Skip to content

Latest commit

 

History

History
70 lines (48 loc) · 2.2 KB

README.md

File metadata and controls

70 lines (48 loc) · 2.2 KB

UNet

A DeepLearning Architecture for image segmentation.

Description

This repository contains the code necessary to run a UNet based on the Dynamic Unet implementation of fastai. The implementation uses the PyTorch DeepLearning framework. UNet is used for image segmentation (pixel-wise classification). The repository contains all code necessary to preprocess large tif-images, run training and validation, and perform predictions using the trained models.

Getting Started

Dependencies

  • GDAL, Pytorch-fast.ai, Scipy ... (see installation)
  • Cuda-capable GPU (overview here)
  • Anaconda (download here)
  • developed on Windows 10

Installation

For Windows

  • clone the Stable UNet repository
  • conda create --name UNet python==3.9.6
  • conda activate UNet
  • cd ../UNet/environment
  • pip install -r requirements.txt

For Linux

  • clone the Stable UNet repository
  • conda create --name UNet python==3.9.6
  • conda activate UNet
  • pip install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html
  • cd ../UNet/environment
  • pip install -r requirements_Linux.txt

Executing program

  • set parameters and run in params_and_main.py

Help/Known Issues

  • None yet

Info

Authors

Version History

  • 0.1
    • Initial Release

License

Not licensed

Acknowledgments

Inspiration, code snippets, etc.