IjZlniLdTro9x+B2c+tBPdWTNwbwoQ1qbJTXcNMovpMFN6c4P9frY29HPD1DG4AzkE/TJyzWY3csbYdHJsIs/v6GLv7hZZkN7Wj10fgc5GHKmnj/hedcbGHSK/WEbi9B3rG5Up+FRMnT0xaTHnyfMTiyZlsSBjF6E//5NXvi+DK1bcvoPpv7uUNTrtCWHTJzIZpSiXsAPdXhqP9bJleg6XXHMRRakmhBQ72NIQBA0Go3YIrhrjqhoeTCbAeaXENf1FOIbPzSnEs00KeuETy0FKmmOxGsjPsiFJURodJoReP1ExrBKqnX56AQ0tAxx4++gpbTYJ5ybIEYKjMJkFc/KRtvyTugaw2yFzaRHO1OU096XT5Q1S29KO1x0csSBO5BzijwMkRuYniCQdNiMpJr3cR4h93mLW4/aFaO50M9DhRgyIWIqTOf/Cibz/Zjnu6j76uz0ccZ1Jc92WhGPEc0B5amRBcRXu9wkDNNbSNG66ey59rgD5mTY2bG/E3+waKluNJqcZ9731R7pUmhGl5j+aE1E+k3C/hpkUiOCtd6roGJUcD5mdNt5alt+PMeuH+JtdaPRarMUOdDYDgU6P6iwVzvuMsSn0xJg/v3LNdDZtqadxUyPPHuggbUom7/wkSr84iW+3DVKzvp6jzYMcs+hl2djZuXzz1jkEIhIT0qyUdQ3y+G824W91o7MbEqg6TmSiL0yo10ffgB80AuWVEI3C6j83cdXC73DXDX/gF5U9BDo8aAT5nvubXar2R/wzVFXvYprS8RaVojh7faRlWEdITw5fCxF3iHu/s4Zzrv85kQaJpiPVPLXnNO556X4K+jq556OaERuVUoKJhkW27W1lavZs2twBVVI0KdXM7JRtRPdu4pLTfkpFeRc6h4nwYJCb/6IjNXMhFWtGanAY08yYkowMHOuj4kA7eqNuCAr+GTZABUxgzLaz5LxSfrikheiaP1D10GYOlg39nW1hPs9vrqVpf/ungoQqFpVk2G2gw0OHL8K/IxI1C89k4ZLLsOi1tDQEqKhrx9Ufc3Yx1Tz5v7UJ36OaKCX0X+GLcQyfi1NQ6pd6hxHbGHkgy9Moi4yIw9AnCn5aRE57D25ror6qh3BQVKMBc74dR2Ey2fkO7FY9yQ6TCsv8tDdAa9JiTzZhtxgQ5s7mqn8F0F2wiNbkm1lX4SQU7sM5GKCt2UU4pnkb31eIH7AZzXQWHdYxKXjrnUPkYydwCNGwyJp/7uVDu0HlxhGDIlvfrkQw6gh0eoi4Q2i0GmbMK+DWeRrKKzNQhCB/+vedeOqd6vcpDkFnM4AkD9dFRVnXOHlcCn2HOmXs83EkMx//zXlMfPoGND94iIq+bLYadEPNxRPg+kHe6LyNLkRfmKTJ6Zx5XimHD7TTsq5u1Ghd7SfFIIoqhjuGINIIGubdNIMHLi1AL/i59bdV6rzFka1N3D1Lw4GD8vcabLK2s0bQYB2TwsM/XQrAs2+VU/VuNQJgHZPC+VdN5aIZefz13Qpqy7vYsLGOzqM98rNyh5AkCTxOnEIG3e3lai1ZCsqKaB53kIlpEtnaXbi+8TtWTMvg6PW/ZuOHNTzzs6W8vLuVN3+56YSOU7GwK8iWDXXkZszh5o9X0PWX7RiTjAT2drDs3E38dWyqPCcjaFR95tHMPjmDr1wznS3bGql++2jCMaRAhNbtzXRV9siUEnH3XZ9iBuQMQblOX+MAa/+2G32KGb3DyDurKmicNxuLSUf5R2UjmFF1dgMpJSnY7EYaa3r5y5uHCQdFWQ9dkoO9aEslrmd2MuWvHzFpykRyi5IxGbTqFPVo6yriixCxyPM7roYBmWQwBvv+JOqH45VV1HfDbqBwehZfX2Rm4Gs/54PnhqCfdjss/+kUPj77L+z9ncxG8Fmatco5KD2TrgMdrG5ysSXXjtEsb7tuV4BQDKKq7DXDA6YE8ISgHSqNf4HorM/kFJQL0NkM5C0sZNk541g0Lp2N1d1y+n8c2ur4wRpPVS/eONrqhbfM5NGslwjvq0N71be57W9emg93jTrsM+o5xU8yDztP90CAHWXt6GZdA0uuYd+hbnq6K+VFHhO16e/2JJQtAGylqVx6/Qw6+7xsfv5Qgh6wcixjppVll0ziw9fL1bH945nSh9Ba9BjSLCqKRoEEarSaOApmLc21fbxzNJVIWOK++xYwN1fgX1u62dgyKG/0QbmMY0gxYSlORvSF8TUOoNFq+OXvzues2l/wh6X38PbjOxNqs8ombSlOZkb6fho+aKDkrhqe+RAqNtSf0CGYcmzYS1Px1DvlhlwMmy4GRbq7vbjjVOWU+y8Y5SzSkG7BVpDE2MmZ5GTayEqz0OcKUFnZTXe7TP3wp9yXWGldTUkxfOWdDfx1WzOEJdzVfbS8vYN51y+muz1M9is/JfI1j4wLtxsIRCSae710trjUZxTxhKis7MZs1BEOydFf6542Qs6hnoDzaC8/2TaTPZs/xl3Zo0aJiqpX5+5Wnvg4m18W7uf9ZzqBTh7o20dFeQGdnghe/+hZgs4ua0WH+/2IQVHOogMRBsq6+HfvbmouuZ3L//ELxiT3YSp/FiIhsguSyCtJISpFOdjmRgqPnnEFu71EIhLJ6ZYYw29iZCtTq8u6CvpUM5biZLIKHFy4vJTOPh/vPLcfX/MgUVF2DGJAxJpu4Q8PLKHHF+LZNw7TsqdN5lsatg4MKSZmzslj6pg0/vPaYer3tqn3WmczYDJo0diSMWZbIRwgxW7C5QkxECsDHw/Rp9BmR0V5ulln0aHRadX343jrUWvRYylOBhgxMKmUjQxpFubNySdl/99Y+VziLIDJCPoZeTj94VPuYarHGVa6VEvQQVn6VJmbUUpvSpCpXJc6wSwMsS5ExaiMahSGAlKFDv3ToJNOxj5zpqDRazHlJfHA7XOZHX2VaHcPzqK7eZsTR8oQw++LEmjlJqKlMInfzd3GKwWrALh28krcrksJdrpPHrc7HHfMEJbd0+Olprybvm4vwUAYd4xJ02o3Img1hIIigcGh0pHyoOadN477i9fC6UVcsCuNvj3tIw4b8YRobBpQeyUqlfBx6vkaQYMx00peSQoNfXEDMWFRxcDrYhlSV3Uvr8UcrNsfJsnQx5zxOWy1DD0+rVGLMdPK9Hn5dLYO0hCjLE4x6ZGausmcaVapnRPq+FqBjGw7eHuJihJEQtRVdp+wVCeYdExaPpZLzynlyWf30h/rW2j0WgJtgxz5sHZEY1DBbuvsBmwFScxbVMx184spdewiWrkDzeRsqmdex8dV3bR2u/GsPABAQyPotEN11mhY5NHHtvLiR5uZbzjAvw5OIOLaAKLMgvnsq2U4O9zyBHsMiRZ2+mWCv0AYSYUeDukeKLMXW14tl6Pn+LKB4lh8EXq6PEgDQ7oQwX++RnL+Qzzw6w2j4sI1Wg32yRlcc8MM3v/gGINdHrLHpFL3UR2iL4y/xcX2VUepPdrDmAnpfPPc+whJVrzufZitevzeE6Oc/G1u3n79yHH1AZT7rzUJFJ1ZwJ1XzyDHZiTP1sSa2pRRy3dZBQ6m1/8GIiKBy77Prz9uSFAdVL5TbzMwc1w6ZxUOsGNCOrsretT7KhglfP4w4fRpmC6uJWQfh9sXomx3ywlnV5QeinzOWnQWHfYMK153kFCfT72no61LrUVP4XRZb6Mmrtwo/1KeSzKkmhifm0To5aoRnw8EASlKls14vNv9iaYMP4pBUXXQw7M3JROO73Gpn485BKXHAIAeGSbLSITd8FLS52WfLVMQZL3fO7+1gPx7lvHKWwOcdaEd49PfIDw4si6vNlOG48klEfRaZiwbS/tdjw79/YJz6P5nZwIu+4TnE5PKM6SY5KgjrgErBSIEOj2E+nw46/qBIURSwBtW6SvCg0GVF145zwFnAByZhHUZiOHukQcWJYK9fqp2trDkysmYjTq2bWqQJ0TjGpHDexRhp59uozah9q4cU2vRc/G985g2Jo0/PrIZZ3kP5jw7ZTW93DDVSUny2LiReZnF88wV4/nFik42tJ7GLw53Eujw8K0HP2TG0u9y8LHtiegUYSilXjC/kGjFWsL+CKQX4m3pGpWdVSn5ALj6/ZTV9eJtd8v4/nQL0y+aQPWeVjw1/SPrsVpBJSDMzE1i6bQcxvU8ge+nH/LOX1uw22HFv7Yw4Ypreb/1dGyTV3CuaxVp31jIJSvLEtaMq6yLq+/8CGOamWDfDjUazpiSgdcdxFXek8AkGvFFiLYN0uIJqcycCoGZiveP0+wedW0hyc3mKRb1Z10bmil60MHup0aKDIG8Hs8+v5Sv5X9E5rWX8MaaKgrHpNC4vVnV1/DWOWlsc9O2v53meid6g5a28i7EoCiDK05Q15YCEQb2tY9YWwnnIGgw5dj4w10zyVn3HSjMRzNjEdsP+PC3uUdQd3vdQTlS7e4kr9Q4hN6LZXmKopwjxczSol7ML/2K+7/yDDe+U0XYGRuM82g4vLuV54qns2Laj6lsCdLYVIenpl/Wmz4RpDJGBy7oBWxpFopL03C7AtR0y+yrx5sNkYIROltdaslPvX6tLFtryrZRODaVCWkmvJV9Iz4/ZaYRzcRSpCifirpaYWxOHZtK37E+mUZ7GIRXPlFZtEnJQBUHoVDhKHuSwv0UjYgQiA3JIqKRvhhHEG+f2iko+HTr2BSuK9nLK28NAJAyPYO/7Gwk3O9PiF6UDUWfYlbH9JW6ouIsvO4guS9+l2s3fYRmxZWc+4B0akgWQVbTmjGvgEhYZN971aoeq7yBhpFiKBuFWz9hCjYGI1M2WyW9O/haOUu2JxGNNMo48GGNZMXjWzIt/PS8buiuZVrxZfzySBehEyig+ZoHVVWt4SWdtNk5pCSZaO72IPrDFJ5ZQEq6lYA/zKbW6Ww60pgQnWZMTOfH5wfpuOxHLH3hu/w2xYq/1Y2nupcdsWnpeNSUgiW3FCezZEImlPkp/fEZ/GPPGCKuJvVcQEEYQdrcXGbNL2D/jmYaP6qn8aOhEpNhTArjxqRybF8iBFYpkynzKBF3iN5ON4ebB1g4YwLa/O1kZUJ+gYAmTeaqd/nDPN53BdZvX8OGjXX07G1IuHdK8zXQOqj+W6vXkpJuwdXvJ2VODmMmZFC5qUF+OWMZaYJE5nFKBPEQ44S1pdfS2zhA37d+CpwDQN6tU+k5ASomGhbZtKaanPTlvL/2MO2726jd0KDWuIe0D8LobAYKx6RwtKwTf5v7pLH5n/huaAW0Zj06IYjmrHNo0F3Jtso+6ioPj1rX9w4GOVT0QypNbl7+8zYZKh3L4vOmZuHs9dJ/sBODUYdtYA8bfriPJSU/xpS9RG22R8Nyf3DDxjoa2114PCGa6/pGZM7GLCuW4mS8dc6hTFmKqsNjdoeJGRMy6B8M0nSsj0CHB+k4Wt8RdwjnbrmElaB6qJcz6BkLi5g1MRObvhtzsQPoSfh88cNLaEu/lTder1bLiqOhC09kglGHzW7EadSNIACMN6UvEF/ihqFATWuR+2RKszoqRomGNUQFAYg1m79AKfvPlCnobAZyipIBJ5feV4A2x8qxO15i1/ffHyILI+at7QYcUzO5/roZ1DQPG4Hv6AABAABJREFUsPOjWlxlXUOQw7DI0XV1nFvlIOK+kOCzPSedISim0WpwpJgZX5SMJMEhm0F2TgwNkGmNWuZeNYVxhSm89q89KlcODJWZhtcuRV9YpaFQbPjUsgaJ4GCQ7sBpZCZ7CLkltTl+vJdbHv9P/FlUlMswZy8bhyRFeeP5A2gEDY/fO52WQT1/f/MI/3qtjK465xDhmlYgu8CBsXMXLeWDZHc0kFVwJt6aPrk+Oxwlpdeic5gw59mZs6iISab1DL5yEOvZBew92KaeA2FRpgPJsSGFJR74xgIW29ayavJSfnvgvYQU3Vvv5M0/7UiADmu0cgbz8GMr8IREHntwHRFPCOfRXlb5y5mYt4gl5x1iyewinGd+lw87rFRscbJ/fzVddU7Cg0HC/f5Ro+XhQzqiL0z5m0fRWvT85omLWZhXxd2RQg7FdAsM6RZMOTYGj3SPeB6CSce0qyZjMOg48MoRlQ5cqfsa0i0Uzc2js76fh15u5++rl9DzfBmRq79N4x96OZ4pWc2/HvxILVdlLSpk1rwCNq08kpCZRKUokhQl4A9/rsNaiBKBTg+PvNtOVvrpVJTvZUxp2ujnG2NWfXFjLeV723BX9qibY0ZpGl/7yjQEjYaf/2Yjzl4v2NPo6gbX83s57eJb0J1VTNmeVvoOdaKzGXCkmjlW0Y0rxhc0/JqSJqRx9rJxrF9TncAnpFQTtDqBojQrWQ4zBwsc+FtchMTocRvOo90zQS+QMzmD71+YR5a4GaImopfMYt6GJsrLwtissOjhGXTM/znPbG3j6PZmNXPPWlQoqytub/nEfUhp1tf3+tT3UkF9aYTjN4aj0uhByPDBV5l4UUr43Rdlnz5TEIbgj+3RxeT+TqBLmsdvn9wnD8oMO3Gdw8TZy8ZxU8rbMG0KvzZM4L3qPqTwEHVxqNdHyBkYkoQ8xeZJVIzi7PZSWduHIGiGHJMSuWrlWl1aihm7Va86AUVDOSpGE8pGJztzoFigw8MTH/cyqeQ0dh9uwZhpJdjlPS4XTkJ2EF+zFSV2bG1EI2gItA3KcEpTFV3eGbicfgZaBwn1+rCVpqK16OWNToxCaj6lizJBp2PWrFyZ0ru6b0gBK4akUfoemXlJzJ+SDdpmbOeVoJk5Ff8qmeteq9eCJEdZ4+bl09niQtAAehPemOgLMKSYFhYTOG9AXiOpUzJYrnuVSOEs/qTVIAUihMUo3nonL75Xie7S+5FSo7z0QpWqmBaMlQqiYVGuz57kWlDOZfvRLiLSBBorthIVZaGdzJnZnD6vgPcaBxKEmzRaefju0a8WkmJoYtn2JLx1TnlTm5xOxBdm9tkl3L6klIf+tYvasg5qf/4nxo1/gkHJjsHoOd7pAKiZAMiR5Kx5BSydkcvWd6pUNJ3S09j9fg2hvkRAhUIV8WmdRFSSB9TK97aRtnwceqOWg7tbGawfSFh/ynkEO9zseb0iJqQ0FI76vSEiUpQJaUZyStPoanTSJi6hIB8MNgNpyWaMei1mq0EuNZp0LJxbwMGj3Ryo6RtRrgMZobhre9OIsp3yd8FAmIgUxaLXsmB+IT5viM4DHQS7Tx4qqhE0FI5JJbPt3wTf3o7h3JloJs6k5Efd5Ff3osu3I1x5Pav2DVB+qEO+/2ERtAJF49MxGLRs29M+ook/msWrzCnvmWDUDa3j4b0UcWS2oOxBYozVRmm6fxHzCMezz5QpRMMinS0ufvNWLd7BFFrrduGp6k2QVlTMmGnlq2eksG3CXymeZuP77/2TD/5lSNCOjYrR426giikpoUbQjBhBV1hT9/f6ZIbL4dGJKBHxRVj7zH6Z7THWvI0nN4svGymfSbjmEziKUK+Pj589wNYUE0n5DibNzuVAs+uETfJ4Yi4YiiraNjSo36tPCfGfw0Vs2l5GT0UPxnQz9tJUPnjQR7S7jmten0V3+yA7Bs5iwe96QNAx25TG6ePS2VTeQb/Tz+HNjSoqSum95Bcns7jADQOdCBdfzVuNs+nr3itndSXJlEzMYFxRCl+b72VN3Rje3d3MZttE9mwvZ9rF4wkFRSreOpqw2OPRXxpBQyQi0Z9+EW/sh1C/rIEcDUaImrRYk4w8v7pSZpZVFr8UTWwCn2JwIPrCvPPoNt6NrQ/5+Yr01/WzFxJYWxXnJQUibGsxMC3zNMSgzF5qzLRyx61zMGgFzilqxdz5HDr9VLz1Tr71+03cfssteKvCdNb3n1QUqVhPt5cNZe0EO90Ja1MKRHBXJpY0zIUOzrx6CrtXV58QmvpJx1a0tn98ZhXBpYWc+9VmVeBHmSJWMjxFtlIBBURFGfkzcKyP1TsaOf1KOzdfPoVHf7eFf25s4edPLIL0NJrqXRz5qI5AhwxwCLuCXD5pkJvGtXB9ayaNmxpHlJOD3V5ah4kQQWwNSRLugQC1nW6KM21cPDUF52A+H9b0JdC5fJJptBoKs5MIPPMx259pYFFIovfb30FasgLDOV46vWbWbmlny4ajuJtcKr06ksihd6qG+JtO8l7HA0m0Fj2WgiQEk45Ah0cufylrclh5KioMcaRFJCmBT02tXgx7F4bPK4yYE/uUGedncgqiL4y33klZm1ulgpWOU0OPuEM0ugwUTrSQlG8nJFk/lRiEYNSRfFo2YydlcujNikRBdGSJwfjoVf2cSaY1EH1hdSr0RNTYykO1FjvkGnaLi4gvggZ5GErnMCEFInL9Ma4nEe6XeVMivogcXY0mNxlnyoPUp5hl9bLY5HB8CiroBf7zwkF8jQNknZbDCz/M4997TWBrRgO4nH7CriArN9bSP/9SdIKGF94qQ6fTEomIZOc7Rj22FIWA6ICMYjoDMzlQ3YHoC6M160lJtzJxTBr3nF5D4OePc9W3rsVx2gq2lXcSiYjYHf8/6t47PI7q+v9/7cz2olXvtmXLvRtjTDMd01uoIYWEQDrpCaSSRiohPSEFAqGFXo2pNhgb9yJblmXLKlbXaqXV9jLt98fsjHYl2diY5PP9nefhwbJXszN3Zu6595x3cZLKbUbnKE7ai50UTC9mZF+QkYYBrvhk2MTEG2EvdfP1K+bTF0vzrTfasJe6kaOZvJ1i7n09lhhbblIlldgBncyXtzvLwnitPjt3f/s1swENkOqJsGrNQWbOKMVpnUwkXU37O68ihdMMbe/jtwdfR0kph4VdT3heaZndL+03dwbGeRzuOgWbQColH9HV62hCUzTC+4fYGr0cKayhJPbqZbFiJ65JfhadWcf2VQeIt47yXkS3jaKFFUyZUcquZ/ehJCTCw0n8wztYWVLIH0u8bH6ng4E7f4nP1s/wpkEywYT57qV6IqQUH7bf38cvb3uMT3aMEG7QYaA2v4OZF81g2dIaHrt7fR7b2rwvpW5UVaPxwCCd/RFeiqRp2tA5zu/6aK69OxDFeckClvbFsZ87jzWtUbbvHUCWVUaCCfrbhkn2RM3dtHEux/JdY1FRxv2aPKeMRfMrSUsKr73YrO/q0/noNg19EhcAVAtKFrIP5IlsmotVZXw5yniWT7hqDqcsrqZ/KMH27T10bOg8ZtLv+04KBiZdlVTI0bCHiR9wKZTkyfXt3H3fJ8Hl5/GDRaae+OFiIviZRbTg8TmYMsnP7gncmXIbVbkTvLPKS+3CSvpahojuH994HTvI9lI3006dxOevWcCe3jCP3bedZFcYJaVQd1YdN1wxj+7BOI/+Zn2+2UZ2JZwJJlBi6fdmRWbhcsUzS5gys4Rgf5T+LBtZkxSsbis18ysYCugP6LLlk/B0vIDTcT2f+psNq7WWyJ59WP1ODh0YYlVaYSgQo78xgL3IieCwMtAa0m0hpdEHTUlIhIJxeqJ2oplT2TUQoSuL7za03w90DMP0XkYaB6lobmTlslKc1lPo6Q4T6I3qbMwsy9L0vHZYcdYUsOTkSWzoj5HojJDui44b38xwiud29RCKpBCcVi676QS6+iK0NA4wsi94TCbtR6sFM/bfrV47V3xhOctnlPHb+7fS8/Yh83NyLEPza610Hhhie3m3rvGfRc6oKZl0jjLr2N3e4cqfmqIvGox/M1bjRnlv7OelUJKdq1uyukXHVz7IBBN851dv65aSWX9k39wylp0+hYuXTqKzdThvJSs4rZx+1jS+dJbMTb019KzvZGQoAeVTQUphtYlEDoV5bk+MmVXVREfy/SHkaIbn9qrcPLOYWs92qqeXEG4Y0N/f+iI+ddV8zqjZyYszignlIJIMLa3q+eXY7FZGggkiw0kGenVQxrGufFVJpePgEMkvf5yiybUka85k59MB9u/uR07rZjaGAN77kXk3wjXZj6Zo+X0iRcNf5OK0GWXMKu7G713Ew4F3zd3U2DB6BxZhfHLJTQgThegQKZpTyi+vF3Gu/RnUVjP0uY/xRUmh7dXWoyp/GXHc5aPcR/VwD66maGRCKTY/tZdbQ7reSfueTYddRQs2AddkP2WzS+lZr8P3jGMrCYn+zd2sbh3WV5VjvmciKW3j5/JqH/GobiqeB8Vj9GUG/YXw1vk57eTJLK1oIpqZZZY1RLeNb990IvM3fAVqq1l/yjm0vd42Tr7Z0JB/r5fZIliwFzm54oo53Dy3AQSRd4Pn8pM/bmCkYQDPtCJ+fuuJrDk4zD9//jb7mgKsrv8kj/5jXV65wRASa20KkOwKc+GnlvId/79RW7u45uDH85qGSkohHUzS3xXGKlhoH0nwxjvtdO0NIMcyeKt9FJa66e8K0+u+gopr30De2cbwPW9xxp9vpXnpStq6R7AIFvqzfSXRqWsgGTXUtgPBI+6S5HCKx3/2NqCXam462UnnwkvY3wI3vHQ25764klhzfhN3wtV0VunUZhc59Gb7hKU6wSbgqPJhL3LmjYNvdgnf8D5I+m87ue3Wh/nOu10mA19T9HKgFE4ThjzwQa5ngpEQrD477rpCfGUeXB4bgz1RUn0xE5ef97vGOVV4OPOji+jpDHNwXYepcGoct2RxJTPmV7Dp4Ya8PsjRhAEdNhYlqqQS2txjLrQsogWf30l1qZeEpHDZxbM48TMn86tHd7Lv6SZsfgefWeGiddH5PLXjN5y6WSS4L8gPXl5IdZmX2JCuTbXqpX3sri8h1p/fR1QllQfv3sCCe35HVdxBaeU+U4zux98+m2UV++mKLyczvDrvvI3S5ux5FYyEU+zb1YecVTsw7E+PNkEa9fmehgF+8Gwh0ydfSeeuCLvXt5pwXBOZeBxy2VafnU9943QCoSRP/vRtEzGkJCRSSZnpRf1Yf/pNbp5SQO2P/8A9v12fJ289VrxzQq2jw0jnGPdSdNuYs6Qa699/yrNfa2D+fIEZj9spLj+DtmO9nmMegZyTOabPZ425G5/TiSO5N2LcSfnszD1rKpedNY1ftQyNe9GlcHrc9vu9ItE+wqaHGyb+3jHZV5VUwk1BHu3fxNPlHhKdr5pmKBbBwmMb2vnWhd/BYlEo3DOCs8pLZjiVpasf+8NlsYlcMMtP52Xf5903E5x7XQn/vO8VPv7NNymb7GdS8knOm3EVD5V76Gsb5qdffTmPHCbYBGqWVHLJhTN54+12WvYHmVbjJ/XQDgY29VH/hbK8HgWSXvZIDCUpclkJp2X6uyKmyXxiKEl3e4joYJx71/bwo6Xzabjsfva3wIeWvMCiT13L6tX7ifTHsPrszF5ZT1VNARtXt+iTkaLS2xjQZZBFC5o08W7MmLCkcJoSRzuvt+h///RVa5n0m4/S3BpCS8u6jIVNNAmBuWF1W/nCTUuZWeLm5p4IIzv6zX+zFzvxziolM5Tg/A8v5PITarntmy+bZZJUX4y2md9lyo928eCf9064sj/SCssgRBnPVOW0Ym64fC6XOp9C27IFqitpmv5dvvzD18ejnkSBgunFfPtCCx2RxXxvKEF3XyzvHARBYNqkQrYXuY4JiSe6bdz+58uIpyT++NXVeWNmHENTNHrWd/J4cxBnlZfv3nYa85QnOGfF+ex7Tm+Cqwjs3QdzH30Ue/GVpPpivPWfPZx1wwJe+10xzx88hXt+tIbEUNJ0p8uNVE+EO37wBgvOqiPYH6V6xWSmzChhcXknkubi9r9t0SHDuZOcpC9YNqxt03dkQ3qp91jr4wbu32BJb31xP7v8DpNVLCfk9923GhtKQuLhf+80G81GqGmZ1n0Bgsn59N3fQlc3nHr2eTz7yuNcdGNs1BXQgKiC7tp3FP3MseerJCT2N/Rj+96nuDT9d2xnzONvwWvY/dI7x7wD+p9JZxtNGC1n9Xi4GyFHM+x+aT/NGw7pNPycpkzeMY+hzqqp2tHLOav6pCmHU/k+p1kCVsfBIXYPTmJFwx385cqz+JJtBo3vHCLRMaLjqHNgZu9Z0sieVyxjZf/GBJoGbzw+xHWXf4HaOZ8h0Buh1X4d61uGuPz6hdSWe/ntnW/ml1dEAYfLhs9lw+2xYyty8Y8/bmTjiruoOtfL5n9uG/edSloh1R/j8a1dhGNpwp0jZhM22RMlM6Q36Zt298McKx1Z0SU1liGtaAT3BpDCadx1hVx/4SxmFHs4sDeA3WEllZQYSsijCTuHkTzuPooCSkLi6rvSPN18M/Kb29l99X0c+ORTJlqq5vTJLDyhmndWH2BkZ3/emMrRDP98vIHJ00vyGpCCTWDl507i+xeG+OpjVezfN8gbTlueLlWyJ8rHP/kUgk0gM5w6Ju18i2ih5swpfPS6hTS2DbH6D5vo3R+kOxgn9eoqnr3TYD4/ze/mwat/WsVzf92slw6yCLN4b5Q3D5XTPTiYJwsC+nPTt76Txw8MHVHhdKIQ3TYuq+9A0lz81W0lc5gSpmENmeyJ8t2vr8JdV06sZS2gl08HE8Vc/et5WK+6DGGLPlVkggnOWFCF+vDPufQjX+BX0UxWakWfZHOBIKBLTux86QD2Iiff//ZZCBYLN9+zk0xGn6hEp87XMBYNmqohh1OM7Ogf1coy0FGqdlTvvOi2cesvzmdmRQG/e2Ab3W+0mbs2GL8gPd7SnKZoJkdi7N9Hm4e4762D3FRmoatb4921SXBczlVrV/HEXW/nNZ5tfgeOco/+bvbFDg9qmWDxoiQkAlt7uOKnNcw74YcMbI3S/Nq6Y3524P/AT+FoTtBA8hgcg4n0jAAzu/5XcbvZ5qmRmESnyORpxZxRuIbHLl3Ludc2sPD2x2ne2Td6Xtlygq3IZSqNHi40SUGJpXn7YJBLz/Lx9iq9hKDFZZwuK6lgkvveOkh3xwinnjwZr13M2x0ZbMjhQIxtzQFcHhszT59MsD/Gvi3d7Awk8pKhWWLLarFs3HAIKS2TGR5tmBsNN9ChiJaSGubN1UXonGdPpz0Y00EFKd056pEX91FVq1uHOl22vO/KjYkSAuj3r3d9J+ccmo7VN5f4p58dlcK2iXz02gVcOWU7fypYyL8bBvKOq0oqHWva6drUnX+dqkZwKMFAch79XTvo2dJDx9aeMS+JksdjOdZwe+xUeh30+116kukMs/rl/XzmupPhzlE5jD174Ysbv07l9/7KH7/5iolwSQ/Eue+hnSTjmawG0fidVGoCdM57hRzLcPcaP5KiHlap1ggt29Q00DGg18d//JXTmb33TtIJiYRvPjZ/J4LDihzL8MAzjcy89Z/c/0obcixjol0g++y7R4ETmSG9t5ZRVTYfGERWVLq39OAo97Ds/HoG9w6ipHRGvFnbz3IRDNi7RbWYifRowuZ3cPV8FZ9tH/+p9dOV3R0bKMPj3RkcS8ixDNveOcSPP7OYHZ/daf791884xLN/cpAJKubcUrGshisvn0NL1whv/nUr8kR9h8OctyqpaLEMga09DDcPmiCI91UOO+bf+C/HuHJQdlLOXTWA0XjRH0aLyIQd+eOKbOPUVuTCUeoya+VGyO4q5s2BorMm0Ts4qrWiqRrOKi+f/8E5XDung4u/NURsfxAlpUxY79YUHUf+5GMNXPf0E1x55+eRw2msH76W5H06GmZ9FjfevW9Ql4XOvrzGFtlV42PG/ApOn1/FhdWbIBllc/Iint10iM0v7UcKTbz1VBIS/Vt1mYTcvo2RECw2kaJSD/32k5j55wambjrA4Bnf5637D5rXIoXTHFjdQpuRBON6w05JSiZyYqKxhTG10yx3IXdLD/rzcPaUMNI//8XHbrmLh2ziONiynF2tjh3XLQ/s4pqnmg7rxXE8+G9N0Wh7q4M7u7JqwNlGcd/bHXyi9Ez++rW3ef6eQ+bnn/lOM5e03EDLl+7llT9swjujmJlLa9j3TgfxjvAR9YAOF4dtcEsKz96l92uOhRUt2ASctQWs+fcUnhRPMmvRF3d+kZUfvY9V4d3EWoY58Hwz17x0wPw+NeeeGVpos0+exIWn19HRH+X5RxtI9cdY9a8do2qtTiuqpl+Do8LDrd9awerXW2h5fn/+fZEUNFU4pvdbCqf5yt+7kTIyHetaJhzDCQljh/mcoWkkum26/Wwsc0RxvtxQUzLhhgFe+/yfgNPMv4/ddhf1Z/6YA6tbkGMZRLeNh79djeXrn8B19SI21a8gPGYB9F5hoNpy3+X3E/+nSeFIJZY8RIvhpZqFZ4L+sKtpGUuWLKLCBy4pa6CWVl42m48tL6bStg1CvaSLJ7FveAHBVzbxq+YB1r3YTKp/FBmhKRqyoiJaZC7/0DxWzCjjyU0dvPa7TROzc1WNaNMgN/3sIJ/81L+ZWuhm494h+g7tHoVJKmoe6xMwlUFnnjKJb19eSWn/vxn53LPYCxws+c10tlaUsFkQ8urIed+raKNcjQmShuCwUDe9mB39GlNmfo+ihRK/W91Jx65+E21mQUWVLOakKMcypo5UrhfDRGObKwpmlgZySk2g3+efr0py+6d+xf3vjmdnw3h1SvN3U/JhSyfvFUdjf5gJJsYJ/6mSyr6nm7j6lK/wz9jp7KxaRjTbPw7sHuQbf7OwdUMVy06bwqfOqOOHKYndLe/NdZjo/IzJyoBbA2YpZxR0MbFE9YTHtIk4SlyIe9/M+3vXvFJkRTXfRVUZU37JuSdWt5XyaUVUVnpZXg2XSY/jveWjPPx33R1v3hlTWDi7nOa2IQb7dBioq8bH2dP8tM4p5+CLB8Y/r+rRl3qMBv6B1S1HLBeP3bVOVPI1Grhly6o5/4KZXLOkmLVtCR7413biraGjdoNTEhK//OGbvJ26h8ecXwNgaN8w135tNr/ZPUBsf1BHZSX3cnBrH1NmFumL0ONYsBxPfGB+CkeKw2VgZ5UXZ6U3T8AMxiSErG2ize/AUeTEbtdPOZWS9OZuJJX1DpDGScoeT2hZg3Y5nMLntlMZeZbojx7hpXtHFVJveOV81mtfIB1MmkqVVq8dJSHx1++/yQM1Pj7+6anMLDrI5Mriw5rKGDXBgc3d/K5zBHuJ2yxHvJdksGATqKn1UxZ8mszT7xDuiFA2v5R3e+vZsrXRZGgeadt5pDHYvLadA3sD+AqdWK0CLdt04lUe6zs7VqqkYndaKZlZgpSWGdw6Rk02Z9cH5P3Z+HkcAkNRWffALnZsKCbVnw/ly50YgSwD99g8vicKw7YxV+32cOM00Xepki6N8KErn6Twc/fw9c+dzLmTdYDFht4qfP5+3n56L++uaSO2P3hsoIQcmLZRpnRWell+Xj1z6orZ2zbEwX06Km3RCdW8fO/Wo6orW0Sd7BdrGeavsY/yOfVMLIEDkI6Trj4d3taVUQ3fZ8aQqUydoUofcxdWUl/jZ3MvXBYc5splGq/UFTLcE6Gm0seZ00uZWenjhXd11n6yJ8qdD+/Wnf7GjLOR3A431rlhJIRbv7WCZ1/YZ/p5jH3GcpWUzZhg8WLAY09eUccnT5Lw7vwVly75JC9Weo8onjhRJHuiXPfbMp6I/xr5oUdBsJAqdlMxo1j3YEnI/GDdPL761irW9vmI3fbiMR3/g4zjEsR7P5/NvbHFs8tYesokXmkLIYXHb5+NGr7VbcVV4qK8ugBfoRNV1YiOpAhaBRKqCmRMKvn7vp7DwMCkcJq2njDSiQtxn/oW5CSF/1z4Oj+Ir6R5bxWdG7uRFA3v7FLUlP5yRfcP8Z/Hd9Owv4o9mxuO6Pdq4N8NLLZvip9EthRw2FB0M53gUAK8JYgVboqmF2KfV8obu3roagyMMjTfR2iqRjzLIB0qcGARLboLWkrJm8BHuSE6gWbpSbVE4xnW7eofR/u3Fbmwuq2jTWFDO14A0SbqUN4s/d/md+jM12DSLMGNDdEh4qzyAmTlMY5PKcz0mJhcwGlXzmHL2x06jPUYt+SaojOJQ5t7+FHLy/x+Tikl5V5gD0M9EdLBJInOyLhnwhAqnKjkJdh0XwSD6wD66t5X5uEzZ09jEq8Qmz2HllOWsbF1iPmTCnmjxD3aNznM+RtSH3JCRklIPPXgDjZtKWPBwjP45pmdOML7mTPlPJpr/aSy3gpyTANVyUtSNr+D6cuq6eocITAYR0rLXH79cmRNl6NWEhIHW4fILKlhbmmG7RU+rD47mWCCA2vbD7uyP5pxF2w63wdBYOe+AOHe6LjP5C42jfc9r4lt9A5zFpaqpHJgf5C102ZxxuJbeL7JTqAtdPRS/jnnl4xneKb7ZFbePANvvIGRpITLo9uPKgmJt59opLmxjFBf9D17Qe/1XcaO+7/OaH4/DOQjHWOkPcSunCYV5Gdyw0nMXupmyoxSFs+rYFq5PgG0BWLs2jtAu6qRArNU8X7KSBbBgtXvNG+OoZmkqXo5ZO/2Hu6rmcu0Fb/nhvW/4j+nP2f+rvzQo3z5xr9xr9PGwfWdrFg5nURSYkNIRy8Nb+vjnSMIauUlzOw5L7xgOn/6SJjP3D+DXY/vRT3MA2ic3563OvjT1JM5/9IrKLl2mG0BDxt+9IautjkGUWOU34zf1xQd9eCdXYpgEwht7skrg0lhnakuDSfN1aCr1qdD+3I0rswdQ0ohFE4Rj2ZM/2ZDPlx026hZUsnchZWsfbIxz3CkcGYJM+ZXsHv9ISJNOkzyrBsW4Pc6eOpX75gTRu61GKzzwimFAAyG01iE46un6icqMHlxFbdfYOOX1PF2V/g9mem5kdf3UvSGciCYYDDn2Z5ItsAiWjjl5iVcePIU/v7ITjpXH8w77rSLZ3DXZ07msz96g/COPnMHaLUKVLoaUR5/luF//YQiSeVzf7uRN5Vbdfa9zz7hJJM7mZ91y1IatnQT3NJLvDVEj2Bh3vwKtJZtqNsbOe+6+VgvmsW6ah/b32on1jKMAqbXgsUmMunkWu7+RCnffnSEXc/rO6M/zT2NcCzEcI+OIpw0uZAFifvRDgX52PIv0N41jaYNnTpyLyUf1Rwz9v4avZCpy2tRZJVtL+43FXTznMxyqw9ZXo1xPDUtj/IWGAWxSMNJDqxu4Vdvd3C306qjEqPjdZyOFEbSnXdCNcFwil+8olDiX0Y0oVv/CjYBBR2p1ZHdgbxfrStjLBzlHtKBOKnuyDEf66iTwgeREMZGsidKfzht1kPHavgb2d9f5KK+roizZ5Qxo+BdUGS6S04jIymMDMUZTCv6Nl+YuBTxXmGxiRTNL2PWwkr27+4nuKXXnMjUlMzIviDPq3ux2638NnMmPxv4HksyD4G3mF7bhTQ0hRFEfVfTuKsPKaM7bK24ZSkNm7sY3tg98fdmHxZ7qRvBYdXd0gQL5WUetNa1LJh7DXvcBw67KjGQI/G2EE/8ZTOv1xdTP7eM/bv3mLT9sfXRoiWVeHwOFp5Qze4dvXS+1sqlXzmF70x6FkYiXCysYHBdZ9536C+MLscx7aw6Tj+1jp17+tjzzD5zsjFIg4mOETY93ojVZ6d0QQWR3ijxliEdBpuQCLSFdNG0bFNSdNtwVnpZcGINddV+WhoHSLityNEMOzd3IQhC1rRk/L00jjlyaMT88wfSU1JU2tYf4nOySvfu/qMmjhkvZMnMEga29uRxC8zm6Xu8oOHhJG39UaLD+ZLcFtHCkqU11Ftfpai8QCfUqRpKLM1wT4Q3Oxex0iay4Q2977Rx9v1ce+9OQp/5PY89uYeBHX2ju8YxsGnR6+DDp02lssTDk20jZu/K5bCiNTYz+OR+KhY8z8VTZrL0grP53mCcpi59sskdbVlWScrFxKMDpnvhU//YisUqIkdSOGsK+OHKHtrP+SeaolJ7zV5uv/UhfhjPsK8ngnqYYR5rmpVXQssmpKL6Yq6+aBahWJp/twyRGvv7OQnB6rNjK9D9rW0OUbcCDqdRklL2eZb1lJAdJzmWOXo4+xHOf2gwztBgnI7mIHI0Y5YnjTge4IMZooCz0svU2aV0OsQjCnIeLv7PGs0Gk3fxFbPxeu3s2dbD0Pa+cY1YwyrT57FT5upDO7QbUikqZhZRXVqHx+cg5Ejoq1LDxAdhVH4hJ440YRSVejh9SQ1Wm8g7O/tNSWtDzyjcGDAnsUkFYbT9QZ6Ifog/3/WK/rksxLM72KnXMW0ig33RI+qOWGwiJ924kN99qA/pHw+w+fv/4Fuff4G3X2jmnO/eSjjWrz844dSEKxPRbdNrwSkZ0WXjq7cs48zeX7Nxxe184zPPojD6Alm9dipPruWR71QiIvFOTwXDoSSdosDMKUXIb+5E6YtTVnlxntK8uerNjp0gCMRTEqExYoO5yKVMUEFwWqmfW0anQyTZFTZZnsnOMAcCcdOgyVHu4cyV01k2s4w3dvRQO7WYG29YxL2/XMfAu91H7IcYvZh4R9i8Bx8E5lxTNFJ9MQ5kV7tHuyq0+p3ULqlk2sxSArv63/PzuWH0MZqeax4nMmic16p/7WDP7mo63zo4OvaCwIwl1TitAsKFlwIbzd958rM7ueGtXzH90z/kx/duIrg3oAMXshpexj3NBBP84Zk9hIeTWN1WrHWFeqlQUrBYRaSEDKkUxEeo8G/E46s1x8UMRaV3cw+fu1slkC0bAiS7o4hOEQSBZWfW0fehm9n0jv5yRYYaWXzrK0yaPJtmm6jvohhT17fp5UF7qdsU2zQSmplwVY3oQIzXNh4iHklPKJhnESyj7n9eO/5qH0WlbvxFLqLhFP1dYRJDyazzoZLnWXDcz5SqIwwPrO9ETcumV7ro1HcqH5hMOvo7EG8LcSCUNFFSxxr/d+gjUa8vn3fyZIpddiLhNKHdA+NWC5qqIUsqqbRMSvFT6C0GZ5qM6iEtKagToVGMxGDEBMSpsQ3NUDDOvo5hBvvya5HGAyEnZCyCPuk81aBwWv3XeOA368xt6viQOPBmWx7zOg9pkz3u9ClFKE/cw1O37eaGJT/HWbUcKZLmwEAUSVZHVSxjGXLZtYJNoPCESgTBwvC2PuoWV3Jm6p+8euHTXNg4GdHtQ07IelKJZnBWefnYDYuw//sriLMm8drAR9j12kE0SeHxpxs566u/x2sboPPWUXy9MVEZL6Aq6SvnQE+EZNfEMMpcuGt3e4hkPIOtyIUUSlIwvxyLaCHWMmyKnpVWeTlzXiWnV20nlllAbzDO6VP83Od3HFUzT1O198Uiz73Gseee++djOaaalulrHmKwMzyhw9hEWl5GCA4r7skFpAPxw+5Mkp1hWgbyrSYdpS6uP38GK2qaaBi6kAs//nte+feoO2DkoW0s+f2bLDhhBhv6Y6SVOEJOiURT9Z3gvtdacVZ5mX3aFObNLmPNmlaSaRmqKymZU4JlUh1U1AMC4eGkee9zOURKQmJge1/+6teUhxH52Ip63rpSf1/qp0LdqRXg9k/4DpvXV+Fh6SUzmT+jlH//cSOJzoh5v817l7VibVyjy81I4fRhF4BGBcLpsuLzO6kq9+J0WgkPJ3UHRmNxqVry1JPfb5hKvJJqsr41Re8Vyqp2TBWNowkTlmqUuN7HsY/LT+FYY+xErKZl9nWE8HnsBHqzJJ0cgpohFBYNp+joCbOpwssJVdcjWjK0B1Q6egeIR9LIRoNZEBCdE0Avs9Z3RkMJyFuRWEQL6Uiandt6CE1QgzPKNBp6Jn7gzjd5ACYUMcuN9IC+YjEmdmeVFymraGqgip5/fDdX/ewvXLH1Q1jmLUF0iCQ7kzz6r+06QUxSWXzVHJo3dRHZM/qy++aW8eCdJ9MTtfOlzz2Hr9AJwWHda9amN/b8iyr41R1n8bvHG/AVOrkq9Dv+86ntnHVZC9ErrybZHUVTNA69cpArNnbpcuJZy0oAW5EL3+wS/EUuhnsiZEIpUn0xEu0j77l6loaT9DUMMPfcqUw7p55XHm3ggktnk8rIvBFMYCtyMXNRJVMnFTK3JIK2dyMnTj2Nu7d28dlVzcRahvOelSPtFt5vWETdJ9s12Y8mKUSb8yVVjhUVpCQkYvuD4343N7lOhGQSbAK+2SVccu0CmpoDNDy+97DGQmNLielgkpc2HWJw4XQef3ozd/5mNTd8/me8eenTDAZBSshoTdu4ZOnZHNw/SF8Wyq0pWh5aLxNMUDKvnK9cNZ9ZPM9wZLH+BU4nrnOnEi4+k82HiukYjHNozza96Z+jFWaYSR1ONdbqtTNz1afZlf152dMfRll0Aet659B1aK8+TmMXc9mxcWfLy5qSVTawiflKulkW9ETw6onGUJVUMmmFdFImnpRMdvXh4kjJ/GjCSDTG9WADVbQcUerneOI9RTjfI46t0fw+EsGEv59ttqlpmTWrD2ARLGSGEqPln+yEo0kKckImFUzS0TKELKvsr/RhFQVC0RQ9nWHCWaEs0SEi2JxYrKKJpzY68Epal/RWEpIOX5UUVCkf/qhKKpHhJFJkdJVxuJWjKh1b09Fe6qbutMl86JLZvL6+g4ONA8RbhnSxtYYBrr3xOYrmf53099PEWnRTnETHCAj6ZPHVK+fzZ4fIu81Bc0Kx+x1Iqou2Eb130PDqQf782U/zifDH+fwjMaTwHqaeWsiSgrdZumQuHT1hiOlJKtYfx5aFcRrXlBlOYfXZqT27jmBzkPRAnFkr61l+Yi39Q3EClT5WnjaFfz28i771nWjSxA9ebrlJkxTmzS7nxhPtvLHKyQv3b9fvsVVk+vwKPrlyFvWFg2iopOZcyra2CP1d4eyOUXc/c08u0HsVnZHjftjHhui2cdK18/jqJbOIpDW+9P3XiDQGjjkZjK15j23sW312ihZWYHdYGdjeN14BNrsQKi9yUX7KFBqfaz7qa5VCSdbft4PNRS7sRU6+98d3mbP4Bm7v/jSFbY9BRsJSPQW3RcTndzLotiJl1YWVlKJPwqre9A53jvDcjm4uXXw57a27mDmzFGnNLmwzyzkYqiSWSTIYSuTtBCw2Ec+0It2HoSdiCgrmjZFgoWp+OXt/vhWAS26tYlXBF1n1QBuD/dsJdY96O+QuNjRVL+Ot/ddO3rYJyNGMaWqvpBQTFps79sb45xH7DJKdpGLJks/CAzHSSV0pOJNRiI3oDWTT/nKCd/9Yw1gMiE4RW/b+CE6rKbkvhZLmfPT/Uhx9o3mihDBGdmJcTERLzzZ8DH/gyfXFxKNpBrN1NwN2aGx91LSMIlqIDsbpBqIjKQTRgpRWiIZTKJKq1x3L7fj8TkorfRQWOSnxu3A5rKiaRnAkSSAQp69zhNhQgvRQMo/kA5j1NzmaOWo6/dGG6LZRPaWQOaVeumeWUlLmZmNKRgrrK3/RKZIcSpLsDOc1wwz5gJGURCadv2WOdYT55bNNtDcP6mqMfTGevm8bb75RaNZ0uxoDPNO5grfe2o0iqaS+/0lmzXiFKR+eQyCLBskNW5GL66+ez8tvHOTg2nZOO3kSyyYX84edPURHUlgFAYfLatZmLTYxb+U6FoygJCQOtA/TN3u2CbcVnSLuukKmTPKz1P82WtM2LIvP5t2+xWzZe4gRA1MvCohOkdmnTcHmENn2xF6kD6BnMDYEwYJoyeC0Okyo4rGgSgw/jFzsfu44uCb7qVtWw4pTJ+OwidzfFRlHehJs+g5t9RsHdcfAY4RWa4qGs9zNnJNqGQ7E2bern7tklStP/RyzipOompWW7gTJuH6vjF6Upmh535Xqi/Hqk43s3N5DoC2Ev9iFtcID5aUMxNPU+BzY60tZW+Q0d8Gi28bS8+rpPDhEZyAOZJ+HnLlBcFqZu7CS4ZD+c8FPPsaqVW0cbNSTv5qWR43qJQUV1dwVaIo+L5jAE69+nwinkQ8DPzaSi7GDUXJ6xJqky7NIkbSuMZRdBBpOc6Y/+3GWdIxnQ3Tq1rcFU/xMnV2G12snFstw6MAQIVUDUsg5JdD/F+LYykfvlQSO4vOGFaSzpoDTzp7GqXMq2HpgkJ3ZlUZuGNh9I3PLsQyRgVgebNVT4KC43MPSRdVcuqCSydKzaAf3klnbSOpASJedmFSA44RKLB++ipbkSp7a2snWzV0Mtw6byUGXSuCIXAI4PAs79+/HkmXkWIZ9O3v5F2AVLUyr9bOzyEkEcNYWcNWnl1FfXcCvv/8GFQvKqZzkJ9gXxVfopHVHHz//5xZC7aHRxrKk6sqP/24wm6tKQiKW9WEwdhOx/UF+/ZVVunGO28ZHfiHw8807eezQMJ13rhnfzJQU4slR17zugRiVhW5aN3eT6ovxy4YBvS6alnFN9jP/vHr2rD6QZ0aSK7ugpBV2PNXEl7OQQ/0B0JNeUYETgp1obYewLJJ5Z98Ae7b1jDLDs4nZ5hApLnIhOkXkY5iwjyaUhMTmp/byqR29qKqmS6ofLWLNIGuVe1hwwXRadvfr5b3cMRUFFpxfzw+vraTQ3kVcLuU/5W5i+/OPs+iauZxzWh3//MdWwjv6jrnxKNgESmoKuPCUKRzsjbB+fQfbX2tl/+5+aqcW43DpNfPB/iiIAoVTi0jGM8TbQiaCyHyGmoPEWoYRHSKN73Zy6K6/YRVU1r1+EFlWWTa/kplLa9jRMowmgXdGMbetnM6fLdC1qTvvnTcWks5KL1edOAmtCOacWshzkcuIR/cjRzOITr23ZEeXp8gEEyCoJtTVKPlaBAuOSh9l9UV4fA46dvTqC5Kc3YLVa6fq1ElMn1vOpmeacNX40BSNSGMgO4+gF40TUlYex5KnkJArpf1ByOZYbPoOoWCKn8sun8u1C1WK7O0E0zN4YmcJq19uJtw+gioldJb4B7zgeb9x9ElhjF7N0cgATBRmPyEl0946zHAoSXtzUFfpzIHMAaYjkSVbilDTVoRYBgQBq1vXZp9UX8zSeRV8dOEhtH/cwUvf3GnKCozGANACvMOkWrjj7+cS+NqP+OtbgzTt7iewP4gUTpv13iM1qWxFLn1HkUNmspe6qVxWTehQmHjLUB5jUlP1xk9wex/rdwcQ3TY2eu2m0JkczbB7Tz9iFo2TTkok4/r2vKbWT0dzkP6tvTjKPcy+ZCa+QiftzYMM7da9DxAF08h8om2vie+PZehe28HNO3SE10T6KOlAnH/9ch1KQkIKp3nzwZ28U+I2Sze5WHeLYOGUE6rp7w7Tmx07Q4bEeDaUlD5OsZZhHQ1mE02Dn7buEfZOu4nyi69iY5uVPbv3Ee+N5nNEohm2P92kryIFgYIF5SR7ouYq9XjDQBkZSe1on2PDq0B0iBTPLOGac6ZzfyiZ9WrIf08a17Txu0Inp86bQSieIT6GVGURLNRNKaKu0PW+yEYGn8dT4ECwWIgmMiTjGTJDCYaHEoTbR/QVtsvGtMWVlJR5uOrkKbzVNMDLD+4c10PRFF2MTkGHjH//vi2UV/sIBRN86dqFLN76TXxn/JTtj+w254RNPVH27ug1S165VQXBJjDrpFoWuNcQXFxK6a8/RpXg4NSTJ/Nsb4SiEjf+YheCIGBziOx5q0P3+s4uHo0+lyYpTJpfziUrZ+B32vhzfzTriTA6FoWLKnjmuzakv/6U13/8F+qL3OwfivPr775GyrhOSUFRNSzZpJC7LDJ7jsfp/Je7S7CXupk6u4zrFsp4//1dIlv7KL5gKldc+Hsa9haSHEmNCn8eZ+/ig4pjKh/lNUuyYTZ/OHyDJ2+iyikTtQR08lPeZJxbulFUNEVvFOu9BgnVUE4ULQiChdISN/Or/Ah73mTjzyZKCPnR1Q3/ufhNLv7UXn547/d4Y95S/v3cXjp39SGRhYcZzMYxN8liE5l82iTiUX2SNyZcm9/BtFmldAgWUj0RrH6nLgmsjApU6ZNdxjS3N8tW4RS9nSN86dqFvDujmM4NXQzt6kdwWEmnZORwCv/cUj5z84lcITwEwyF6r/wW973TQ225l6vnp/j5qiRv/nbjER8o/YWXybwHxDPX6CXVFyM9ENeRQlnfAKO5nuwMc/8fN+lbf5uAs6oQW4EDu9fOeRfMRFU1nvvbVt0eNT1aElQlFSmSZt+ufv6WkLDbRQK9UfpahrAVOJi8uIquxgCx/Xr/JBPU4canf3opd1xeze6Aje9/7vn3jRsf17c6xv6Bs8rLTd9awfaGfhqebWL4wBC/+dsmIgf1xrjoEM1dBOhaRBtXt3Bgb4BwKGkmtFxE10t/3cJqt+0ISLb3CFVlOBDnpfXttDQO6Lo82fExSi8Vy2v5yUdnUpl+jbZLb+T2F7/Nq0+6Dn9MRb/XPY0DDPZH+d3tZ2O7ZBn/2SQze8Bhrt5dHjsbdvQQzoIPcheNBrnwpgtmIj9yD6qsonV3MmvxEG3DLpxOG3UzSigpdJGRFGrLvezb0o0c0xcXhVMK8fgcBHoiZIYSTJ5WxCmTCgGwGa6L4mizPNkfY3P/aSy/7Awuqt1H+oe/ZNYtF/LbgiowEr/BWFbQE0qOmKARx5MQ8kIQsDpECgocFNoPEdnaR/+OASZXefFeNoDDZRudV0Xh/5kS0jE3mnP10jVVA0ED9Qj6OWq+dknuakRN5yOCDlvLV0adiQSbANm6oJxWSKVl0ooKqkrqGMypXr6vnxuufZ4V55aweU4Z/VmrTUtCOiwUzSJYKC734vLYGbKNIoHSgTjbX2tFSUo4KjwUTS3SPYyTEoMtQ6Z0w+EIWJnhFDu7RxjO0XtXUmlGuiIIDitXXDmPK/2r2HLy30kk4cxH4/zgpBNBSpH87hP8+Bd3sfYv1qOi3h/Lg27wLWZdOpOzVtTxzsZOmp5rNpN3vC2E6NBrpjNOmcS0qcV4XDa+tGgHJMKsmzmJob2BLAxv9JhKQiI6EKNVVhAEC8mRFJlQiplnTuGmS+fy2rRuXvtdCE0xej4KQ4E4acVHkVNBdNved1Kweu0m2ig2gRDd2L5I3qJAsFA6r5xb5u1mduXpNDzfjBRKEtqtk9SMPovJmM0uYOoWVuh8muwiaCwMcazQYS4L971QXvo7KODxOWhtChBtGsw3kMkuquLDCdpGrFSEO9j8rsTUQy1oyoKJn8mcer4UTiM4rMxJPMBjm/SdwO5eHSps9dm54MKZ+L12dr02yr42EoLVp2slLS/dRMs/GpBSCmUZibhcSktXD3L2/tfX+OkNxmnpGkFJZxnSooVMWka0CuaYpVIy3ZE0CUkhHh1//5PdUb77s7UsPuN07l6+jo7nW5h1Rj1QNX7MjDjMRPxBkMgAFEklkZAYTtdTeMFUJtf6cJw5k65ELfHoTnNnKDpEtKyiwv/1buGYGM1GQrB67SYCQKfrZy3+xrYQVHXCLZGZHA6TDMbuOCyCxfyMmv3ZkvVBbtsfZEOBk+Vnns9J16zjxb+MN7s4XCRX78c9bxMLpl3LnvI+ArGM7qssTZy1NUlh/5ZuszFlhAFFtBW5OO/WpVx10mRK3SLDSZW/rdrHntUHyGQT4URjEW8Z4r6fvoWSkLCXutGcIlI4zczlNVRU+phf6yfz7xdpbdd/J/rYTmyvN+P63udwfetGXmifAjT8V7afziov//58AuWRO7ju09/j4o0erF47Nr+D0OYeNFUv5S1dVM0p00po7I+AtwwSYabOLiUxkszKDWtmcjca48auSZVU1JRMf1eY9mCM1BjkjaZo7HuumY9s7kZ02cbZsB5L2IpdnLhyOhXFbp75w8a8UlQuYsXc/Y6Rowj3Rlk/dA5PrWvLY1DnMmW9ZR48BXasVhFV1Zg9q4yMpLDf0NzJrgrNmvnYxJRdYVv9Tp1sdhjpbyOsPjtnnF7Ha6+3MJQlRhnXAzr8Ot4a4u77t3LnZ27jhnXDvFn8JaTQy4ff3asaZIEemqqhhYapKIfT75jPBX/ebJIPBcHC3rahPD6OYBOwl7q57KYTaGoOoL18P9u2KhQVgmPhj/njC/vobB0mE8vQ1x1BmllGPCmxd2efmVw1RSPRHyPBKLmro2WIp1SNaDiV18cyxkyTFCJ7AmwJpeDcEuqumIHlnA8h/bVLVx1Vj6wl9kG8O3mLClXnTHS3h3ixuYyLL/4ZniuCdKVm8NzWLgI9EZSkzo248AsnIssqax/albdb/7+IY0MfCTky1gYpQ9RvBllvlfxSUU6yUHM010XL6GpE1cbJJY9dSeXxG7IlJQUglKR/3yBvhVNYxZnc9se7uNL3I1b/rp30eywkRREcJ1VCcS3RVglZfu9Gj6ZqRPcP6X8e83AZiJzyYjdLbC+hrn6V2gIv1537E/Zv6c42tCc+riqppAfiZu3XWu5BlUbwF7vxeew8ta6N0z9yIae92o6rxEXBH79Jj7yCn/6nmYMNGlJkrV6uUie2jzyeZCFHMzx2YCHn3/BL/vJmFFuBg6Xn1XPGomp+0foKmWCCdCDO6pf3s3tqEZFQku1NBZxz4hUsmZMik1bYG9JdzQzpABXQlFEjHwN+PLiph7/tHjB/zhujlJzvgvc+I9UdYePje3CUe8bpARlIImOC1yTF7DWBfp+iTYN841PPmM1Io49i8zvwTiqgvLqA2bPLqM1qdPUG4/T0R/VJcDill5XSyrhnPO88bCJWn52KBeVEhpM6TDYrgW1ArQ2Agabo2kpPPtag6weNYZkb8iOqpBJqD/HLf2+jevJH2PXEOlOSfdz3iznsX78Tf7WP8MwbOWf/dL61Zi6Jl7ea3IZH7lmv82myLnkAZOXa+wZjCIIFvB6KCuGUqyv55VsHadrea157d+swD/dHKa30UV7tIzaSGlUGVvMXj6HuCJFhnalrwGJzFQyMUBISTw6uZPZtV/DXB/dhL3XjritECo2KEP4vVuOaoifVkWCC7XsHgArcrnIGhvpoagqQiqSxl7iZemINs6YUMTCUMMuO/5dxzDsFBEE3T0EwHxztMHISmqKZRiuqBBYBLDnGK0dMDLklKmUCmFiWEagNxJHCaVZF0rR3TeKGLz3O5T9rQnzxPlp/sZEdW2WUMYuDMy/xUfX1FSROv4WNvVVs2N7KSF/0qMwpDAq8MSZjr7t/KI7W2UL/g43YCxzMvS9joobeK4yEWTWlkO6ExPoHd5n6SL+pOoeLH/8obfE0f/9TA907X0aTFJw1BdQurKR3f5BUT2QcbFN026g5cwrDrcMk2keOuZEph1P88Y5X+ZNNpHBOKd+94yysgoXmvkheQ3hgczfBPQM4yj0IgoVFFW5qp+2jrGAOBxsHRj18c5zscneKBjM5V+X0g9j5jD2GKqkku6OHXY0ZDUJHuWdUHFEZFfXLJZAZvS3RbcNe6qZ+bjmL55Rz6Rw75dZdyGIBe4LzeTEt04m+ojeUZuVoRkfOTFS+yUqmRLLMYUOiwSJYWHTjAopKPWx+bp/ub5w9n5FtvYcvBWUTQyaUoqdhgN7GgG4/asAvJ/g90W3DUeHh9A/N5cOnTmUoJfBM22lseXFURkOHcKbMJGLMDxZR5yBte/kApTNKsNx8Kef/YQjxyivp/KeOS9VJXAKCYMFqE1l+Yi1FBQ4G+2PEshwmo+eCqp+nkpT0/1KKOXcYHKPcxKAkJP55/zY9IQF33HEmiytkXj+o8PdfvzOKhPsvhzFnOlxWli+s4iNlL4PNwb6yq9nbPEhJTQHf/uQyFu7+Lu/4fsSffvjmBwaiOJ44+p6CkI+osQjG34Fl7FGyN1ETNDTVAigI2Z6Alp2TjshUzU4cRrNWlSx50DPzHFBR0qMkl/bmQV5w29hQWMqyE37NKe+0Mz2yD23fbggOgdsF5WVYZiymU13JyzsGaG7roHVfwPREMLa/Y0k4Y9UWTaq9YMnL7pFIGktlDUXzSxG8djrTBe8JbctDckkKXr+T8mlFtGVRO2pK5o1XD9DaESIeTdPTMEB6II6jwkPFJD8nL5/EekmhJ5weV2t31fq4/VPLePDVA+wcaEQ9xlq81e/EVeNDjmWYtbCScyo3kRHLeOQVOa/+aaymlYRELJomo1iwyAkKnTYcLiuxnOfH6rObCwarX8e8azlQYItNxOZ36Ois9yidHGlMc++NATc8UpjcGEm3sdTk0Qb5uOMLo8+DxSbiLXQyqbqABdV+ysNPoG7YgDiznprp0yj0OnC6rBTNLGHJwio2be7i0KYuXc5iIkc4VUNOyObkZZy34LRyxsmT8blsNGzu0tE3ymiyeq9QUzKScb9y3PXGelAYqsHV88v52vkFFK76IpbF80lN+Sz/KXGTHojrtX+jxzgmIQg2AQQBW4GD6XPKaE/MZOqH4uxLrySV3IjNISIIFgRBQBAtuoVsVQF20YLTZSWdFJGz0GuLqOS9//l9l2xTX1RGiXjZ3l28NYTVZ6d+eS0rhUdQntrCRz7ySf5dpXsh/Dd3CnnoK4eV4nIvH5nVwGOOX1NUCBds6cdfdAGJeIYa3wiZLR1MWuY8Lpn7DzKOvaeQ8xAIOTXSsbpCxvZWTcuo2WxuUdWsuMT4h9DcLWR/tvrs2EvcqGlZR/BMQFQxEoOqqGhuGxddPJsrFxbyUlOEn/1+AzaHiMdXRVFpPS6PHRKQ6VGIvZUiFHyL+GDChF8a29+5l89CVTSanmsex1mwCDo72WITdeMSVcNR7mH++fWEgnE6N3Rx6MAQ7559Daf8fCay6uC5dd2jq+QJwjAQMrRR5FgGu0PknLPr6dneS6ovpjMwm4IEfA7KKn04yj2k+mLYi5ycfuoUbl3WTUXJXB4Ip7ICfKPnrSkanZEUgd7IMZOiBJvAyTcu4K6rLTQP11PhUdBaXkabdRFtTYOjFqTKqF+CmpYJ90Z5aEM7J885kbb+UN7zI7ptXPDpE4klJIp8Dj5+ahXfuX83TU+OSh14phXx+W+cjs9u5Y//3EJwS+8xbfmNZ9RR5WPKSTXY7CLdB4JEmoLv2Yw3eDFmkkuPyjmM3e0Z74Ho0NnCteVeJhek0d7ZRezVdnyCBeuMNFZRwF/kZub0Eq5f4sRuq+OhLT1HROtpijzagM5+TpVUnnhyD+U1Bdjtem9POloDekVfQBlQzOkXTOerNy6haSDCP+9eb+46DAb++Tct5tNnlFPw0Bd5/NM7OHnFduY9WUh5zQzdKSznfR+bEIzycu3MUq49dSqbukLsdZ5OQ2snQhaxZLXqCcFqFXF5bMQyMklJweG04fNryLKKlFbIZGSUrDSHwSUwACeC14qj3EPVlEL6Do0QbRo0F4lSOI3gtDJ7VhnJe1fT/cYhps+fjttzGqEjPgEfTBiLBdFto6KmAPnBPwMQGoHMU+sR5l5I78Ehbn9A4Nob7ufvf1h/zB4N/6046qRgIiuyN11wWrE6RKxWAZvDitU62mXWb6iMLKvICV362JKWUSULFkXTtUvIf5hza6xWnx13XSELltcyFIjTtTdAPCHlrSbN31VHJ6SrF3kob/0TF8/5Co8E4sRCSUKCQM8EYnTjapaKiui2UVVTAMC+Cco9gtPKOZ9YgiBYeOvJRqRwmhU3zOecxTW8u2+AzncOMdIe4t4nd/PytCJkWaVhS4u5VR8bFtGCp76IUy+ZSSyWYeP9O5HCaYYDcZafN5PXFlXSNdxhljFKyj1865qFAHzyyy9g89pZOKkQ4c27ufa8DxG6ch4P7B7IKyElOka456svo2QJO8caZcVunC3PsGTKPEjHSdz/Nu6vlYAyiuiwiLrPbtmCCkKHwkiRNFs3HKKvN0ImrZCKjyYPTVLo6Q6TSsoM2QTW1/rp784XvhNsArNLPMwqaoZbTuI3yXeJ7AmMS9JHnARFAWe5m5uvXsD8sgyr90/h/ns2kOwMv6eLmpaVCods0i726s+/VUSTFbO3YZZTBQFV1YinJILJAipOO4eCOTOhfBrt4SKs1hBl5R7au0a4o2mANkPq4j2Y87kNY4tNN5saOTg6pRkyCvZiJ0pKGSefkbcDNaCYCHhnFPPwR1oJfuXbnPDlM3lx7nl0BROmlaq7rpAfnN1G6mffpH9rHycssVB7w2zixScTHenJO35urzFvfrAJBHoj/P3FvThcNtxuG7FYRjeVEXTlY6tVRLQJOJ1WWnsjJFISngIHTpeNTEYmnZTJpGVUVUORVWIjKTQpO96CXlY96cw6fnrSZrSRIHe2XMrah3aRDiZNqHvz/kFcd3yS6Te101XzZcK9h2+uH29MhFzTJIVQMI76qa9z6mO3UHXxNEa+8FcO/n4vqUCCfR0H+dEL+3V5+PdAmh3tOVhytKHez/GOqXxkvBiCTcDusuLy2LE7RGx2K/bsllBVtazYlC40ZajCa4oudWXWZ4WJrTMNVEPd7FKuPG0qBwYivBbPHLEOqKkaSkph54DAhfNOYUebvuLWJTMOAznLJcllz0FJK2zKQuuMFWPueTnKPXz/ojhxuZTGXSUEmgaZVuunoX2Y7Ru7TFPvnv1BhgIxfaLoyrprHWYCcBQ5OXluJW6byNYn9yINJxnojWAVLEyuL6Z3c4/ZeJNllTJXO15Lt1m7H0lJUOiHeIiZlb6sXMBoiUhTtPdt5K1KKuvWtHLdHV+hL5RmVnESn/th1Hc2ctoFt/Ny1ljcGJvpc8vZOZxEjqRI9MfoVDUEwaJvi7Pfr6QU9r5y0Dz+wXe7xiFJ0oE4T246xCVLZ2AVFHzFLmI2wZyojXt2uJ6Dfk46H6JrOM4UfwmSMpjHrzlcjL3nzpoC5p0xBbfHTpHPQTIt8/pftoyWzlQVTVZIJSUGhhK0FDjxV63EWT5CKFVCcyBENJ4hlVEI9EQYyBIlRaeoS5sfxYtrlNPcdYW6E11SNm1CbX4HFYsqCY/xi87V/srVB7Kg7xQom0bJxxaRWnod03oFnC4bLa8eRElIui5WOorFKVIyr5Sar55K8uxP88hOH5HeqLmjgHxUYq6BjeCwIggWQsEE/mIXqqqhKhpOl9VcRNodVqyiBasoIGffD6/Xjiyr2DLZBaddpKTcQ12NnzVrWomNpMzrs9hESvwuoj98mJfu7eXHHU4+d8Ep7HhsjymR07lvkAfbTqXCfy4NmzuPW7/tmELNOiP2x7h/20yufOlN3h0SeOWVLoZ79Hkhdwd0vGHs8oSsTtSxGEPlxjHtFAy/ZKfHhq/Qib/Ijctjo8DnwJV9CGRZJZ6SiMUyxKNpoiMi0ewuQEmBYNNAFXR9EzW/t2Cs+CvmlvHFqxawsPlHnLF4OQ7bKdy7peeI2ys5luHXv17HA3WFDHas1yeiI8HPJlgtaJJCuGHAPJ+8EAVmnj6Z6Ce+hu+Uas444xf8Z2MXTz/VSCoQJ9UXM1cGSlIiqWp6OSgHIgjjZTJiHWHe2tHNNy+pYfn181n/163EWobZ2DFEVbkXR6nLLFUdfLeLn1X5qKuehduznxnzKzjYG2Fw6W10Rdy8tadLlwwodetyFzkll8Mx0N+rmTu0sZtPfPoZLDaROWfV8edaH7t+sIkfvr2e14tdpvtaOphkf0O/Xu7KkhPlhO6kZWjUG4k4d0VrwFJz70smmGDtQ7voaB3myotmkYzrtVZDIM/qdxJtGjRLPBOdvyqpJDoj/Ov37/JEtY9MLKOX1o5ylZj7PFqtAguml5BMKxzsGhn3OSWlEB6IsW9vgIHBOPvKvQiChXAsRF93hHAoSXQwrr+kgsCJV8+lqtzLzu09dKxpH21cjy3BZq/L6rUz5bRJ/OIzJ1PhbOK+rcU8ef92lISky10vqKDj4DAj23rNe+qsLaD+lEn0d4cJNwVHSZOqRrR5iLNuzmAruoglSYFfuu6FlZO4PLiEwKYeMrEMa0bOp+ozl3IonKShbYhNPzvESNeBPH/u3F2CkQiM+cHmsOJ0WXE4bdjsehKwOgWsVgdOhxWbVcBpt+KwiwgWC1arvtvyue1IskoqI5NMywgWC1edNJkl/nV09k+irXkQq1XAV+gkFEzQeiiEmO0b7Tj/L/yi8WIuedlBJqR7t8dahrn/ng0UTPGz6KRayuoKdeb5f6GnkJssjfsnR1KMHFJ5/rm9vPa6nXg0TWY4RWYoMbp7Nzkl7/+c7MVOpp0zjcsunMmLrxyg/Z1DaO+Xy3O0HxQcVt0UxWWlqNRDcbmHqnIvRQVOqovdFDisCBbIKBpDyQx9g3GGIykGslhtXTM9A6qKKglYBA1NEBgLDbLYRM46cxoLO37Bf854gTMvWcvHXvw19xc587xpx4YmKUT3D5n6NceSeY/lZjjL3VjnTaI7oGv0jBhJRNV060OvnZMum01FsZuXn9gzCnvMMRDJJfSlA3F2b+6m/MS13HPpVFY84yEdTPLGm63MnFuOrchlTtzJzjBr/7YNq9/J1JNrWTqnnKGRFGs7NCq8MmctqGJqdQEnTiriW/esY3BTD8ZOyej9CDYhT77ZqP8ejjSjSrpWvaPcwxnLJyPNuYMlk/8OJZOweiN6UlA00n1R+oOJUZ1923j9mrwxP8LkbCSZvrZhRmJppOxOxze7hNc/3Qid3Xy48nraX2+bsKRonntKJt4aMss9YxuVxafUctWH5tN4YJBtj+weB1E1IKhb+2NUlXtpax+m8eWW0RVYtimtJCTSQ0n6JJVAT4R2lxVV1XRHr2yfyOq1UzilkFkLKvjFyja0TWuJfOWLXLk/SKIzYqqpIug8DjUtm/7WNr+Day6bS9nPrgKfnekfvt/cCaQDcTa9dlAvmRi7BIeVK245ka9Z/orlI8v48aZlrPrNu+YiQUlIxA4M672sUyahJZJYsk110W2jbl45DzzbSM/+IMmeaPadzYdsG3Im5mLRZcPqs+PxOfD6HDiylQSny4bdJmAVBRw2EbtNxJP9O5fDissuYhUEBAuoGsiqiqRqpNIy0bhEWlJoHowRl06jxB8gM7WI4iIX5yyoYnNLkIaGPnbc/hRXOq7HNrOYkOLV/TuyngpKWiHZE0UKp9mUJUn+t5u5+vutgzRqllRid1jp7wozdGBo9N5+gBpLgtPKWbcs5YeXprEL+3n0P+nj8ng+6qRgdes32VNgp7jcw5QaP3MmFTKpwEmNdwCfrQ/RIpNWfATT09nvstMzktDLSRkZKaMb4hiIAlTdyAI1X1LCIlo4f04FrRc9C8Dbq6Jc/9SD2EuvJd565BaRJikcy/AeU2ZWVA5u7SX+hwdZ1Smw8/ktOMo9ZtNLdNlwFjmZs7iKz5w7g2LnAAPD9Wx8ci+asa0XRPOBMR8GRSXVHyNScyl+DmItUEgPxOlrDODy2BFzlDtVSUWLje48OnojtLUPs2heJdfXrkdd9SLJq7/FU3shOZTMMxcyml6+2SW6J0K2sWgvdlI6r5zgvuARTW0Ep5XF1X5eaBF4J3gz8X+kkUID5r8bGlVmGBozY0AJqmQ5uoStqIQbB/nnnW8iJ3QpjeKaAuS3G/SxOIYV/0T32V1XyCsf38XmS7/GLXcs4erlN9PzRtu4zxkckud+s0F/kbMTq0W05JHxDE0nwSaQNGDbWaAFgsCCi+q48PQ6gpEUaCokktgFXULEUeHBN8XPkpMn4XHaaNjZy0DLMMmusLmalBSVeEcET10BCUlhwYopbB9KkOqLEWkK5jXDLaKFyxfXsHbWS9TPe5M7Xv8nbz1XRKw5mDcWSkJi0+ONfOv6LzO0Lk5w+wEcFR4uObuep15qJtExkr87zwJBjNKNWTZyWPGWeaicVKAnAqcVn8eOz23H6bAiZKt2NlHA6bDisVuxixa8disuq4BVsGAVBFRNQ1b1/+KSQqpAwW0TiaRlVA1uX9HKnsgKXmvsR9XAYdeb1Pf8axszT/0102oLaX6hXweNiDk8EEX3eYg0ZT4Qd773CotgwVHq4pbbV3DT5LfBW8wPXpvK2kd2m6Vc4x34ICQ1bH4HkysL6IlX8MTWTgY2H1/T+ujRRzYRm0PE5bFT6HdSW+FlRrGbSncbnsgOtP5ONFnBUVJKTU2YjHIKqqYR8CYJOm2IVh2TbGCLNUEAJmi+ChaqPB28uGl0BZja1IvdffykjuMZeE3VSAfi/Hr1IL2HdJGxKUurEa0CFdU+/F4HQyNJPnXuTOqVZyDj4PrTLmDP1m7C2UnDOAdN1UznK6vfSeX8cp5udFJacCJK8k0QsyieUBI1WzbJE72TFGLRNKqqER5OsnVHD8xKk9rah/v6YR7+10F90lfzV3ZWn51lp0+hq2OEfTlwxqrJhSTiGVOkb6JxSw/E+dWjO4lH0wSyyCM5MXHj13ghjcamkYxAb3yng8lx/aRxtd4sos2UUlc0BpoGafrNvwilJHq/uuq46rA2vwPaDjEyApqikkod+SWaSFYj9xqVlIKgaKgp8nZHmqJh9enPbn8oya69AxT7TufU807jme06Ucs/tZCzzp3OZ09LYxOiPFY2g9W00BmIo6ZklFiatzd3cd23LwKrSKHTxsJZZex0tOjnYezOckqTuwYinHF6Ib5JBdiEJPNXTGFLx4hJgjNCjmXY9HijCWaQoxnWbOmip2nQbH7mIY2yJTXDYtNI+MXlHpYtqcZltxKOZfB77RR57HjtVjKKSkrWn3+nVcBtE3FZhWxSUBAsMqJFH39Fs6FodhKSiKpBtbeHaKaKvpiKZvOSUTTCsTTb24aIJjLUTSmirMLL3p197NnWQyYpT6h0bPBg/ldhK3KxsNqP1teBpUYkFs+MLxd9AAnBGP+NW7rY3tBL89qO40YxHXVS0OGdDnx+J9VlXuaWeql3r0M7uIPkQ+voWat7E9ecXI3rIycxeZkdWEpfOMnAcIJIyKZvp8Wss1fOeecijyyiBZc4nPfdakpGtk+QQHIw6P8LhqIcy7DlxWaK64tZedEsvnh6BEemG6LNUFbHI3vnMHvP93nsrJdwOOCye57ghuvv4V+/f3eURKSMlhzUtIzVZ6duZiltPWEe/rsuIGf4yGrZRq3+Ejqw2ESzhDZ0YIjQ3HJcHjvdB4K8Er6QC3/i4/6ddUT3t4xb4VlsIrYCB9Nq/Pi9Dg6sbkGTFDLDKVr3Bd5zu6kkJPY93TSueXk04azy8qdvn0ON9yB/XT+LZ/6wESmcNstpnvoiHvz9ZXSMpPj5n99leFsfotumSz147ShJCWk4Saovxmc+9sQ49Nj7iVjLMN9f+SUubPwVX3+rldC2nUf8vIm0mSgMln3umIxh2Da+0creNW1kggn2rD7A77125FgGwWHlrHOn8/XT2+m+/A5Eq8BNz/+KQKiWnp39uqNYNMPul/bz3aIrqCzxcHBHG/1dYbNBbzKxbXpy0lSNv/52A0X3rKbMbWfgUJqKMr3RbkyLBmKsYHoxiUCCTNZzOx2Is/mBXaM9oAnCXurGU+0jlWWqi24bJeUelk0upsobpydaQqlbpMLVhK35VSx18+jlLEIpG1bBgtsGdiGO0zqCXYhjtWSwCnrSVTQriuogY/cgaw7cYoiM6CWUsvOfpukMhYOomkbPQJRzltZysfVRtNZ2/njObbzw+G4yIR3pZy4+c/of/0sOQCaY4HePNzB37rV0bB5hz8t7Ta91I443GYB+XVI4zYHVLXk72eOJo04KdocVt8dOgc9BZZGLGu8AWuNGUo9u5Lm7O8zPbdvaxZVeG65psygqqMLv9uG0i/pOIefFOhzDV1M0+hKLWLQAGvbof+e5cRmZR/JXav5FFfzr5yt5dlc/T9275QMjpBxJEA1F1zIpKnVz+eIatJ99ldhAHM/nzyVefCoLqwrYefVLAKTTsPpbDZw/4OWZyYWINgG3x46qqsQjGaIDMTLBBNJwkvUP7gLgqq+cwjdP2c+64On8/cndLFhYyaGuMHvaQninFXHOyhmsea2F4IYu0oE4HQeClNcUUDWtmPsfb+DJwlLatm85LPzV6rPTHYhxcH9wFHGVkBjZ0f+ejGuLaDElo49F+12wCVTOKGZqwS6sXVu4/sRP8cqkAiLRIJqil6XW/qOYx8RFALy87XrOaJuFxSbin1rIySvqcNqtrHm9hcjBYb12nuMPbDBajzXkaIZXf72BVzn8y5lLgDN4M1afHatDRM72EeRoZlSW4TA7FyUhmaU5Aw1m9Hg8dX7qawrQuhpp3hqjuAiqklEES37TORNM8Nb9OxHdNnNVb3BrrD473lmliDaBWFsIJaWQ6Bjhzq+u0vWJHFbTM8TczQkWppw8idNPncJrr7cQbxkala6ZqE9jcIhEC/7JhVRPKaRt/yCSquHI9lBaQwkqPFYWlu5GDOxDfmINq76ynbM+VkP1XSk8vqVomohdjGOzJLGpIUhGQZZA0lFFVtGKVbDicPnA4SOhFANQ5XWgaqCqGumMQtiSxm0T0YLDJJ/dw22/72HL1mJ6GgdMEqpFze6cxshgfFAaYWOd4oz7C3pS2PdcM/ueax63iDreZGAuTsRRL4gP8vqOOimIVl3v3OOyUei0UWjvQmk8SOvqjnGfDe8bwpUMYy+KYxUKTLr50YQqqbx2IMQn/3gpjee+xMWfqWFo6W1k/vSOObCCw8ob3wnwmG8Jt71yPpuWXMOB49TFyZ0UD7ciNLDPoWCCfcEY08+diyORoGvK1+kLplletpFdOajH2bMFeqICM+aXU1HqYUatH1XT9XB27u6jY/cAyZ4oalrGVuTiqwd/wGPn7ODca4s545uP89ElYYKpBdzSOIAUy1Bd6qFuRilDG7t1uYZ4him1fhacPpU3tnWxZ1sP6f7Di2mpKZnAYJz+rvzegfESHelBsggWSpZWMWVGKS07exnZ2T/h5/OSi6iXjs44fSqWf3+H6OZear/noKJuLrGWYXNlvTd0MgAlxWBZtAJnjW5V6PLYue6kKczgeZZMu4D7n95D25o25Kgul+Gq8eGs8jKyo/99bZnHnr/otuGs8pqS3ZqkmBIWSy+ZyYdOn8ri8j68/W+Ct4R3kxfz0tZONr960Ky/H01JwJyYUZETMjv2D3LquTdy7sOtUF3JKwOnsX37HpRYWt/h+ewAJszQ5ncgum3m+bkm+Tn9vHpiCYkOv5PlJ09m585eDjzfnIf0yjsnUSAUjLN1Zw/B5qCp+WQkGyMMIIJRDrMIFhIjSbqzYm8WwWLyEBRNw2sLIDS8TubN3XQ/e4BoFEIHR/C0NOJf4AWrA+Q0ZBIQH0GLhSGVhlRKL7Farfp/BT4snkLc/hgORwSYhmApwGnVew8APSNJLPOW0/TyY0zq+QbX/OJF/hbQyZ6KojG2PP1B7hZctT6+/8sLee6tNnY+0ZhXXjT7WO9jsXKkyJUjtxW7ELOWuoY0f65F6fEkhqNHHwkW8z+rYAElg5ZSSCTGf1Z0WEG0o6h2M7vnYqXhCC+NqtLYEkS59hou/8EBnJ84n1Xt+bLQotuGtkP3e2VyDcHXYxMf632ExSaag61K6jh5DVVSGemO8NrGQyy+6kfYhTiPbDhENJFBWXYSJ//wZPZ9eBMAM+46l/8MxZk+uYiFkwpZWNaLBZVAZT2SrGvgZ0Ipc5VpvfhM5s3ZQdkXTkWWVVxdbzDZs40pM2ezd1ULz69qZiTnJbfaRGZNKuT8Kc1M8S/hpVIPL3SMHLYUJCdketpD+WJiyntPYsa4LF9Rx6fPKOeJ6SU8chTsYOM7aks9RNd10b9jgFltrbg8i8wHXFN0b+RH4+uJZLw81DTMxVemePHRBqLhFMPJDFhizCy2UVtXyCG3TXfscogUTy9m3pIq1rYMH/e2WXBaOfvzy/jC+dN5qy3E33++jnQgjuC04q7x8dVLZjFp5AHk+9ex5gc78XrglAd3MPOCL/P9oRr2RtLm83IsOxclIdG0u59HCpxcecrd9MXSvPDaAQZ7dD6A6BQpXVCBv9hFx9Ye5GiG+jPriIZT9L7Tae7gRMFCIp7BV+hk0dRiuvoi7D9SeU1RiRwcJtYVQY5mKJhfDuhlNVMCI0sQs9jEPEhrekhHVGmqhtWrs5M9Tht+hxWvpRt55wEGXu9g22b9+bC5rdAfgEn94PSClIZ0HC0cguERPSEkkmiygsUqgt0OsThacQoLIHokChwuJKcLVbMRyziIJ2VkRUWxFjASBuveEeqL3Lg8dmKCAIxqlH3QZSOLaKFgejErS98mdfoK9qw+8L6l3I/5u20itmIXk5dWM31WKdVlXg52jbBz/SFSPZGsdMrhS39HE8fkp2BAS2VVQxHciLVFTFlSSOuYVXrR2ZOhdBIRqYpwIkYqoyDLCnKOsmNuGBcw69KZ/ObT03lgU4wHdpZw9e1/5I1uL8++uCdv9aKmZZ6a/iOuVW7i8jvDjGzrfJ+Xnx8Wm4inzs+v7roAwWLh1w9uGwd71CSFZGeY3bGDfK55EKtVJDqgr062vt3BLbf+kg/Ht4DNwUudS+nsGObiRdUs8L2N+vQTqOE0dSfN5poTvkXPQJRIf8yU8ljxNR/eK35L/B8R5p0TgOIMWv8BFsw9kz3P7KPjdR0do0oqgijg8thYXg3KH3/L7MVTmDN/IUM3LGHNn7bkNdUM5I9FtJBKShOXB3LHwVDJzHoPG2WR+ho/lUOPccPSa3my2El6zAQ4drdlvJQdA1EuuX4h7kX9WJadSXhDMtuk1H833hbiymteYsYF0/n6jUsIFbl5QVKId0X4y1N76LvwcsL9I0TC+soZMetdfWiEJsFy1Cb39mInjkofciRl8kqMc15w7Vxuf+4LvPOxAB99ZAX/rrqCdJ++6yoqdTNp5AHU9ZsZebuLgYDu5Tf5nrepuLuSZYuv42BDH9JwUkdcvUevQ3Dq8G7Dg3ugoZ8X2kd449UDCIKFSfUl1M0uZV9nWEfjXTCDFTPKuK/UzZ41bZRX+8gYktaKDoBY92YrmSwr+efZHaimjFdVNe+TKCCF07hq7Kz8zIlcu3wK/3htP1tahs37Zyt2MWdlPcH+GP2bus3f1zlAOurIIliwO6x4XDaKnDYIHmLwuRbWvzYq7Nb0bhj/9EM4y0uhtERPArE4BIIo/VHUWAZ1JJ2FMAtYHCJCsRNrTQFadRxKS3CUypS4wCrUkFHcJGWFoZEUb3fP5dwXPgSZDP8Z0O+XYBNQxRxkozBeSfV4VtKaohFqHOSO1xez/a13/+cido4SF7dcs4CzbE/TffNfifXGmPXsZ3lW+gh//OXbJDojpi3sf5XRbGiRJNMyIymJ4fQ0yhYvpvwTMufZGhlsGsJV6KDmqhlYLz2LQfUEDoU1AqEksUiaVFImk1FG1TGzkD3jpG1FLv5V/DeecG/lG+su57vdH+fnhzQ6DrQx0DSYN/koCYm7v/gSd8MH0lgxJkF7kZMf/eh8wguW4XTCQx0PceYGW17TTVNHTb6l4WTew+Ws9PL25i5eWaMjbVS1mZmzSqnxDqM1baX5Z5vo7IKlF3Qy6f4TmFa7kD0+O0LICtFMnjVk88Yumq+8jfrpTSTf0mvHeZOfoiJLKh5bkM7/7GNSWsZx6kpdUyZH0M/qtTP13KlER1KkkzIl5V4GElK2sSgcfgITBTzTiphzyiSktExb0yBPPNVI2Sc/TPP2MKXzyplxfQUbHm4YJ69gHsIp4qrx0dETZuNpd1G0zMbr2/oZ6mwwJRpyDZq6dvfzk/hmZs4r59pblrFpSxcen4NdLUEatvUQHYzrpa5ssjGw6N4ZxcTbdLexwz0LgtPKiTcs4IdXl7FjwMsPv/4ycizDnMtmYbUJLFlQhbZB48SzfFgu/wjxfx4yFWB7GwO8cc0NzLnso1Rct5frL78XuTuK/SMX0ltwHU07OnSEWFYW+0jPmXdWKV+9/Qzqi9w0BWO8s62b7U83kegYIdUTwVlTQMEJ1UTCutxL7cJKAsMJNhwMEh5Okg7Eefffu0wvEyVr4SkNJ3W0kKSYCrCi20bB3FIQBWLNOpPaIursc9dkP5lggpr5FVy2dBJWwcL+3f2ju0ibfu9mzyxjfdY32+TXqCqaIpjPiUXQWcl2UUCLRelrzneQGwjAwNZ+Jp/cp/MhYnG0SAz5UAS5O0o6lCIVSiFnDXasDhFXiQvHQAJbJIVQPoKmqjgqBIrdaSTvPOKSg0RSoql7hMGiLwOwbmMn6WSOqKWi6XyoMSz1XFBLbhzLPJIJJnjj7neP+vMfVGiqhhRJo2qgbd/GO6v1+WLntHs5+8rHGP7eUzz4q3fIDKeOyOE5Uhx1UlAkFVlWSKRkQrE0wWQxZZUzsJwIpXY7xYERBK8dFs5DrlpE75CP/liCUCRFMp7RRa0MQasJdgsW0YIl28i0zJrLwfsHdTONgC6NPVYm4gPXRBcFnaBV08B6J9RMdRDKTAG1yfxI3vep+gtpNHtEh8j5l8zinLmV/PgvG0mMJPGVeZCyUDxUlVhMF8RKBBKQDOPMakflCg0aD2y6P8ojG9o4a+E0ZCUwoc56OJRkMDmVgkkFiH4n/dKJNGzZarJxjZr+osXV9AViHGoZwuOz4yxwkLCJWIRRXkcunNGQibCIFq45q56zKrcQkE/is7/Zw5//tZ1MRuaMc+r54pnw0YYK+tZ35jVZc3X1/RVeptUW8sLmQ2QyCr2HRnQLz2xC0JTRZl0mlCLQNMjHr1vIZfXNTKucy+m1AbxiL9fsEkgHkyahy9jJ1EwtYthjIz2UPOwW3iLq0ikLZ5dRLG1hQdmZesPYZ+cnNy3CJiT55Yvd2O//B+HkVG68Z5OZYNS0TKovxm/u3URZpY/CUjdnLfs15SvsNPdGaF7fwWB/jMWnTmZzID46qY5hkBsS6D+681yW/f56rFMKmHfLTTjE5exa3aJP6pKiu/i9cwglIWH12vWSWXuI7Rs7ifdGkRPyeLSdpKBMgMZy1fq48Kp5hKIp1naMYMminWadN435cytY9eQeBjpCPL+1k0g0TbgxkAdvVSWVAweDjBwaOWI5QlM1VE3/z2K14XSO/0wmlkENpxGtQ6ihJEo4jdwXI9oVIRVKkxxOkslWPe12SIcz+NIKbtGCVVIRvR7w+LFa7XisQfyOctwuG/GkzMGuEcKxDNFwSodwW0UQdIkbi2hBFPV3x0ikec+GIdF/HCvr/2koKpnhFG/s7Oacc1cCa81/WvtcmGsfT/N4TcG43tCxxFEnhUxGJh5NY7WK9A7G2ee2I1iWU1w4m6LzF2C1pFA0O6HMFNoDBTQHwvQOxgkGE8SjaZLxzCiTVlXN3YJ5/GCCG9tvYuX2n3D2d7eQ7u/EYhN1nHZ6jGz2B3zjjEkQYDg9lWXtj/GHd3y88vV39ZfwMAgDQHfQEixYRCuLphZT60uRSkl68yfrPTuQKKV41mIWfmInU5uG8C+vgqJqEvvlcSQso6ehpBQatnSzckktnzvDzdoXC/K0bTRVI9kT5cH1bfzw7g+Dw8PuAKZXLqLuiGbzO2huHgSgsMTN5MmFpJIyIwdDCCkZNa1vtx1VPgqnFzHwbrd5n2Itw+w+FOLMbY9TsOMPPHLnXVz21Q4SHSPsLfdycNESHK4eRIeInIMIAkyuxWBzkK1+J4HeCOlI1rbSYcXhtpkQutzFgpqSefbVA1gvmkP3UBxP42/JtA0zuf67DDT0j7JAFd1Detfzzabm1OGeC1uRi3NuOYFbal8nZD+XP78eML2nN/bEKXLa2LW2nZWPxpBjG/ImXU3RdwtDG7sZzhK2tj2x10SeAExdMYWqUg+QLdVlfZo1Rcsq0ypYvXamnTONU567lafu7mDeHFh4C7y45qAJVdQUXRolvCMFom7cs+mFZl2qOtu/GduvOBw5T7AJTF5cxcULq9nYMcSarC+Ds8rLHTcswWdPsOpJiO4f4s2uiIloyj1uqi9G0+utep16ovcmS76UZYV4UiKUkqG4mskramjYk++A6CxyIh+KEHzxII4CB1a3lWhXlOGOKCNhGA5h9iftdij0J6kMJilJSPiGUzgEC4LTgUVTKaz0EXeXEkrZTVkdXXHDgt1uJWMbXWghitSfWUd5tY9tLx8YFTO0idiLnFSeUEUyniG0eyAPnfX/Ypjlu1iG9U/u5TODddzbfDP/mX0/AKed58YthqiY5OdQVm7mv1s+Sisk4xKCkKIv24iNpyT8bjuFzjlYBQsZRWUkJdEbHKY7EGUklGI4ECMaTpmZy1QmzZncjD+3vdrKva+2mt9pEUb1csYOzAcdmqoRaxnmhu/tNv17je34YX8npyZt9TtZUduFgGq+XMXlHipLPBwKJ/GVraT2a+Ac6QeXj57kMroHOnQJB2MSEgXO+9JyvnR+NXev6qKlMcDSih7cTU9TXncG4YYBHbvvsyMNJ5GGk7y7po2XZ99IodXGWw2deolJUfXmo9vG9OW1fOu6xZQ4B3mr08m7Db1EQknsRbpPQmx/EDkh463zc9HFs3nswJBZfpCjGf7zy3VYv/MDbvyeSkbyUL8oxb5Qira3OvhHkYvymgIGq7zEW0OjiTtHSl0KJTm4rgPRbTO1cUoqvaZ2TTSLw9dUDVeJbiR/cF0HP1vbjq3Ixdwf/oqy0+003rXGJLIZ9wtVGSemN1GoaZmhwQR4S9gzWMjGNXvMJHL3F1/C5ncw4+ypBEpcBLf0Yi1yITpF0gNxcxLWm8jZ5zCaydsJtL7eSvs7hwBwTfJTMrWQZDxDIpAg1RNBIVvKKXJhXXEyV9wWwvG7H/Gpv1tofLpp3GRsIFfSKfm46tV9h0b4w3ONHGwcMMEHgk3g3Y4hDvVHTcSUIXGSC3fUVC2LajkyclBTNWRJJZrIMBhPE6+ahedDC7g4rbD6/n40DZafaqN0TglaQiLYEqZsViHpSJrhjigdnRAdA5hLp/WSUyQKdZkR0pEMZU4Rp9+BBlhcBfg95ZS5J6Nq4LKLFBU4iMUyJOIZXXrDpiupgt4LjefalNpE/Isq+Pptp3Kh82karDfylTtW62TMDxgx9F8JRWfZ73nxAJe2L+SKLa9z5vRSworK4+v6CPTsPy5i51EnBTUlk4hnUI1sJamEY2mdtu7SvThVVSOayBCJpAkPJ0nGdVE8KZYZp4c+NnIp6cbP/8ucbZQKDFGxY2EbaqqGNJzka//Wt7BSOI2j3MN5Z0zl4pkZhlNu0gp0iysRimR8tgHUjJXQUMJUczW+b9HMMiqHH+cjZ36Mr758gHs3TOPihd+gr0nHnNefX88F59Zz/+/fJdkTJd4W4v7/NFBS7jFLM8Z5a4pOfqt0d+K1BUhL09m1roN0MEnNkkrOWDGV555uJLSlh+FtfTzRHyMdzBeoywyneODbr/Fw1mzH0JVSEhJNb7djK3CYnsmmARGjTEuj1i44rLhKXPj8TqbNKqWsyE171wgjwQTh4SSyrLB8RR1Tqwt49LEGwo0BUj0Rvv2N1VhEi2m2835QFXI0w/Z/72LF6z6U2HN5KyhdEsHJWadNYW/bMO/s7MdR7mHOaZPZu6btsNIqY1nBVsA7u5RZS6pYtqCS7XsHaE73kepB9zJISOx7p4NbUqcg1Z9E23XtJmEsN5xVXormlBLaFzyqhHe40FSNaNMgu5qDJpPWIlpI9cX41+/f1TkyOT2YXKVTA35q9drxzigm2RMlHYib162bZ2kmEVPKKEQiaQaGEvRWTWPGCSdT4HZzVd1elFAKscKNWKQn/HqbQPTgCIP7h2nrgPgRcl4yCQfboDadwO4dRix1Y7NaoawUr7+fElc5bpsHvz1KT6yYg50j2B2iWRKy2ETUtEzbWx2mYqmxg/7qF0/hvLW3sekn2zl5T6n5nR8Uh+G/Fea5SQpyTGNoex8PNA7yUNbdUVM0lFg6b0451jj6pJCWUW0CKUCIZleBGdmUzYYssSQpkYzr7ltSWiaTlHUPVylfVEsX1BIhIaEYonjvoS//Qd0so8k5ti9h1tOP4cEwPq8kJBqeb9bla0vcFBS7WFztpyj0GEUV9WhYScjF9ManIWtTCKdk4lk1UbOMpqjc/8B2Uh++nPVbGskEE7zy7F62btHlpQWnlQULK1k53c4zUwpNc6Ch1mEiw3pN3Zw4sw3xlm293OlzYLX52bN1p+njGxpK0D8UN5OIkpAOa9eZawCUO2mk+mKmC5c5tsJof8RU0HTohjD+YheFJR5K/C58HhvF2YkCIBZNExiMYxMFs6SmqdooFFLJXzQca6iSOqG2k6ZoZIZTPPqY3jBXEhJSKEk8mjZ9Ad6LOW0S3LLy8dGERDopmbwFA5yQ7ImyL3DA9DSe6Jjliyu59qp5PPF0I93ZifhYmPu5TFej/5L7O0pCItkdHff9Fpt+jyyi/nsWm8iM86ZxxQUz+dt9W82kMNH4yZIulT8SS+scAimFpbYG+7nojoeqqnsgRJNYnFYysQyR6JETghGSBIFBKO2PU9AXQyh2IoYjWEqjeKxBfLZ+PCPbUH3nYreJWK3iqM9FdhzGuu4JDiszij0oA3GKiiwMW09Ejr2D6BCxeO3v2+3vfxnGTlnNAg1Mwyv1+N4TOJakIOlEG0FSiUkqmbRMPGo1NY0A0wwjk5aR0vqDb7wAxkOoqZpOuKnxUVbpo3d/cJxOz5Ey3OEkoI8lLDYRe6mbdF90wmO8n+Ma2217kZOiKX6WLqtlsq8b7VAIWl5G3nMIayzDjI9dTL//at5piermG9lxcVZ5dWLc5h7+vLnHZLtqqkZntvGoqRqbN3ZizZZn6s+so2tvACmUxF7qNtUsAROZEmsZZmNnGE99EcU1BaRrCoi1DDOyo581raE8zfUjvQh6wpRNbR+LYMFV56dwSiGR/pipTlt8YhWzFlay551DZIYSOtGmyEXlJD919cXUVviYVu7FLgr43HaGilL0Fjjo64lw6ECQ/dt6SAUSeTX9iXaRH2QoCYmh9V3mz+lAnAOrW7DYRE761AnUTyniuX9uy/P0yIN3oo93oifKvoTEpOoCzjmtjv6uCNH9QwDZRdF7K1cOtw7zyppWhg7ov2crcpnPQTx7v/Im8+y9cFR4WHL5bObPLKN/KM7Gt9sZaRjIu7+HI1UJTiuuGh/uGh+ZcJpkV5g5F03nvs+kofMxnipfNLFbmar3BzMZvbQciabx2FS0g61Y6mZgWXIahHrRgnotyJLKoKVk5ISc2058z4jHob9bpqArSoHXjjhlECqG8JV268dv2o148pmomoZo1aXO5WxfAdVIEPlfuLqxj5u/8QtqvgGf+HULzpoCrv3wIqaVe7nrx2/q0vNjxslwDsxVGf6/iNxnz0gOY9+I/wmj2ewHyDq2Wk3JZLIY6DwdeClnVyArZskod5dgK3Cw4MQaLj+ljkdeaWZPX+yoXhjjpli9OsMzE0odNUY971pS8mHF344nDETM5PpiVi6sxjf8OJrVSubt/bz92/0MDYPte/u4/NevMfuqf7Aq+zvuukKevGcprSOFfPnWZ0xdoKq5ZdROLWbr6hYc5fpDOLh3kKe39uIodVGyvFZntzpEzlk5g6amAPs69NWwmG3kGsnBIliYu7ASeV45bz24i0xQ17uxl7pxTfKTDsTzGtlHCgPdVDW3jLtuPZnhpMS3fvQGsZZhyip9LJ1XQWfrMMNJHUFTWuVl1pwyzp5fxcziKKW8C6KNQMlieqIlNBc4ECwW3WkrM4p+yZv8D5MQPohFwkTXJ4XTuGp9/OmsTaT+vprr//oIN3zmFdO+Ndfy1OBNGGO4fWs3PZP8RHqjpmfw0UbswDBNrSG99JedrOecVEt0JEVL1prVCMEmULCgnFs/fzJnfudy1n5Uv/c337uEn515J6uzJki5kVsmMq7VVevjnOsXkJEUdm7qItExQlGJm4TiI1Z+A9071+rjL47S9XPLSKqkkojrpdOX9g5x9szvYBcFCi39FBVbIBjI7hYsIKnIaZnUxL3rw0ZvH1R2RXAU2LEPhyE6jMVqh0wSy/zFHBguQlWjWG26eU86B5aaS2QDfRHw3MO7eHW1y+z7fOon5/Ip/gmNAR5ffhO7OyMI6LpccixDOpjEWeXlkXsvpzWU5ic/f8v0Xvm/iv9WmeuYdgoC6NhfUdWTQ3oUeqh/aLQpZzaUDahcTuNDSUoMBeL0hJOkkmOUNo+0S7CJ+OaWMW9ZDcl4hsaXW8i8TzG8/0ZCMP6vE/xUsDuwuAtAtDCU1fiTJHj6K3u44dL7eWH+2ew4pNtD7gr4aOwMjqqCqho9DQOEs1yIEy+axU1n1jOUlPj13zYR3N7Hwc3d2EvdVE8vYSicMtnOziov1952Cm1dI7z7zx2oKZlIU5C1oRTOKi+Oco9ep49mqD2phkVLqtmysZOeNe2HHZexgnCaqtG1pYf7Zh7E57abZaiDa9rp2KojT2wFDlyFTqonF7JibiWnOl9Cfe41+h5tonB+KeWfvYiS2qU4rUvISArlxW4kWeW11fuJ7B/C7ndiL3LqLNvDiPCNJdl90Cu43uKPUnWzxGDCSv0pk+hpD5mTQa5NppGE1ZRMx5p22o/jfIx74Knz89kvn0o0nuGV11rGwV0Fp5XLr1/ItU3f5vHnRktjYl0p77x8YJzzlmATsPqdlC2upHpKIdFwip6mQc6+ei53nB/nsT2VbH6jFVVS2bm2nU93l9C7v4VUdz7vQFeHHT1XTVJ0DlNcoqM3zDtWC9VFbuaUVlLka4fObrRoErKlOCWtkDlGVRJFgciQjCeQwD0QxzoSRpNlyEgo886lr1X3wrZadZ01o69gjJeW832qpBJvDengCEnvMzQdHCJz9ZUIi2Xav9KLJin4F1Xw+m+9xJRqvnDvENFwCt+XLqS+J8Zjz63m0oue/3++zPR+4qiTgqZoqKhYBA1USzY5GBNFDjrIqGEa5LRsQshFG0nhNJ17A6zKKPS3DR8TnlZNyWYT+4OwsPugQ5V0+Yq9fRGWL6wEwL64BmjO+1zyj6+w5BPX07CmncxQgp/8ZA1yJJVX6032RPWauiAQi6SpK+hgXnGQXRfM5MmDIZS0wqyFldx03kwda55dmQoOKydOK6GixM1mR4MO682KsknhNGd8YjEAG5/dR6AtxHZZJdQ+cUM1NwzNFYtgQY5lyAynePvhBgSHddRkXlKQoxmsPru+0vXYKSt2M7skjfzvF3n56zv1WvKLEa5fuB3xXD9lvin43HbKCpxUeR20HgrR2B9j4Xn1fPL8mdzxm3WENvcc8Zw0RReNOxwZz5jARYeIklbec4dpSBk4xQjy5NN4e2MAq02H2WqSkudJbC9146stQJZVUsEkqZ6IWc9/vyHYBJZdMotri16ms+bDvPJaSz57POuPkZYULCcsBHQi1SlnOgmsuJPU/a+NP6bTim92CR+6ai5ul42tewcYCsS4aHEN9pHnCYT8eulOUkh2hWnvj5kEwXF6YKqKlmUMa4qGLCtk0jKplG6OE3XL2AQZAm3g9WCxWsndHhxL+ciIWBwyMQk1Iel6SYV+LE4ncbkUVdMhqaJtVKIfxhPUTNE/w7VP1eXPd752kK8m65AyilkKFZxW6GvB6+xlytQTWP/SfvyXTceyqhXJcnzy1P8vx9EnBUk3xtEEIas+qB5ROM58MXOSA+jJRUlIJDpGaOuJjq6mjiDHPPqS6+5q+9pCJlro/yWkgGE92d82zO5KL2r7o6Te7sL9iy9x6Wf38dK9veZntz3ZyYU/c/BUpYeRSErvq+QQhwzMfialG4Y0vtHKU4tPZ3HNFKKJbqxuK0paobTEzfySFlZZXaYeTbInyo9+vx7I7xMYvIClcyuo8DjYs62HwU09xFqG864Bxu+kjJ/nnFXHzZfMYbn/bbrU87j5u68T3T80Klcsjprq2F1WPD4HddUFlKfW8Nhnd+YdM7y6jcKpNZSeNBnBMo+2/iipUhVF0hPb3OmlLLG+wPIVi3llW984PXyLTcQ12c+JK6eTScvsXN1yWLVci2Bh2gX1/Przy9kTSHDXN1YfEe5pyep8tYeLiEsFvPXWNgb3DprWqPWXzuRLHz2Bl7d3MdAX5ZbL5lJbYGFPQOJvD+2gf1P3+/bIBT3ZnTy/Ei0+QlM8zmDLUI6rnb47cVZ62bO7n68HzmJJw3WUeB187/kmOj/9pumIZ4RgE7AVuZg2q4z6Mi+v7exh5/pDOnRT02i1XsNrz71mWpZOSATMmgoZjVzj/VclFVk2egsZEikJQbBQfu/Hefmne7no2YthZj0caMWSlVwRhGN/b2NxSEfSqCO6gJ7FWwglk4mkahAsMRw2nQxqteWe4+hzCeCa7MeVhR6bSL1sv2ZbR9ichyw2kcieAJ96cSF2u5XmDTqJ9XbtK9R9qoBXf970P5Xi/l/G0ScFs9mnJwcga5QzJnLMZHJ/L4+XYBwrPYo6eu+EkN/s/F/GUaGRsuxhm9+Bpmj0HhrBMs/GwK4AXssyCv74G2a8/mFasjSM0hIodrRTXO4l2h3BEk7nbXFzQ1N0K857v/M6Vr/TlEEGWPtkI5HoDLa/0qi/0FkiXmRPwOQ0wKgcspqS+cuv1mH12ol3hE3TFGPVm0tiGnvNcixDa0M/9svnseuEb7JvP7z0s9m8ets/+fmXXsrTrrcIFqxWEafLRpHLhjbSP+66bF6b/qYno6RllfmTCvHYRHoPjZAOxHn0jxtZv3QSndv3TIimsAgWKmcU86WV01Cx8v1gggPBBJZs+dJYDRpaPzd+aD62j53FGdVe1t/0e974w2bzOGNLPZqqEdjUw5f3PW/KXeS6ri07aRKnxP/O3JVX8/y+Qk5q/iHt33udpZMKePyRP3DZdzJE9gTel1Ca0U95dV0b9VfcyqOP7jS1jAAsNj0xVM0o4bpL5zCn1ENXJMXfn2ig462OPF9wwSYgOHUSo+gUaW0K8JvuMMG9AZSEhKPcw+8f3clAa0j3vT6MllXumBt9PbNPmAU4SGmZTFYKp8bnZNsf9xIOA5NrsXiL0ZzdWNw2bG4bdtuxj0siAZmUipZWMOtP2TnIKugNZqtVQBCyu4UJdgm1c8qYPquUV3YPmBwooy9iNOB9s0v46rfPwi4K/PBzz6OmdM+I8z9/Et+/KM6rHdXvacr0/+c4pvKR+WdjO6lMXL6ZiH08UdNwos8f7jv/r0JwWvHU+bHYxFEVwjFhTKz2IidVc8vwF7lJxDP8q+b7XPdmjLtfD5GRbNzV8k/m/+RXxJqHKVpZR0iqxu7oMoXF8o45JhEZOyxD66dymq4dn+qL8e7Du82yhhFWn53SeeV84aaldARjPPDzdeYEFe8ImwQfR4XHhIxWTy8hGk7Rv7U3u8pVxp1DZE+Ar96+mrde/Tz76v7Cqh81c9X87/L85Z9g36oDOQM36p+RUTQsxZWccqaTjW/r41dSDJ4Lp0N1JUn7ZHoH47R1h4kmMoy0h3RjpWiGAy8dOOyiQVM1UkkZp3WE0tDLPPjZKXxSmElRqVuXN39x/ygxTFF5+Kk9XP67j6AlEkS2pbF67Xjqi/AWOhk6MKSL5OXIsIxl+eaOwzN/2MjBS88kHu3hovOm0/ebd9j8rgQMMWvHR7jlxXX89bcbUJqDx1R3NspcmqKxf0MnjxS76WoM5JW7DJ6ILCmcO6Ubx1O/xXbfbh752SXcPvU6Nj3TRKo7onMN/E6K5pdx6plT2bc3QE/jAH3Z41lsIqm+GO19sVFXsDHXOXZiNVRbVVUlcig8CkCRFGRZRMooZCSVnmiKa9d9nlNFG3L1EqyJPvB6EHx2bF4bXm+aweBRDwug9+MyGfTJW1X1naOqIlhkrIIFwWJBEAVTzdkYz9zr6dzVR39XGMFhZeY50ygu97D5gV1597mg1s8FdV04xDA/yarykpDYubmLzhVn4rQmKSn3ELKJ+YCD/6P4oLkVx6SSOg4KdRSfhfeXEP5fCavbyoqr5nLe4hqe29DO+r9vn7AebREsWP1OZs+rYGF9CcFIiq27+tixV6C9eRBBsHBf7Vxu+f43cPbuA7ef9pECMrkCaqJgupFNhLKx+uwULazgkR/Mwv/yT0nd9iW+/rDEzicaR9maBk7dJrLghGrO7bgLKst567RT6N7djxROoyQkRLcN96QCrv/4EsLRDAfbhjlj+SSSaZmHuyM623WCno2maiTaR/joM0t4+NAXkN/YhGXRfGa6Szngbh9lHasqqqIhZWSiKQmpoJ7Jn12Mt/ogsd4YtR+eg2XhPPBXMJiazcDQAfbt6ic+nDDLYO8ZikpkIEZKLkTbvRsttpGlS35AMi1jtYkccOukSqN82b2hky9NOp3SEjd71+nlAG+hk8ISN2FvVC+lKPk73cNFJphgx2N7sPrsdM6vMNE8APtb4LJpwzw9rUgvzeXcmyPyHUQLzpoCnFVekp26s9q7j466iZn3IFtaHOwYIZhaTlVCYsMbCZYnnuMrr32DO7rCHAgmUFMyjnIPy06bwsdPncy/VI2+lqFRLkvWRxtFPerEJbptFJd7CPZH89QJNEXLqiirqIpKKi3TP+mjSKqLIuUQXtswOB0IXjt2rx23672/61hDECzkrq0m6iukB+JkggmsfidLl9Ywq9bP9jGs8sFd/dz+ZCludylSWN/aq5LK4NZevnbPO4g2geHW4ePiAnxQYfXpJkofJLfimMtHuRr8R/N5MyYYwCOKbL2PzGeoUNbMLaN3f5Bo0+BxZ1BVUplXX8IZ6r9ZdvUZXLK2mMiewISfdfscXHZCLUukR8ANc6s+zC//tplI2wgATz6xhwOHJjGt5iKKChzsbe1iOBAzSzuCTcBa5DT16w35AfP6bCJTZ5fh+cft/Oe23SyYt4G/bLyL83cWE24cNElURukklVFAluFgOx+65JOsKXXTtKGTVE8E74xiHrzzZNZ6TmVaOXy98TtsVWbjtVt5qbaAdCB+2FUywP5n93HK6z68M67H3+8lnWzTER/SaFLLZOQsIiXCjuJZnHDtFyi9tJvS2DAUVhIVZhCXS9nQHqKvO0J0INvYNFbrYyROxp2LqpHoGOEXzzZz+1W/oshxiE1/6qKvZQjBaaV8cSUuj43BnqgJwd38wK7R44oCgV39DHvtTFpSRd0lM3nnyb0ke6KM3SVN+P3Zpvr6t9q4/Xcfgef+Yv6bN7KNmXNP4NBbHQAUzC2lsMrHQEN/HlM5d6ElOKxc+4XlXDCvkl88upO9T+4ldRhvDEOb6pt/2cxdn7mPK/ddSSaUwi+u59wzF3Noey+pvhhWtxW/1wFAJJpGSUr6LtFtnVBcT7AJ2IpdZrksL7KQ1O7WYVLZ3YWxQBRsAkUlbvxFblRVw+eyIVoy9CXsOMVCPM4CLAV+xFIX7jIXBeVOXB0pkvkE+vcMpxMsDt0fGssE5WtG+0F5IQigZKHxaQ0lFeeFh3ZhL3aOK/Flggk2/FX3a8ljrkcz9LzRdti+2/86rD47K7+4nMoSD4/9boMpB3/cxz3WXzjmlf0xJgN4/4Ndetokniv6O6u/u48rHlvBecIlRBoDxzVQcjTDX3+1jt5PXkJqvzyhS5lRk5RlhUkFYaJffZyBXQFO+V0nJ532cV5tHUaOZvRmVjhNg9+Bx+dASsvE+kcnX5vfwfQz6vAUONj7VrspsWCsxDLBBDueauKhO+/hk00PY6lfzP2N80kF9Kay4LTiKPfopYVYhobNXVjuPBd11TOcMTnDjv1Ok/ykpmQyqi7iNhAAbSTA6tYebKJAdDhpchGONHZyLEO4YYCwODjq2WAbNSiSExLRkRSdXWHW20T6YnUUu2ZyYmUXmiawc6CCkZTEzv2DBPujo7aWY5vcOc/LWOMUOZph2yO7+fDzzQhO3YzJXuKmqNbN1VfM5YRqPy/v6WPr1i66tvXpKCmjHKUqSGG9jPSjm5dR4uxj81q3/nLlfH/uJGAi7kTB3B2E9gX55cGL+NaaDvp/ux5PpYeEfzGyouKo8FC/vJazTp2Cx2njr8GEWfPXryF/N/bm6wfZdyBI2+bu93xPlIRE++tt3NwY4Nwbf8clS2rp60nT0tWva03ZBFL9MV5Z1czWrV30NAyQCSaoWF7LbTefyMubDrF91QEzSYlOkbqz6vjyjUv46V82MvBu9ziEnxzNEG8ZyrlHOvTzE7cs4yPzW9g6MJuH3mxhd+sQ8ZSfEm+GEncRCbkYj9sPxUXYqoJ4Q2kqK1K0dxzxEvOipBicPhsWtw3sNhBEEK2omhVVy4wTlzxSaJJCvGWI2PsoXduKXDjKPaZ21P9FGKq7p8+v/MCPffRJIXdyFyfO0If9fE78txKCRbSwYFktb9+6j2QSuv+yA+/J1xE9yp3NkSLeGuKp372L4LAeluClqRqyrCKrLuT+OM17ZWpfamDJJ0t5w2UzV16GEUrGpdsPygk5T6fEU+CgtMSNrcgFYjgPcaMpuuzDP+98k8fnLkSVZFI963S9IkVF9DuomFtGPJpmeGc/yZ4oneqVTJq9G9AZ5wb7NRVIcOeD2/lX/7fAIvDMyCVMrZY4sbaId9e1E1ePQWdIUVHJSpeoOkJFU3Q8ejKeIRSMc8ghEk9JeJw2hpMV2EWBuJTGZRVRFVWXVjb0sXLBCDlhNjl9djLDKbOeraZkZMBm2EbKOm4+HMsQyyjIymj5ZixmHfQE9nZrkIwk5qHAQC+XOCo8yFlNKxiFg4pO0dzRvLn6AMu//APOem4HxIZ4o6eGgb5miqYW8bFL5tAVSrBuezdKQmLKWXUM7Ne1jZScfokmKQxs7iawtWfcLvFwoaZlkp1hXv/XDja/04HH5yAZz5glOCmcJtYyTLw1ZMJLy2t8nFe5kakXnsOPA3HaN3fjrPTicFlZsLCK2oL8VbazpgDRqfcf9IZsPm9FcFi5YIaKtuNNCutPwm7XFwaBUBKXw0o8o+K1+vA4fVDgQyxz4y5NUFRkobNLO1xrclwUFIDNa8fisepSqlY7GlY0BIzHRdWyi7T/UlnaIlqYdlYdZ5xex3/u23bYqsF/OzRFBz88+doBknFJ9y7/gHYux7xTAN5XLe1oJpjjuShN0dj22kF+1fojlOdepO+avxG47skPpM6mKdoR4YuaomGxwdc/dzIVe34DH5/PSbZ9CMVOJhU4sfkdZIYSyAl9+2pJSMi2bFlAHdWEkqMZoiMpvv2hmdxZ8xSrPvd57v7pGp1kkyP7kBlOMbS+y3Tw0lf0uqHOR69ZQKHTxg9/uoZExwi3/uRNPvqRTyK0WIjFMvzlt5cyT3yRD/2pjLbN3Zy7txglKWEr2MjrP0mT+t1D3HjD3/nzviAwHiEyESIldxw0Qcd9G81QgGEgnZIJ9kexWkUa9w5gd4jU1PpZPL2UM5bUALD1xf16gjSeg7HPmSjgqS/i9Itm0rCth4HtfcjhlElqvOXWZTz/cjMd6zoZTgzy1HCCVYVOUpE0mVBqwrqrlvUw+Mf33jAhu8a1ALgnF7Diqrm0tQzpTW/0HV3RnFJqpxaTiGfo2hsg3hbiJz9/i3vrCqmeMoPeQw0Esw3NdXv72fxOB+H9Qyy+Yjbf/tBMvvfAHva/1oqm5shQZDWSjuU9MHaRhg7VUNaTJJc4OlYDaf+6Qzx39jmUe/4/9s47PLK6fPufOdNbJr0n23uvLH3pvUtvKooNREVFUBQLKnYURUGUJrD0zgLLsr33TTa992SSyWT6nDLvH2fOyUw22UIR5P0918XFJpk5/Xyfdj/3HWfmzHw82XZuPW8mXcEYz6yq4/N31+Lf24MSlbBk2/jz/edjEgx8//fr6N/WOSoU/YltMWaU3Ublng6mjs/GNxTFH4wxGLQw5LbitmST7czCkJePsbQbU1gksyPA+MFB2jtVZtTDWU6eEWd+klzP5QSzFVGxE5PUYVFJVvSe0Fh2JP3Qw1k8JhGKiJ/4nJQUjLN3ReVR9YSOxI6qpzDWXMKhvqPZoUSzPyoPN7S/l2MuN2O0nYH06FP/1WlDg2BgcWEI8aUaxFt+Rv757SDGaOpML5rq5zpCFEWb9LRYjeQ9+Hme+V4l8B9euamQc3O/pOLjR1wno9VI8TEllE7IYttT+0goCebku5lgeodJC4uo7BjCt6OLR3pDeMozMZoFSlw94B1k/JRpXHbRTFq7A7z2wFbiA1F2Ri5h4bVtNDb4dY4qbUp3rHNWDySF/kBJHPTiScE4gZhEcFAtNWgDRu1NPqore/jpTcdw4UVd/D5vEW+9UEGgun9UWouEqFJlNzUMYBAMOMd7kGMuoh1DxHpD7K3tIzCoZhByWEQKxAknswet5KfV04Hhmro4LBULKRmFnCDcOsS6FypVBycrqkaux8qCY8q47Jhx9IXjPK4kaI2psEWT2YjPG6a/O0jcF0UciPBmRa/KCGAWqKvo4T7BQP2GVn2O4cM8/6kEeJpT0a9XSiCRanFvmFVbWvnx58ooWFzGP96ro2kwzO6GfqrWN6vDWynfre0PEYqIRDWCvmSWoO1bCsZZ+UY1/pMn8LXleWzuSFDd2I/JbMSYfEZispGAWIjb0welxZgliYy+MEVBEZstRGMzh+wvTBgPGWVu7CUujLl2yHCD1UlMdhOVZGKS6hQkSRkzS/goHEJCTtC8sp6W95oOOXT732Bb1SD6H7UdHfroA1xQg6CiZpwTs0goqmbBaA/uR2VjwQg/blNiEp/71g4Wn/kTuv82QPnEEmaMz2Z3dYdex9ccq2A1Yc21I4UlfRhKWwQbdnVhvqQYqATgzUe6uXHbyfzzeytHrbWXT8rm3ssMfLl7Io1rmnl2eyvXHnMqirIPBFWbN9w6hCIqzFg+ni2dHlbtWIbPG6Igw0ZDh19/uP/9Tg2rSy9k1XP7EMwCp91yDPU1fdS/VjtMtJdSVzdn2zn+unk4bCbee2JYljMhJxCsBqafNI4TlpaxZlMLjds7APW+iCm0KOHeMDX9ISa+9h9uP+8c/MH5vFM3MObMRqw3RM0btTgnZrHglAmcuqiUJ1+qoHVzO+89sA1IajHnO1FERUWauC2Uzy8iHpMY6A0xfUER5x8/ng0V3bz/xB419RbltAVWsJn0SfBg7cBBWgPRuExIlJGUBE63lRMunckvTj6A8vbzGObO4PHjr+X5FyrwDgyrxSmygm9HF1t2dB0R42mq6QuxRm+dfBdNLlVBTpfk1JhZDzHVbS9x86sr3RjvvJ7cJUVk5dzFvT9epbPEpjVXg3H+dPtb+jZtRS711iWHKhEEjDYjd3zjOE4R/4XB52RXzYl4u4PccPEsTve8g+ieSE9kJgGxAIfTi7FgkISiYBmKkhOWsLjMmEyDdHbBoF+FngKYzera73BAdo6Au8SNqdQNuTkYXJlIpkyisQzCokw0JhGLy2oJV5QPFq8yGkgkY0Qts/6glqatMcIEmwlHeQbl84toXN/yoejPPyn7YOWjozCD2UjBkhJ+9vVjkZQEd/1xPf2b28d8cP9XLSEnCFZ7Wd/qx5LrIBoROXdRGa2ZdtVJKcN1bW2RGvJF6NneoYp7JC3S6mf9rF8A7+q/u3yuwj+Nw3rK+qi+qNBU4yUiTSO/OEEjsG61CqHr7RgaHiQUZcwZVr543gyWDv6NZRdeyfW/6OZvT+zCl5wJEGwmyooz8LisSENREASK81xE4zKNNhMJ5eCyRuaMXH5z3DYSNVU4b/4qL9y3Pu3vZquJIo+dklIPLclhKdW5DHNjGYwGugfDCBmqhqOQdJoGwaBScisHv71KVCLui6p6FEoCu1Ol1Ej4opgcJhZcOJ2LT5xIx2CYJ/+zB4vFyPITx+MbirHypUoEwcDsPCNZi8vYv6uTvn09unPWghhroVslTRzBSqoNstUf6GWlxYgkq2RwF50yCWnFvbQ9UUnJJQFKLv0yZqsprT+iNbeP1gSzgMltwV7mIaPQRXa+k0goTl+rn7xyD7mFbno7hujY3T3mNQO19m9yWyiamYfzlV+x4g8tlJW2sGRDHu9YTVhyHSpFesrwG6iOQcuQxi8poa87QLDZj8mhli/zyj2cIj9K9OF3sf/oZhrrVIbX0ws34//Gg2R871xMZZPwx+xkWLJxOTMx5EYRCvsxjYvgBqK+GLnxCA6HOougKCrSyOUEk0lVbjPmOzDmOvQsIa64iCtOIpJMTNTKRxo0NqUvNQpLKkbhY4GUmhwmZp48gVsvnMXdoTgtK+v/59a5j90pAEyYlsucxAuAwpwli1i7o+sDi0p/mk0RFXURURLYFhVzrO8Bpp94PW/+K73mZxAMTJiUTTQm4a3yJvUm1AdHDovccfNLbJb/xtPGrwOQNfgeJocJ0Z8SzSYJv7q3tPP1P5vw+9Rod2B3Nyt7w2r0n6Qi0NBRFqMAkkwmVeQWZlKzsk4XWkkoIu++fIDMIreqD+yx4bSb+P652cBiNj9XqTPLag95uDcMZisJ7wCLluTyklnQxVzMWXZsNhMOs5GfndEMJ0TZHj2XFzY3s3NNk86xkxDhpRcr8dxwL1XbBqjY08kvH7iAYFzm4cd3pek/p75csa4AB16toXG7molJgbjaRM938oUzprIg8SzxWfPYPreQtoYBduzrZsgXIdIRYOfLVXzlQC/uTBvB/rDeOJZjKpumJdfB5CXF1MYkdUE0GnDPzGPSwiKa9vcQrBugd08365t8umbE6pIMTvj8j5nwuT20mS/ib3/aRO+e7mGOneSxGx1mshcXqYJU1f16djWWmdwWZl08ne9eMZ8ZiRcIZUylMzSRPT1DrFrfxJIFxRRnOXhnaysdu7tHn/xOIlVc03LJLXLxuQtmsmLaZgDa2uEq5TFO/7mbJsd1/OKpXVS8UIVhROlXMAvYS9wsXVLKps0thNqGMHlsLDhhHN86qxz5yb9jO7aUP+6aR193NUtOGMfQrT/mzUe6uepGL11ZFvyxGE5zGVZHALNggokxzEoCwWMlKyxi1sp6MTWLMtqMWFwWzHYT9vIMzDNyMOTnYsjJBVcOYSmLYNxEMB4nGlMZdsW4hCQNM9OmElUmBAGD8PEEo4LNhK3IRUJOEArE6AvHEWOfbM/hg9rH7hSUmMS25yq5yTcFk0mgas2BT7xB83GZrnwUFqlf3cRPp1xC7cpGtRmafLFAlajcuKoBk9Wop/uaaXXhG/9q5aGfTyPa7OexrrNIyO+qcE95mL5AE0Vp26JCBzX50GjHEEXHleFyW6lf1YAUloi0+bn9x+9ywvmXcElBOXPn9OLtDtC/r1dHVPn39uhoCqPDzPKJWbjuvZzffOMS7nWdwKu/3ZjGNxWq6+ek2zKwl3yO8PMrkaOyjrcvmZnHry+LIP7oKp7+VWPy7H7CLx5ayKvfuJ9/PLJdp24Itg3x4B83YhAMLDp9EicfuBscdmxfvJMf7+pE9Kc/L9r+pWCcYN2ADhE1e6xc/41lzN97F00/X8v47y1j+sS7kESFUCBGNCJiL/cQ7Qriq/ISKXKRUaCWQ0SbipiJD6jSsS21/cOspGYjJ104nW+e6uKpXYX85xdr1H6BhkYyGtjw712c+6INo92CI38tVrsZW5FLhwdrZvZYuerKuQiCgaee3ot3Y9uYi5TRYab0pHE8cn0v/tvOoXZPL1NX/YTH1icIBuP094ZYvaYRQRDoODDMyzRy7sCS62Du+dM4flEJgbDIpRP38nTKfnw/fgHHeA+mO67Bm5zqhmHxIG07BrMRt8OM3WlRNQWiEifNK6ao9k8wexz+xV9h4++bsFiMzJmci8lh5pSLPbQt+Dmb93eTlWHFaTZiMY7DYzVhzZdIKArGDDdOmxFre4BEIAlLFhUMViOC24LgsWIqcqnl0F4vlBYjGrIIxHMZjMbwh+MEwnGiUZVmYyR6TTALKIqCQTkYefZRmMFoYOnn5/PAJa282HkCf/nteu5a20zcF/2fyxLgv5QpxHpD7Htqv/7zx3WhNI4XJSp9IM6ZD2parVY19YUSfRHe/M0GvQYs2FQVLzmqLtyBA+qwmUYGmGoJJUHNG7WcP/PLkAHBu95Fjsm6joQUVKNie4mbiXMKmDo5l9ef2I3cOqTj6z9/1Txm5bn4assg0Y4hfX5h6/pmvn+WwII5e/j2Qivdwnlc9Y33dISTdm9iPSHufHgHj/70R/TFxhOJ9WO0GdOaawazESkQ15Eqqqmf6e8N0jR0CpNPngS6U4Dw9i5mXOYiK8dBQk5gthqxWE1YbSZiUYnuNj/NX/gdSiLBy69WpvUyRr32KTMDZo+VfI8dw7TTGH+fC8Pi5czvy2JioZtAXOJy+woSosjvWi/klb9uVRvgQggpLOEuzWDRseUIgoE9Ozro3tquZx+CWWDtS1XUVuXQneyJJZR0uVglCZedfupEHry8FQa7aci4ia/++B38FX16QzDui/Lk47sxCIY0IsKRz5PmEL509XxQ3ifjvElk3HYGv9+zmMrdTSw7fhxN1V46NrSOijCyZNtAEPDMzOWqK+dyw7wmeiNmXquSSNRsS9tf1l3n8aR4Aw9/9VW9Bi5YTRhtqrSl1v+Ie8Os29JKa1Ufclgk7osSlxVo76TjwZ14xm3jib/8ke88Hqe1O0DoV49zoM/G629UYbEYkWQXTqsJm8mJaJ9MnkPBUgjYnQiAxd1PIi5CkjYDOaGWFV1OEoNDrLhULU9e/lCU0A2XMBAR6Y+I+INxQhFV7U6MS0j/5aDTIBg4Zl4R8qv3c8plC/m7x0rgQN9hv2f2WHGMzyTWG/pU9R4+EPfR4WCJn4QJZoHJ507m7i8sZUe7jwfvfu+wqflHYdoLbPZYkaOyHnWnXiOtPGHOsKqljmS5Q5/aHcXksDgs4pGCs7dk2XTiOkemnQtOmcz543bT1jWJnS9X6dBZJZFAMBiw2E3IWXaWnj4JQTCwbW0z69ryONfUR/j+1/GYH2LZhb9hzT926CR7oJbCGt5t4JrYONyZTbTW9h+E5nKMz+T0y2dRVdmbxlEkR2WCjT5++Z9dXH/Bz7nq1Tj1P9/AuGtnYrnpGh7e0UksKnHOhTPIzrDS3hvE47LSOxCmpzvA3Y9swz8QZrDel0ZqN2ZEbR2+vm+sbaR5+jymFp/IjJid+fkNyIqFiJxJ7PerSIgKS770RV5BzQo0Liuzx8qUskxOnpDBiy4rT29qI6EkMGfZKT++jEhIpPHdxkPqRFvznSxbWExiw6MgSWSd0XfQVLZBMOiSnyNV1LTztJd7yJqUzTHHlpNhNbHSewqupaeztrKbd57ciSIqbBBlBmv71WFKsxGMAgkxORlvMzHrgmmYTEauPWsqJ5heILGtAWn2PJo7ezCcMDFtn53l3+DBa17WpU8Fa5JAL6n7q8q8qsfcsLVdnRFJCjhVNPZzyeQJrH9rLRDkmH3X8fVXtvD0xib++E6Unq4AipzAmWEl4IzjC8bIsJoQDBasxkJyXUmodywCJiMGSZ3CNwz4UHwRlTkyw420r334GjlNhMRc/DGRkKgS8MXjMvGYjJR8RvNK3EiiwkDHEEoyQPy41qaEkuCV16s569u/42/v9acp9B3KshcUcsN1C9he0c26v2771GgzfKBM4dOYEpncFv59WwZtJy7higsns+acO9j31P6P7Vi1Rd/oMLP42rkcv7CEF145QOt7TWjZgr3cg6ssg2DbEJZcB+VTc/B5w/ha/PpipwnESMF4GiJFo+GG4eutsTVmjsukd0834UBMjdQG2rn9guP5i9XEtteqiXvDPPL4LgrLPEiSwqSFRZwwp4hFhQnWTc3jH4/touSWLzJz0gYG3mth2U2FbPRY05wCgOiP0fRmXZpGcKoVTc/hh6e00HvifC7b0kbMG8HkMKkqZN4IVa/V8KN3GrAVnU3mhVdAACL3xhGDFRROzOYLxxjINNcQlItxhbYiZ5SxzzuXv79aSdvuLuTg6NleWlBiFPQmaOnUXDxZNgSDgQKnlbLIcyTeWw8mE67pUzB892aa4qfz9LN7VC3i4LCsYrBugBdeOUDVvEIqd3fputPO8R6+eMVc+gIx/rypLe0apN4rULOA99Y2MeXyX9EdjPH8Xw/o3Pza57IXF/G9rx3LP5/bS9N7TQfRYU88dSJPXLwT9rxD19I/8N2/76ZtmzrMpkFoAbo7VOEb15RsZi2fQFN1H73rWwGw5tr5+sWzWZC7jeCtl9JSNUD5T04jLJopzHHSaTkHuEe9fEb47av1iL6Ijrqyl7jJm5KDySzg7QrqAYwkSkitQzo0N6EkWPdGDdvu+jpO56OEQrB1k8i4RYv4aeMTXH1fgEgojtNtRVESWCxGVQjHKBCVFCCLRGIqLrsHe4kNMn0gxkhEAsQ31GKwmTCOnwA2J+b5/RxzXA05M3KQrvg2rb0y/ZE4/YPqPEQoEEeMS4hxGafbyn1fWUqurZYH1pfx2iOqIyV1IPMjbDIn5AQtK+u5aEPrEWl1aJaV62RxsQeA9WbjmIim/7b9V8pH/w2TAnF+/paFX7z9EwYsy2j8xtaP3SEYzEbmXDqDPwz8msgf+8j50Yvc/X4zieTfpp5QzqJ5xTz32C5MViNFJRn6xGm8P6wuZHMLEQQDLTs707QARjt2KRgn3DyI2WXB7LES7Rji5bdquPSbEymtvp8fX3Axv7HMorqih45tHQzW+5h4XBm3XDIHSUmwtzfOcaVWqo4t4/afrWLZmT/mzPtLefxRNUsYLRofCwudkBM0r2nmO6XzkKR25KjM9Aun8cVLZ/P02zXsfrpC17INNfiIdgUx2lTOGkuWDafbQpM/j1k5Azh3PE7P71bjLstg/ldO5fQTv0hzXb9KER6WDo3YkdWBM9Efo7vdjzvTxtTiDObl7iT26xfZ+3A1ggCTjq8k6zefZ8egHyU5g6E5QYNgIGt2Hja7iW1rm4m0+fVFY+iAl1/+9L20wbaRzwEkYartQ9T0hLj97Xo9kk5FWQHEfFHe3NpCx96etMa2Z1oOsxaV8KuLAzxn+TsA50U6aNnYpsqzpqrepTgjS66DjAwr8aSCocllYeIJ41iQsZbgrX9gy7MdLDw7j8Flt+KUYkwuyuD9xjAXfrWYvn19THz6Zh78aYNO6Jg1O49zzpuO22Gmod2PtyuoM/Cm8p8Zk2SDoQYfd/9+PW9vvYFnZj8OQEsr5B37eS546B2eWbGPSEi9zpGQBZ8liskoEIlLKIkEcdlFjiMLtzkTh2cAq9GPwd+DZflMDBMmQcEUpIQFTp5MydrrGYyXUd1noTcUo28ggj8YYygQIxyKE41IRCMi0YjIprYh5hdOxTfUMDzIlzIT9FFbQh5Dg+IQVv92PTfXqb2roxEa+7jtM+MUFFHhvQe3s21tHqJ/u84b9FGb1hvQBqF+ft1UXnCq/ZIzHogMLxSyQtP+HgKDUcShGAajgcHBKLGIqNNNWHIcXHTuNErcNh6xGqnsDY0K/dRMm3oONvsxGNUyRHtVH1W+s5kubMEl1lFaMB+vN0ynYECJScSSddewKLNubyf+WQXYrSakYJw1j+1h0xu1KvldbFjgJ3V/hzLRH2PzY3t0Z/KLm5ZQtvcneC78EV9dUaliwWUFBCMmt4XC2fk43VacGVZOXlqGPybhj5eQO+inZfcgrrpBpi2qZOKZDtV5JhFW2lGMVULSmvvR3hCRUJwCpwV66+l4vYGGJvUzvd5ezrlmNxPnX0FWrlOFvSax/0aHmXlLSynOcxGJSWze2EJ7j9oHUWIS4abBI3o2EkqCRExCGbE2pF7TcPMgW1ZU6AuIxlc1bkoupfkuEoQ45iQ72dOyeGSrHSUq4ZqSjdljJdIRSJKeDSOaAtX9bErWpBNyApPbQkm5B3p3MdQyxMKz88j+1TU8sDOBxxWipsVHOCxy7Y+vxhX0s9V8IzHvKxjMRjwzc7n9K8s4tXALW/uPo6FdVepLpWExCAasRW4mLCulvzdI/84uQo0+npQ/z9UPVfDczbsA2LFd5rJZAV5zW5ElhcIyD2XFGfQPqgu5kkioojiCgbisIDsLEc127IoTe4YN0+Is4kIOEdGDrFiJK04CcQdDMYn+SAx/SG0uh6IisYikZgkxCVlUkMMijz+5m5c8Nrxt/k8tsEUKxFXSzk8ZPP8z4xRAXaR82zr0GutHmY5psL5LvnM8hTkOXnq1ir79PRRU3a9/pi+crf87oSTRPAe8KvohKlGzuwuDYFD7DkqCjGw7lxevJ7F6JTO+8CMu2dp+WGemiAqxroA+bRxuHuQnD23hhzd9g9yEQjTmpammT+cR6tjdza97N6p8S94w27PsZJZl6LXtYLX3oMlzndQuJumLAIoyKgujHJOTcMcsMsyd4HLSEYilI0CS8pW337iIY0wvgxQDeRttmZ+n0gvLl53IjLOqkGMyQnEOACaTkBYdp96HkabtSxEVVfHLESGx/UBS30A1vx8CL1QwaXkfpfkudjvMSfy62vjfvroRi8tCTr6LoZ7gQds/GjvU9L4SlYgnp5s1RI84FKN6Sxu1OzvYf6CAOT97kb0V3VTdtw73zDx+8M3jKXBa+MNze6l8uTpNZEpjfwW1r2YryWByWSYkEhR972TaFt3LW00DuB0KTz29l2CzH0uWjX9OPhtJSvDWk1uRw6JKrnbKRE7NXU+iZh/NpgUc2NdNrDuQtqjaSjO44KZFjC/OYP2OdrzbOpECcR761To2nHYbf9+1kp2XP43DAc7WN5m78FzmTsrh4nE7CRls/PQ18HrDhCMikqQQE2XcDguBuIzHaifD6sZuHofRECeREIjJRuJygmBcwhcNExZlBgIx+v1RfENRgsF4Elmm9hWUmIQSkwi2DRFsG9Lh0YCeUSZk8UMNr32U9mnpI6TaZ8opgPpCal39YLU3rZn3YShvNQz8hfNLsBgF1uU76ZUTxOddzLEnv0L5V+dz0R/XjcqtozBc+tEQR0pMwt8TRHYWISgKWUKNyrzYNHjI4xNsJjJm5iJHZUKNqvB427oWfhSKM25qLrKoEEvy7ytRiVivyh+vQUVjvSF6ugPqsSUX0zQQQXJ4y+SyqNGsonDvb89hQX4PX/hdO81v1KUdj3NiFld+aTFfnbOX3f48/r79TA68+3Z67V1R6SL++doBJl5/JnlDb9LuvoaH1zQx6I8SPvYMzv1bMYR9+M2z2LzDSyigRtJGmzGtdHE4EwQBizEEAwc7V2+ll3HmLjyuceqCnHwe5JiMv6IPZIW+lKGmg5xSks5j1EU/+R2jw8yUsybTXtVHqMGXjtZKQUoJVpN+DFIgjjgQQREV9tcNsP/FKh1KmpFtV2vnkTjtTT6dLgPSFxSDUS3/zFhUzOR8NwO5l/CiF9b/ewdnnzoJMa4wVNOvTj0HYzz7tCrMFOkI6Aunzx/lxfZlRFjMU0/uxl/TnzZYCWpTv8cb4p2XDxBq9uvC93FvmP2vVHP1wMn8ad+tFEZXgjOT2XIORS4rEaGInd0l+AeqCQXixKJqxhwTZZx2M4EMKx6XFY/VhM1kxG4SUBIyIVEkLiuERVnNDCIS/mBM/c8XJRoRCYfiREJxfThSo/J2FLqYMD2PC0+cgMtiYl/bIG+9WUN/Za9O0Q6fzh7pJ2mfOaegLXKTZxfQaBbw7+1BCsSxFbmYcsoE2qr7GNx1sDTk4UwRFcKtQ3zjx++giIpa/1cS3PmCgVMfeY+fv1tL3/bq0RtYSRbRRCCd/CzU7Od7z5Vz8fF/oKs+ihTYfMhjMBhVGOr995xBVzDGT779hs662re9k8HafsxZqlazGolakMJq5GQv9zD3rMm4XBbWP7EXcWB0ohltsbPkOrDmOwk1+piQacFV8xzXXX4zv3ynIW0xiveH2b2/i965x7CzzceBdxtGJQ9MiDJ7n9rPxSvryZ5VgqKsJ9yrOqvuNj9bZheQlVGKbyhK7YF24hGJgpl5ZOU6OPBeE9FkY/VwJkkyMdkN2VkH/c3kMJNgDIZf7b6l3D+T24JjfKYOv3SUZeApcKk9oWCcWH9Ep8JQRJULKH9JCY9/rpIG14187efvMbi7W6XQSBmiEsyCzrIKyaHHFPx80XFlXH/VPBYUZvDH1yr5+/2biPuixHpDmFwWpp05iYA/Sut7TcOABasJ9/QccnMc7Gke4Ik3e6h+T0VLPbSnS4WPJvmzpECcYI2XhKxmV0abCptubRigvcmHt81PuHlQdwi20gwSokx8IEqo2c+GR3bpEFhAJUBEhVu3rm/h+o4hJs+bwpL5RfT7/bzd0E9JqYe7Wr7KiVOLuLnuCvwDERQ5QTwuE7SZCEVEAiERn92M3WrEYjaiKAnioowoK4QjKgldJCYRDKnZQSgQJx6TVFbYmDzcx5ETmFwWZswv4tqTJzG/6VcwOMRxy8+hu38Ca9v9SWDHET1S/9/ZZ88pJJE87U0qBlyLquzlHs5cPpGVybLOB4kO5LDI0P5eHbuNUWDP+03s39pOuHlQXSyNQlpjVI82k6LnwxtTkIJxdq9qpLvdjyAIxH2HF59OKAmV6yVlajMhJ/UR5ISufGbOspM3PRe/N4x/VxdGq5Gy4gyK85xs1rKA0bQukttCVsgt8RBp8/Or5yv52vnfYsv6xoM+q0WI19f1E+sNqTxCqcN4qWgqRf18z6Z2jFajPt/RJ8qEAjGsdjOyqBDsC2EwGsjJdzFnRj4Ne7uJdQUOmy0ookIsIuGL2ikoLSYnG/pTRgEyJ3iISNmEItJBxzWS9sBgNuKcmMWJ50ylqzNAfUUPX7xpMSeNdxKVzMTlBH9+uYL6ih4irX5dXCgSikPBJMxRAwuPL2dD8+Do0GhFAYwH/drksrBgaSlnjPfhNleiKG4iHQEdnWZyWxg3IYuOdj+t2rEmG84LlpVhNRvZf6CHmnUtunMWByIHkS+mZQCCgBwRGegYQo6qrLEa0snoMFO6oBCzxUTT1nYirf5RFfm051uOyoSa/VQNxejvDeJ0WxnsDzN+XBYVf9yNM2MfeT/8Ir0dAf2rYkxCURJIScU2i9mINUm/HUtSn0dikj61HAmJelNZjKl8R0pU0nW2tXONx2UCcRny88DhIGYsYigQG9aW/j8b1QyJROKIrs6i4//+cR/Lhzajw6w+EKKsQvxcFp0gz5LrwD09R0fCfJh9eOYVAOhzBNpiZc21Y3SYVd55DZY2UntiBPunBkXUBsFSJ4ZHM8Es4JiQqTJ4NqeXmlIFYDJm5vK56xbgtJt48O73UGISzolZuPKc+qIb80aI9YYOSqONDjO5S4u57LLZvPBCBd5tnbpzHQ1bn7p/7fvWfKd6HUY5n1TiuZHlFO3+wXC2EqwbOOTMiUb5YfZYyZmVz3XXzOOSKY2Id9zDK79vJpGAceVw7ENnUL3kNzy9qYlNb9epRIHJ4xvpcASzgL3Mw/j5hVisRm65eDazO/4Ajc1IXUGk1iH6fvQy9z6zh/pdXVxy3XwGhqKsfbUag9HAzGVlZHpsbHq7jkB1/3A5bWT5KDncqE0+Gx1mcucUMGV2PgF/lIo36/QIP3UmRgrEVVRSsixYfGI5V1w2m9Ubm6lZ10K0feiQ9eqRBHsGs1GncddQY9q9XHj1HMrLPKxZVY9va8dB0q/6vUyen8agqpH1GUxGLNk23r7XAhE/n/tLFn5vGIvdhNVuxmIxYrWbcTgtmK1GTCYBk9bXklXW03hcRoypE8uxqOoUYkmnoLHiKqKiQ08RBKy5dnLLPMyZX4RgMNDYNEBzZS/R7qBOgggfrnwk2Ew4J2bhyHfQt6XjiOGon5Tt3PjVw37mM5MpaA9vX3eAjg2tiP4YYkpEE/eG6d+gLiwfhtbW6DDz1ZuXUpZh4wc/e4+hCpUWQrCaOPGauXz1tCl8/2+baV3fMvzyJGvQKskbaRFpQpRVTqPkZw53XIqoEKwdfRJWm0g2JHl1VvxzB65CpwrtDMQZquglaDVReFwZt35xMXFZ4Y8PbNabzUpUAqOAJdtGuDvI2o0tRH1RNbI8hDNI3b9gFnBOzOKGm5fw1NN78e3oOgjSqlNZJwnilNH44GVFpb5uGhwmlBvRG0r9LIJRhb8OhNlb20eJeybH3XYRl2S/jTIQxTIrF8Pyc9hVO0hX59BBTLoj+wcaICAUiHH6SdOZE3uShCRhOPNCwuZZZJi76e8TMZpUZNUZMwqo8gZZbxYI1PSz2xshb1YeUxeV0JJhxVehTria3BZV1yEmkRANmLNNjFtUjEEw0JCkRuja0ErXhlYVGWUz6seWtbSE629YwGMPb9ezAK0cNdg2xCN/30qowZdCPDhsusNN3iPBZkrjxdLIFrVoWzMlJrHv9RqqcxzE+8MHZYF6n06j1k/eC1AzayUmqRrCQ1GWf9mMYDWREAeS8pjqgi/GBOJxmVhExJIkQxQEA4LRoBPcyUn2U0lSEGMy8bikciSJcpI7TOXccpV4iPmiRLuChFtFWluHaNuiDr6ZXBaOvWQGPZ0Bql6rQT5KptqRZnJbOOGmhVx78iRMgoGv3/oakVb/B97ep8U+M07BYDTgzrQRDsXHbCgbjAZsRS4K5hXSublNn2Y9GpPDItsqu4lMzk1bnASzwPfPdhK//hT+/dSDXOqL4D/g1fHcRpsRT3mm3uQipXmaSi/xYU1nUI1JBGu8qnRiyn6UmMRQu59JWQ4muDbSeuVc1qxt5LjjxrFzdycFJRn85tQD4Mnngh8HCdT0HxWkL6EkiPWG2LKrU4/uR7sfB5VvxphFONLromUYoj9GY62X960mipZ9kQnfLodIADIL2d6ziN3VjfR2BJJsoqNHvFpZS7CZGPSGeWtVPXXTTiIak+jbHsQ/oBVutuFrHyLui3LLPe+m1e0BsnId3Ht1Hpm1b/O85csYDQbkRII/37MaSdMm8EeJxySy812Ys+xqCTE5HDbz4ul864p5/OjPG+jf083Sk8dzfdk6Wi9YwBvNg2qmkIyoNU3tkZmZwagCJOZfNF2VRt3ThRSWsOU7iPaGkfwqP0/pSeMon5TN7nfqCVT369fAIBjSEE6p1OnadU+9B4LVhL3UjcFkJNYdSJZqVAlbRVQwCPEkrDuBIgpq2UhSkKQ4sYgBk8mIkLJ9zWRRQVFUvQQ5CdTQeghahnDpl5by7YlvIxfPY/m1MZ1dQGs8m1wW/L4o7bXew0b0adls6jOWcm2zFhTy26mvkljfxIrpv/yvMCj8N+wz4xTksMj2N2qQwtJBk7mamVwWTr5uHnedk+C6Xydofav+qPejxCQ2v1TF3hJ3UuBdtYSSQEmYGGobIt+/n7zC8YTahrAVujAYDTicFpYeW867ParguZyyEH6UghzaVKr2Moxc0BNygkhHgH+va+CSpUuRZC+nnjKJm2fsoGHOOaxt8JLYvhFycyibdB4961uP6ti0PsO+12vUSdhkk1Xn0BnxYo0Z/R+tyQoJRUCJSfi8YZqbfWwodBMvOxWnWaHfCztb+uluHyIciB10XbTyGIKgl2RMLotKyy0YGArEcDktFJVkYHda8HYFGOgN6YtiuG0orewih0UGekNkyfuIvbWD5bfehMUYpN5XqCKSktmiFJbo3NdDf84QckTEaDUi2KyYXBaOX1bGvNztlE3Kwd80yPYNLTw9cTkb3t+NHJVVfiKHWS2bijIj3ap2Hp5pOdx7pQdPooen60/g0cd3YbEYiftU1TqDkmDi9Dwml2Wy39WqU21MOaEcSVSoeaM27Z2y5DpwTckm2hXUAReamdwWJh1TihiTaegPk4imHpUM2nOQfE49WXaVMdYfRRbVRV+9DWq2AAxTYac80yMdAoqC22km0dGO0eHBYByWSgV0bY39b9bqsqSHK4PqpbWUjAqGs4uoN4KhfArE41Q29n+qBtA+jH1mnII2yHMos5VkcMdZZoRffpezz/krD7/TcNSLsVbL114GLXJSohJ3PtnJP975KTvDZxEMbMWa7+T8i2fisJuoqPUSSeL+BZtKBcGIaOjDOgZNq8E9Mw+n24qvRUWRKDFpeNFDXbDe/ds21r90AEuug4nT8mifcSZ1A2FeeqmS+PnfRYooVG/ZPfZ+XBZ9oR852q+ICrGekB5RWgucTD9tIlm5Tip3duDd1nlQRDuWczgaGHEi2WiP+aJ0CoOsA+paB1Wd4KhIW/MgPW1+ldLBbCRrbjbxiCp05CrLIDYUI+aNYLQZseY7GT8lhxOWlrG0LItpvEKiuxlDfind9nN5uzbCph3tdLcNMSTKeqlSc/BKTKK/tp9/Vh3HKV95mn+vasBkFNi6fn0a8ssgGBAHVA0DS7aNspPGcfppk5ld4iHHbmZDZwZQh7Msg2Czn7/84G0UUcHsseKekk1eoZt4TKK7qk/XrDYIKuDBmmvH5FKdmkeqQn7hWc6/cjL/ikqY3VYu/tJi6hoHaGvoZ/faJjb3hon1hjA6zDz594spefXLGE88htOqSvT+mWAzcf7XlnL9sSU8tKaFlX/cTEKU9PskWE1IooI/RfAn3VSItsGcwJPrYPZ8tflbtaeLaGA4cx+pKKfdX+2dS0iy3jDWgo0nH9jCxsXnEXgvStzbchClhRSUj1jtziAYMFqNWHIdmD1W9T4NxVS0X7IJH6zxcvJtmVhyjyFYvf0z07z+1DoFbVgM1Gjqo2jgxLoD/PYdiW9+/0Fe+MneD3wTRyv3JJQE+1+p5tLuUhLKFoKDUbLyncwfn834TBvxuML2XR16s1CJSsjaZHO2DXOWXa8HfxgzuqxcculsLp7jYn2bxAP3rlHRMWZjGuulFJYINfuJdATYs7+Xq96sVaekozKvKQnmLS3lxq8u5d33G6l/u15X5NIcwvnfOpZ5k3LZVdfH9o0t9GxqP+geadfI5LJw9zULKKv6BYbzjuWaBybRvKZZn+o9qMyXzCxSxYQ4KA5Ov/b64pEsCYkxmdaGAXo7AhjNArKoEB6MEPep9Xyjw8wll86iOMvBys0tlBVnUN/QT92OThVxMyGLE5aWcdWsDkzbHmDVhS/S54VFiwSmPN3N0vJv0NDuJxSIq417s4TBrKhlwSTUM9YT4l/3rOZfgjDc0E4uYFpw4BifiTPPgSAIzFtSwvUnTGRy3wOwuwHDwoUMGa9SSQaTJZOEnMA9LYfjz5rC9cdPoMobYs2udnrqBrDmOzEmF6z8+YWcf+406tsG2butnRsezmLO3J+w6dfNhJr9XH3jQq6aO8i2CZNZcq2Dn74ms+bPWwAQkmy8QlkhsaLjiHZXpl3v7Vvb6OoNsn9N80EZV9wbpu6d+jQZVw11l5ATCAggqNch4I/S0e5XheeHYsiR4WdfL9sIKUANZRhZpGUMqY4i1hOi+o3a9CxgFFnXIzKjKmyUPTmbxcvKKMp14g/G2bqllY6dneqkd1gk1OAbc+D000gceiT2qXQK2jBN8TEl+NqHCDX60qY4P6iJ/hjv/2cfOzdnfqBZhcOZHJXpq+zTGSadbithUUZWoDTPSX2ug+4kIkoyGzEkm2OmDBvTl5VRmXzIPpQpCoXZdgrZyPGlJ/FwvpNYbwhrvhMYVt+K9YZ00XutFq+9OP6afho9Ni45ZhyTrpjLfQNhvDu7hvUFjAYml2Uyv8BGXYcFp9t6SP1u0R+jeTBKWTBEormCU5dfzTPNgwwd8KYtKqkvkdGmMp+aXBZ1GnsgmragaiiXkSykoA5YWe0mokMxwqKiDgwmBXP0WnQgzq79PUgz8hFjMl29QfwDEbX2bDVitZnxOCyYE34SQwGiSeoKk9WIweEmGJeIxmXiyZKBvcRNvD9Ze0+ubTr0MxVYoC1ORhWBNG5OAdOn56EoCc6cW0y+ox2D1UqivJRY3mI2bOqjtaGfeH9Yl0CdOKeAM+eXUOaqZEdnKd3t6gxH5rjMJPZfYvnyiZwxNYee/jDxYJy63fXUr2pQy05mgZ7+MBvai9nb5GVS1gS623bqqLpQo48fPbKdk064ldX3N6ZlNglRpnNDK50bWlUYaAos2mA06DxJIy3NcSdLXbHeEI1J6ngpGNf1OCBFHMc4TK9xKIegqwymfOZDmyCQW+ji9DlFzMlrxWyIMKFoFo8EYgzqrMGjN6sPynhHDDz+NzScP6h9Kp2C0WHGNSWbRUtKWe2t/cguXkJOEGn16wpiH6Xpi6KiYLQacbiteLLV8XqHKcCMXBfNJR46WwYRg3EMRtXLKaJCvD/MQG9Q5+P5MBmM6I/xyjt1FF16sk43UXRcGQ9+dyFbOmT+/PsNTJlbSH6+k6aGAUKBGHmFbuoretT5DVHFqTe928gvoxJXXDabs86ZxpZsBy3bOvSX/h/3b+K5cg+9B/rUadxD1FPlsMiL6xs56dLTwd/Lifm51J86kXWtQzpds3b8qfVca76TmcvKEGMyVeubifWozVSMAo7yDCYsLmHCpGzef66CcOvQMOmZUUj2AgSOO2k8dquJLVtbadvRpc5xKAoJYO+r1VSsatB1s0ETZEkQCcWpa/ezP/NYJp1WyPn7p5CIRjGMn83WgRN4a1c7jdV9+L1hbFk2rrh8Duu2tFK7tgU5mtJwHE0JLcWBmswCHpcVQTAQkWRW7LUSCJ2LPxjjwGvdDHa1Ujgxm3lLS4lGJdqbfAiCwJ4WH039xXR6A6qAjNHAvMUlTCnLpDU5sf7Snm5Wv15NsG4gDT2WMAu8+c8dvJ6M5l/12Dj3iwt5/IZ22s0XcNXnX6bqhQNUv1R18IR+cvhtrOdPBw6knqsWrafO6YgycW9YJ/vTnUbSoWr6zwKq8zQ5VL6u1AG1VIcwqiMYgwn1iN4vWe1TmExGZue2Y3/vH/ie3MNFXz8R8bpv8dxLlbRvbEUKpOt9jAXTVf9GWubyYRgWPk77VDqFhJwg0ubnnWcrCDcPfuiSymjb/6hsZEQgWE2Mn5XPzOn5jCt0YxIMxBQ3SkLBZBR0ZIWGckmIMuJAhKZ31cGw1AVKW2iP5njlsEjNyjp+WK2K+EQ6AkycmUchG5mRezqx3hB1uzspOW8aM2fm09g0QGlpBoqisL+uX1c5U2IS7asaeWBPN/nzCymZkMWyW5dR2zRA1c5OAgf6dCjroY5PK6U0HOhl3Ykqh8+WlgH6+0KgKMMoltT+gqIS3MW8EbzdATJznOqkdiCuE/flT8vl3s/PomjffZz6szv46W/WqmI/okKsN8SAKGN2WfC4rNitKdTfyQVEfyFFGWtJBhNn5lG/q0sve3i7A+yVFNq6hshwW/G4zkNJJPDXxuhoraC3c4hIfyQJ9zXy1jt19NQN6HTfemQ4ciguZZhRDotUv99M0/4efVETfRG9Vm5yW5h16kS+fuFMMm0Cz+/qonJXJ701Xmq2tfPo787F9ZsryLpuPpfHLsHtsHDihGwqnBYefXYfXbu7iPWEDl7YlcRBPFZnzysGcRMH/DFdMeyDvCep11bb12gDnCp02oAh9V6klIoMigGDkEBwmMiZkMnE6XlU7e4k0D6ENEJQaOT+RzqHo80atO1KAXUItjUwm+n5uQzU+7Ct2MHZvxmkflEJvTXeNBbfgxyCNpNiHj7nhKKSaaaiDz9t9ql0CkpMUgfMRjy4qVH0p9XLKjGJrFwnly0soXzwXwTyT2N9ew79wRit3UNEQsP8LKkTpppmtb3cwwU3LSI/y87Dv1ijc7QcDXGWFJYYOuBVf5AV9r9Wy+d6S/C1v404EME/EOHt/gi2QhdGs0DjgT69ZwDpUY/ojzHUHWTanAKOnZSLPxijWjCkR2pHcE28O7v48d3vJHHqarkqdap2pHPVeJua17ViciflH7VsRFborfGytjnCFU3tHJ/9Dz7/pet54I63kWOqk5XDIhHgP3/apAMBtODCYDbinp7DnMUl1FX0UliWwYI5RTRVezHEJCwuNcvweUME/FHMFiNLjinjc4vKqPIG+efebqLJ3oQiKiTCoi6JqkfLcmJMx6CZlpXFelNoQZJwVKPNiNFuxucN8bdXD5CT5+D0+SXsK8+kKtn07QnGyc2xQ2YGQwMRtm9rozDHgT8YZzAZhRsdZoSkkwU1C3dPyyHaG9YzZkVU+MHv15GQ8wgcePVD9+8O6RhG/Jy2MMrD5SPNeWSOy+TzV87jjHGt3GspY2N/OhIqNUs46FkcEaEfzSKckNVrNljbz19ereTGs77N0qc8EA7TI+Visw5itJvVzHLEvdUcgslhwjklhznHlBIJiVRvbFEdroYU08qhn7JS0qfSKYw2X2DOsiOYBR3Hrf8t5eH6b1/YkfXPhKKiX1rr+2leGqXM78OdVUVUOo7W7gB9PUHCodGnlrUXyZpj58zZRZS5B/jP+Ewibf5kvX9sSu3U43HPzKN4Wi5N61t0egPRF6Ht/eY05xJtH0IciGByq01FbQBotHNLKAl6OgOs3NvBto2tRNr8R/2CScG4rh+gXSudeE6TMk15cbXZBSmoEp3pL07yO9GuIE8+tYerfnEzhkAXnj4LRodZRUKJCglFTJYjZJxTVObVUINKIGgwGhg/JYezl5YT8EfpbhtitTeMHBaZvLCIU48fT02Lj93b1KEnQTAwpdTDBPtazPnHY7Ob8CevjSYID+oUrQEl7bzHtJE9Ee1nBB3+GOsN0e6L0O22cMKlM5mVG8VmN+sN6x/9cT133v4s2+u9hJtVttM1m1sQkgy4RoeZqadNJBKK0/RuIwklodJhnDyB/dvbiXUF9Hvt39uTFhh8WBvTMSTPVbORvSg9IEEBo5HcQhcnlA5hqXydSaVfZLN5DO6qlP1oZnKY9JKs6I+l8TUd0Tkoajm2dmcH/5JkxHO+wIR8ge0dUbq8oVG3pZ2PNrU+55hSvnv+BGKyjbv9UToqepJKdiqE2sDROav/hn3iTsHoUAXORV9k1GEyDYV01x/OJcNq4sd3v4Pojw3X37WJxpRhFvjvZRAHIWViEh07O7nPH2XwCzdTFrLR1NlDa+sgnS2DOoHdWMyfoUYf9z2+g+OOHccpZ02hfzDC7vebCNYNHJYCw1aSweqfeInc/xD/+eFD/Oue1fo1HVmCU0QFJYmg0F/SFNlPzRJKgmjHEHXeMLXvNeqzB/r5H4X+QkKUVQGilBoyRkFtDBeoGgeiL5JOQSDKkFJr1o5JiUr0bengtK9lM2lhGYHB/Wl/17afMSWXB+4+jb5wnB/e+bY6XCbK1O3o5NFAnN6OIRJKgux8J85Z+fzjqk6if7gX2523cFOzGzEmYzQJbNrfTad3Gp3eZiRRweKxYrGozfuhzgBS8lgVkTTHoB1ParZgclvwzM5Xv1ujwqhLlpZQPimbrS9WEesKIIty2j2rr+rjtRIPTrcFe6mbaFeQgc3tfH/rc5iz7Zx4/TxaGweo3dCKYBZ0yoxFC4oZGIrSVdGrn3tjdR/h5IyNa0o2f/jV2Tzw4v40HfWPwkY6Bs200qlgFlR0kaKkZc26Cep8QlT2kFlYQue+kD65rG1/LDN7rMw9fxrnnTwRk2DgwUd34t3fowZKRzoQmcwWgnUDVHYF+Vm1l/ySDOIxCb8vkqThHmVbKZrhBblOii1bid//Dx785q/48p9kepLv8qeRNhs+BU7htFuWcu/4l4jPOp9TLtl3kGPQauwmwUBUksmelI3bY2PCpGycdjNdvUF6OwN01fUT7VY5hwSbSUX4JNNMwWZSR+qTN8FW5OLMLy1i7avVBGr69Qh1LBTBIdEFSeiardCFI8eOr8qLFIjjq+jjD/e+j7PYjSAYVCGQ5IOkPxCjpLSKqNDT4GPm5fM41fk6ZBXzA9Mk1ncHdaTLaGYwqvrNiS3v0r2pk8IvO9LhfGOYRnGQer0106JYKRCHEc1FlSsncZCDONQLZzAbMVqNmDw2NYKflEVWjoOO3d1Ychx882vLmJbj5Oktzax8cLuKdhql7CJYTWTMyad8ag7N+3qoeLlan5hNQ/ogIIUl3q/to7nTr6OnQEW+tIVFHCVuTjp1Ej8Q/qYiWMTjsC4qoUdcyORJAypbZ0KduvUHY5QXZnDB4jI21PRRnOdEURI89cxeQpJaEhDgkI5BMAtMPn0St145j+reAP/83QbKFhTxm5vnkmer5fwdGWmMsJoI0Jz5RXwh8CfkgQ42/OxBfnn/RgZ3dGIwGxl3fBm3njmee/6TXooSzAJr1jSSX5yBqyyD/t4QsZ4Qre806M+dJdfB7Jwqpk7JZd+Yd+7QpnEnpaKCxjSjyhBrzbVj8tiIJzO0g+ZWlAQGRaG1tp8/v9vJxNIz2LTugHoPBQHkg4cydT6xpIDVlWdMYblrJZjMrJ43lcEm35jswGOZ5hiUqIpeCzX69KBm9DmM5DskqBPUp84qpP2iq1n/VpB5j1/InN+9wkCyZGgQDGi6Dp+mEtIn7hTGF3sIPbQG57mdWAvPSHMK2sIrBeP85r615I7P5Jhjyzl1ViFLnO+Q8LYhnXQ8u3rn8cSqOqo2t5E3PpPrLpvDur2drPnzFgxmI+fdfhySpCQHbWTu+s3ZLLz9XO564X7Ovs2gE7elzkNoxHMzT57A/rdqibQH0o5bi4IMgoHMGbn8484TKWn6E7cfOI+tKyqAYWH4VP57fap3jJRRMKtOZn5+AOmptzBOKmLGhG+zMckJo+17pCXkBMG6Ae44/VvMeSCHh370bhqy51CmbU8wC0w8dwqXXTST11bWUv1qTVqJRxvkEcwCn7tuAbv3d7FnRWW6VOMYUVxCTmAwqw56wrJScgtdFOW7mDUui3+ERPore7GZBCa3/Ja7I83k/uDHPPvQNr0hmjqIZLQZWXLyeC5aWs4rRW56ugKcevx4dlf3svHfu9Mi7Eibn8d/uVYne9PTe6uqeLbouHJOnlWI+FwH/e+1YFpxF6snnoK/MsKiKbkUOK0IBojLCSRFocRtpDS0ggnHnM+GNgPtvUGsdjPxLDuGJKGhISYhR4cdQ2p/QbCacHlstA1F2VmplhL6ugO8WuFHUfIJ1tXo11uDNrvKMjhmWj4dX1tD7c4gp960g/9MzdEHynoafNz5z700JTl+tODH7FG1kb3dAYbqB0YtD/m2dnDGl1Rn8UEWJcFmwj0th8kLi/B5w3Rs6zgk3YPRamTGOZP52fWzMRlifO0Pe/G1+JEjahCXSHEOCgrRjiG2vFXHdoeZuDesZwoGowmQUEQOdhDJkumKd+voOmY5gbDI7rW71UzpA5RqtKZ7QhEPnsUZZXupJdCOQJR5p46DtyqZcP5E/MH0TDt1H58W+0SdgmAzsfr9Br7w51/TEZlJ7KEXx/ysFuWV5ruYkDlEYutmpP2tmC80MiW/kKICFw0eKxedN53zTf9h2bmXsf6fKu/QOfNLMAkG3rVuQxJlOn1hTpmRw2C8DIPQi73ErZZ0uoJ6pCPYTMw4cTw/+NwcvtHQf5BTSDWL1USOrR5lfw0lxVdhclmw5jsR/TGiHUNIyUnmNAz1GI0vLTJpGcpi/rFzMOQW070vfET8Q3JYZN1DO9hgFsZObQ9hgs3E/bfMJu/V73Lm137E2W/XI4eHa8CO8gwWLCvD74ty2rR88rPs7H+tFsl/ZNxICVFGCsTp7w2SW+iits5LS7ufoaTs4xOvHuD4r12Itf5+Lp6bydaFxbRX9emTpAk5QQIBRVTYsb6FQV+UrtZB/vCtE5ng/ycnnfNFtj5fqSOUTA4TRpc6AKnEJAyjXI9oVKLFF2bBN35E0VU7Wdltob6tjyy3DYtRIMcODtMANpMfJWFCUqxEchbRM+jE6x8gEpOYOiuf/r4QvR0BfUBObeCiN081x4CiUF/RQ3e7n4EGFSoaqO7n2X/vRA6LiAMR1XFMyWbJGZNYMD2faEwiGJco+fZx5O1opWroeLzdG/VrGm4epDUikjsjl8GWQTXISdI/eKtVnp9UTqZUOxTB4pGY0WqkfFY+5y2fRF27n9dqvHovSysP6tmbUc0olh83juLOf2Cw2SketwxBMKiCUyOclvYuqAGFyuJqMKsNeP0zijiqLoIUjFPxbgO1O1RW12jH0IfumRzVdxUVXbZ6WxtLvvYoV035Dj1n3Efzn/eqa5ny6eslaPaJOoVLfnAi32u+h67II9xw2xtjRhgJWa0hB/xRGjr8HMgq4qQlJ2Oe0IxYsoyGvkx6+vqQwiJ2i5FEMIi1SE2j5bDILx/ait1p1h+Kh3/wLq8su43BG9eiiAqZM3LVh9hsTNtnT+cQ79d7CbSPLfCSEGV693Rz7a8NHHPs3bz7QgWWXAcnnzmZQCjOukf3ICcdmmBW8fVGh5lwktBMs9Tp3WhXkD8/t4/lx19PoE5k3erqtOj3UKnmWBjysWxkzddqDCB7wziMvqSsqazXgCMdATpb/QQDMe54YCORUFzXldCj4pSMYbRsQYmpvQB/spauZWjICtWv1nDungwuu+nHFLTHmDotlzOXT6Smxce6FyrT1LKCdQPsqRvA5Lawo8uPtfQ6HlnbjCIqWPOdTFhWyh3XLWSyp4bO8Eye2tLMO0/u1bMnJSYR7w+zf0cHzXX9vOOxYbPPwWpvweWyUJpvosBppdSxGTprSOzcheKLIBRlYVh6PBM8VuaUbUR6ZRWyP4r1ti/zRM18QhGJzdvaaNzUppbllHTcvhyVCRzow59EoCErSP4oQX9UX0jd03O44oaF3LyghsiPvo9lVi6xq+/gHwPfxb80xprfriFQN0BCSajoIpuJ/Gm5nHrKJN55t44BJcHMkyfQ0eSja0PrQSUdwSx8ZPVsRVToaPKxamsrvR1D6pBh8jzs5R4yJ2QxUNuvR+mCWWB3VS/LzroFh1nkC2ca6AhEefzZfaqS4IhSpk6oZ1YwuS1Ysmzkj8/EbDGpsODuIHFR1gcGAdzTclBi6sS+1kz/qIAohyyPau9SslQt+mNUbmzl67X9ZOZ+nsH7duJvHVQp8keUOj9N9onpKRiMBv714rVU5i/iypdO5PrGG6h+/sCon9MoAcweK7aSDHIKXYyfkoPHZaVvIIy3O0hnfT/RriC2IhcLT5lIXUUP7asa0+CVI+GtGn+P9pKMrG1qtdJDNXhH8tKD2rOYd/okZk7OZcW/d+p9C8/CIt79lUCicR9/6ruCp3/6PiaHieJj1QGtrrXN6jZTSjUJOUG8P6w3eLUXzjkpC5PLQrBuIM25HI0JZgHPvAIMZiPBGi+iP4ZrSjbjFxbTWtlLsG5YqEhnDh1RCtP5Z1LQRKkv9qGuGxyMPtGgfLaSDDJLM1hyTBkmk8D2rW0MdAypIIOkcplgNeHMsGK1mVCUBH5fBJNJ4Nl7yglc8QXef9lPSTEc9/NFiDd8nyt+2k3/vl51wDCp+TBlQTFzZuRTmOOgorGfQX+UDLeVWZNyOKlMoKDvKcTXNvDG9/cRSVbjTrs8m+wzxvP6bbv031216VLeKridDKuJN3e0sfGFA8PykCOIAEdOYWvXy+SyUHRcGQXFGeTkOfjCSZOYuO42KC7EO/Nr/GRFO9Vb2oh2DGEwG1lwyQy+f8ls/FGJx96vp6GqD29lL7ZCF3+4+zTW13l5/Ker9UDBYFSfm0nHlHLg1RrkmIxzvAeTx0aorn94sToKS2VT1XoKoJbnpp0/lQvOnspTK/bRs7NLR0Q5J2Wx/Owp3DXpDRj00zX9O9x493qG9vem6U4MTzWrfUXneA+T5xVx2WmTybGbeXNPBzu3tdO7p1ufyHeO9/D+HxPgyuGEK7pUvZDDPIMfVelmpE6I0WrUCQsFq0kvkY3WU/xvlY8+1XoKCTnBLd95gyeHdvObre00rtky5ucgiVsX1aZnqMFHx85OHbmgDRzJMZm4L8rapKjJyFQ01Sy5Do65cjYOh5kNLx7QeftTP6eIChzmJdFf9CQ/PkYVUTF3Wh5fnLYT6foFPPHz95HDCln5ThIbXiG2pp6TbrmFFWYB55QcvnnDIoZiEvdu79CbV6Ivog9C6S9qMiI3uS3c/ZPTybGbuetP6+lZ0zLqsR3uoTeYjcxaVgbAzo4Aoj9GqMFHZbPKCa8N3mhsnBoXlaYxLUdlDLFhxSsFVJx9ykj/4RpompOzFjgxptSN494wfsFAa5ufyROzKZ+UjcVqor83iM1upqg8k7KSDJZMzWN6jgWzEKE3rE6QG26/mPdfVs9h4jwX8g3f5T97swl2N+jnbc6yM31pKZ9bPonpOQqCQWIw6CIYFpFkhXhcRk5YSYTDRCu9+uIP8N5zA5yXaeXYczIJ90UYd9siNpbfwevv1hEKxOhu9+vnblAMeraQdi1GaEEbzEZmXzydh78cZSBWyLtNFnpCcSadfzXdkbm8WRWmoaqXaJc6+V5+bCkPnF1J+K4fUHbOVEoKbmfz0/uJe8PEvBG+9WOVyjstwzQbcRa7KSn1UGU04Jmdx523n8Sy4naeq1jAP36yWqebPhLTs9tknT0NiSbKtFf18bpgYEDrZygJUBQKyjxcsXQcypt7MJ51Jit29hOqS2cZFcwG/Xpp/bviyTlcecYUTvbeD929lC6/m79KCqurvSSSUHXRH8NrWU4skoEivjzmuWga2FkzcvE3JQkuP+TCrM+oKAkMKKp2Cup1z5zgxu4001XRS6xX+kQcwpHaJ1o+CjcPcuW1z+vKSWOZ/mAoCWRZAaOMHDboEWxCTiAnBTcAEhw+zTN7rJy6uIxsu5mdm1pVp/ABb85BD0NEpKc/DHY3JtOwQHzPgT5qv/Irxp9czSNPVqNEJSKtfv6zsppoRNJr4anbhfQ5CIzqROTe5gHMJoFw9+gqcoLNhNFqHEZJjNacFmX2rm4CRTmodKdPXZtVERlLjoOicZlYrEZCgRj9vaFk38Kift8XJRGI62iKtG0dwjFoWeAp18/nzAUlPPJyJTUr69TascNMeZmHk6bn01eeyW6Pl0pFQRAE8vOdTBuXxbLiHpzNr0NrO/mF+RgmzEGan8+sGW0AFL7+AN/4V5zGA3uJ94dVhJFRRUGNK/VQ4rYREqHKG6K2xUdgMIrdaSYQFgnELRS73LomRqpZCpy4bzsDQ9kUKsXz2Lyvk/x8J1GPlSFfhLhZIKEY9aBCbzQnsxwNVivHZNWRGlWq6MH4OHrCuSiKH7fFiDc2hXfro6zd2KJP9xtzHdidFsgsxH7RLAwnn8/6XzfpfaSELOniT2mBkSgzWOVlfXcQKRBHCkt0DIZxZNcxt/iMNGjo4UwwC5izVRZWjTFYCx401Fi4eZCG5BCdngEIAtn5TiQlgfHiy1nRspS3Xt2RNsgoWE1Ych0AupMSzAIl5R6WFHbS88038bcMMe3NhcyYcD5rrcZkqUmlbb/mR3tU3in/2IRpRoeZvLkFfO2Ghby8ppGd/9n3kTInaGuBIqp8ULlFLi45YypbZnSz6Y1agtXej2xfH7V9ok4hISeOSpgi1TkYrCbyl5QwY34hVXu66dnafsRKSgk5QXwgymvv1+N0Wwm1DX3opk/qfqNdQd781y4qK0robtylUu0qKuX2569doUpvBuMkFFWQZveTKWBATc5wxPxD6vyFHJNZ8cu1eo1+pJk9Vs755jIuWFjKC1tbeO/B7aOWmBRRIVgz+sOplQWMDjOe8kxmzC/kplOmUORspi8ygWe2trB/XxdWm5nJU3KIxWXWvVBJpD2gvxCHu6apVADHzSrkBNMLCJd8jjvWNWNymCgs8/ClEzLIefM2DCYj555xIX+0zWLP3i6CoTgDgSiSYoUBH+K+dgxVnZgzPMSu/yHuz03ixV3tfO/OGnUxjcopzXqZaG+YTeub6fGGiMdlejuGiEUljCYBp9tKp9NCTY6D0nGn4PymzMXmt1j/cBPBECw73Y11+WQMM0+gNXQM+7p9lOa7OHtyDAMKf3VaWDMYhYDKNyTLCZBlvQSy5NSJ9PUEadzTndT2Vu/xgfeauLFtiMzcTpxuK3s9Vrrah2jdo5ZBtDKQ6ItQu7aFCzqygHMYemyASKs/rfQzFkItnjLpHOsO8O+/baXu/GlsXb/uqMqQRSeP59G7ppIV28aZPytmqKIX15RsJs0rpGZjK5H2gC6Fq9/vZIAhiQorK7r4t3c829/aqE5Wp0iwliwtYdGSUrZsbKFrk+rcEQTKCzNwet/m1WQWOHXrFsqWXJ7eC1QS+LZ1HNE6YDQJ5DksZOfYP7yeh7b/1HK1koDk9L63K8jy8j7OL6znnTkn8/M7Vh5ENfJpsU8ckvpBzeyxct018zhvUi9vzJzHn6v7jsrTi74Ie1aolMCHGwr7ICb6IjRq1MLyMDRRe/G0OimQ1itIVf7SqK4BlKiBhKyenxZljoqRNhrIXlDI3Ya/0nfLTn6x4tesfco2ppxm6oBRKvuoJvNoclkYNzWHK4+fwLjHrmfHH/ZTMsnOnS/+gL+5ltHYPkhpvou5xR683jB7X1Wb4gnBACkoq9EoSvR9CgK/+8N6VkyfTnf7RhJyApPLQnG5h9yKv/LM5zYBYLev59uhh7ilxUlrwwC+/jC+oTyOn3YHk74Sx2n20h6ZwJZaH1VNDdQe6MVmM+OcU0CgL0So2a9rDhCM0bunG29lL6YMGxdeP59wVGTT2iZkSaHLaqQhw8b8wkk4c2qwnTKZM86ZBS4nhtwcyJuANzaJvpCIoiRYWJJJZvXvYCjAd069FptlBsV5Kt3yc4/tItKmLmRSMM7OTa1qMCQIXPjt49i9s4Ou3WrN3ZNtZ9KUHLZvbGGwVq3za6WX4Z6Euth2HyWxo9FhxjE+kzt/uJy5+fCHlR3seKeet+/fclTvgMFo4KKLZuD8y210rWtj/ucfYf0BlWvLPAZ02mA0YHKYmHJCOV84exoOs5HntrakDXEZHWa+es+pXF++HsxDfKE6j84UOHIgHIfsEqZMAm8/MHcWHYFoio6EIWVa+tABohSM076uhe80Daql2o+TX02R6d3ewa9XFvPN048ly2YmY3I2MW/ksMf5Sdj/rFMwGA1EYxJhKYt4XD6iQa1U0+BuH/lxCQYdCikkoaEY5VHlJq0FTixZNsKtQ6Omutqwl9rAMxzEQDmWFZZ56Lh/M5veCXJFLHBIKN6hIiRN+6Egz8m07GbeuXs/gQC0tEYwX/c7TntiHV5/BIvZSFmGn+MXlahspqIMVkHXBdaaa2PtS2v0N+3oSOcncloQN1Xrn4tEQH7sIcrKfqKyzcZk+gcjPL++EUEw4HJaiIt19PUECQxGUZQEN147nwsnN9A0dDzfvO99/Ae8CGYBa75TRYj4IhiMBo6ZnEtHIMo6qQFJihMYjNLnC2MyREns207dD9+j/MLJ2L5wFmLxUsxCBJsUwCRksrg0k2mxp/D94V2sWTbs+blcufgblJrXQniIvYsnUdEfxlboYvK8Iqo3thDzRhh/Ujm3nRLnUddEnq3xIodFnG4ruR47sYiURhd+qP5Y6n081H22Fjg58aLpnNH3R5RNLVx48l+o2t1JsG7gqBemPVW9fPGq0ylcUEP95l7kmEy4bYgDMZXPaeRQo0Ew4JmdzwNfcmB79wcweQKTSq9hdcrMjr3EzfXjNxL55aPYrj8Rv++YtMn2ju4A7eLJzL9jIbIvQqj0bKreG1CZb1GzjNKlJTgzrBx4teaQmU9CVp9LTa7241qYte1KwThrn9rP0NBUXC4LkpTsvX0se/1w9j/pFLQb+vwLlWwal0lrQ/9RNcg+LjMYDZg8NgqXFDNxWi4Aeze0EKjpRx5lzsBZlsF118xn3dZWdj9dcRBETcW6D2cZR3p+bfUDFJw/iaXhGvYHlyP5nzrq89Coi01WIzkeO47AbgIpoxpr3whw1cCD2K0X0t4bJGdmN1fNEth44ngqVzeixCQyJmfjdFvxNg+qZZKU7GYk6kgwCyRkIwiyDm+VlQSKN30A76Wbd7CoLpdN65oJBmLE4zLNdf0Mtg8dpKrlGu/hjPE+5N/dx+QFZZxz3rd5Q6ni2JMncM+JB8Bi5+tPl1O9pY0/Pb5TXYi9YQSrCR/QXN/PexOyuX7OEkzW14g2+7FKIvX+2bgtCjHZiKRITDO+DhY7mT84F0NBOVLmRKyxAN7EPBI2I93tFZQtLeGqi2ZxTDHc7o/SuLqRvlY/j24fzxuvV6m04DGZva9UU/F2HfGB6BGx5ApmQS/BQcqA5IjvaEpiAIZpczHOWMgzL9UzWHt0Gtza8Wx7Yi9n7i7H7pxM14ZmdRYiyfg7cpE1mI3YS9y8+otcnjddCcDFd0yg+6yL1c8nJVunHltGoupVBJcF78Qv0rNrlZ4ByGGRmn3d/NNj40tXP4xJiPHYun52bm5GDqr027f+/HQ+t/t7BFe38thd/+bJH606LJrqw0Jztd6KYBb0ezZWRh7tGGLro3swOswfWbnq47D/SacAquft3tRG7/YOHQ3zSZtgNVF8TAl//dZcCmKrCLrm871AEXsbfSiC4aBoz1/Ry+qNzfgHIvrIu45IEGXkMCgpPYUjiWgScoLBHZ1cav8iZZ/PYd9XX/7QD34kJoEn/6Dfy6t3YJ91Kdt3dnB7r4uyogyC/k6dwyjQ4ieeY9epGhJyQi0pMUwYpmU/cV/KJHuSMqG7O4j1quPgF8Na2qIIBU4L0ahItClIX6UqQ5mqj6zZoD/KFT+BCy78E/5gjPdW7CPui9LUMADn5ECgj7KSDOocZrp2d6lfEgSE5AxBn6jw0qtVbB1XzhUrNiC7rGwbDLN7dzuBcJxoVMJiMdI1+1QWFxlwTe5FUqxIcQtBMYt/vFfL1tdriPuiWPOdPPn8fh5XEnTvUnUdhg6okNFUzLroi6RC7g8Z+Wu8YfZCFxOm5eHtDtC1u2vUxUkRFULNflY9vJP1L9mRwjFiXbs+8LMhBeL4tnXgSznG0QIXjX7lmItnkPjzTwEoKwX7ty/n7V9U6mVNwarCiptn/JiB8SI/+OEavd+YUNQ+WrDZz05Tq9qQ90ep2N5BpCOgz7m09wQRinIxWjuwWY98abMWOMmYlkOw0XfIIdXRLOfYUn5z+0lk2eDWP2ymY20LCXn0tUirTnwa1qpD2f+sU9Au8NHFOIc3LdU92pTSYDRgyXVw95ePIXHtqaze5OekXy1ixtRf0DAtFykYJ1jtTXsJ4wNR9j93QI2StWgtyTmvcRKNZIE91DS0Zoqo0LW6ma7VzR/oGiTkBAlBhQ9KYZGWDj9bexZzwplONrwzzK1jnJhPKCJiMgssmV3I5j2dNG1qVe9LVEYKB4n1hPQykpaBaOWbWcsnMHNyLtWN/VSsb1FJ3GxGimfnM2duEZGYREXBbSw7cQVb1qulgNMuz2ZfKK4HAhq2PhX7L9hMycwjgW93N49u60w7v5o3ajlpqwNLlg1FrMSeY6f4hHF0NvmI9Sb1B5IltyFRJjgY5be13qRwz7CYvCYyHw6LzDpvJrUDRexpHqA030JFYxO7t7TpVMmRVj+tzYPD91C71ilR+pGUBjVnYC9xM/XYMsrLMzl+RgGLC7v56zoPr+3oHJN/SIlKxKPSR5ZVH8k2tCxhclkm5ikLuPwRK96r/sJ1/6hk6EC6gFbT/h5uaXmfYNtQGkTUYDTo9CZf+fxizvP+gfdnfo/tLx5QS0TJ9+G5X69j5bTlFEy+hMafrT4ihyeYBeaeP43vXDqHR96vY/UD246KOlyKyfhjEjl2sDvNRzSQ9klXNA5n/7NO4aM2rblrL3FTMDMPSVIYaBgg3DR42IdLcyS2IhfzjK/wdBIdEdzQjmu+me/eciySkuBXd759MIeSKKeVljR64VQxEkhZMEYpMX1cpiGdvN1BNtV5+fYjX4Ky+wGwWsGwYCn9a6KEhmL4g3Gk5ACgHJWHnZeMrkWtOQTBqlIaFxW4WDIhm/EFLgZ6Q/Qkm7ETp+ZyxdJyWvxRNjb089Wnvop48V8IBxXyvraMZm9Ql4I8iEfKKGArcuEsdhOPSGTlO5MKWXH975p+suSPYi10k5Pv4vhl5exxW6na2IocGcbUJ2TVoQmCoDsCWVSQJBlFSWAyCQT8Uf69roEBX4TAYBTX8eMozXfhcFoIW00oMHr0OJpM52HMYDZSdFwZZ501ldmlHpr6VSfdMlTO3j3b02RVR7MjGcj8qEx7LzAKtPcEaFv+XXry4vz2zzvo3NF50PlHOgKEmwdVDrJRkFSe8kzOL1hH9WUvcMruc7g7OZ+kBUxSIM7g7m5dbOmIzCjQ3xtkR8cg/X0hVf41hTzzcBY40MfP/7yR4vJM2nd3f2qpK47G/s8pJE2wmnBPz+H5382led45VNXAGVfn8uyv/pM2FTqWGcxGiidkkdj8hv4758IC2nuDXDjTgKTYR8W7j0TkpPLOj4b5P5Jp4aOxVPSRDiVN4fSXgnF62vxsFWUesp/PzcosErVbMGRksTp4Ls21u+lv9fN0xZaDHIJuSSen7UewmRBsJhobB1hlMDC+OINTT55AMCwymBzY29sToNcXYW9lDw8J53Pt5pNx0k5d6CS2P79Xl2aE4SE7o8MMgsCExSVMnpJDvy/CqYvL+H1df7qgT9JBAUhDUTpqvGxMZoe2XDti0IgiqlPP46fnsmRBCVfMlQhJuWztiPLuhmZaG1SajimzC/jOeVP4z9ZONr2tzlfM+twc5uc1UJq9kPaBMM89tx9/RW/6gjGKMMtYaDLtPhsdZpVVeO4qqH+Vobxv8tDz3fR0DhHrDRFuHTpklGvJtuGalovVbqJve+dRU6IcjemT/kYDcW+YLWua2L+rE6NJda6WXIcqxallwGP0I1ItHpfoNR7P1B8ey/O1UxH9NaM24Y8GRWXJsuHJtuOxmzlhaRmtDQMM7urWj+twJgXiDGxux7e142NtWP837f+cQtK0FzJzYBVVKlEl7z7t5WvX/4Z3j7uEjtVNo0YPOg2HWcBkFjDMn8+yEzfhKnYxeNOfWff9rax5WS11hJsG074zct+j/azNKxy00H7Mpr2oclgk7g3TGxZ5I1RNRW0OJYWXIAgGDhw4QH+rX52cDcYOKuOknQcKCcFAQkjoMF1JVIjEJArcNhZO9pFJlcp4aTJDrJLKnHNQlARXz4vgjFYRsU+maTBMX7fKaquJtZtcFuzlHk48czK5Hjtef4TJZZm0tw/xh9+uI9IxnJ3pGUty0MqSZcNT7ObK86Zzju/PKAvO4t+7y1i/qZWEkmDRvGIummXHs+9+MotLOW/iUmJiGc+0DBLoCdJwoI/Hsuzs0EpFcoKfPbCJ5adPZslkAbfTQtQ7LLE5aiSpwShHQajB8PMy5dwp3Fv4NK03vUnJldN5yAR1b9cfBFnVN+swk7mwEDksEqjuZ+EVs/n2hbPY0enn/j3dY9577fpoinVH03dIhTfrFDIxiWh3ENEfY8HpE5lYlsn2nR3UdQylNdMPOXAqGHB7bDyyYZD6/pup+u5bh6fpPsxxmj1W8uYWcMLSMs4aX8NAbCKrSz0M7e9FOQrmmKNxRP8L9pl1CgajAVtJBiaXhWiSM+dQpkRVCcuvvTWfBx5fwrM3bGfGNFDOupboOr+K3x+JqkjhPTKYjfi8YbYbr2Hhmjl0hedx10O7CTX40mYEtO+Y3BY9stVEyaNdB08nmzw2ll41m8rtHQSrvQg2k87t/rFZSl8DJMRk/2YwLBLoCVKVRLFIYQlpKKqrtqU2TEd1dKKMrCSAODFzhF7HEIJgoKM8k5NKe0js3wmd3epin5/LrMU5lC4qxf7YPQxu7sCSYeVEh4nwFx7jD9Wr0VjQ5LCo6iO0DuKcaubry93k7L6fU6/+Jhe/XoNgNWEvc5KQZGI9Ib2MZXJZyCn3MHt+EefEHuaZxSs4+4b3ueqfD1FR66C1YYA1axupqHUzfdJNWDqNmHoM7NjXzlC7qs/Q7w3zVmVv2qI8WOXl1cZB3rAZVebTEYy1msKaJr1pK3KpJa2uwOjZQrKsecf1C2Hj45T/9UrWur7KS7e8Nub8CagN1DPPmUZXX5AtXUHmz8wn29ZDe4+UljkdtD/BgGtKNlMXlwCw96UDowpgHfS9FGeigQtMbgulcwuZNbuAyooeOlsGCfij9HYODXMmHWFvwmQWaG7xUfVW/REdz6HM5LKw8IrZfOWc6azY3Mwzxgl094foqPUexCzw/5t9Zp2COcvOhTcvZsHEHP65Yi+Nb9YdHp4Wldj9bAVfPO+rfKXjr3hFmS/+9QD+A96DopKRIjtmj5VIKM5rO9rYnlNCfWsdrXu6VPqNkQ+9UcDksZEzNYfcQhfHLCqhotbLpn/uOmhRNTrMzJ2WR3ebH2SF8hl5tNUPqHXTj6EunFa+SpaREGWUJNWvEpMQkzMhCVHWj+GIJslTRv8lf5SwYKBDVNhf5Ob6mUES8Tg47GCxYJg4jbjixmiQMJ66GM/EfOI7W/Bt7mReQQbWHJXnSPKrTinuDVP9XiOdLYN8YdksEAxEZY+ud3HBhTPp9YV599+70uZTxLhMb1+I8GkXcu5NK8m480Jeac6hs6WCoSSdc0+Nl8p1LfowoeSPptXu9XNPZi6KqA4XSn51MdNo1JWYpFOzKKKaOZncFsYtKsY/EKHbG9a1ulPN5DCRPTkbm8kIF97Ig1vKeOEvaw7bMI57w7zzVo2+7137e4jH83j79erDwlAdOXbOO3ki8wts3NruTyOXHM20yNs1LVcdBovJWLJsZBS4+MkXljC57wEqFnyN7/z8PQZ6Q0yamc/lXzuWfz63l6b3mg4btCWUBF0H+ug8DH3FkZrJY+P8EyYwx7GaP3XksndbO9GQSLh1KFm6/exE/kdrn1mnAOC0mfFYTSpPjFE4LLkdqDXCymcquO25Sv13h+LtMVqNlCwt4ZrLZhOTFFa8UMHmvhCx/ogqXCKmiJGncBlZc+ycddZUFpRnku+00tMfVqPXLBtGh1kX/on1hnjiwW1IQ1HOvmkRNx5XyuuV/azwqfXXaFfwQ9eGU/sKkO4YlOTxGhQDiArKiLJXWiN8rCxhxOh/IjmBqoghpGCc/WaB4AUTcLZ34l1RTaQ/QtmvzVjm5GJueZ+2rz9FzB+j7KwJFHzrRERnBT/87kl0DEZ4e3UDTZvURnJ8IMpQ/QBvN5g5d8EXeLeiX+cUMpkMmFO0gS25DqYvKyMUiFFX0cMldybImPhjhh6MIPrW6j0LFUab7F1Y1V6IvcRN3pQcLFYTgcEo/tbBpO5uOijAIBiYcvpEvv65OfzrjSpqN7dhyXVQUJxBR42XSEcAk8tC6fhMAEYr6GiMuVabiYdX11G1O0Tf9tVHpA0gBeL0b1BpIgSzwL7Xa9j7avVhJSkVUcHfNMj+xn6OKc5gyuwCure066yvo5kl18HJN87nG6eP497nauhqHWTGvELmTc1jSugx/Pe9zpw/TkARjZx63jTu9P+aFeM2868fTeapX/ydv3/nrUMGbQlRVjW2P6q6vaLQ3BukKedMGra+qtOzfJiS1GfFPrNOIe4N89iP3+MJs3DIh3ksO1xUpP/bbOSSC2ZwwZbv4HuricDtT/PYb9brVNcGsxHP7DxMDjP925JwQVFGHIrR74/QFbSzan8Xq56rxOSy8MW7TqY8x8mvf7dOzQaiEsEaLwazkf17unjVbWP3/i6mHz+Oe66awCuVEf75g3eOCkY31vmO5Rj0jAFG74UcxhmM/FnT1laSKI/BvT1c+wsT3/7S71l+3IvEHn4F4iIYBAxFkzAIBnZsl2moq8fyUD2lZW9ywtcXYJwzkTNv/gY/cpqp3dpBrDuAwWxk1fomtu6zUbGpkvhAlJ5N7TyyU51DUEQV2jhpYRH3XZNBe7CMP79cwb7Xawgc6BsTPaL1Iqz5Tk46bRJnzyvBYTayo93H8y9UMlDdhxJNd5TatZITYLWbmXPqRJbMKcQ7GMU/ECHWG0L0Rdj6dr0OXR1pgllAjsp0VfTSNmJhPhoJR41na7T7MppFWv289sBWtmwoRFEULLkOpGBcJ7cbuQ2Ty4LTbqbFnyAUiFEyIYsbT5rENPNKcEzB8Y/f8rdt+ciRbTQ3+zCcMQ/YjKnUTfwI3s2Pum4f80Z45u9bec5uPiKE4f9P9pl1CsDHMscABy+gcVFG8cdo3uZlQWkWj6Y0FAWzwLwTxpGTaee1A159ICfuDbNtYysdnQG83QGkoSg5s/L5gvHfsKeVdWd9m7eScosJOYFBUOjY2cmLbWpjd/45UygYeoWr553IYx4rsQ/hFMaarkx1DPrvSKETOcrG90GcR9pmYio3zE/b/fxr7lSuuuZflLhtMAghUea4pyNccv/T9G3pZMM7IXp6FfI3tJPhsZI3biWXnX4hjwfitATjmDOsjBufhd1qolKb8RBlpOTULKgDgf6BCL2RcjoCEUKBmE7/Pdoxa0yuBrPaI6iv62dnlgOrWaCycYDw4MGRt4beatrazm99EYKDUSbOzKO1O0Bj4wBDnQGdflwlxTt49kSrt2vlkoSSwDOvAKfbSu+eblXn91AMtMkav8aVdbQmh0WGOgOMn19IYZmH7jY//ft6R5V5FX0R1r5Tz+4dHURCcfIKXeQ7eknUHsAwYSbN0nEcqK/EIBioWdfCt90n83t5KU9VjGfFX7b816GcCVHW4eH/5xDS7RMT2fkgliboMcZL/F89luRikTE7n+/ecixnut/knq2LeOcfO/TJRYNgwD0zD4vHysCOLr2erUEoU2mU//nEFezLXQjA1ZHfs/S87jSu+tSF1Frk5oe/PJO4rPDbu1epTJMfIJISbCYKjivFnWmj6b2mQzawDxLEYWx8/WgNeT3bSOoP20vcqvhI8lppJRtLlo2bv3MCp00U2NIhsGl/FxceM45ji/bBy/8mXt2P5YSpGGbNJ+6Zxt6+qTy3qZntb6gQxeLZ6vR1246uUZu3WhPUVpJBQpJ1jiFrgRODyYjoi6DEJCy5DiYsLmH69DzKC930+6PUt/g4sLNTF/sRbCb9WZSCcaRAHMEspEFm9X3ajLoGSDpr6+jXceT1Nmfb+ftDlzAps4l7Xk2w5q/b0thz075rNJB9bCnnXTCDTZtajqinlmoafcPJN87nl2c0QaCPJvu13HLf+3i3dR7EG6a9myaHCXuZh/JZ+Xzz8rkssL8NCQXsHnql+by4L8pbb9bgbx1UqT3GQE79n3089qkW2fkgJlhN5C4tZsGyMkxGgdVP7dNhnkdrqYM1wDCbZ/J3RxJZadFg4EAfP79jJb8ryyLWu1990LWXVUmMym2viAqJYHz45TIKzMregU6i3dMAOPVj1c2oomYMRgP3/WI15iw7ebPy6DcLRDoCRxwRats0uSzccN0CCpxWflzRe0incCTR3GiLkzXfiXtKNoN7e1Q9AKuRyadM4MuXziYsyuxv9uFxW2jvCVJf46WzxstTz+xl3YRs+roD9DcMsHNNE1lFbqbO+g7jz8xAUcC3O0pb5xAdTVsJ9IV0RE133cCwQFASrZU236EkkIIqGZp2Te0lbs64ei6l+S627Oqks2WQz102i2tmN2NsXwlWJ53jL2NXgZuWun4GekOACZNbwJ3r4JrPzaHQZWVjTS/FuU4e/sMGtU6tL9ogHeX0sv48Jk0Oizz4ehVTJmazd2t1WqZ2UN/KbOSyz83hynkxBoYKaHyz7rD7S7tvZiOWLBtXHjeBwO3fJNwbZvzvhiget4z+ZCku7VjlBCAjRw2IQzEGekO0+CPM9zexfvk/6UgOld/8/HFM/uLveeLVA9S/3/SxkFL+n304+59yCgajgSsun8MNob+w/oqX+clT53Pmiycd3QQjKVGNy6IPlMlhEed4D8//dibdoRK+9NWXjozvXFaQw4qq+paEyWk8RXDo+m1qndSgJFhRPY2iQpAkeF26loT4wvAxCwZc03P57vdP4vRXvoLgsbL//H+wprqXb5W8jMFs5oH2C3j8rnePaAJb26YUjPO3323AaDMSbh06KML/MKZRMvzyT+dzfHEl1/7OTtuWdgyCgXNPn8z8/C42deRzoLqXvAIXSgLMFpUZdrDex0Bln76gC1YT0e4gPQf6WJdcLDPGeVhwTBmV61r0erk138mUxcVMnZxLXJTZtK6Jgco+nak17fprC7OiMnuueaMGV46DYH8Yk8NMZ1+INxqn4jDPoLk9yJ4D9QQGoxhNAuOXlDDQq0KIFywu4aTyOLnWSgajc2jsDuizK/KIBrwuMTkiIEk7ntEsOYm965n97E5qF4+mja2brPDKy5Vs2OSiaUu7TjOSdv5jPJuaQ1VEhX1dfuZ+9RRc4Qi+osvobKk89DOdbNZKkozFKEBbN91qFVSdgl84l01VPXTWq7TgH3eWMNoz/HHuzzU1G2exm4Hd3R9YJveTtv8pp6CICqKsEH+/io5OeGb569xa9wPu+/5KYj2hw28gxYxWFSroyFcVnqK+KN+45VgGzz6TSVfPwDXxehU9dKQPUMoE8getj77wygGe3XYrCCYueWR3+vE6zNzzo1OZfef5vPBkHwBXd62go+RifPe8RP3GPm7Z5OApj+2IhIv0RUlW9Ih5tEbx0TiG0Xj0zVl2TrK+QuKNjVxwzj28oiToruglGpOoGSjl1fU11K5tocFmxGAyqnxLyQxKR/+QhDxm2fEUu/F3Boj1hjBbTSyclsdGc60eccZ6QzTX9ROPyVisRqIhMe34Up116rnJYRF/RR+BJNuoYDWx0hvh7WRTXApLOnDg2MtnceaiUsKiTF27n9xMG3t6HAzFZrGtspN5U/OYd/ok9q5qSDra5P6Tw1yC1ZTGaqpDi1OCidTrqWtcpJTh9MwA4aCMQRuS69/ZRT+MmT2O5iQMRgN5x5eRX5xBa2Uvq9Y2MeHSbyIYDKxc1U6gxT8mnFXrfclhkXB3kHe2tjL3gp9y+XY3NLdiOPk0/lixjPef26Wj6z6uBfpwlPDa8X6UJpgFll04nVMXlPCb369ncNfYA4KfZvvfcgpRiacf2cnV9/8K7r4UgAsnVfDv+YWHxVGnmtYLyCzLYNKMPASjQF1FDzaTkfylhZguOpPgrb4xI27t5XRNz0UOi+rE7CgkdUfz0CXkBO0bW7nOOpd4TKJrU3MaisU9M48T+//MM0mHANDmuoYnH9/Ked86lbyWl0n0dWPNnzEqfl3Ljqy5dmLeiN7TSB2EG4vyd+R5axFu6uKQtbSE396xnN8/tZvat+qQw+IwnURuOYbjBJwDJiZOy6XnQB//vG89oDbcUyP4g/oWyX0pUQklJlFY6iEzx0HjVlWw/S+dAYJ1A/o2lJiEb2sHvq0do0biIykRUs8tlYdKDouq1oKQXrozWo0013rJOWECiwsHEQyZPPPqAXo7hpDDIhddM4/LVt3KVafO5w9FV/HCHzdhtNkoWlDEzLmFnDCrEJtJoKEvSFXTAHu3tROoG1CH0FIqKakOQYvcNaeiHbvWqE4gpCnd6RK1mjaFMNxwTrPkdTG5LZg8NmI9ISzZNt74Vi+JfSt59tQ7+cvdq7h7T5euixH3RQ+ZiSpJHXUpLLHtqX1c/XIVgnUGCWU60qNxpOD7HzvsM000SjPjoQEShzoea4FTnUNKqskdynz9YVr7Q//TZbH/qUYzDNeof/mn8zmpcDuPVczgP0/uYXBH5xGXkMweK+OWjycel7HZTShygp4alcHUUeJmqKb/kJmHYFYH1q664yS6+0Os+edOnb73SMpGhzo3jWI6NYoSzALOKTnc+cPlnOl+k8SOreyY90u+8+03iHvDZC4s5PM3LKS5c4h3nq0g2jF00KSryW3hhJsW8rsL2rnp0WxqVjViK3IhR2VCjb4jelG1ASVrvhMEgUibX3/4v/anc7nsb9fheeB7nPNTgYEdXXpNf/IpEwj4oww0DKjZ3kDksDDhVAeU+nIbHWaMyUlhOSqnXSfN8QH6i6/RS2vlp8Px64yMMEc6KYPZiLXAyfKr5gCwfWML/gNedTDNaqL8+DKe+bqPkHUav33XwJSyTK6uvJMVV29Rj8cI5982Dsdv7+DF+jn845HtDO3vTdMY1/erOYQkJYc1144z24GiKERDoi7RqauXjRKYGMxGXFOyuekby3jljWo6k+9JKlBjwhkT+c3Xj+Wh9+vZ+HIVf//deZS7a/nWo9E0qdgjLfUINhOWLBsJJaFfb/jvsIOOqiKYnGDXhbgUZZh25DClXpPbwq2/PZvZhRnc/rNVh4z+TW4LG96cgfKX3zPw5X9w4QUvfWio+Edtn7lGM6g3LtoV5Ls3Po8lywb06HrHR2IGo4FzvrmMH3b/At9V93H9T/cRbPSpsocxFR54JDMKiqjw2ouVehRmlBPIMUD54FFQanSXFtEqCUKNPn7y9Vf5qc1EQlyMHH1OX0R8Wzu4f28PRoeZCSeOwzy/kOo3ag9qGmd5bNDXTF5BObVGA/ZMG4C6uB+B0IpBUEWE8qbkqJQDvcMR0RN/3cIZ97/FYzu6iXp34yjPIGtCFm6Pjd7OIYZq+nWaY4PZiGdeAZEOtQx0OM4bbQpYuz6SP3pQGUgDIZx6xhRq673U7egk3DyoCrRPySEn30VjTZ+6AB9i8Gtk9mAtcGJ0mPWmsWAWkAJxVj28U19c9AVZTtC6sY3z/Hlcc1UW9yx7n6dzfsaKlO3LMggeK6vbF/L8a3sJHOjTETip55x2zd0WrPlOlpw8npuWTyYYl1lf18f+Az00VatDcKIvgjJKBGxymLjiC4u4av8dnHzLg3z53nVEutVJba2mP2d+EQV/u4qfX3Qsd5x3Dp+/Vj3iDzLfYzCqFBmzTxxHS20/XWubP7QzSMtQk47viKgxNE6y5PVz5znJyLITCsTobxpEGorq730a7HpENrl1Xxc1LT512vkQJlhNKH/5PS98az+nb74Ae8lthBp8H/zEPyH7n3MKmilRSW8uwtFFIaX5LiKvdZF7YwOyqKiQxKOZZkxGIKIvgjlLZT9VRAU+As6UMRcrUU6budAXxeT/tYUuHpPIL3aruPqUxUaJSqxasR/TNWey5dU9yFGZyGBU5aoZBWo66jEo6qLs6wqojc8UMrNQg49rv/qq/tmcqTmceuok5pZn0TIQ4vkXKvHuV9FH9hI3377teF5aVcf+F6sOOZFtMBrS9BEMMQkZ0uggDGYjzklZrLhnPLZ//QjTTTfxs9IZrPzrVkR/jO6KXrwuber4KAAJZiMli4rxZNvZ/1otYKb8+DIkSaHt/eaDautapjdrUQnXZr9K7Zn3H7RNjweUu37JX365g9493frCPOr+k1Gu0WrEnW3n+hMnkXXLGZSM9zDvZ9/n5bwZvCYpNPpjo84OgHpvWruHEOZNp3FQQkk27RNyQn8+GhsHMJd7YChAab7rAzmDkccdi4jq/MaHnD9IBYUAuqDSETmF5HfNWXYWnzqRa0+cyOy+v0A0xrtZt/LoC/tp29FFwhdRJ/c5ONNSYhI7nlXZDca6xppJwTiWL13HnIfvIPu8iSTe/t+E2f7POgX4YOloQk7w799uQPrOo7xxT7XOIfRBtpeQVWTJf0Naz2A2krO0mCXHj0MQDKx5ruIgOK4Sk2jf2EpvjfegtDWhJAjWDfDCz9eojUqzijYy2oxHtABo5ygORBhKLuKppRtFVIi2D6nMo7kOJs3I48bFcVw1D3DCgTquv+sK7ttwDDmZNo4Zl82+riECg0dAspacKTBnWDEYVVnGuC+KxHBPw5rv5IovLKJ5wZnsr4Qz1t7D1X9bxcoHt6PEYoSbBj9Qc9EgGLBYTZiTKl5Gh5mJ03IJh0Va32tKW0AEqwlbkYvy+UV85+wSYg+spLMjpQFsgMv/tZgHp/6CX127SQUxHMmCKajlo5x8J9P7/pLsKfVxWfafiZz5AL0dQ4eEEcthkTX/3MmlS5Yy2PYeUjCuM5dq6LeqN2p54I6fUJ7pYt1z+4/4+oxmCVl9zva3+T2dqIoAAEBkSURBVFWH9yGyBK1c6ZyYxZzjyvF5w7RV9xGo7j8iyhptG/YcO3eeZ6f/lGU8s0mr9T/N785z85trH2LnqzVqpgXDaC55OBM9EuAGqIHXiV+KsODOpwgFYkTbK472lD8V9j/tFD6oRVr9PHz7Wx/8gZUV5JgaOWhRlRKTPtSEbyoaJrVGrpk138kTP5lL5hPfQ8i2Yb/uTl7506aDIk3RH9Mj79EWHT3DEOUkysegL65jTcemDs7p3EWjNaWTcxtyWCTgj+I2+4m9vp0X76qmqHALd2y7FQqngBjjO/824N/VdUTwWaPViKfYjcttRVES9HYMEWnzq5F/VMJgNOAbijLlhhkEH6wi909f4tfv1qT1VT7IvVZiEvWrGkAQVJlMX4TVD24frkWn9HyMNiPmDCtmq5EtHTInfPMBjru9m7CUzbvNTp58ai9/fauP2KPvplNhJLMLs8eapss8fBBqeSoSEolMOpcJ4/9FyVQnlq/cyO6VfQQ7A4cuhyUbxF2b2vS6upJsqieUhP73Z+5bh9FhPmTmcqQmh8WPpNFqMBvJW1jM1z6/iLM9K2kwXsrvX6pgd4NvTKaCke9RQpSJ9Edo9hfhGPGsrX0jwJ+eque8ikx8FSIg6SW4o6EQSbVIq59Nf9v+gb//abD/L50CfPCml/4yo+iU0RoE8Gj6GlpKnBBl5JiMQVCwFrlVFtKByEE1ZrPHSq7vTWr/sQd3sYvjH8znDY9NbXCP4OE/4pd6DCGfkceqQSgVURnTIcDwSygF47Q2DFDlW8704yYD1XR1g7JtJ8oli3ihfgLRrvePeBjOYDbi9tgoKMnA5TDjdFtoTDqyeJIGYsOaRi78zn+Y+51GvvuSzLZXDs8EeiT71rDm2jmPWuoyqqWtuC9Ka1Ufj3vDPGMxEotK+Dtb1cb/GJh8g2Bg2nlTueisqTz57D7aVzUO718r/cUkfN4QT+4ez00N/yIo5bN9oIDSfC/bQSfsG810XYMUGOzIxqrJbcE5MYtIR+BTRRtttBqZNq+Q08obkB57g7Ibp+HKsAIHB1QjLaEkIBmkiP4Yj7xTw5/fuIMd+b9M/1xPC57sJfjNAgkx2bcYQ9fiaOx/1SHAZ9ApeOYVsOj0STTXeml+t/Fj6f7r0WeSxgIOftHGMs0hZMzMZe4J42iq8eKt7MXoMPPig8toGMzkzntX40/yHmkmh0U6M65gyn2VUJjPO31BzBlWFcnzAWQdx/rsyAhHq9fbc+z4a/qJ9R76emqUHf6KXu7++2YuueB2rmksRX5/O8LSRfRGp7Jmc4O+bRi9j6Nf4+RC6s60MX18FgtKM/HPKuSdPCdVe7vp26cCDQZ2d/OVr7ykl5gSckJHcqUS9x0tEmaszCn17wlRRpYVIh0BIh0B/KiwYV3rewwqCgCMApecPZWLc99DvOwUfv9+c1rGqdFnBFr8PL9iH6vfd2KxdpNfHCIcEofZXMfqSyQpRXJm5WN3mvH7IkR7Q8R9UYiqfFAzzpvK9efN4PcPbcW7s4uS0yaQV+jmwJqmT6xRqr0nNouRuOLEccwstvVMof7AduSYjNljZd4lMzGaBXa/VJWGFtSzhSTLr+SPsm9VA1e0lfGo+Dw9p16LFJWY9J0lrLV9Cf/Alk/kHD+t9plyCu6Zebzu/DsvX9bMPbeWcdG82xjc0fmxeO2x8O5HajFvhKo9XYTahnQRlm1dTvY39xDzHtzQinvDfOXXW5g080bibTItdftRYhImt9qA0xAUI53UhzGtdDNtaSk5eQ42JIfGDmVanVr0x2hf18Lf9/fy9rLFLF1yMaZOgc693bQ3DRxxFK/BcwXBQL7HzoK8XeDvYtaZJ7N6ah4vWIz0t/oRzAJZRW7KJ2VTUuDGbBIYGIrS0e6ns2WQcH+EeH9YhXAmIZmpzK+CzXREdNSg9g8suY40JJQiKhiSvZqp50/lq1fMZTAq8fhz+2hb1zJm3T8hyvzx5+/z7Lwiug6sVx1CCqZeQ1wlRJlwVNJV5JpQMwi9KTwaHFXjeCpysejYMiYUZxAIieRk2njlzWoa31Vne9rqB3jijSoGKvuwlWTw/O1RkEN81z2NtX/Z+l+Peg1Gg8o2YDOyf1cn91FMbubVvP3UJgarVG0TW0k2t1w0C8Fg4JbNbQdByPVjVlSAhkEwMG9hMQ5jFx1Pr+PhFysYqo0Q2LiWmDeSdh3/f7fPlFMom53P/vub9Z/j3vDH/kB/kOZ0QpaIdgwR7RiGuMlhkZ/c/HJaZJlqiqjgq/KytztE3qQsZi1SVbG62/y0VfQS6w2l4dVHIoqOxkmkZgsGo4G+7gA+b+iIG27aecphESUqUftWHY3rW9IoRaRg/LAvoB6Fh0UCg1GURAK6axBfWkVu0TtcefyJFFx7MW2+MJNyXRzneR/pqYfpe6Iek8NM7pXTMdxwOau7l7G1ppdtm1sZqB9A9MeQw6RNEB/x4KPRgCXbxrxzp9Dd5qd7V5fOVmrOsnPCjfP5RdvPqD5jP8u+vZAdc++mdU3zIc8x1OCjrnkQYJgkUZui1tBlslqqTOvtaFnQKA4B1HkB53gPM5aWcvnScZS5W3DRSuy+v3LlD2/nxG1WYj0hBnd04tvWoR/PAzsX0t0fYufKKp2w8L9lWo8lc14BJpNAf20/a+uT8y2+iI48CjX4+Pav1EG4QE3/qNtKzRgQBGZNyCax6q8sOcXDT5t8KvxcTC8B/599xpxC654ulu69l8UrX2fDsX8ict2zn/QhjWmjTRwf1GQcxQxGA7mFbpbPLybTZqaizM/KQIy+YByU5MM9gvoA0rHvR/LwayUSOSrjresnISfUReoonKCWNSQU1Tnog2Wk80MdzhRRIeCP4h2KgjWOf0MH4b4wBZVelt9RTHfOYgrtu1BWvMS+3+6iJsn9djrV5M6uYFz+cuoz7VhtSanIkfQOh2iej2ZyVCYSiiMIw9syCAack7I4e3EZ0ppBsse7MJ25jN3/ak9zsIfqxwhmAbPHiq0kQwUxaMIvytFnpQZBjbbHz8rn4hMnMiPyOIkeH2TmYJ6cxWC8jITcpl9fzURfhKd/twFLjoOCabnYFxZT807DUQUEH9YEs4DdaUFOTkdrwU5qc18Oiwzu6Dzo+Eea9vlYb4g33m9g+Y3fZk2Ti1hvrZ4ZjiUQ9b/cLP4w9plyCsHaAY651IzBeBLyX1b8z9zQQ/K0pCzmGsopEoqjJCDLZqY420FWrgOfw6RSdWv15REUD6Nt84gavUne+bEymCMxzTkgKmnIkCP6rjYb0T5EdbMPphYzUDvAzp0KrKrhEuUBCu/+LmE5F8fJxzP3e3Gm7unBXOrGeu1pNGXezDNbmqmp6qOnbkBH+Ojomw+Q6Un+KG31A5xw+iQioTg9PSEMZiNKVOLl9Y14fvgSSiLBi/VeoB5Ltk2n5z7kuRsFCuYVcvZZU9hX3ceOZyvTBtsSoqxPOVtyHZQvKsY/EMZXpep0pEFkbSbs5R6+dMFMlg48QM31T5A3K5esu87j9cW/48F7tqdJiqaen+iPceE3juH7pS/R84MXMK14kQsvX/WhdZGP1KSwRO+ebrWfkizPjXbNjnSWIiEnEH0R9j13gAvXtaBEJbWnMkaGBcMN+k+aov+TsM+UUwD+5zhHjnTGIaGotfX4QJTmXZ086o+Sk+8kHpPpbB1M04JOXfQ1vpyRU5sjP3eo/SY+4BzHqNv7IOU2UWUxrdnbTfuZZ5I58bewcwCAl35Sy1WXbaCl6Ns8t9dEvPA4lDMTBINxup/y09/6FvH+sE6L8UGdQappiJZoTEKShiGMiqgw0BuiLxxnbr6RhROy2VvkwtcwkLzPRoRk9DkaGZxgFlhyTBmfX9DBzuKZ7H27Pu14E6i06Tlz81lwTBnfOt1N9YCHB57eTcPKBv0+ab2E8dNzOSZrPYGfrWLX7gSnjItjyClk9XttBOoGxh7WlBXsVhPiyu28/7Kfyx68DffML+Lb2vGxL5BaefVwk+4fZLtyWCTS6h/z75oJNhPWfCcTjyujt3MoTQfl/wf7zDmF/yU7nEMY2RdQa58i0S6ZLl+UnuRQlV4XTUaiGi0EQN7CYsZNzWHnCweGqXwPUVoaqS/xaTBN/2CwyceKHd1852vL4Lk39b/3/vhVZjw+i96+Uva9XY84EBlG5HxIPqqxLFjjZVWjL412QRqK0lXXz5MvV2K1m/B2BRmo7Vdr4aKCYBZwTckmuySDrr09ah8oBR2XkBMEwnGiciYhUUGwmjC5LWqGmCy/TT51AvfetIhcWy3d4XzWVrbQ1+pPv1dGdeCtoMgN0RYsEzyceM4QBT+7kL2Gy6nas/aQ1DCKqPDcX7eSc9efuWbD/YSWfp741w98ZNfuSOzjyvKPZLtmj5VTrp3LT2e9g1h+Imd/I0qw2vv/Tcbwf07hU2qHop7QYJ9pyl0pWYJgM2HJcWAwGrj0kpmcMCGHL61pHh5MMh7cc9DKEmaPFQRBbwankbR9QjXWhDyMN9+3vxvDN87H7X6TgArEoWrTIPm7NjJ1wteoSM5TfJy0zNoxJeRhVbyEqOppSIE4jUmEUBo3EsP3KLfQzaBXzV7ElGg9oSSorexl1fTZVDb16M1rbQjP6DBTXO4hy9qCyRDnvbpeVr9eTajZr0f9WjAgmAUUJUHcPRnLeUsoOXkmXRNv4aW1rSptdQot+WgW7Rji7794n83nX87Alh5V2e9TEiR83GZ0mFk6o4DIA29hv7CdzNJzCNYNHPEU9f9r77zj2yrv/f8+S5Ilyzu24yTOJAkhIQkJBAijhQKFQCl0MErHr1AuXbelvbeltLe3u70dFNpCaUtpS1mljLJCgBBoEggBspezE8eOlzxkbZ31++PoHEveTuzEkPN+vXgRD0lHkvV8n+c7Pp93O25QOE70dUroNRhky/6S28Pf/TaCJOAp9XPxx2dTXOCjON9LR1LD1PSufH52zSGDqIj4xuZz6gemUlDgpWZLE4fX1ueIz2Vf97EODs5Q3MYG7tuwiBv/eRFrb3mZ/Qcg1Aqp5Tu46CuVvDy+wJKQUIc/gPVlUmPXTATDxMgcxuyctOSTugb/Ml0z222rTsNwfJjt59iwoYE/x9Kk0zp5pXkUlwVoOmCp2BopjQ1vHuK2aAWphM7uNW9afg29pIFMw6ShrpOl+05icvlXaPCneOKhHezLeDsPVB8ydZNEXYS1f1qX8/3sAbiR/hsQJAH/pCLyJxTQsSNEqinmCO7JhT5LomYE5pD0uMqb2xtZ8qlzEGYuIPJ0/5pH7zVO6KDgKfPjLQ+Qbo0fk/bVgdJFolfGP6kItT3R1e2RtXg7rl3d9OJz7le0dvzVlUGmlQX4x8p9bH273rm/nMGr3oqMKZ1kUkPXBufeZt/umKAbpJpjPPtMDYu/8nMWPfdrym9+hHTM6uOfVLCLCVNL6djV6swNDMe12VPdnjK/I9vtFKy7zavYkiB2QPCWWyqrdsHYU+pH8UpED3VaUs6SmHOd6bYk7TtCKIVeZlwwhZlTSnktpdHYmkBrS9KxvpG31zcOKOCox1Xq9rbx5NKdSLJIW3OM9r1tVmptkIJy9nOysX2bPaV+S/YjnBrRXLsgCnziy2dx87wdPFd7KT/64jP4JxWx4icJzC1v8uX51/HOQ5v7FVQ8EtS2BP9+cBO3XHQx4RcTRGsOHPV0/LuJEzYoSH6FJV88g+vPnMTfVu/jhV+v6fMP3DY4sdM2Q2UwxWRBFCicW8Evvvk+lm0+zJM/W9XjJNBnMBDF3LSBarD67TpqJxSSTGiO1j+ikdMBk+1EZqjWgrtl6S5nKtj2PB7K8xvsYmP7Imhxrd/XNMcjAaszpa2mhTuf3Mw1F3+B9z/oR1/+FlJ5AEOMMa6qlB0FPmcRFsSe095DCRR23/y0S6bxzU+ehiyK3P38djY8tYN0tlJrN/8HySc5MuOTppcRbouTTGjMnl1B0O/hpZd3E6oJWdeZ9drZcxmeMj+nz6nktHFFbNjSQCMMvkiuG05R9UBm2FCLpJ0huCPJjQuS9dz8k4o4/fxJzjT5SKbpDNXg+edqmDRmIbvrO4BMB1awDMrLSOw4OsG9/h432RBl4z+2DU09+T3CCRsUAHTDJKkZRGP9i4ApJXn4JxWRao6RqA3n9J07UgZ9/NFki8kN5MlrpDQaoilawz1b/3oNCFnBwLFrVCRkv4ykiJQW5VFalEeoMUJTOAVxFSNLJ6e3wOBo/fQzFNUfg0kv2QVXT6HXMjTqxy7SLraKioie1B0fgH3bW3gu6GXWFZ+i8vIAaFaB1u9TkP0yasbjAqQcDwxrAGwImvyKhKfMz5WXzWBO4q8QKGZC1els7Jayy/H8zsyLSHkK1VNLuHjBeBrCCbbtbaW1I0FLe4KIvWPvflrLfC0qIsUBL35Fwsi61sFcsz1hrUXTCJmNjiPaeLToBoZhIsnioDY7oiI6NawjCUYNq2v58f52pzU5diDMp+6ppHLCEna8sHF4nlMv2N1KJyInbFAwUhrLfv82yx/cZFlC9rEwiT6ZRdfM5suXnsyT6+v4589WosdV5HwP486pRpZFDr1Z53S8ZOMs2JlUgpTfJf+sRdI9PHk7t4f44deX5iwW2d68zn1mgoFjd5n1tX2qkWWRoF+hME+htDyf1tqwk1KB3AJ1jndx1iBPfwxUCO/v9CD6ZKpPKSeVVOnc2drDRMXIzDMIioR/UhFnXT6d6soCdh1oY93zu0g2RIntbWdjXOUOReLDZ15DdbFEexg0vQFPvgc16HFaCysmFJIXUEjEVBp2t1rpwl7SP70hKiJSnkI6rZOYeg6N8Zm8+foqR5rEfn8LZ4/hYzfMp6zQxwuv7WXP24eRgx4WnTqWDwgPQmWQdRUf5cd/WkuoJmRpVnVzW8t5DXWTw21xDNOkLTOtPmgBwUzhO9t052hrANZtLZe+tdE0WjQ9KGN6OeihdF4lsiLRtK6hV6vYbLpvKoyklqO/ZOoa2x/bxrHthTqxOGGDgqlbOumDmdQsKvThlyN4PVYaQynO44xrZ3PnBRtIlc7nittihCPpXrsTHDtAr4y/ugCfTyHaEiOhR9CipqPfDoBuWVXaJwrHOarQckizFzHbXlBQpK6gIUs5J5f9NSFCjVEUj0SoMdK10IoCpijmPG73wND9+vtyBetuKG/36ttpECewdetaMlSD3a/udzqcBFEgcFIpZ10+HcMwWfPUDhK1YSSvxNwLJvOTha+TfuQllCsW8W3fZbx2/wa0aJpkfSfrlu8l0pFk/PgCCvO9NIWsdInolZHzRU5eUMWNF8/glNItyFqM5Q3n88zq/WxevpdEXWTAwGCoBqnGCH/541s84FdIh3YTr+10dqiCJOAp9nHVtXO5ecJLoHjZP/0s9rxtTduOzfeSuPsFtPYkC34eJFhYSVNczZkbsd37oCtFpCdUNmxpRFJEOg51Dilt2b3OMVzYg23Z0uwD3b+nzM8fbjuTqvaH2fnlz/DZG5/o1erW7rTyjc23BjQH4YfsMjKcsEFh0OgGa1cdIK3qbMn423rLvZw6Ywzmrho850x3crXdyT7y24bmSQavQ2Tns/MnFaKrBolDYUzRdHbRoiJ2SSNn/m0v1Om0RmtzFAAtrjqdLoIkIBiCY/be/Vp7vY5+AkZ2ikcp8GKkNGcXmS3Ulh0YTFV3JnBN3Rqwm7JgLD85fxvmoT089Z2b+eXXl4IoMn1SCcl7n+VfP97D+SsPcfHdN7Pq4c1oYQMtbg057d3eTLg9TlFpgEQsjaZl2i0V8OUpTCxoRtqxAn1TDR/4uEzyzPnsr2kZ3JRxRjfHUA2Se9ut55XtC51pAZZlEUonkBAq2LUnZAU7SeBgW5zFp49Fre0ETx5id89nUcA3voCT3zeJU2aW89TfNlj2qEmdxrowRmb+4UhSLyORB3em0weJIEuMrf0971zxV6YufoS5H7qDt+9f3/P06JWZdF41n7p6DrWhGA/f8yaxve0nVC5/tOAGhQEwVIOWN+t5ZUOjc9zXommWv7qX4OX/xXO/201kZ2v/+iuqjhY1iR/osIqmhuXF0CtZpwR7wamaWEQilqa+Oebs+O20hqiI1lyCR0LOnBxEUcAwTEs7RtOdYSbQsN5yDQPDCQzZ6Z6+5hh6pIsy12kHhPHzK/nK9fOZXVbH241V/OSu14nuDFnPM7P7tQNDj4VFNwgW+oj/8H5W/OkgH/7zHh5cdAPNGxsJhROIZXkAqAmN0jzFKTybqk66PYlptJNqjtFS5kdURGfh1hMqu7c28dqcSpbMvAhZFEHyUOCVKS4L0GF3BfWTl5YLfZx86TSuu3Qm9z60gfrVtejx3IVKi6R5+l/bWLuukLbmFkuiITNH8sLyPcz71G+ZVHCADaHxxCLrcp67oEj81/cu5OKHP8tTn9vFq43f4LyvB9AiaToOWn8vziT2u3CBVNsTcLiR3Xth995m7vlTiLMe8+QYIAF4Snz84pbTKP3VJ/AuGMe+D32BV+95+4hdEV2OHDcoDAIjmdsho7Yl2LtsL7/K+DUMRpALQ8/4HnQ7EmeGxvqS7TWSGge3NTvCXdkBQfIrePNk8gIe8gIePF4JxSMjSgJqRoIhEUuTiKnEY2kMRczqKMoKDKKZU8Poc8AtG90AUXIMXsZPLuGMmu/x1KVLWXB2Hrf/7VW+/4MVpJpjOYqkvQ3AGarBumd2kvzLfSz54C8QFp6NvDfTRbV8L3tvf4BrP/4gVEzltqf3dTOs0R0HNiOlIfkVy3daEtCiaVo2N3F3x1qenFjEybOuJrVfp6lxFw0HOwaVpxckgVRCY19zlHBTtMd7bRqWFlLorcO0rmvoeh8lEdMwObShgV96NjJ5agkd4X20N0S6nO4yXgeRhIqZ+fsy31qLp/gytHCSmYsn8pELp/GzX66kc3vv6cmj4VgMI6ZDcZ6d+B0+/M2dPP3z/ZCK4Snz9xgwNFSDUFykcloRVFWSrNGcGQ/75yM9kOhiIZimOahXecHie0f6Wt7T9NapIYgCFedWc/Z5k1nxXA3hrV3mLNAlV2EvcnYNQfIryPkeAgVe8gIKhcV+ikvzCPo9BAMeZEkkkdKIJ1Xaw0naW+OE2xIkYmnS0TRa3NpFZ8tjOGqRdBuO03sugtndVKKS8RA+tZxnv6+wZ/F/Ujq9hI7fvsyX/u9VOvd1dEke99MSKkgCnjI/+SeV4A94aNnchBpOOZ1KVdNKSSVUGrY2k6iP5ARpu6Yh+RV84wqYsmAsmmpw4O16R0NHVEQkv+IshEZKG5QWkv36Sz7J8WIYzPtrv0aSX8FbESCvMt9KAdZHSIfiSH6FhR8/hd98rJlHds9j064WPnfBSdy9rIY1f9uIHPSw8tFq2PgK17x4HgeW7RlWmQXJr1B1bjXJhErrmroRlXDwlPk57aOz+PE1haw6VMzd971F9EDYavDILPSiT6ZofiXvv+QkWjsSrH9lH5JfYfzUEnTN4NDWZuIHOtzAcJSse/2WAX/HPSkcI7IlCLIpqwwyY2IxbxR46V2qK7ebR1QychReibyAQiDopbg0j/HlQYoLvFQEfXgkgbiqE05p1DVl6gqZD72RaVc0NRFdN61TQqbwbC+Y2UJ5BvQdGDLOVqDRsaed25+dzQ9evw8Bg0fWNpJOaF1WkVk2h73tUO3Cf3s4RdieAFZ1TFUguruNfY1RS1+om/SGfVuwdpOyX2bmjDEA1O8KkWyIWr3/GdvTHPSBW1Pt1sSBip45KSFJcF4jPWUF3vKqAmKRFLF97c77eda8KlI//z7Xfe0mnl1WwKcfesJyUktqeMr8xLUSAvPOp+V3oWGXmJD8CkuWzCCdNnhwa/OIKqBq4SQbntrB12JTGVORYExlEDWatlJLGUxVp3NrM0szEiFKoZcPLJnBRxdOIBRPc6+8lZ2ZSWw3KIwsblA4jpiGyc6X9rL/nXprhL9b73t37I4jya+QF/AQLPRRXOpnyvhC5lQVMqHApMq/CWKt4A0QYzw1RdWsy1MQJZH2UAxZFomIAvYSoBsGIiJg1SbkfI+lf4Q1Xau2JxzLR7q1OILlVW3oBulQnNfu38BFzwWQ/TJ6qilnJziYNldbT8hIdvtepgUy+3u93jZTY9h/sAMxkz6y/QhM3Txm2jVOW6hhdZd5S/P4xvXzaYmn+e72FtQ2axr4L39Zx5U/+zGrmybQUr/KOdV4yvxcfMNcAvoefr3mZGIH9g77QqhF06x4bR+KRx7yKeFI5M/VtgS7Xt1P+5wKfHmyUzNzfkc3rZNY0koBTjunmm+esZnET7/ClLMmUH/Rj9i3ts76OzhBNIiOF25QOM5o4SRaONmVirG1Zbp/4EQRQZaQvBI+n4I/ExTGFPuZMibIKWWHye98B+PZ5URXHLSMSk4fy4KPfQxx4oWkVR2PIhIIegkUeKnTjC4bScUySS+eXMwFF0zlylMr8IgxXq8zefzZ7dRtaLSuM645hWkb59+ZYrq9o3aKysOwwx3K4pNsiLL5uZ0IkmDNEhynnWV2YIjta+c3T23ByNQfwNoZt79VzwWXNwNvO9ITgiRwxrWzuV36PdvPWMZ5L7/DIyNgEWkkNXY/vdO51oHI3qTYdafBTrJnS3i0bGmyiueZtty+UomFJXnQVk/iUARlYieeWeIJo1J6vHGDwijCnkkQFdFxnEIUnXkFySch+xUnbVQQ9FJc4GVCgY/8yHrMla/y1rfeZP8B+x7r+WhcZfZ/VFEfmQJAzO/B55Npa44RiatOEJLzPUw6qZRr5vsoW/E19MNhrv7ohwidt5jHG6IkVN3KwffRNCUoEp4SnyOPkaPg2ovG0khg1wrSId153NGQatDiGpuf3OHMcWSn0rr7QguiwOzpZRjbWymfXcYfNlk2mSMhRNjXfdmWoLYHdPa1ObMpdM0WSD5pwJkP+71JNcWcJobeNgz2RmXv9mbeOP8znH3vRMgLsvJfhy1xxhNIg+h44QaF0YQo4in2kVfkI9GRdCSOoUtKweOxuo28eTJeRSLPK+NXVAiFSG8LZQUEi/Dqeso+WUuRbzp+n0wsoZJO6xi9dAAlYiodqSLKqiqRRBH8BaQH+SH0lPmZc8k09mxtIrK9BS3a96TuSDLUPvqRRhAFJK9E/swyissDhA50WAXTrEUxJ1UoiWzf04p0w42UXaex4j93OPfTV/fWcOIp83PDbedRXZ7P06/sZsuTO9DjqhMQJK9kyY5kmh+q543Fmyez7fndA57Ksjvxcr7uhqEadB4M8+dntrFx7jwM02TD6q09a0IuI4IbFEYThkFwTIC5C8chigIrn99JKiNoJsgS/qCXkvIAFVVBfF4ZjyJZPsEYmOk0envPYqGWUCERIeiRUWSRcDRFeyhOOq11zQwYJqaeZs+mBn5pGCw67UaKpnrZvbqDtWv2kmyM5thCdkcQranes06rIhFLs2tfO0RzlStH00J9LHAaA3wyJ10yjb998A3ST76B8bvvc8WtB4jUtPaQObHz7Btf3c+nGsfQ0pggUR9B8ivODhrdyGkEGM7XNTC1mIfuWcKbJQsYPwX+tPFXnPuK1zotSJbr28KPn8JvLtyAuWMbwlkX8s+D03l1Te2gH2Og67XbjBP1EXa8sIedy/c5Ok4jIZPt0hM3KIwWMpo/8ViaQJ7CeTPLOVTbwZ63D6NF04iKSFGZn4mTi5k6vpBwNI2qGaRVnUjaQ1XZeHxnVgEHc+625H3VUDCGZLtOStWJx1USsTR6Vn7W0skxScRVtjfH2fm69SE3VMPpvMmeTu6OnTe//7dvkm6N99DEGezC5RTSfV0DW+/mPLK9yAeCXmjrQA8lUIR0Tq1F8isoxXlgWBPvgiJRNaOMSy6YyqbdIdZnpsO73geBiRdOZskHp/PiK3vY/fTOYQkMgiQwdnY5481laBpMu3Acb7SdS7rtcSfoz7tyJv+35ds8csN+ABRlKWe2beAP6+r73TQMFbvhQO3FRMpl5BEH/hWXkSSnaKubpJpj7NnbSkM0RV7Ag+yXnYG1QNBL1Zh8JpYECPoVNN0gltBoTajohdUI807hshsrKSyEidVw0XVlKGfPJC5PJJzSSKZ00indkoGwu3KMrtOCoRro0ZSjCaW2Jbp68wcodupxldi+dtS2RI+872DVNL0VAcrOqKL63InkjQ86cwX94ehADUaeXBIG7YktSIKVJvHJg75Nd+zXtOb1gzyQ90V23/YkX/m7QMJ2ZpNEgjNK+dgXF3Hhp+fjG1eAUujl0g9M4xMnrefLF09jwswxeMr8yEGPI2fykStn8emKpfzwpkWWKmsvz/FIrrnlQAeP1C7m2sbbeOubT/A/P1ph1bUkkbxxQT5wZjWHlndtOk47XeGFHSFnE9CfSOKR0Ov0u8uI454URhGmYZJqilGz8iCxSJp0ZuLWzud6vBIBn0yeLJJSDSKxNGlVZ79foTRvPuMnFVH4w0Iu/fRukGWoLIdJC9nfNoW6tjZCHQlSSRU1I8bWQzjNyLWOdAJWH1LfPa5f1btaDTMFSfv7zmP0giAJyIU+Fnz4ZD563hQ0w+QX9745oFihqIgEphaDKJKs7+xXtVP0yRTMKiOvyEfHrlYSdZE+f1eQBPJnlPGbn17CcxvqWXrfO/3+fm/YnURGSiN2IMzvb3vJ+b7jpe2TmTKngk+fodOZnsT2zY10hOIk0hq6p5gJkX9y1SWX8fCTWwmpmcntlMmzy3Yx65PXs35/a841K4Veik+tINWZIlLTOiRBOVM3iWxv4c6vLuUuSUCPP5YzW6N2pnjh3/t4/xvPcO3aPyKccxn3vjWFt9fVUTS5mFDmRDNcxkYuxw83KBwjBrVz0w0MVSAdinPwrXpkv+wY0JuqTrgtwd76MJG4Sm1jJx3tSeRM95AoCjQUVDGt+HqCixoASOkF1Lf4qWnppK45Slt7glhninRac+wge51k7qZLNOBzUyyHMaXQ6wjdKYVe5HzLdD4dipNuTwL9FyIbD4VZtr6OhvpOOnaELDmLPn5f9MlUnD2ev3x7Ns9sN3ngt2sGlHKumlbK/PlVvJ6nUNsU6zc1JftlqgsamDOllJfyPUdU4O36fWt4rjtGUmPbsj3c2BxD1w7QcbADT5mfPbUdrB07m4UVXhoPJEjE1Eznl7Xg7npuFzct3Z1j+iSIAsFZY7jh+nls2RPi1b3tDLUsa6hGjxkAO8cfr+1kU8N2lizzIPoWIP01RMF4lSuvPJmm1jgv1nZY71cv92sLO8r5lubRcDuluQwvrszFMNK9lxuGoIiaJR2R7Ytgp0fkfA/5VUEKS/zkBRRSCY10SkNWJGteoTxAYb6X8pI8Cv0eAFK6QWtHksbWGM3NMaLhJOG2BPFIyml5NVJaD6mL3k4JfT0XpTiPM6+fwx3v30i6dA7/cW8KXTP4+OUnM6HAx9bGTh57fCst6w/3KRPheEH4ZGcKuL9OFkESCEwt5g93XE71T64i8oMHuO7rb9C5tbnfhVsOevCU+dEi6QF1/UVFxDs2aLXYho9MpbQ/csyRMu+z5FfwFPvwV+ZTWJKH16fQfLiT2OEIWiTtDBH2dvISJAFveYDA1GJSzTHi+zuG9Zq7X6/kV/BXF3D2JSfRGUmx7pmducOKWXhKfFSdNYFbPjGf5evrWHn/+n4lQ1xGDlfm4hiR44qWlTYBIEs/aLABws5FiwCGJXBtqAbJzhSGYRKLyE5LqaTozmPHEyqxpErAZ+WZNd0gEk/T0ZEkGk4Sj6WtU0JSw9S6NH+O9LgviAJVi8Zxx5X1rD7pZ5z9izOZPv12ZkwsZkn6T7AvwskLr+b1ycWEtjQ5r1VvEhdWIFKdrwdC9Mr4FVBOLuWdBol068C+GLYl5WAew1ANkvWdIzpTYQ+3oeqAhJHUUMMpYoZJvNl6PrYUuRMk+zm5pUNxZ2BvpBZc+3qNlECqOcaGtYdIp/X+C82iSHGZnwWVncTnjGVtxrc6FUq4HUWjEDcoHCU57mpeawelFHod0xQ9oToqnraxSr/BIaOwCdlBxPrQpbEGoZJKlvOaIpFKqCQTKh6vRHvAgyyLiKKIYRikU7qjlJpOa6jRdO7pwDBz0khD0spXJC54/1TMVb8inQbxnEWMacrj6imb2H323wmU+6m6uwKP99xB3b/9s+6ptt6CiNqe4NfP72TuaT/nz99dTqopNqhrH8rzOxYzFdmBQc8U/rvXAgbruDaSUh7Z742dtkrrJq0bGy19qH5Od1o4Sc2rB/jV2CAdHSEuvvZULp8/ju/es4ZDL+4dket1OXLcoDAM2AHBU+ZnzMwy5i8cx6SxBRQHPOw53Mk76+pp2NdG/FBnrzacOUhdDWHZHzBDNSyP5SwHNVERLQMYn4Sa0pEUkVhnGjHLgU1TrW4jLaU78tI56aLedIR6SR31xcpV+6n88P8wbuOPuP7hDcw8JUZIO5lp3z4bZp/Mtvyb2LHxNYyU1pVS62exzc4/m4aZsb3suZtMtyV565/beDOl5VhjAo7HhKEaw7oTdWYPbGnuYciN5wQGI9dCM9vZruvxpczJouv2xxLJr5A3Lugo1Wpq1/S4fY09gnjmZ5+/oBqPGOPtBoUJwWbyArmdUy6jAzcoDAN2Ptw3Np/F50ziC2eH8ex+Cv2VzVx69mxqPnkr/1p3iBUv7CK2tz3HX6Cv+8s2pAHr9w0A1XBaMA3V+r+p6QhJHV0RUaV0jt+xvTu3lFG7pLJt28wBTwmSiOyXLdkD1bILdQrTqs7B1w7wy9cPYao6ok8m3Jagrb2CWdO+S807rezY+G8iNa2IXhmlOA89rvaZz7dlqksXjGXuGeOprw2ze/k+1F52oEZKI9XcM38tSFbBdcYZ49m7o5m2NXXD1scvKBJyvocLbjqNc2aP5ce3vzQsKaY+aycZvwu7viQqorNLt4rCxzY4iD6Zxx//OCXfuYr9D/2LW770DMn6zhxxu17nWHRL8+mFmg4CPoU/37uaX4sCndtDI37NLkPHDQrDiMcjUVnqx9u2ktSza9lx/w6mrm/k5DvnUT/9LDasq7cWEbX3bpQeonhZ5jd2isEKBiAYAqICpgEG1sCJYVjWkdaOMqsYmWk1tbuYsoNNd9G67h9qQRTwTypi1pkT8Hgk1j6+jVQo0eUlHFexjYNMw6RzXwdb2pNse7setT1Bui2JHlcJTC3mtAun0N4aZ/szO/vsFJJ8EnMWjuOyhRN4Pd/LvtUHu9sSdT2vvt6HQi+Vlfk01oVpF4dPFsJT7KNqYRVXnl7N/PJt/Lq6gFRDZET0iByVValrFsNWr9WiafSkPuDmYriR/TLj1v0vj95Vy7Vfvhd/9UxSDZGc0y2G3utpQYum+etPV1qmRRmPZrfQPDpxg8IwYC+2yc4UBw53Ys6ahueUSkomHLSGi9IJCr2WZpHdaZItimYjKqI1qJTvcfLmzjRxNroOhmD5IUgCgm5i6nankomRyl3kez0R9NGO2vUYXcVxb4GXC86YwOLxOt9ojrHrlX3ODEH2gmQkLc9k52e225ooUFgV5JuXVwDw2fpOGv99sOcuP2NgL4oCzbE09Y2RHoJxA74XuknHpiaWH+pEbUsM28IjiAJnXjObX8x7Gf3pP/LU++4itnfviC3I2TMCYO3S7a6kSEeSeGuCVHOsS9Z8gHZfwDEakjI2pHZxeLCvr6EaJBd/kg//11Zekf8fsb1LrdNT0Op2M5IaOvQqWmfqloKty+jHDQpHiambCKLluZyoj/DGyv3coUzjfQt/wdwXt6Iaeaw4PJE1NYdpPtzZdfTvnq/PaMtUnVrBlBllRKNptq46SKo5hqGmncfKxpKxBhQJAZDyFDwlPqvlsjNXNjrnw9/XfEJvtQTdoG1DI79tf53n51VSu605VwG1+4Ji6E6vevbPWjY3cf8bE6kaEyCdtobcess9a9E0a1/cw9sr9pFsjh9R3l4NpwacWTgSZk4pIfzTZ3nhL01Ma8iz/KFHOm2TNWQYLPQxd14Voihw6HAnNRsaiB/osBZ4O4j3kZYLzhrDtTcu5MLpY5hq/IsW34Vcc+saojWhQT8HO0WU99Wr+L+fr0INp/BPKuIr3ziXbfvbePXZGiI1rZgcG6tPl5HBDQrDgJ3a0aJpwvs7eO2VPdTsamHK5BJEUeDgoT00H+4k0RjtV15Y9MlUTyvlzFMqOdwap2ZDQ86O3F5IncKkc0PTmWitqi4i1BihM5rG6F4rMHpOK/cbEDLf1+MqkZ2tbDsUtoq3au8LUF/Py9QtV7UXHtyIUpxnpdD62GEbSY34gQ7rUlKjR/vINEyWv7KXm35wLZeoD/NkfcegCvFH9Zi62aM4XzUmwIRiP6WFPjpCcWpb4xk5br3HyROsv6nC2WN4+Vd+4t+8iVQowSMPNAPwinEf7/+sRnRX26CuR0/pPLSphDlV15GofxZBErj5q2dTveRclnx1LsFrfsYjP/k3xvDHY5djiBsUhgH7A6vHVZINUbRwkrZtLez0Kwii4JiOD9SWKogChm6QUHViCbWHsXyfqQpVd3rcw+0JkjHV6TKyTwU519tXQOj+vLLrGYaOGtaPWN/GUA1ie9sRxI4+UxbOvEK095PR8cTUTfa/vI8LD4zl9Kvv4c3fvXlMcvmOPpWqk8p0Uk0rVhjjL+HA4U4a9rVlUkFCj2li0SdzwZfO4Kenvswjyh973Pej4k28ZtzL6ee3D+q1NpIaf/z6MgRFwjRM5HwP13I/j+6GnV/cxBf0Jh4Zjic9CEaqw8zFDQrDRrakgb145qQwBjHApkXTbHmnnrr97cQiKSt1ZBve9zq/kHX3cSsQNLVm5fO7FZEFUXBqFrYctrMT7+WE0B3RKzPxwslUTSxi3TM7h9x5M9hBudEUDLIxUhqR7S28urstpwUzOGsM5VOKOfjaAWvQbJiv3+4ei3Wm2FsXZnJpAM0wMUwzt8ibhaiIFMwq41tL8kh+bzkAY8rgwgcv4tEPvtx13yv+hZw/b9DpNkM1EAwTQZHAMHja8zlOP/Nhpv7sg9z6D2+fp8jhRPTJFC8cS7DQR2h367BPb5/ouEFhmMnRD8rMFPRFzq5bt6STIzWtxH0djmx1Tv3B/n8vwcF6PBCyJbG79e57KwLceOtiZpYH+dHv36RlY6NVrxhEQABLJuJ/P7eIUwpW8zVxJqt///aoXcBHAjuoCVmvT2BqMa98ZSfaqxu49bpv8NZfN/Y6V9EdT5kfb3mAxKHwgHUT+6SQbo2zdWMDnZEUoihwuLajz0K8oEiIXplnavycc9tTLL4dfvrYZn7w93386NCPmPm1Syn72Az+Pf17mMZTQ38xdKuOdsf3V1B66Z2EH4mQrN98TJzRvOUBrrnmVBRZ5PEnthHf3zHij3ki4QaFEaavwp9S6MU3rgAtmkZts7qMTNVqM7TrDs4JoTtZpwbIGhwaoP1SkCVK873ke2TEI5BW1uMqz22sJ3zymezf+daQb/9eIbtt1FsewNy+Cz2UICH2DLA22YVXQRIonj2GRedOYtULu2h/p6H/B8wIJWqRNO11naQSKqIoWhpWth5S9okwU3NKHArzwF/X83dRINkYtZz8khrfvPkp5n30LgJ42HzX60NOv3TVqEzUtgTNGxudBoqRtkC1ZcHjSY1wNEWsLX7MWnJPFFxBvGOMqIj4xhfw7P0LCD75Izqv+l+++fdmNmdsD7PpbWagV/pIIXS/reSTCEwpRvTJlmVmXBtQ8K7H/WSGqOy01mAWAHsCe7R4Jg8XgiQg53s496YFJBMqa/+6scd7aA/kZQ+emYaJf1IR4+ZWUL+pidje9gEfxx6QFL0ykk9yfmabEYH13lgbC7XnKbKP++3v5wNdk/2Y1oUYPWpVI4VS6CWvuhA1bHl/DEUi/ERnMIJ4blA4xnjK/Hzq9vMpPPNiAJZ8biyddzzHZ761nM7toUEdv4/YzCQ7eAwxGMCRf9iVQi8l8yvp3NdBqiHiSHUM1/2PVuygkX9SCWOqCwm3JejYEcqdCh9sO6jU06fCPn2IisiE8ybym/+cS0z188sntrDuoc0jXoA9Xu/he3WTcSxwVVJHIYIkoOkGJ8+AHTsheOVMNLmNcdPLiO5u633SuRvZ6aIh0UtqY6QDgk311FKa8hQa4yoYBnKhD1ERrcncaMo6tQxiAOvdhCBa5kHzz5/MOaeOZdv+Nl5qjGaUTI80ZWPNgQiigJnZIBtAaXk+FQf/CG0dfPWq/+WmF3cP2RhoqByv92qwDQsuR4YbFI4xWiTNiy/s5Etbf8fc3e+wvfw/2X4wSiySGvIif6TBYag52KP9AOopnT2bGkAS8ZblMeakUmadWklHOEnd/naat7dgqPFBBcTjRfaueEivh2EQ7UzRHE7QHkkNytq0L7pLYDioOjVrDrF+yZeonhTlubWH0ZOj97V0Gd246aNjjC2sZstrSz4JKU8h3Z50TEqgp8zB8eJoA4L9fD3FPiuPPrmYqy6ZzozSAC9ua+SNNw5S91Y96fbkqO03FxWR/JllBCvyCdd2DLoF0lZ8tV3ptGiaZEN0yNIdg8F+LFERnc41dzft0h03fTQKsY6+GqmklpMnBno4amXvDI/HdR4t9vOTvFYQzAt4SMTSPLtiD4/FVOq3Nln6PaPchUtQJAqrgoytLiLekRj07UzdmgZP1IZJZL3HI7FYm7rp2ly6DAtuUDiOdO97708mAo5NcBiRBSszlZtMqsQ7Ehze3ESqKdav5MfxoreOHCOlcXhVLY1K3ZClN+z3WPbJBGeNwRdQaFpVO6qDYF/kbGL0nu2n9iyMqVs+GG5X0LuTgXsZXUac0TLpOxKTuPbCoUXSqOEUY6oLufTT8/GU+EZdQMhWEe1eQ9DjXQ56R4JvbD7X3TCPr9+8CKUkb7gu+ZiR3RYr+2XLT9tW/KUrIHzwxgVc8fkzKDqtclSkP12GjhsU3mU4+kDDrOE/Ugu0qVvTuLY72rc+vZDbjN/yoVvOGFWLhiAJeMcGOe3aOVz8pUWULZ6A6Bu+g7QaTrFxRzNrd7WM2tpJX2QHBG95gMBJpXjLA8h+2TGEkoMeLr/5dD595yc4/6YrWHbLLnzjCo73pbscAW5QeBeTHSB6nZwWBZTiPOR8z5BuN1QESWDcB6bwnb9eTXBmaY/F3hYETBwKc8c/NlG3+OesXVN71I87WESfjKfER8GcckrPmUDxonH4JxdZxf4sv+uS6aXcc+Uevr3ldpbesIEpl0wdtsCVaoqx5g/v8MQPXxsRWe9jgW0Ba79miF3Lh5Tv5XOLfax6Icr+A/DolHuZdk718btYlyPGDQrvIbIXekEU8FYEuOJLi7jw86c7rl0jcSKQ/Ar/OvsZEtPPZcXttQRnjen12vS4yo5nd/KpW1+gbmVPk53hxt7BjjlzHNd/63xevqeCZT8r4Hf/cyELr5iBb2y+lQLJtPRKiojx4jKevL2GVRc/wC3XzUP0Dt9pwRa2e7dhv0+GapBuT5JssGYtsjvljJRGU7ws53Yer9TjvlxGP25QeI8i+RXOv2EuX/jHzXz98c/zgf843XKBGwGCM0od5c1Hp/2RJ+46rdffs2sLke0tI94pI0jWKWnhJ07l+a82c/VPPsZj0md5uewmpj72Wa4+ZzKeMr/T828aJq27WhEvvIDJk6C5Bc4aux9PiW9UpbmOF6ZhLfxqOEWiPuLUV+x5CbUtwW13rebaZRdxwdVFXFd3K7vW1h/nq3Y5Etyg8B7FUA2iGbG0zkMRxlcEh3XXm01sXzsnTe36+vW6/BF5nMFi6w35xuZz+pxKzMZDyH6F4iI4/9YZyJeezeK237H0p0WULhiL5FcwdZNEbZjrH5hI6YaNfDT0Qx7dWj7qiuHHC/sEaiS1rv9UI+cU0bC6lstXLuGHH76bJfdMJLavf00nl9GJO7z2HsVWYr3yq2dTXRnkD79cNWK684IkUHLWeB76/lx+vrSNVfetG3Le3FthDXglG6JHfYrIHhDMP6mEOQvHMa4iiKYbtHcmufXiMloWvQ9Ng/HrX+aWO/dw8JX9GCktZ9BObU8Qr+0cla2zoxX7tbeUXd99qbL3Ou7w2gmM3Sv+9J1vIHply094BCSGbQesRH2E363oZMO/9w+5P130yVz3X+cwqSLI3fe9RcvKoytCWwu4jtqWILypiTe2twDWblbO99DZOZPf/ukjaOv2UJsaQ16g1kmtmapOuj2JFm12cuVuQBg89nCmy7sXNyi8hzF1k3RbcsTuX5CsYrZ/UhEej0Q0ls4I2w2NvHFBvjR3EwBLZ4w76qAAWekONffUoUXSvPXn9Zw3dg75k85B+/5yTFUnb1zQ8rZoT1gifZnA5gYElxMNNyi4HDGCIuEbV8BJsysINURY88gW1LbEkNMGqeYY33jxZFoaIuxctm2ErrYL0zBJh+JEDYOyU8qZPKOMadXF7DrQxpZVB0k2RlHVoU0uu7i8V3CDgsuRoxukmmPs3NBAOhQ/ooAA1u791TvXACO/M7dnEpRCLxVzK7ny8pm8b0ox4wPreL16DocPdtAUtaavBVev3+UExA0KLkeMvePWIukebl9Dvq9juPiKPpm8cUEueP9UPjKrDX9kJYTSFHrnIytuQ57LiY37CXA5YhxNoPbEu0aqWfTKeMr8XPaR2Xw+/0EOnfEx1i/6HtqzL+JXJNJZgnfvhufj4jLcuCcFl6NiWPwWspQ3gRGzWbQ9BwonF/HFxe08Kv/d+Vnnt9cx/4Y61FTG8/gIjXBcXN7tuEHB5bhh97RLXskaIMsY24/kqUPySRSXBfA0r8/5fqgVdMNLMqlaQ1kj0L5r031C2j2RuIwm3KDgclywp47loIfyeZXMXTiOeFJjX00LjeutwvVAJ4bevA/6fUzREnFTvBJ4cuWrL/tCNctqfSPmjOZcg30y6gU3OLiMBtyg4HLcEBURX2U+V394Fp+sXgWyh3WLL+K7sdW0RtOWtk4fC6U9NCcqInrSSvkM1Plk6/c0HgqzybiKa5euIfZcDb4FlYSu/S0P37nRCkYj4BVtBzBBFHJ8CEzdBFUf0ZOJi8tQcIOCy3HFNEw8igSdzZiqyoSqOMFCH+2KiNHH3J3jfVwRoLC6iM7DEVKNEcezoT/0uErnvg7ueHQjF7/vO4z5by8HWmK8dOdGGt45jB5XR2w+wQ4Ikl9B8knO9WiGiYBb3HYZHbhBweW4YagGajjFmo2HOedDn8Ejxlh9SCDcnhjU4ijIEoECD/EOmXRGAru/29nS1Vo4Se3GBh5vTyDJIpFwkviBDiuojPCOXZAEJJ+EnO/BNEz0pJ657hF9WBeXQeMGBZfjgq0rlA7FWffMTm7e2oQ3TyHSliB+oAM91XdKxdRN9JROqjFCfcoqTA92TsJUdXTdIF7bSbIhCljBaTDpp+Ei26bUxWW04QYFl+OGHRhSDRFCobjlbZCx7xxo0TSSGqqqO4qqg11kHRMiw8RI5X7/WGCoRleKyjCcgOQGCZfRghsUXI4rjiXoEezSj8ZO9HgswGamdqCngFQmX6SPbPuri8tQcYOCi8sxQPTKCJJgnRCyBuPsgOCeElxGC67MhYvLCCJIAlOumM6b363htUVP8tATn0AOehwL0KM57bi4jATuScHlhESQBOR8D4IiOYXqkUD0yjz43wU8Kj8DwILnT2PMkrs4/Op+Nxi4jErck4LLCYnolSmaW8GYeZV4KwI9pCeGC9Mw2dQy3fl68mdmE2mKugHBZdTinhRcTjgEScBfXcDnbzydWErj0ce2kKzrHJGF2khqfPkzj3PGgw8zcVwhlzy6mUjGHtTFZTTiBgWXExLTMNlxsJ2G5ijh2o4R7QDSImneuOdt3hixR3BxGT7coOBywmHqJom6CM/dtw49mkKLpN10jotLBjcouJyQ2ENz7tCYi0sublBwOSFxW0FdXHpHME3T/WS4uLi4uABuS6qLi4uLSxZuUHBxcXFxcXCDgouLi4uLgxsUXFxcXFwc3KDg4uLi4uLgBgUXFxcXFwc3KLi4uLi4OLhBwcXFxcXFwQ0KLi4uLi4O/x/s/mMkYgRJpQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "from astropy.visualization import simple_norm\n", - "plt.imshow(img,aspect='equal',cmap='RdYlBu_r',origin='lower',interpolation='None',\\\n", - " norm=simple_norm(img,'asinh',asinh_a=0.1,min_cut=-0.01,max_cut=4))\n", - "plt.axis(\"off\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "e1585107-4a8d-4178-80e0-9ba793475f70", - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "wl_shear_sim", - "language": "python", - "name": "wl_shear_sim" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.4" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/shear_meas_tests/test_shear_meas_zshear_metacal.py b/shear_meas_tests/test_shear_meas_zshear_metacal.py new file mode 100644 index 00000000..0e5b059a --- /dev/null +++ b/shear_meas_tests/test_shear_meas_zshear_metacal.py @@ -0,0 +1,286 @@ +import time +import copy +import numpy as np +import tqdm +import joblib + +import pytest + +from metadetect.lsst.metadetect import run_metadetect +import descwl_shear_sims as sim +from descwl_shear_sims.shear import ShearRedshift + + +z_bounds = np.array([0.0, 20.0]) +shear_obj_p = ShearRedshift( + z_bounds=z_bounds, + mode=1, # mode tells z bin is + / - distorted + g_dist="g1", # need to enable users to set this value + shear_value=0.02, # amplitude of the shear +) + +shear_obj_m = ShearRedshift( + z_bounds=z_bounds, + mode=0, # mode tells z bin is + / - distorted + g_dist="g1", # need to enable users to set this value + shear_value=0.02, +) + +CONFIG = { + "meas_type": "wmom", + "metacal": { + "use_noise_image": True, + "psf": "fitgauss", + }, + "psf": { + "model": "gauss", + "lm_pars": {}, + "ntry": 2, + }, + "weight": { + "fwhm": 1.2, + }, + "detect": { + "thresh": 10.0, + }, +} + + +def _make_lsst_sim(*, rng, shear_obj, layout): + + galaxy_catalog = sim.galaxies.make_galaxy_catalog( + rng=rng, + coadd_dim=sim.sim.DEFAULT_SIM_CONFIG["coadd_dim"], + buff=sim.sim.DEFAULT_SIM_CONFIG["buff"], + layout=layout, + gal_type='fixed', + ) + + psf = sim.psfs.make_fixed_psf(psf_type='gauss') + + sim_data = sim.make_sim( + rng=rng, + galaxy_catalog=galaxy_catalog, + coadd_dim=sim.sim.DEFAULT_SIM_CONFIG["coadd_dim"], + shear_obj=shear_obj, + psf=psf, + ) + return sim_data + + +def _shear_cuts(arr): + assert arr is not None + msk = ( + (arr['wmom_flags'] == 0) + & (arr['wmom_s2n'] > 10) + & (arr['wmom_T_ratio'] > 1.2) + ) + return msk + + +def _meas_shear_data(res): + msk = _shear_cuts(res['noshear']) + g1 = np.mean(res['noshear']['wmom_g'][msk, 0]) + g2 = np.mean(res['noshear']['wmom_g'][msk, 1]) + + msk = _shear_cuts(res['1p']) + g1_1p = np.mean(res['1p']['wmom_g'][msk, 0]) + msk = _shear_cuts(res['1m']) + g1_1m = np.mean(res['1m']['wmom_g'][msk, 0]) + R11 = (g1_1p - g1_1m) / 0.02 + + dt = [ + ('g1', 'f8'), + ('g2', 'f8'), + ('R11', 'f8'), + ] + return np.array([(g1, g2, R11)], dtype=dt) + + +def _bootstrap_stat(d1, d2, func, seed, nboot=500): + dim = d1.shape[0] + rng = np.random.RandomState(seed=seed) + stats = [] + for _ in tqdm.trange(nboot, leave=False): + ind = rng.choice(dim, size=dim, replace=True) + stats.append(func(d1[ind], d2[ind])) + return stats + + +def _meas_m_c_cancel(pres, mres): + x = np.mean(pres['g1'] - mres['g1'])/2 + y = np.mean(pres['R11'] + mres['R11'])/2 + m = x/y/0.02 - 1 + + x = np.mean(pres['g2'] + mres['g2'])/2 + y = np.mean(pres['R11'] + mres['R11'])/2 + c = x/y + + return m, c + + +def _boostrap_m_c(pres, mres): + m, c = _meas_m_c_cancel(pres, mres) + bdata = _bootstrap_stat(pres, mres, _meas_m_c_cancel, 14324, nboot=500) + merr, cerr = np.std(bdata, axis=0) + return m, merr, c, cerr + + +def _coadd_sim_data(rng, sim_data, nowarp, remove_poisson): + """ + copied from mdet-lsst-sim + """ + from descwl_coadd.coadd import make_coadd + from descwl_coadd.coadd_nowarp import make_coadd_nowarp + from metadetect.lsst.util import extract_multiband_coadd_data + + bands = list(sim_data['band_data'].keys()) + + if nowarp: + exps = sim_data['band_data'][bands[0]] + + if len(exps) > 1: + raise ValueError('only one epoch for nowarp') + + coadd_data_list = [ + make_coadd_nowarp( + exp=exps[0], + psf_dims=sim_data['psf_dims'], + rng=rng, + remove_poisson=remove_poisson, + ) + for band in bands + ] + else: + coadd_data_list = [ + make_coadd( + exps=sim_data['band_data'][band], + psf_dims=sim_data['psf_dims'], + rng=rng, + coadd_wcs=sim_data['coadd_wcs'], + coadd_bbox=sim_data['coadd_bbox'], + remove_poisson=remove_poisson, + ) + for band in bands + ] + return extract_multiband_coadd_data(coadd_data_list) + + +def _run_sim_one(*, seed, mdet_seed, shear_obj, **kwargs): + rng = np.random.RandomState(seed=seed) + sim_data = _make_lsst_sim(rng=rng, shear_obj=shear_obj, **kwargs) + + coadd_data = _coadd_sim_data( + rng=rng, sim_data=sim_data, nowarp=True, remove_poisson=False, + ) + + mdet_rng = np.random.RandomState(seed=mdet_seed) + results = run_metadetect( + rng=mdet_rng, + config=copy.deepcopy(CONFIG), + **coadd_data, + ) + + return results + + +def run_sim(seed, mdet_seed, **kwargs): + # positive shear + _pres = _run_sim_one( + seed=seed, mdet_seed=mdet_seed, + shear_obj=shear_obj_p, **kwargs, + ) + if _pres is None: + return None + + # negative shear + _mres = _run_sim_one( + seed=seed, mdet_seed=mdet_seed, + shear_obj=shear_obj_m, **kwargs, + ) + if _mres is None: + return None + + return _meas_shear_data(_pres), _meas_shear_data(_mres) + + +@pytest.mark.parametrize( + 'layout,ntrial', [('grid', 500)] +) +def test_shear_meas(layout, ntrial): + nsub = max(ntrial // 100, 10) + nitr = ntrial // nsub + rng = np.random.RandomState(seed=116) + seeds = rng.randint(low=1, high=2**29, size=ntrial) + mdet_seeds = rng.randint(low=1, high=2**29, size=ntrial) + + tm0 = time.time() + + print("") + + pres = [] + mres = [] + loc = 0 + for itr in tqdm.trange(nitr): + jobs = [ + joblib.delayed(run_sim)( + seeds[loc+i], mdet_seeds[loc+i], layout=layout, + ) + for i in range(nsub) + ] + outputs = joblib.Parallel(n_jobs=2, verbose=0, backend='loky')(jobs) + + for out in outputs: + if out is None: + continue + pres.append(out[0]) + mres.append(out[1]) + loc += nsub + + m, merr, c, cerr = _boostrap_m_c( + np.concatenate(pres), + np.concatenate(mres), + ) + print( + ( + "\n" + "nsims: %d\n" + "m [1e-3, 3sigma]: %s +/- %s\n" + "c [1e-5, 3sigma]: %s +/- %s\n" + "\n" + ) % ( + len(pres), + m/1e-3, + 3*merr/1e-3, + c/1e-5, + 3*cerr/1e-5, + ), + flush=True, + ) + + total_time = time.time()-tm0 + print("time per:", total_time/ntrial, flush=True) + + pres = np.concatenate(pres) + mres = np.concatenate(mres) + m, merr, c, cerr = _boostrap_m_c(pres, mres) + + print( + ( + "\n\nm [1e-3, 3sigma]: %s +/- %s" + "\nc [1e-5, 3sigma]: %s +/- %s" + ) % ( + m/1e-3, + 3*merr/1e-3, + c/1e-5, + 3*cerr/1e-5, + ), + flush=True, + ) + + assert np.abs(m) < max(1e-3, 3*merr) + assert np.abs(c) < 3*cerr + return + +if __name__ == "__main__": + test_shear_meas(layout="grid", ntrial=500) From eee3a363bf40cbee19e1f28bd3db7ba4cabbd245 Mon Sep 17 00:00:00 2001 From: Xiangchong Li Date: Tue, 24 Oct 2023 13:42:41 +0900 Subject: [PATCH 22/30] consistency in star catalog --- bin/simulate_image.py | 68 ++++++++++++++++---------------------- descwl_shear_sims/shear.py | 15 ++++++--- descwl_shear_sims/sim.py | 2 +- descwl_shear_sims/stars.py | 5 ++- 4 files changed, 42 insertions(+), 48 deletions(-) diff --git a/bin/simulate_image.py b/bin/simulate_image.py index 3f1e8276..9b3afec4 100755 --- a/bin/simulate_image.py +++ b/bin/simulate_image.py @@ -19,6 +19,7 @@ import os import pickle from argparse import ArgumentParser +from descwl_shear_sims.stars import StarCatalog # star catalog class from configparser import ConfigParser, ExtendedInterpolation import fitsio @@ -69,6 +70,11 @@ def __init__(self, config_name): ) self.nshear = len(self.shear_mode_list) self.shear_value = cparser.getfloat("simulation", "shear_value") + self.stellar_density = cparser.getfloat( + "simulation", + "stellar_densit", + fallback=0.0, + ) return def run(self, ifield=0): @@ -76,48 +82,30 @@ def run(self, ifield=0): rng = np.random.RandomState(ifield) scale = 0.2 - if self.psf_version == 0: - # basic test - kargs = { - "cosmic_rays": False, - "bad_columns": False, - "star_bleeds": False, - "draw_method": "auto", - } - star_catalog = None - psf = make_fixed_psf(psf_type="moffat") # .shear(e1=0.02, e2=-0.02) - psf_fname = "%s/PSF_%s_32.fits" % (self.img_root, self.test_name) - if not os.path.isfile(psf_fname): - psf_data = psf.shift( - 0.5 * scale, - 0.5 * scale - ).drawImage(nx=64, ny=64, scale=scale).array - fitsio.write(psf_fname, psf_data) - - elif self.psf_version == 1: - # spatial varying PSF - kargs = { - "cosmic_rays": False, - "bad_columns": False, - "star_bleeds": False, - "draw_method": "auto", - } - star_catalog = None - # this is the single epoch image sized used by the sim, we need - # it for the power spectrum psf - se_dim = get_se_dim( - coadd_dim=self.coadd_dim, rotate=self.rotate, dither=self.dither + kargs = { + "cosmic_rays": False, + "bad_columns": False, + "star_bleeds": False, + "draw_method": "auto", + } + psf = make_fixed_psf(psf_type="moffat") # .shear(e1=0.02, e2=-0.02) + psf_fname = "%s/PSF_%s_32.fits" % (self.img_root, self.test_name) + if not os.path.isfile(psf_fname): + psf_data = psf.shift( + 0.5 * scale, + 0.5 * scale + ).drawImage(nx=64, ny=64, scale=scale).array + fitsio.write(psf_fname, psf_data) + if self.stellar_density > 0.0: + star_catalog = StarCatalog( + rng=rng, + coadd_dim=self.coadd_dim, + buff=self.buff, + density=self.stellar_density, + layout=self.layout, ) - psf = make_ps_psf(rng=rng, dim=se_dim) - psf_fname = "%s/PSF_%s.pkl" % (self.img_root, self.test_name) - if not os.path.isfile(psf_fname): - with open(psf_fname, "wb") as f: - pickle.dump( - {"psf": psf}, - f, - ) else: - raise ValueError("psf_version must be 0 or 1") + star_catalog = None img_dir = "%s/%s" % (self.img_root, self.test_name) os.makedirs(img_dir, exist_ok=True) diff --git a/descwl_shear_sims/shear.py b/descwl_shear_sims/shear.py index cfc86825..976995f2 100644 --- a/descwl_shear_sims/shear.py +++ b/descwl_shear_sims/shear.py @@ -64,13 +64,20 @@ def determine_shear_list(self, code): shear_list = [values[int(i)] for i in code] return shear_list - def get_bin(self, redshift): + def _get_zshear(self, redshift): bin_num = np.searchsorted(self.z_bounds, redshift, side="left") - 1 - return bin_num + nz = len(self.z_bounds) - 1 + if bin_num < nz and bin_num >= 0: + # if the redshift is within the boundaries of lower and uper limits + # we add shear + shear = self.shear_list[bin_num] + else: + # if not, we set shear to 0 and leave the galaxy image undistorted + shear = 0 + return shear def get_shear(self, redshift, shift=None): - bin_number = self.get_bin(redshift) - shear = self.shear_list[bin_number] + shear = self._get_zshear(redshift) if self.g_dist == 'g1': gamma1, gamma2 = (shear, 0.) diff --git a/descwl_shear_sims/sim.py b/descwl_shear_sims/sim.py index 537abab2..e0a6aa7f 100644 --- a/descwl_shear_sims/sim.py +++ b/descwl_shear_sims/sim.py @@ -459,7 +459,7 @@ def _draw_objects( kw['rng'] = galsim.BaseDeviate(seed=rng.randint(low=0, high=2**30)) if redshifts is None: - redshifts = np.zeros(len(objlist)) + redshifts = np.ones(len(objlist)) * -1.0 for obj, shift, z in zip(objlist, shifts, redshifts): diff --git a/descwl_shear_sims/stars.py b/descwl_shear_sims/stars.py index b32f540b..fa8bbe4a 100644 --- a/descwl_shear_sims/stars.py +++ b/descwl_shear_sims/stars.py @@ -9,7 +9,7 @@ from .cache_tools import cached_catalog_read from .shifts import get_shifts -DEFAULT_MIN_STAR_DENSITY = 2 +DEFAULT_MIN_STAR_DENSITY = 2 # unit: per square arcmin DEFAULT_MAX_STAR_DENSITY = 100 DEFAULT_DENSITY = None @@ -125,14 +125,13 @@ def __init__( area = ((coadd_dim - 2*buff)*SCALE/60)**2 elif layout == 'random_disk': # this layout is random in a circle - radius = (coadd_dim/2. - buff)*SCALE/60 + radius = (coadd_dim/2. - buff)*SCALE/60 # unit: arcmin area = np.pi*radius**2 del radius else: raise ValueError("layout can only be 'random' or 'random_disk' \ for wldeblend") - area = ((coadd_dim - 2*buff)*SCALE/60)**2 nobj_mean = area * density_mean nobj = rng.poisson(nobj_mean) self.density = nobj/area From d8efc3b037e69eac5cbcda85b94473c9afab7c30 Mon Sep 17 00:00:00 2001 From: Xiangchong Li Date: Wed, 25 Oct 2023 03:48:31 +0900 Subject: [PATCH 23/30] fix a small bug in unittests --- bin/simulate_image.py | 7 ++++- descwl_shear_sims/shear.py | 6 ++-- descwl_shear_sims/sim.py | 28 +++++++++++++------ .../test_shear_meas_zshear_metacal.py | 3 +- 4 files changed, 30 insertions(+), 14 deletions(-) diff --git a/bin/simulate_image.py b/bin/simulate_image.py index 9b3afec4..db8f76ef 100755 --- a/bin/simulate_image.py +++ b/bin/simulate_image.py @@ -72,7 +72,7 @@ def __init__(self, config_name): self.shear_value = cparser.getfloat("simulation", "shear_value") self.stellar_density = cparser.getfloat( "simulation", - "stellar_densit", + "stellar_density", fallback=0.0, ) return @@ -96,6 +96,7 @@ def run(self, ifield=0): 0.5 * scale ).drawImage(nx=64, ny=64, scale=scale).array fitsio.write(psf_fname, psf_data) + print(self.stellar_density) if self.stellar_density > 0.0: star_catalog = StarCatalog( rng=rng, @@ -104,6 +105,7 @@ def run(self, ifield=0): density=self.stellar_density, layout=self.layout, ) + print(len(star_catalog)) else: star_catalog = None @@ -140,6 +142,9 @@ def run(self, ifield=0): coadd_dim=self.coadd_dim, shear_obj=shear_obj, psf=psf, + draw_gals=False, + draw_stars=True, + draw_bright=False, dither=self.dither, rotate=self.rotate, bands=band_list, diff --git a/descwl_shear_sims/shear.py b/descwl_shear_sims/shear.py index 976995f2..25ea3b1f 100644 --- a/descwl_shear_sims/shear.py +++ b/descwl_shear_sims/shear.py @@ -73,7 +73,7 @@ def _get_zshear(self, redshift): shear = self.shear_list[bin_num] else: # if not, we set shear to 0 and leave the galaxy image undistorted - shear = 0 + shear = 0.0 return shear def get_shear(self, redshift, shift=None): @@ -86,5 +86,5 @@ def get_shear(self, redshift, shift=None): else: raise ValueError("g_dist must be either 'g1' or 'g2'") - shear = galsim.Shear(g1=gamma1, g2=gamma2) - return shear + shear_obj = galsim.Shear(g1=gamma1, g2=gamma2) + return shear_obj diff --git a/descwl_shear_sims/sim.py b/descwl_shear_sims/sim.py index e0a6aa7f..f9297f85 100644 --- a/descwl_shear_sims/sim.py +++ b/descwl_shear_sims/sim.py @@ -55,8 +55,10 @@ def make_sim( shear_obj, psf, se_dim=None, + draw_gals=True, star_catalog=None, draw_stars=True, + draw_bright=True, psf_dim=51, dither=False, rotate=False, @@ -183,9 +185,11 @@ def make_sim( psf=psf, psf_dim=psf_dim, shear_obj=shear_obj, + draw_gals=draw_gals, star_objlist=lists['star_objlist'], star_shifts=lists['star_shifts'], draw_stars=draw_stars, + draw_bright=draw_bright, bright_objlist=lists['bright_objlist'], bright_shifts=lists['bright_shifts'], bright_mags=lists['bright_mags'], @@ -247,9 +251,11 @@ def make_exp( psf, psf_dim, shear_obj, + draw_gals=True, star_objlist=None, star_shifts=None, draw_stars=True, + draw_bright=True, bright_objlist=None, bright_shifts=None, bright_mags=None, @@ -360,14 +366,17 @@ def make_exp( image = galsim.Image(dim, dim, wcs=se_wcs) - _draw_objects( - image, - objlist, shifts, redshifts, psf, draw_method, - coadd_bbox_cen_gs_skypos, - rng, - shear_obj=shear_obj, - theta0=theta0, - ) + if objlist is not None and draw_gals: + assert shifts is not None + _draw_objects( + image, + objlist, shifts, redshifts, psf, draw_method, + coadd_bbox_cen_gs_skypos, + rng, + shear_obj=shear_obj, + theta0=theta0, + ) + if star_objlist is not None and draw_stars: assert star_shifts is not None, 'send star_shifts with star_objlist' _draw_objects( @@ -390,7 +399,7 @@ def make_exp( bad_columns=bad_columns, ) - if bright_objlist is not None: + if bright_objlist is not None and draw_bright: bright_info = _draw_bright_objects( image=image, noise=noise, @@ -459,6 +468,7 @@ def _draw_objects( kw['rng'] = galsim.BaseDeviate(seed=rng.randint(low=0, high=2**30)) if redshifts is None: + # set redshifts to -1 if not sepcified redshifts = np.ones(len(objlist)) * -1.0 for obj, shift, z in zip(objlist, shifts, redshifts): diff --git a/shear_meas_tests/test_shear_meas_zshear_metacal.py b/shear_meas_tests/test_shear_meas_zshear_metacal.py index 0e5b059a..25a02318 100644 --- a/shear_meas_tests/test_shear_meas_zshear_metacal.py +++ b/shear_meas_tests/test_shear_meas_zshear_metacal.py @@ -11,7 +11,8 @@ from descwl_shear_sims.shear import ShearRedshift -z_bounds = np.array([0.0, 20.0]) +# Use a large z boundaries so that very galaxyies is in this bin +z_bounds = np.array([-20.0, 20.0]) shear_obj_p = ShearRedshift( z_bounds=z_bounds, mode=1, # mode tells z bin is + / - distorted From 18a808ede4bfde900df0d0263929ee484bb01198 Mon Sep 17 00:00:00 2001 From: Xiangchong Li Date: Sun, 5 Nov 2023 04:46:28 +0900 Subject: [PATCH 24/30] delete files in bin and fix flake8 problem --- bin/README.md | 5 - bin/config_sim_zshear.ini | 24 ---- bin/simulate_image.py | 218 ------------------------------------- descwl_shear_sims/shear.py | 3 +- 4 files changed, 1 insertion(+), 249 deletions(-) delete mode 100644 bin/README.md delete mode 100644 bin/config_sim_zshear.ini delete mode 100755 bin/simulate_image.py diff --git a/bin/README.md b/bin/README.md deleted file mode 100644 index d24c51a8..00000000 --- a/bin/README.md +++ /dev/null @@ -1,5 +0,0 @@ -# Code to run the simulation - -```shell -simulate_image.py --config config_sim_zshear.ini --min_id 1 --max_id 2 -```` diff --git a/bin/config_sim_zshear.ini b/bin/config_sim_zshear.ini deleted file mode 100644 index 0ddc864d..00000000 --- a/bin/config_sim_zshear.ini +++ /dev/null @@ -1,24 +0,0 @@ -; run the code in shear_obj_zshear branch -[simulation] - -img_root = ./ -test_name = zshear -# boundary of the redshift bins -z_bounds = [0.0, 10.0] -# shear distortion setup -shear_mode_list = [0, 1] -shear_value = 0.02 - -# galaxy distribution layout and number of rotation -nrot = 2 -layout = random_disk -; layout = hex -coadd_dim = 500 -; buffer length to avoid galaxies hit the boundary -buff = 80 -; no rotate no dither.. no dither -rotate = False -dither = False - -; psf_version = 0 for fixed PSF -psf_version = 0 diff --git a/bin/simulate_image.py b/bin/simulate_image.py deleted file mode 100755 index db8f76ef..00000000 --- a/bin/simulate_image.py +++ /dev/null @@ -1,218 +0,0 @@ -#!/usr/bin/env python -# -# simple example with ring test (rotating intrinsic galaxies) -# Copyright 20230916 Xiangchong Li. -# -# This program is free software: you can redistribute it and/or modify -# it under the terms of the GNU General Public License as published by -# the Free Software Foundation, either version 3 of the License, or -# (at your option) any later version. -# -# This program is distributed in the hope that it will be useful, -# but WITHOUT ANY WARRANTY; without even the implied warranty of -# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -# GNU General Public License for more details. -# -import gc -import glob -import json -import os -import pickle -from argparse import ArgumentParser -from descwl_shear_sims.stars import StarCatalog # star catalog class -from configparser import ConfigParser, ExtendedInterpolation - -import fitsio -import fpfs -import numpy as np -import schwimmbad - -from descwl_shear_sims.galaxies import \ - WLDeblendGalaxyCatalog # one of the galaxy catalog classes -from descwl_shear_sims.psfs import ( # for making a power spectrum PSF - make_fixed_psf, make_ps_psf) -from descwl_shear_sims.shear import ShearRedshift -# convert coadd dims to SE dims -from descwl_shear_sims.sim import get_se_dim, make_sim - -band_list = ["g", "r", "i", "z"] -nband = len(band_list) - - -class Worker: - def __init__(self, config_name): - cparser = ConfigParser(interpolation=ExtendedInterpolation()) - cparser.read(config_name) - # layout of the simulation (random, random_disk, or hex) - # see details in descwl-shear-sims - self.layout = cparser.get("simulation", "layout") - # image root directory - self.img_root = cparser.get("simulation", "img_root") - # Whether do rotation or dithering - self.rotate = cparser.getboolean("simulation", "rotate") - self.dither = cparser.getboolean("simulation", "dither") - # version of the PSF simulation: 0 -- fixed PSF; 1 -- variational PSF - self.psf_version = cparser.getint("simulation", "psf_version") - # length of the exposure - self.coadd_dim = cparser.getint("simulation", "coadd_dim") - # buffer length to avoid galaxies hitting the boundary of the exposure - self.buff = cparser.getint("simulation", "buff") - # number of rotations for ring test - self.nrot = cparser.getint("simulation", "nrot") - # number of redshiftbins - self.rot_list = [np.pi / self.nrot * i for i in range(self.nrot)] - self.test_name = cparser.get("simulation", "test_name") - self.shear_mode_list = json.loads( - cparser.get("simulation", "shear_mode_list") - ) - self.z_bounds = json.loads( - cparser.get("simulation", "z_bounds") - ) - self.nshear = len(self.shear_mode_list) - self.shear_value = cparser.getfloat("simulation", "shear_value") - self.stellar_density = cparser.getfloat( - "simulation", - "stellar_density", - fallback=0.0, - ) - return - - def run(self, ifield=0): - print("Simulating for field: %d" % ifield) - rng = np.random.RandomState(ifield) - scale = 0.2 - - kargs = { - "cosmic_rays": False, - "bad_columns": False, - "star_bleeds": False, - "draw_method": "auto", - } - psf = make_fixed_psf(psf_type="moffat") # .shear(e1=0.02, e2=-0.02) - psf_fname = "%s/PSF_%s_32.fits" % (self.img_root, self.test_name) - if not os.path.isfile(psf_fname): - psf_data = psf.shift( - 0.5 * scale, - 0.5 * scale - ).drawImage(nx=64, ny=64, scale=scale).array - fitsio.write(psf_fname, psf_data) - print(self.stellar_density) - if self.stellar_density > 0.0: - star_catalog = StarCatalog( - rng=rng, - coadd_dim=self.coadd_dim, - buff=self.buff, - density=self.stellar_density, - layout=self.layout, - ) - print(len(star_catalog)) - else: - star_catalog = None - - img_dir = "%s/%s" % (self.img_root, self.test_name) - os.makedirs(img_dir, exist_ok=True) - nfiles = len(glob.glob( - "%s/image-%05d_g1-*" % (img_dir, ifield) - )) - if nfiles == self.nrot * self.nshear * nband: - print("We aleady have all the images for this subfield.") - return - - # galaxy catalog; you can make your own - galaxy_catalog = WLDeblendGalaxyCatalog( - rng=rng, - coadd_dim=self.coadd_dim, - buff=self.buff, - layout=self.layout, - ) - print("Simulation has galaxies: %d" % len(galaxy_catalog)) - for shear_mode in self.shear_mode_list: - for irot in range(self.nrot): - - shear_obj = ShearRedshift( - z_bounds=self.z_bounds, - mode=shear_mode, # mode tells z bin is + / - distorted - g_dist="g1", # need to enable users to set this value - shear_value=self.shear_value - ) - sim_data = make_sim( - rng=rng, - galaxy_catalog=galaxy_catalog, - star_catalog=star_catalog, - coadd_dim=self.coadd_dim, - shear_obj=shear_obj, - psf=psf, - draw_gals=False, - draw_stars=True, - draw_bright=False, - dither=self.dither, - rotate=self.rotate, - bands=band_list, - noise_factor=0.0, - theta0=self.rot_list[irot], - **kargs - ) - # write galaxy images - for band_name in band_list: - gal_fname = "%s/image-%05d_g1-%d_rot%d_%s.fits" % ( - img_dir, - ifield, - shear_mode, - irot, - band_name, - ) - mi = sim_data["band_data"][band_name][0].getMaskedImage() - gdata = mi.getImage().getArray() - fpfs.io.save_image(gal_fname, gdata) - del mi, gdata, gal_fname - del sim_data - gc.collect() - del galaxy_catalog, psf - return - - -if __name__ == "__main__": - parser = ArgumentParser(description="simulate blended images") - parser.add_argument( - "--min_id", - default=0, - type=int, - help="minimum id number, e.g. 0", - ) - parser.add_argument( - "--max_id", - default=5000, - type=int, - help="maximum id number, e.g. 4000", - ) - parser.add_argument( - "--config", - required=True, - type=str, - help="configure file name", - ) - # - group = parser.add_mutually_exclusive_group() - group.add_argument( - "--ncores", - dest="n_cores", - default=1, - type=int, - help="Number of processes (uses multiprocessing).", - ) - group.add_argument( - "--mpi", - dest="mpi", - default=False, - action="store_true", - help="Run with MPI.", - ) - cmd_args = parser.parse_args() - min_id = cmd_args.min_id - max_id = cmd_args.max_id - pool = schwimmbad.choose_pool(mpi=cmd_args.mpi, processes=cmd_args.n_cores) - idlist = list(range(min_id, max_id)) - worker = Worker(cmd_args.config) - for r in pool.map(worker.run, idlist): - pass - pool.close() diff --git a/descwl_shear_sims/shear.py b/descwl_shear_sims/shear.py index 25ea3b1f..23551258 100644 --- a/descwl_shear_sims/shear.py +++ b/descwl_shear_sims/shear.py @@ -77,8 +77,7 @@ def _get_zshear(self, redshift): return shear def get_shear(self, redshift, shift=None): - shear = self._get_zshear(redshift) - + shear = self._get_zshear(redshift) if self.g_dist == 'g1': gamma1, gamma2 = (shear, 0.) elif self.g_dist == 'g2': From e6f6bebb3fa9717e03fd87cf89ca21cd8af90966 Mon Sep 17 00:00:00 2001 From: Xiangchong Li Date: Sun, 5 Nov 2023 06:40:46 +0900 Subject: [PATCH 25/30] ensure that the code is backward compatible --- descwl_shear_sims/sim.py | 10 +- ...st_shear_meas_zshear_metacal_compatible.py | 276 ++++++++++++++++++ 2 files changed, 285 insertions(+), 1 deletion(-) create mode 100644 shear_meas_tests/test_shear_meas_zshear_metacal_compatible.py diff --git a/descwl_shear_sims/sim.py b/descwl_shear_sims/sim.py index f9297f85..1d9855c0 100644 --- a/descwl_shear_sims/sim.py +++ b/descwl_shear_sims/sim.py @@ -18,6 +18,7 @@ from .objlists import get_objlist from .psfs import make_dm_psf from .wcs import make_wcs, make_dm_wcs, make_coadd_dm_wcs +from .shear import ShearConstant DEFAULT_SIM_CONFIG = { @@ -52,8 +53,8 @@ def make_sim( rng, galaxy_catalog, coadd_dim, - shear_obj, psf, + shear_obj=None, se_dim=None, draw_gals=True, star_catalog=None, @@ -71,6 +72,8 @@ def make_sim( sky_n_sigma=None, draw_method='auto', theta0=0., + g1=None, + g2=None, ): """ Make simulation data @@ -148,6 +151,11 @@ def make_sim( if se_dim is None: se_dim = get_se_dim(coadd_dim=coadd_dim, dither=dither, rotate=rotate) + if shear_obj is None: + assert isinstance(g1, float) & isinstance(g2, float), \ + "The input shear_obj is None. Please input g1 and g2"\ + "for constant shear simulation" + shear_obj = ShearConstant(g1=g1, g2=g2) band_data = {} bright_info = [] diff --git a/shear_meas_tests/test_shear_meas_zshear_metacal_compatible.py b/shear_meas_tests/test_shear_meas_zshear_metacal_compatible.py new file mode 100644 index 00000000..52fb5708 --- /dev/null +++ b/shear_meas_tests/test_shear_meas_zshear_metacal_compatible.py @@ -0,0 +1,276 @@ +import time +import copy +import numpy as np +import tqdm +import joblib + +import pytest + +from metadetect.lsst.metadetect import run_metadetect +import descwl_shear_sims as sim +from descwl_shear_sims.shear import ShearRedshift + + +CONFIG = { + "meas_type": "wmom", + "metacal": { + "use_noise_image": True, + "psf": "fitgauss", + }, + "psf": { + "model": "gauss", + "lm_pars": {}, + "ntry": 2, + }, + "weight": { + "fwhm": 1.2, + }, + "detect": { + "thresh": 10.0, + }, +} + + +def _make_lsst_sim(*, rng, g1, g2, layout): + + galaxy_catalog = sim.galaxies.make_galaxy_catalog( + rng=rng, + coadd_dim=sim.sim.DEFAULT_SIM_CONFIG["coadd_dim"], + buff=sim.sim.DEFAULT_SIM_CONFIG["buff"], + layout=layout, + gal_type='fixed', + ) + + psf = sim.psfs.make_fixed_psf(psf_type='gauss') + + sim_data = sim.make_sim( + rng=rng, + galaxy_catalog=galaxy_catalog, + coadd_dim=sim.sim.DEFAULT_SIM_CONFIG["coadd_dim"], + g1=g1, + g2=g2, + psf=psf, + ) + return sim_data + + +def _shear_cuts(arr): + assert arr is not None + msk = ( + (arr['wmom_flags'] == 0) + & (arr['wmom_s2n'] > 10) + & (arr['wmom_T_ratio'] > 1.2) + ) + return msk + + +def _meas_shear_data(res): + msk = _shear_cuts(res['noshear']) + g1 = np.mean(res['noshear']['wmom_g'][msk, 0]) + g2 = np.mean(res['noshear']['wmom_g'][msk, 1]) + + msk = _shear_cuts(res['1p']) + g1_1p = np.mean(res['1p']['wmom_g'][msk, 0]) + msk = _shear_cuts(res['1m']) + g1_1m = np.mean(res['1m']['wmom_g'][msk, 0]) + R11 = (g1_1p - g1_1m) / 0.02 + + dt = [ + ('g1', 'f8'), + ('g2', 'f8'), + ('R11', 'f8'), + ] + return np.array([(g1, g2, R11)], dtype=dt) + + +def _bootstrap_stat(d1, d2, func, seed, nboot=500): + dim = d1.shape[0] + rng = np.random.RandomState(seed=seed) + stats = [] + for _ in tqdm.trange(nboot, leave=False): + ind = rng.choice(dim, size=dim, replace=True) + stats.append(func(d1[ind], d2[ind])) + return stats + + +def _meas_m_c_cancel(pres, mres): + x = np.mean(pres['g1'] - mres['g1'])/2 + y = np.mean(pres['R11'] + mres['R11'])/2 + m = x/y/0.02 - 1 + + x = np.mean(pres['g2'] + mres['g2'])/2 + y = np.mean(pres['R11'] + mres['R11'])/2 + c = x/y + + return m, c + + +def _boostrap_m_c(pres, mres): + m, c = _meas_m_c_cancel(pres, mres) + bdata = _bootstrap_stat(pres, mres, _meas_m_c_cancel, 14324, nboot=500) + merr, cerr = np.std(bdata, axis=0) + return m, merr, c, cerr + + +def _coadd_sim_data(rng, sim_data, nowarp, remove_poisson): + """ + copied from mdet-lsst-sim + """ + from descwl_coadd.coadd import make_coadd + from descwl_coadd.coadd_nowarp import make_coadd_nowarp + from metadetect.lsst.util import extract_multiband_coadd_data + + bands = list(sim_data['band_data'].keys()) + + if nowarp: + exps = sim_data['band_data'][bands[0]] + + if len(exps) > 1: + raise ValueError('only one epoch for nowarp') + + coadd_data_list = [ + make_coadd_nowarp( + exp=exps[0], + psf_dims=sim_data['psf_dims'], + rng=rng, + remove_poisson=remove_poisson, + ) + for band in bands + ] + else: + coadd_data_list = [ + make_coadd( + exps=sim_data['band_data'][band], + psf_dims=sim_data['psf_dims'], + rng=rng, + coadd_wcs=sim_data['coadd_wcs'], + coadd_bbox=sim_data['coadd_bbox'], + remove_poisson=remove_poisson, + ) + for band in bands + ] + return extract_multiband_coadd_data(coadd_data_list) + + +def _run_sim_one(*, seed, mdet_seed, g1, g2, **kwargs): + rng = np.random.RandomState(seed=seed) + sim_data = _make_lsst_sim(rng=rng, g1=g1, g2=g2, **kwargs) + + coadd_data = _coadd_sim_data( + rng=rng, sim_data=sim_data, nowarp=True, remove_poisson=False, + ) + + mdet_rng = np.random.RandomState(seed=mdet_seed) + results = run_metadetect( + rng=mdet_rng, + config=copy.deepcopy(CONFIG), + **coadd_data, + ) + + return results + + +def run_sim(seed, mdet_seed, **kwargs): + # positive shear + _pres = _run_sim_one( + seed=seed, mdet_seed=mdet_seed, + g1=0.02, + g2=0.0, + **kwargs, + ) + if _pres is None: + return None + + # negative shear + _mres = _run_sim_one( + seed=seed, mdet_seed=mdet_seed, + g1=-0.02, + g2=0.0, + **kwargs, + ) + if _mres is None: + return None + + return _meas_shear_data(_pres), _meas_shear_data(_mres) + + +@pytest.mark.parametrize( + 'layout,ntrial', [('grid', 10)] +) +def test_shear_meas(layout, ntrial): + nsub = max(ntrial // 100, 10) + nitr = ntrial // nsub + rng = np.random.RandomState(seed=116) + seeds = rng.randint(low=1, high=2**29, size=ntrial) + mdet_seeds = rng.randint(low=1, high=2**29, size=ntrial) + + tm0 = time.time() + + print("") + + pres = [] + mres = [] + loc = 0 + for itr in tqdm.trange(nitr): + jobs = [ + joblib.delayed(run_sim)( + seeds[loc+i], mdet_seeds[loc+i], layout=layout, + ) + for i in range(nsub) + ] + outputs = joblib.Parallel(n_jobs=2, verbose=0, backend='loky')(jobs) + + for out in outputs: + if out is None: + continue + pres.append(out[0]) + mres.append(out[1]) + loc += nsub + + m, merr, c, cerr = _boostrap_m_c( + np.concatenate(pres), + np.concatenate(mres), + ) + print( + ( + "\n" + "nsims: %d\n" + "m [1e-3, 3sigma]: %s +/- %s\n" + "c [1e-5, 3sigma]: %s +/- %s\n" + "\n" + ) % ( + len(pres), + m/1e-3, + 3*merr/1e-3, + c/1e-5, + 3*cerr/1e-5, + ), + flush=True, + ) + + total_time = time.time()-tm0 + print("time per:", total_time/ntrial, flush=True) + + pres = np.concatenate(pres) + mres = np.concatenate(mres) + m, merr, c, cerr = _boostrap_m_c(pres, mres) + + print( + ( + "\n\nm [1e-3, 3sigma]: %s +/- %s" + "\nc [1e-5, 3sigma]: %s +/- %s" + ) % ( + m/1e-3, + 3*merr/1e-3, + c/1e-5, + 3*cerr/1e-5, + ), + flush=True, + ) + + assert np.abs(m) < max(1e-3, 3*merr) + assert np.abs(c) < 3*cerr + return + +if __name__ == "__main__": + test_shear_meas(layout="grid", ntrial=10) From 409eaf8a659346f93c5a8beedfe841d276b700a3 Mon Sep 17 00:00:00 2001 From: Xiangchong Li Date: Wed, 29 Nov 2023 06:19:11 +0900 Subject: [PATCH 26/30] commit --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index c67f8fca..1ff67c7d 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,4 +1,4 @@ -stackvana<=0.2023.28 +stackvana pip lsstdesc.weaklensingdeblending numba From 77514297a2ecdf38fb85f8df0abff86f6fa488ea Mon Sep 17 00:00:00 2001 From: Xiangchong Li Date: Wed, 29 Nov 2023 06:53:29 +0900 Subject: [PATCH 27/30] fix bug in github workflow --- .github/workflows/test.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.github/workflows/test.yml b/.github/workflows/test.yml index fa362a5b..f69a47a5 100644 --- a/.github/workflows/test.yml +++ b/.github/workflows/test.yml @@ -37,7 +37,7 @@ jobs: pytest \ numpy \ ngmix \ - fitsio \ + fitsio pip install --no-deps -e . From b22a24e65031f186d1f43bb021658058687ebaee Mon Sep 17 00:00:00 2001 From: Xiangchong Li Date: Wed, 29 Nov 2023 07:39:26 +0900 Subject: [PATCH 28/30] conda-libmamba-solver problem? --- .github/workflows/shear_meas_tests.yml | 5 ++--- .github/workflows/test.yml | 10 ++++------ requirements.txt | 2 +- 3 files changed, 7 insertions(+), 10 deletions(-) diff --git a/.github/workflows/shear_meas_tests.yml b/.github/workflows/shear_meas_tests.yml index c2aa1bf7..b903b2b4 100644 --- a/.github/workflows/shear_meas_tests.yml +++ b/.github/workflows/shear_meas_tests.yml @@ -30,10 +30,9 @@ jobs: shell: bash -l {0} run: | conda config --set always_yes yes - conda install -q mamba - mamba install -q --file requirements.txt - mamba install -q \ + conda install -q --file requirements.txt + conda install -q \ flake8 \ pytest \ fitsio \ diff --git a/.github/workflows/test.yml b/.github/workflows/test.yml index f69a47a5..1b73c680 100644 --- a/.github/workflows/test.yml +++ b/.github/workflows/test.yml @@ -29,15 +29,13 @@ jobs: shell: bash -l {0} run: | conda config --set always_yes yes - conda install -q mamba - mamba install -q --file requirements.txt - mamba install -q \ + conda install -q --file requirements.txt + conda install -q \ flake8 \ pytest \ - numpy \ - ngmix \ - fitsio + fitsio \ + ngmix pip install --no-deps -e . diff --git a/requirements.txt b/requirements.txt index 1ff67c7d..677a2411 100644 --- a/requirements.txt +++ b/requirements.txt @@ -3,7 +3,7 @@ pip lsstdesc.weaklensingdeblending numba galsim -pydantic<=1.10.11 +pydantic # optional, but needed for tests to pass hexalattice From be959c89af7f9e47db49628743ba159843787723 Mon Sep 17 00:00:00 2001 From: Xiangchong Li Date: Wed, 29 Nov 2023 07:51:13 +0900 Subject: [PATCH 29/30] libmamba problem --- .github/workflows/shear_meas_tests.yml | 6 ++++-- .github/workflows/test.yml | 6 ++++-- 2 files changed, 8 insertions(+), 4 deletions(-) diff --git a/.github/workflows/shear_meas_tests.yml b/.github/workflows/shear_meas_tests.yml index b903b2b4..6f4adf3b 100644 --- a/.github/workflows/shear_meas_tests.yml +++ b/.github/workflows/shear_meas_tests.yml @@ -31,8 +31,10 @@ jobs: run: | conda config --set always_yes yes - conda install -q --file requirements.txt - conda install -q \ + conda install -q mamba==1.5.1 + + mamba install -q --file requirements.txt + mamba install -q \ flake8 \ pytest \ fitsio \ diff --git a/.github/workflows/test.yml b/.github/workflows/test.yml index 1b73c680..550fa20e 100644 --- a/.github/workflows/test.yml +++ b/.github/workflows/test.yml @@ -30,8 +30,10 @@ jobs: run: | conda config --set always_yes yes - conda install -q --file requirements.txt - conda install -q \ + conda install -q mamba==1.5.1 + + mamba install -q --file requirements.txt + mamba install -q \ flake8 \ pytest \ fitsio \ From 4e43c6b94570a99acda896ce4ff6765c752570d7 Mon Sep 17 00:00:00 2001 From: Xiangchong Li Date: Thu, 30 Nov 2023 06:01:17 +0900 Subject: [PATCH 30/30] g1/g2 float --- descwl_shear_sims/sim.py | 5 +---- 1 file changed, 1 insertion(+), 4 deletions(-) diff --git a/descwl_shear_sims/sim.py b/descwl_shear_sims/sim.py index 1d9855c0..ade8349b 100644 --- a/descwl_shear_sims/sim.py +++ b/descwl_shear_sims/sim.py @@ -152,10 +152,7 @@ def make_sim( if se_dim is None: se_dim = get_se_dim(coadd_dim=coadd_dim, dither=dither, rotate=rotate) if shear_obj is None: - assert isinstance(g1, float) & isinstance(g2, float), \ - "The input shear_obj is None. Please input g1 and g2"\ - "for constant shear simulation" - shear_obj = ShearConstant(g1=g1, g2=g2) + shear_obj = ShearConstant(g1=float(g1), g2=float(g2)) band_data = {} bright_info = []