-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathdata.py
240 lines (201 loc) · 8.54 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
from wrapper import QSARDataset, D4DCHPDataset, ToXAndPAndEdgeAttrForDeg
from pytorch_lightning import LightningDataModule
import torch
from torch.nn import BCEWithLogitsLoss, MSELoss
from torch.utils.data import WeightedRandomSampler
from torch_geometric.loader import DataLoader
qsar_dataset_names= ['435008', '1798', '435034', '1843', '2258', '463087', '488997','2689', '485290', '9999']
d4dchp_dataset_names = ['CHIRAL1', 'DIFF5', 'D4DCHP', "dummy"]
def get_dataset(dataset_name='435034', gnn_type='kgnn',
dataset_path='../dataset/'):
"""
Get the requested dataset
:param dataset_name:
:return:
"""
if gnn_type == 'kgnn':
pre_transform=ToXAndPAndEdgeAttrForDeg()
else:
pre_transform=None
if dataset_name in qsar_dataset_names:
qsar_dataset = QSARDataset(
root=dataset_path+'qsar/clean_sdf',
dataset=dataset_name,
gnn_type=gnn_type,
pre_transform=pre_transform,
)
dataset = {
'num_class': 1,
'dataset': qsar_dataset,
'num_samples': len(qsar_dataset),
'metrics': ['ppv', 'logAUC_0.001_0.1', 'logAUC_0.001_1', 'f1_score', 'AUC'],
'loss_func': BCEWithLogitsLoss()
}
elif dataset_name in d4dchp_dataset_names:
if dataset_name == 'CHIRAL1':
data_file = '../dataset/d4_docking/d4_docking_rs.csv'
label_column_name = 'labels'
index_file = '../dataset/d4_docking/rs/split0.npy'
metrics = ['accuracy']
loss_func = BCEWithLogitsLoss()
elif dataset_name == 'D4DCHP':
data_file = '../dataset/d4_docking/d4_docking.csv'
label_column_name = 'docking_score'
index_file = '../dataset/d4_docking/full/split0.npy'
metrics = ['RMSE']
loss_func = MSELoss(reduction='sum')
elif dataset_name == 'dummy':
data_file = '../dataset/d4_docking/dummy/dummy.csv'
label_column_name = 'labels'
index_file = '../dataset/d4_docking/dummy/split.npy'
metrics = ['accuracy']
loss_func = BCEWithLogitsLoss()
d4_dchp_dataset = D4DCHPDataset(
root='../dataset/d4_docking/',
subset_name=dataset_name,
data_file= data_file,
label_column_name=label_column_name,
idx_file=index_file,
D=3,
pre_transform=ToXAndPAndEdgeAttrForDeg(),
)
dataset = {
'num_class': 1,
'dataset': d4_dchp_dataset,
'num_samples': len(d4_dchp_dataset),
'metrics':metrics,
'loss_func': loss_func
}
else:
raise NotImplementedError(f'data.py::get_dataset: dataset_name '
f'{dataset_name} is '
f'not found')
print(f'dataset {dataset_name} loaded!')
print(dataset)
print(f'dataset info ends')
return dataset
class DataLoaderModule(LightningDataModule):
"""
A pytorch lighning wrapper that creates DataLoaders
If enable oversampling with replacement, the weights are larger if the
number of samples is smaller (the probability of drawing a sample is the
inverse of the number of this sample class
"""
def __init__(
self,
dataset_name,
num_workers,
batch_size,
seed,
enable_oversampling_with_replacement,
gnn_type,
dataset_path
):
super().__init__()
self.dataset_name = dataset_name
self.dataset = get_dataset(dataset_name=self.dataset_name,
gnn_type=gnn_type,
dataset_path = dataset_path
)
self.num_workers = num_workers
self.batch_size = batch_size
self.seed = seed
self.enable_oversampling_with_replacement = enable_oversampling_with_replacement
self.gnn_type = gnn_type
self.dataset_path = dataset_path
split_idx = self.dataset['dataset'].get_idx_split()
self.dataset_train = self.dataset['dataset'][split_idx["train"]]
print(f'training # samples:{len(self.dataset_train)})')
self.dataset_val = self.dataset['dataset'][split_idx["valid"]]
print(f'validation # samples:{len(self.dataset_val)})')
self.dataset_test = self.dataset['dataset'][split_idx["test"]]
print(f'testing # samples:{len(self.dataset_test)})')
def setup(self, stage: str = None):
pass
def train_dataloader(self):
if self.dataset_name in qsar_dataset_names:
# Calculate the number of samples in minority/majority class
num_train_active = len(torch.nonzero(
torch.tensor([data.y for data in self.dataset_train])))
num_train_inactive = len(self.dataset_train) - num_train_active
print(f'training # of molecules: {len(self.dataset_train)}, actives: {num_train_active}')
if self.enable_oversampling_with_replacement:
print('data.py::with resampling')
# Sample weights equal the inverse of number of samples
train_sampler_weight = torch.tensor([(1. / num_train_inactive)
if data.y == 0
else (1. / num_train_active)
for data in
self.dataset_train])
generator = torch.Generator()
generator.manual_seed(self.seed)
train_sampler = WeightedRandomSampler(weights=train_sampler_weight,
num_samples=len(
train_sampler_weight),
generator=generator)
train_loader = DataLoader(
self.dataset_train,
batch_size=self.batch_size,
sampler=train_sampler,
num_workers=self.num_workers,
)
else: # Regular sampling without oversampling
print('data.py::no resampling')
train_loader = DataLoader(
self.dataset_train,
batch_size=self.batch_size,
shuffle=True,
num_workers=self.num_workers,
)
print('len(train_dataloader)', len(train_loader))
elif self.dataset_name in d4dchp_dataset_names:
print('data.py::no resampling')
print(f'dataset_train:{self.dataset_train[0]}')
train_loader = DataLoader(
self.dataset_train,
batch_size=self.batch_size,
shuffle=True,
num_workers=self.num_workers,
)
print('len(train_dataloader)', len(train_loader))
return train_loader
def val_dataloader(self):
# Validation laader
generator = torch.Generator()
generator.manual_seed(self.seed)
val_loader = DataLoader(
self.dataset_val,
batch_size=self.batch_size,
shuffle=False,
num_workers=self.num_workers,
)
# Train loader in evaluation mode
generator = torch.Generator()
generator.manual_seed(self.seed)
train_loader = DataLoader(
self.dataset_train,
batch_size=self.batch_size,
shuffle=False,
num_workers=self.num_workers,
)
return val_loader, train_loader
def test_dataloader(self):
# Test laader
generator = torch.Generator()
generator.manual_seed(self.seed)
test_loader = DataLoader(
self.dataset_test,
batch_size=self.batch_size,
shuffle=False,
num_workers=self.num_workers,
)
return test_loader
@staticmethod
def add_argparse_args(parent_parser):
parser = parent_parser.add_argument_group("DataLoader")
parser.add_argument('--dataset_name', type=str, default="435034")
parser.add_argument('--num_workers', type=int, default=2)
parser.add_argument('--batch_size', type=int, default=17)
parser.add_argument('--enable_oversampling_with_replacement', action='store_true', default=False)
parser.add_argument('--dataset_path', type=str, default="../dataset/")
return parent_parser