-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEncode_Decode_Layers.py
67 lines (56 loc) · 3.1 KB
/
Encode_Decode_Layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# Filename: Encode_Decode_Layers.py
# Date Created: 15-Mar-2019 2:42:12 pm
# Description: Attention layers in encoder and decoder layer.
import torch
import torch.nn as nn
from Sublayers import MultiHeadAttention, Norm
from PositionalFeedForward import *
class EncoderLayer(nn.Module):
def __init__(self, d_model, heads, d_ff = 1024, dropout = 0.1, attention_type = "Baseline", relative_time_pitch = False, max_relative_position = 512):
super().__init__()
self.norm_1 = Norm(d_model) # create normalisation sublayer with size d_model
self.norm_2 = Norm(d_model)
self.attention_type = attention_type
self.relative_time_pitch = relative_time_pitch
self.attn = MultiHeadAttention(heads, d_model, dropout = dropout, attention_type = self.attention_type, \
relative_time_pitch = self.relative_time_pitch,
max_relative_position = max_relative_position)
self.ff = FeedForward(d_model, d_ff, dropout)
self.dropout_1 = nn.Dropout(dropout)
self.dropout_2 = nn.Dropout(dropout)
def forward(self, x, mask):
x2 = self.norm_1(x)
x = x + self.dropout_1(self.attn(x2,x2,x2,mask))
x2 = self.norm_2(x)
x = x + self.dropout_2(self.ff(x2))
return x
class DecoderLayer(nn.Module):
def __init__(self, d_model, heads, d_ff = 1024, dropout=0.1, attention_type = "Baseline", relative_time_pitch = False, max_relative_position = 512):
super().__init__()
self.norm_1 = Norm(d_model)
self.norm_2 = Norm(d_model)
self.norm_3 = Norm(d_model)
self.attention_type = attention_type
self.relative_time_pitch = relative_time_pitch
self.dropout_1 = nn.Dropout(dropout)
self.dropout_2 = nn.Dropout(dropout)
self.dropout_3 = nn.Dropout(dropout)
self.attn_1 = MultiHeadAttention(heads, d_model, dropout = dropout, attention_type = self.attention_type, \
relative_time_pitch = self.relative_time_pitch,
max_relative_position = max_relative_position)
self.attn_2 = MultiHeadAttention(heads, d_model, dropout =dropout, attention_type = self.attention_type, \
relative_time_pitch = self.relative_time_pitch,
max_relative_position = max_relative_position)
self.ff = FeedForward(d_model, d_ff, dropout)
def forward(self, x, e_outputs, src_mask, trg_mask):
x2 = self.norm_1(x)
x = x + self.dropout_1(self.attn_1(x2, x2, x2, trg_mask))
x2 = self.norm_2(x)
x = x + self.dropout_2(self.attn_2(x2, e_outputs, e_outputs,
src_mask))
x2 = self.norm_3(x)
x = x + self.dropout_3(self.ff(x2))
return x
# A convenient cloning function that can generate multiple layers:
def get_clones(module, N):
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])