-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathentry.py
397 lines (335 loc) · 14.6 KB
/
entry.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
# Written by Yunchao "Lance" Liu (www.LiuYunchao.com)
from data import DataLoaderModule
import glob
from model import GNNModel
from monitors import LossMonitor, \
LossNoDropoutMonitor,\
LogAUC0_001to0_1Monitor, \
LogAUC0_001to0_1NoDropoutMonitor,\
LogAUC0_001to1Monitor, \
LogAUC0_001to1NoDropoutMonitor, \
AUCMonitor,\
AUCNoDropoutMonitor,\
PPVMonitor,\
PPVNoDropoutMonitor,\
RMSEMonitor,\
AccuracyMonitor,\
F1ScoreMonitor,\
F1ScoreNoDropoutMonitor
from argparse import ArgumentParser
from datetime import datetime
import math
from pprint import pprint
import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelCheckpoint, LearningRateMonitor, TQDMProgressBar
import os
import os.path as osp
from clearml import Task
import time
def add_args(gnn_type):
"""
Add arguments from three sources:
1. default pytorch lightning arguments
2. model specific arguments
3. data specific arguments
:param gnn_type: a lowercase string specifying GNN type
:return: the arguments object
"""
parser = ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser) # default pl args
parser = GNNModel.add_model_args(gnn_type, parser)
parser = DataLoaderModule.add_argparse_args(parser)
# Custom arguments
parser.add_argument("--enable_pretraining", default=False) # TODO: \
parser.add_argument('--task_name', type=str, default='Unnamed')
# Pretraining
# Experiment labels arguments for tagging the task
parser.add_argument("--machine", default='barium')
parser.add_argument("--gnn_type", default=gnn_type)
parser.add_argument("--task_comment", type=str, default='')
args = parser.parse_args()
if use_clearml:
task.set_name(args.task_name)
task.add_tags(f'model_{gnn_type}')
task.add_tags(args.dataset_name) # args0 in scheduler
task.add_tags(f'seed_{args.seed}') # args1
task.add_tags(f'warm_{args.warmup_iterations}') # args2
task.add_tags(f'epoch_{args.max_epochs}') # args3
task.add_tags(f'peak_{args.peak_lr}') # args4
task.add_tags(f'end_{args.end_lr}') # args5
if gnn_type == 'kgnn':
task.add_tags(f'layers_{args.num_layers}') # args6
task.add_tags(f'k1_{args.num_kernel1_1hop}') # args7
task.add_tags(f'k2_{args.num_kernel2_1hop}') # args8
task.add_tags(f'k3_{args.num_kernel3_1hop}') # args9
task.add_tags(f'k4_{args.num_kernel4_1hop}') # args10
task.add_tags(f'hidden_{args.hidden_dim}') # args11
task.add_tags(f'batch_{args.batch_size}') # args12
task.set_comment(args.task_comment)
with open(filename, 'a') as out_file:
out_file.write(f'\n{args.task_comment}')
return args
def prepare_data(args, enable_pretraining=False, gnn_type='kgnn'):
"""
Prepare data modules for actual training, and if needed, for pretraining
:param args: arguments for creating data modules
:param pretraining: If True, prepare data module for pretraining as well
:return: a list of data modules. The 0th one is always actual training data
"""
data_modules = []
# Actual data module
actual_data_module = DataLoaderModule.from_argparse_args(args)
data_modules.append(actual_data_module)
num_train_batches = math.ceil(len(actual_data_module.dataset_train)/args.batch_size)
num_valid_batches = math.ceil(len(actual_data_module.dataset_val) / args.batch_size)
args.tot_iterations = (num_train_batches) * args.max_epochs + 2
args.warmup_iterations+=2
args.max_steps = args.tot_iterations
args.metrics = data_modules[0].dataset['metrics']
args.loss_func = data_modules[0].dataset['loss_func']
print(f'entry.py::train # batches:{num_train_batches}')
print(f'entry.py::val # batches:{num_valid_batches}')
print(f'entry.py::args.total_iterations:{args.tot_iterations}')
if args.train_metric:
print(f'entry.py:: steps/epoch = num_train_batches({num_train_batches})*2 + num_valid_batches('
f'{num_valid_batches}) = {num_train_batches*2+num_valid_batches}')
else:
print(f'entry.py:: steps/epoch = num_train_batches({num_train_batches}) + num_valid_batches('
f'{num_valid_batches}) = {num_train_batches+num_valid_batches}')
return data_modules
def prepare_actual_model(args):
# Create actual training model using a pretrained model, if that exists
enable_pretraining = args.enable_pretraining
if enable_pretraining:
# Check if pretrained model exists
if args.pretrained_model_dir == "":
raise Exception(
"entry.py::pretrain_models(): pretrained_model_dir is blank")
if not os.path.exists(args.pretrain_model_dir + '/last.ckpt'):
raise Exception()
else: # if not using pretrained model
print(f'Not using pretrained model.')
model = GNNModel(gnn_type, args=args)
return model
def load_best_model(trainer, data_module, metric=None, args=None):
# Load best model
search_name = f'best*_{metric}*'
all_files = glob.glob(osp.join(args.default_root_dir, search_name))
if len(all_files) == 1:
best_path = all_files[0]
elif len(all_files) >1:
print(f"entry::more than one best model found for {metric}!!!")
return False
elif len(all_files) ==0:
print(f'No best model saved for {metric}')
return False
print(f"glob result:{best_path}")
model = GNNModel.load_from_checkpoint(best_path, gnn_type=gnn_type, args=args)
print(f'====best_{metric}_result====:\n')
best_result = trainer.test(model, datamodule=data_module)
new_name = f'logs/best_{metric}_sample_scores.log'
os.rename('logs/test_sample_scores.log', new_name)
return best_result
def testing_procedure(trainer, data_module, args):
print(f'In Testing Mode:')
print(f'default_root_dir:{args.default_root_dir}')
# Load last model
last_path = osp.join(args.default_root_dir, 'last.ckpt')
model = GNNModel.load_from_checkpoint(last_path, gnn_type=gnn_type, args=args)
print('====last_result====:\n')
last_result = trainer.test(model, datamodule=data_module)
os.rename('logs/test_sample_scores.log',
'logs/last_test_sample_scores.log')
# Save the result to a file
filename = 'logs/test_result.log'
os.makedirs(os.path.dirname(filename), exist_ok=True)
with open(filename, 'w') as out_file:
out_file.write(f'{args.dataset_name}\n')
out_file.write('last:\n')
out_file.write(f'{str(last_result)}\n')
for metric in data_module.dataset["metrics"]:
best_result = load_best_model(trainer=trainer, data_module=data_module, metric=metric, args=args)
if best_result is not False:
out_file.write(f'best_{metric}:\n')
out_file.write(f'{str(best_result)}\n')
out_file.write(f'args:\n')
out_file.write(f'{args}')
def actual_training(model, data_module, use_clearml, gnn_type, args):
# Add checkpoint
monitoring_metric = 'logAUC_0.001_0.1'
actual_training_checkpoint_dir = args.default_root_dir
actual_training_checkpoint_callback = ModelCheckpoint(
monitor=monitoring_metric,
dirpath=actual_training_checkpoint_dir,
filename='best_model_metric_{epoch}_{logAUC_0.001_0.1}',
save_top_k=1,
mode='max',
save_last=True,
save_on_train_epoch_end=False
)
best_AUC_callback = ModelCheckpoint(
monitor='AUC',
dirpath=actual_training_checkpoint_dir,
filename='best_model_metric_{epoch}_{AUC}',
save_top_k=1,
mode='max',
save_last=True,
save_on_train_epoch_end=False
)
best_AUC_0_001_0_1_callback = ModelCheckpoint(
monitor='logAUC_0.001_0.1',
dirpath=actual_training_checkpoint_dir,
filename='best_model_metric_{epoch}_{logAUC_0.001_1}',
save_top_k=1,
mode='max',
save_last=True,
save_on_train_epoch_end=False
)
best_loss_callback = ModelCheckpoint(
monitor='loss',
dirpath=actual_training_checkpoint_dir,
filename='best_model_metric_{epoch}_{loss}',
save_top_k=1,
mode='min',
save_last=True,
save_on_train_epoch_end=False
)
prog_bar=TQDMProgressBar(refresh_rate=500)
trainer = pl.Trainer.from_argparse_args(args)
trainer.callbacks=[prog_bar]
trainer.callbacks.append(actual_training_checkpoint_callback)
trainer.callbacks.append(best_AUC_callback)
trainer.callbacks.append(best_AUC_0_001_0_1_callback)
trainer.callbacks.append(best_loss_callback)
if use_clearml:
trainer.callbacks.append(LossMonitor(stage='train', logger=logger, logging_interval='epoch'))
trainer.callbacks.append(LossMonitor(stage='valid', logger=logger, logging_interval='epoch'))
if args.train_metric:
trainer.callbacks.append(LossNoDropoutMonitor(stage='valid', logger=logger, logging_interval='epoch'))
# Learning rate monitors
trainer.callbacks.append(LearningRateMonitor(logging_interval='step'))
# Other metrics monitors
metrics = data_module.dataset['metrics']
for metric in metrics:
if metric == 'accuracy':
trainer.callbacks.append(AccuracyMonitor(stage='valid', logger=logger, logging_interval='epoch'))
continue
if metric == 'RMSE':
trainer.callbacks.append(RMSEMonitor(stage='valid', logger=logger, logging_interval='epoch'))
continue
if metric == 'logAUC_0.001_0.1':
trainer.callbacks.append(LogAUC0_001to0_1Monitor(stage='valid', logger=logger, logging_interval='epoch'))
if args.train_metric:
trainer.callbacks.append(
LogAUC0_001to0_1NoDropoutMonitor(stage='valid', logger=logger, logging_interval='epoch')
)
continue
if metric == 'logAUC_0.001_1':
trainer.callbacks.append(LogAUC0_001to1Monitor(stage='valid', logger=logger, logging_interval='epoch'))
if args.train_metric:
trainer.callbacks.append(
LogAUC0_001to1NoDropoutMonitor(stage='valid', logger=logger, logging_interval='epoch')
)
continue
if metric == 'AUC':
trainer.callbacks.append(AUCMonitor(stage='valid', logger=logger, logging_interval='epoch'))
if args.train_metric:
trainer.callbacks.append(
AUCNoDropoutMonitor(stage='valid', logger=logger, logging_interval='epoch')
)
continue
if metric == 'ppv':
trainer.callbacks.append(PPVMonitor(stage='valid', logger=logger, logging_interval='epoch'))
if args.train_metric:
trainer.callbacks.append(
PPVNoDropoutMonitor(stage='valid', logger=logger, logging_interval='epoch')
)
continue
if metric == 'f1_score':
trainer.callbacks.append(F1ScoreMonitor(stage='valid', logger=logger, logging_interval='epoch'))
if args.train_metric:
trainer.callbacks.append(
F1ScoreNoDropoutMonitor(stage='valid', logger=logger, logging_interval='epoch')
)
continue
if args.test:
testing_procedure(trainer, data_module, args)
elif args.validate:
print(f'In Validation Mode:')
result = trainer.validate(model, datamodule=data_module)
pprint(result)
else:
print(f'In Training Mode:')
trainer.fit(model=model, datamodule=data_module)
# In testing Mode
testing_procedure(trainer, data_module, args)
if gnn_type=='kgnn':
model.save_kernels(dir='analyses/atom_encoder/', file_name='kernels.pt')
model.print_graph_embedding()
model.save_graph_embedding('analyses/atom_encoder/graph_embedding')
def main(gnn_type, use_clearml):
"""
the main process that defines model and data
also trains and evaluate the model
:param gnn_type: the GNN used for prediction
:param logger: ClearML for logging the metric
:return: None
"""
# Get arguments
args = add_args(gnn_type)
# Set seed
pl.seed_everything(args.seed)
# Prepare data
enable_pretraining = args.enable_pretraining
print(f'enable_pretraining:{enable_pretraining}')
args.gnn_type = gnn_type
data_modules = prepare_data(args, enable_pretraining) # A list of
# data_module to accommodate different pretraining data
actual_training_data_module = data_modules[0]
# Prepare model for actural training
model = prepare_actual_model(args)
# Start actual training
actual_training(model, actual_training_data_module, use_clearml,
gnn_type, args)
if __name__ == '__main__':
start_sys_time = datetime.now()
print(f'scheduler start time:{start_sys_time}')
start = time.time()
Task.set_offline(offline_mode=True)
# The reason that gnn_type cannot be a cmd line
# argument is that model specific arguments depends on it
gnn_type = 'kgnn'
# gnn_type = 'chironet'
# gnn_type = 'dimenet_pp'
# gnn_type = 'spherenet'
# gnn_type = 'schnet'
print(f'========================')
print(f'Runing model: {gnn_type}')
print(f'========================')
filename = 'logs/task_info.log'
os.makedirs(os.path.dirname(filename), exist_ok=True)
with open(filename, 'w') as out_file:
use_clearml = False
if use_clearml:
task = Task.init(project_name=f"HyperParams/kgnn",
task_name=f"{gnn_type}",
tags=[],
reuse_last_task_id=False
)
out_file.write(f'task_id:{task.id}')
out_file.write('\n')
logger = task.get_logger()
main(gnn_type, use_clearml)
end = time.time()
run_time = end-start
run_time_str = f'run_time:{math.floor(run_time/3600)}h{math.floor((run_time)%3600/60)}m' \
f'{math.floor(run_time%60)}s'
print(run_time_str)
end_sys_time = datetime.now()
print(f'task finsh time:{end_sys_time}')
out_file.write(run_time_str)
out_file.write(f'task start time:{start_sys_time}')
out_file.write(f'task finsh time:{end_sys_time}')
print(f'========================')
print(f'Runing model: {gnn_type}')
print(f'========================')