-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDataSet.py
368 lines (299 loc) · 12.8 KB
/
DataSet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
from math import isnan
import os
import cv2
import numpy as np
import json
import time
import torch
from torch import nn
from torch._C import dtype
import torch.nn.functional as F
from torch.utils import data
from torchvision.transforms import transforms
from torch.utils.data import Dataset, DataLoader
import torchvision.utils as vutils
from torch.autograd import Variable
def tonemapper(exr,mode=0):
if mode ==0:
return torch.pow(torch.clamp(exr,0.0,1.0), (1/2.2))
elif mode == 1:
A = 2.51
B = 0.03
C = 2.43
D = 0.59
E = 0.14
return torch.pow(torch.clamp(( (exr * (A * exr + B)) / (exr * (C * exr + D) + E) ),0.0,1.0), (1/2.2))
def probe_img2channel(probe_hdr, env_h, pano_h, pano_w):
"""translate probe tensor 2 channel tensor
Args:
probe_hdr ([type]): [shape: (3,env_h*pano_h, env_w*pano_w)]
env_h ([type]): [height of every probe]
pano_h ([type]): [height of rendered panorama]
Returns:
[type]: [shape: (3*env_h*env_w, pano_h, pano_w)]
"""
c,h,w = probe_hdr.shape
probe_hdr = probe_hdr.reshape(3, pano_h, env_h, pano_w, env_h*2)
probe_hdr = probe_hdr.permute(0,2,4,1,3).reshape(-1, pano_h, pano_w)
return probe_hdr
def probe_channel2img(probe_channels, env_h, pano_h, pano_w):
"""translate channel tensor 2 probe tensor
Args:
probe_channels ([type]): [shape: (3*env_h*env_w, pano_h, pano_w)]
env_h ([type]): [height of every probe]
pano_h ([type]): [height of rendered panorama]
Returns:
[type]: [shape: (3,env_h*pano_h, env_w*pano_w)]
"""
c,h,w = probe_channels.shape
probe_channels = probe_channels.reshape(3,env_h, int(env_h*2), pano_h, pano_w)
probe_channels = probe_channels.permute(0,3,1,4,2).reshape(3, env_h*pano_h, int(env_h*2)*pano_w)
return probe_channels
class KePanoMaterial(Dataset):
r"""read pano data,
it's format is .hdr.
example['image'],
example['albedo'],
example['normal'],
example['roughness'],
example['metallic'],
example['depth'],
example['mask']
"""
def __init__(self,root,cube_lenth=128,pano_height=256,pano_width=512,split_json_path="",mode="train",is_random_exposure=True) -> None:
super().__init__()
self.root = root
self.cube_lenth = cube_lenth
self.pano_height = pano_height
self.pano_width = pano_width
self.max_depth = 10 # 10 m, norm [0,1]
self.split_json_path = split_json_path
self.mode = mode
self.all_item = self.read_all_item(root)
self.is_random_exposure = is_random_exposure
def __getitem__(self, index):
one_item = self.all_item[index]
one_path = one_item[0]
iindex = int(one_item[1])
#print("{} + index {}".format(one_path,iindex))
# range: [-2,-0.5)
if self.is_random_exposure:
random_exposure = torch.rand(1)*1.5 - 2.0
else:
random_exposure = -1.0
image = cv2.imread(os.path.join(one_path,str(iindex)+'_image.hdr'),-1)[:,:,0:3]
image = cv2.resize(image,(self.pano_width,self.pano_height))
image = np.asarray(image,dtype=np.float32)
image = image[...,::-1].copy()
image = torch.from_numpy(image)
image = image.permute(2,0,1)
image = image * torch.pow(torch.tensor(2.0),random_exposure)
image = tonemapper(image,mode=1) # ACES tonemapping
albedo = cv2.imread(os.path.join(one_path,str(iindex)+'_albedo.hdr'),-1)[:,:,0:3]
albedo = cv2.resize(albedo,(self.pano_width,self.pano_height))
albedo = np.asarray(albedo,dtype=np.float32)
albedo = albedo[...,::-1].copy()
albedo = torch.from_numpy(albedo)
albedo = albedo.permute(2,0,1)
roughness = cv2.imread(os.path.join(one_path,str(iindex)+'_roughness.hdr'),-1)[:,:,0:1]
roughness = cv2.resize(roughness,(self.pano_width,self.pano_height))
roughness = np.asarray(roughness,dtype=np.float32)
roughness = torch.from_numpy(roughness)
roughness = roughness.unsqueeze(0)
metallic = cv2.imread(os.path.join(one_path,str(iindex)+'_metallic.hdr'),-1)[:,:,0:1]
metallic = cv2.resize(metallic,(self.pano_width,self.pano_height))
metallic = np.asarray(metallic,dtype=np.float32)
metallic = torch.from_numpy(metallic)
metallic = metallic.unsqueeze(0)
mask = cv2.imread(os.path.join(one_path,str(iindex)+'_mask.hdr'),-1)[:,:,0:1]
mask = cv2.resize(mask,(self.pano_width,self.pano_height))
mask = np.asarray(mask,dtype=np.float32)
mask = torch.from_numpy(mask)
mask = mask.unsqueeze(0)
normal = cv2.imread(os.path.join(one_path,str(iindex)+'_normal.hdr'),-1)[:,:,0:3]
normal = cv2.resize(normal,(self.pano_width,self.pano_height))
normal = np.asarray(normal,dtype=np.float32)
normal = normal[...,::-1].copy()
normal = (normal*2.0)-1.0
normal = torch.from_numpy(normal)
normal = normal.permute(2,0,1)
depth = cv2.imread(os.path.join(one_path,str(iindex)+'_depth.hdr'),-1)[:,:,0:1]
depth = cv2.resize(depth,(self.pano_width,self.pano_height))
depth = np.asarray(depth,dtype=np.float32)
depth = torch.from_numpy(depth)
depth = depth.unsqueeze(0)
depth = depth * torch.tensor(self.max_depth)/2
depth_mask = (depth>0) & (depth<=self.max_depth) & (~torch.isnan(depth))
#print("total time cost:{}".format(time.time()-start_time))
name = one_path.split('/')[-3]+"_"+one_item[1]
batchDict = {'image':image,
'albedo':albedo,
'normal':normal,
'roughness':roughness,
'metallic':metallic,
'depth':depth,
'depth_mask':depth_mask,
'mask':mask,
'name':name}
return batchDict
def __len__(self):
return len(self.all_item)
def read_all_item(self,root):
all_item = []
with open(self.split_json_path,'r') as f:
strs = f.read()
split_json = json.loads(strs)
planids = split_json[self.mode]
for id in planids:
if not os.path.exists(os.path.join(root,id)):
continue
whole_path = os.path.join(root,id,'ue4_result','CubemapData')
items = os.listdir(whole_path)
#print(id)
# 5--without normal and depth, 6--with normal, 7 --with depth
#assert (len(items)%(6))==0
if (len(items)%(7))!=0:
print(id)
continue
num = round(len(items)/7)
for i in range(0,num):
one_item = []
one_item.append(whole_path)
one_item.append(str(i))
all_item.append(one_item)
one_item = []
print(len(all_item))
return all_item
class KePanoLighting(Dataset):
r"""read pano data, include pano lighting.
it's format is .hdr.
example['image'],
example['albedo'],
example['normal'],
example['roughness'],
example['metallic'],
example['depth'],
example['mask']
"""
def __init__(self,root,cube_lenth=128,pano_height=256,pano_width=512,env_h=16,probes_h=128,split_json_path="",mode="train",is_random_exposure=True) -> None:
super().__init__()
self.root = root
self.cube_lenth = cube_lenth
self.pano_height = pano_height
self.pano_width = pano_width
self.probes_h = probes_h
self.probes_w = int(probes_h*2)
self.env_h = env_h
self.env_w = int(env_h*2)
self.max_depth = 10 # 10 m, norm [0,1]
self.split_json_path = split_json_path
self.mode = mode
self.all_item = self.read_all_item(root)
self.is_random_exposure = is_random_exposure
def __getitem__(self, index):
one_item = self.all_item[index]
one_path = one_item[0]
iindex = int(one_item[1])
#print("{} + index {}".format(one_path,iindex))
# range: [-2,-0.5)
if self.is_random_exposure:
random_exposure = torch.rand(1)*1.5 - 2.0
else:
random_exposure = -1.0
try:
light = cv2.imread(os.path.join(one_path,str(iindex)+'_light.exr'),-1)[:,:,0:3]
except:
print(os.path.join(one_path,str(iindex)+'_light.exr'))
light = np.asarray(light,dtype=np.float32)
light = light[...,::-1].copy()
light = torch.from_numpy(light)
light = light.permute(2,0,1)
light = probe_img2channel(light,self.env_h,self.probes_h,self.probes_w)
light = light * torch.pow(torch.tensor(2.0),random_exposure)
one_path = one_path.replace('LightProbeData','CubemapData').replace('KePanoLight','KePanoData')
image = cv2.imread(os.path.join(one_path,str(iindex)+'_image.hdr'),-1)[:,:,0:3]
image = cv2.resize(image,(self.pano_width,self.pano_height))
image = np.asarray(image,dtype=np.float32)
image = image[...,::-1].copy()
image = torch.from_numpy(image)
image = image.permute(2,0,1)
image = image * torch.pow(torch.tensor(2.0),random_exposure)
image = tonemapper(image,mode=1) # ACES tonemapping
albedo = cv2.imread(os.path.join(one_path,str(iindex)+'_albedo.hdr'),-1)[:,:,0:3]
albedo = cv2.resize(albedo,(self.pano_width,self.pano_height))
albedo = np.asarray(albedo,dtype=np.float32)
albedo = albedo[...,::-1].copy()
albedo = torch.from_numpy(albedo)
albedo = albedo.permute(2,0,1)
roughness = cv2.imread(os.path.join(one_path,str(iindex)+'_roughness.hdr'),-1)[:,:,0:1]
roughness = cv2.resize(roughness,(self.pano_width,self.pano_height))
roughness = np.asarray(roughness,dtype=np.float32)
roughness = torch.from_numpy(roughness)
roughness = roughness.unsqueeze(0)
metallic = cv2.imread(os.path.join(one_path,str(iindex)+'_metallic.hdr'),-1)[:,:,0:1]
metallic = cv2.resize(metallic,(self.pano_width,self.pano_height))
metallic = np.asarray(metallic,dtype=np.float32)
metallic = torch.from_numpy(metallic)
metallic = metallic.unsqueeze(0)
mask = cv2.imread(os.path.join(one_path,str(iindex)+'_mask.hdr'),-1)[:,:,0:1]
mask = cv2.resize(mask,(self.pano_width,self.pano_height))
mask = np.asarray(mask,dtype=np.float32)
mask = torch.from_numpy(mask)
mask = mask.unsqueeze(0)
normal = cv2.imread(os.path.join(one_path,str(iindex)+'_normal.hdr'),-1)[:,:,0:3]
normal = cv2.resize(normal,(self.pano_width,self.pano_height))
normal = np.asarray(normal,dtype=np.float32)
normal = normal[...,::-1].copy()
normal = (normal*2.0)-1.0
normal = torch.from_numpy(normal)
normal = normal.permute(2,0,1)
depth = cv2.imread(os.path.join(one_path,str(iindex)+'_depth.hdr'),-1)[:,:,0:1]
depth = cv2.resize(depth,(self.pano_width,self.pano_height))
depth = np.asarray(depth,dtype=np.float32)
depth = torch.from_numpy(depth)
depth = depth.unsqueeze(0)
depth = depth * torch.tensor(self.max_depth)/2
depth_mask = (depth>0) & (depth<=self.max_depth) & (~torch.isnan(depth))
#print("total time cost:{}".format(time.time()-start_time))
name = one_path.split('/')[-3]+"_"+one_item[1]
batchDict = {'image':image,
'albedo':albedo,
'normal':normal,
'roughness':roughness,
'metallic':metallic,
'depth':depth,
'depth_mask':depth_mask,
'mask':mask,
'light':light,
'name':name}
return batchDict
def __len__(self):
return len(self.all_item)
def read_all_item(self,root):
all_item = []
with open(self.split_json_path,'r') as f:
strs = f.read()
split_json = json.loads(strs)
planids = split_json[self.mode]
for id in planids:
if not os.path.exists(os.path.join(root,id)):
continue
if not os.path.exists(os.path.join(root.replace('KePanoLight','KePanoData'),id)):
continue
whole_path = os.path.join(root,id,'ue4_result','LightProbeData')
items = os.listdir(whole_path)
#print(id)
# 5--without normal and depth, 6--with normal, 7 --with depth
#assert (len(items)%(6))==0
if (len(items))!=1:
print(id)
continue
num = len(items)
for i in range(0,num):
one_item = []
one_item.append(whole_path)
one_item.append(str(i))
all_item.append(one_item)
one_item = []
print(len(all_item))
return all_item