-
Notifications
You must be signed in to change notification settings - Fork 0
Program to recognize online handwritten mathematical expression. Includes implementation of various feature extraction, segmentation and classification algorithms for example - Geometric features, PCA, HOG, Parzen Shape Context Features, Line of Sight Algorithm, Random Forest etc.
LatexAi/Handwritten_Mathematical_Expression_Recognition-1
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
Read Me: Authors: Ritvik Joshi Rahul Dashora Runs on python version 3.4x64bit Requirement- numpy,skitlearn,scipy,Opencv Please follow the instruction to run the programs *********************************************************************************************** For Feature Extraction *********************************************************************************************** Run FeatureExtraction.py <Train .inkml Directory> Input: Train .inkml Directory - Directory where .inkml files are present for training purpose Output: SegmentFeatures - .csv file containing features extracted for segmentation classifier SymbolFeatures - .csv file containing features extracted for Symbol classifier Run ParserFeatureExtraction.py <Train .inkml Directory> <Train .lg Directory> Input: Train .inkml Directory - Directory where .inkml files are present for training purpose Train .lg Directory - Directory where .lg files are present for training purpose Output: ParserFeatures - .csv file containing features extracted for Parser classifier *********************************************************************************************** For RandomForest Training *********************************************************************************************** Run Training.py <Feature.csv> <sym/seg/par indicator> Input: Feature.csv - Feature files to train random forest sym - To train for symbol classifier[Works only with symbol feature file (SymbolFeatures.csv)] seg - To train for segmentor classifier[Works only with segmentor feature file (SegmentFeatures.csv)] par - To train for Parser classifier[Works only with Parser feature file (ParserFeatures.csv)] Output: RandomForest.pickle - Returns trained random forest pickle file *********************************************************************************************** For Testing *********************************************************************************************** *********************************************************************************************** Ground Truth Parser (Does not require segementor and Symbol classifier) *********************************************************************************************** Requirement - The test .inkml file should have stroke as well as symbol level information(which strokes are used to form which symbol). Run GTParser.py <Test .inkml Directory> <Output Directory> <Parser classifier pickle> Input: Test .inkml Directory - Directory where .inkml files with symbol stroke relationship are present for testing purpose Output Directory - Directory where output .lg files will be created Parser classifier pickle - Random forest pickle for Relationship classification Output: .lg files - .lg files in the Output directory for all the .inkml file present in Test Directory *********************************************************************************************** Raw Stroke Parser (Require segementor and Symbol classifier pickle) ********************************************************************************************** Run Testing.py <Test .inkml Directory> <Output Directory> <Symbol classifier pickle> <Segmentor classifier pickle> <Parser classifier pickle> Input: Test .inkml Directory - Directory where .inkml files are present for testing purpose Output Directory - Directory where output .lg files will be created Symbol classifier pickle - Random forest pickle for symbol classification Segmentation classifier pickle - Random forest pickle for Segmentation classification Parser classifier pickle - Random forest pickle for Relationship classification Output: .lg files - .lg files in the Output directory for all the .inkml file present in Test Directory
About
Program to recognize online handwritten mathematical expression. Includes implementation of various feature extraction, segmentation and classification algorithms for example - Geometric features, PCA, HOG, Parzen Shape Context Features, Line of Sight Algorithm, Random Forest etc.
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published
Languages
- Python 100.0%