-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDataPrep.py
97 lines (76 loc) · 3.08 KB
/
DataPrep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
# Filename: DataPrep.py
# Date Created: 08-Mar-2019 10:01:18 pm
# Description: Functions for preparing the dataset for training and evaluation.
import torch
from torch.utils.data.dataset import Dataset
import numpy as np
from torch.autograd import Variable
def tensorFromSequence(sequence):
"""
Generate tensors from the sequence in numpy.
"""
output = torch.tensor(sequence).long()
return output
def PrepareData(npz_file, split='train', L=1024):
"""
Function to prepare the data into pairs (input, target).
Adds [PAD], [SOS] and [EOS] tokens into the data,
where [PAD]=1, [SOS]=2, [EOS]=3.
Limits the sequence to length of L.
"""
print("Preparing data for",split,"split...")
# Load in the data
full_data = np.load(npz_file, fix_imports=True, encoding="latin1", allow_pickle=True)
data = full_data[split]
# Extract the vocab from file
vocab = GenerateVocab(npz_file)
# Generate new vocab to map to later
new_vocab = np.arange(len(vocab))
# Initialize the tokens
pad_token = np.array([[1]])
# Repeat for all samples in data
pairs = []
for samples in data:
# Serialise the dataset so that the resulting sequence is
# S_1 A_1 T_1, B_2 S_2 A_2 T_2 B_2, ...
# Generate input
input_seq = samples.flatten()
# Cut off the samples so that it has length of 1024
if(len(input_seq) >= L):
# input_seq = input_seq[:L-1]
input_seq = input_seq[:L]
# Set the NaN values to 0 and reshape accordingly
input_seq = np.nan_to_num(input_seq.reshape(1,input_seq.size))
# Generate target
output_seq = input_seq[:,1:]
# For both sequences, pad to sequence length L
pad_array = pad_token * np.ones((1,L-input_seq.shape[1]))
input_seq = np.append(input_seq, pad_array,axis=1)
pad_array = pad_token * np.ones((1,L-output_seq.shape[1]))
output_seq = np.append(output_seq, pad_array,axis=1)
# Map the pitch value to int values below vocab size
for i, val in enumerate(vocab):
input_seq[input_seq==val] = new_vocab[i]
output_seq[output_seq==val] = new_vocab[i]
# Make it into a pair
pair = [input_seq, output_seq]
# Combine all pairs into one big list of pairs
pairs.append(pair)
print("Generated data pairs.")
return np.array(pairs)
def GenerateVocab(npz_file):
"""
Generate vocabulary for the dataset including the custom tokens.
"""
full_data = np.load(npz_file, fix_imports=True, encoding="latin1", allow_pickle=True)
train_data = full_data['train']
validation_data = full_data['valid']
test_data = full_data['test']
combined_data = np.concatenate((train_data, validation_data, test_data))
vocab = np.nan
for sequences in combined_data:
vocab = np.append(vocab,np.unique(sequences))
vocab = np.unique(vocab)
vocab = vocab[~np.isnan(vocab)]
vocab = np.append([0,1],vocab)
return vocab