Skip to content

This repository summaries publications on Recognition of Handwritten Mathematical Expressions

Notifications You must be signed in to change notification settings

LatexAi/awesome-math-recognition

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 

Repository files navigation

Math-recognition

This repository summaries publications on Recognition of Handwritten Mathematical Expressions

A list of all papers on Recognition of Handwritten Mathematical Expressions. This repository is maintained by Anh Duc Le. To complement or correct it, please contact me via email : [email protected].

  1. Survey paper
  • K. Chan and D. Yeung, Mathematical expression recognition: A Survey, International Journal of Document Analysis and Recognition, pp. 3-15, 2000.
  • R. Zanibbi and D. Blostein, Recognition and retrieval of mathematical expressions, International Journal of Document Analysis and Recognition, pp. 331-357, 2012.
  1. Symbol Segmentation
  • Lehmberg, S., Winkler, H.J., Lang, M.: A soft-decision approach for symbol segmentation within handwritten mathematical expressions. In: Proceeding of international conference on acoustics, speech, and signal processing, vol. 6, pp. 3434–3437. Atlanta (1996)

  • Toyozumi, K., et al.: A study of symbol segmentation method for handwritten mathematical formula recognition using mathematical structure information. In: Proceedings of the 17th ICPR, vol. 2, pp. 630–633. Cambridge (2004)

  • Shi, Y., Li, H., Soong, F.K.: A unified framework for symbol segmentation and recognition of handwritten mathematical expressions. In: Proceedings of the 9th ICDAR, vol. 2, pp. 854–858. Curitiba (2007)

  • Hu, L., Zanibbi, R.: Segmenting handwritten math symbols using adaboost and multi-scale shape context features. In: Proceedings of the 12th ICDAR, pp. 1180–1184. Washington (2013)

  1. Symbol Recognition
  • MacLean, S., Labahn, G.: Elastic matching in linear time and constant space. In: Proceedings of the 9th IAPR Workshop on Document Analysis Systems. (2010)

  • Hu, L., Zanibbi, R.: HMM-based recognition of online hand-written mathematical symbols using segmental K-means initialization and a modified pen-up/down feature. In: Proceedings of the 11th ICDAR, pp. 457–462. Beijing (2011)

  • Álvaro, F., Sánchez, J. A., Benedí, J. M.: Classification of on-line mathematical symbols with hybrid features and recurrent neural networks. In: Proceedings of the 12th ICDAR, pp. 1012–1016. Washington (2013)

  • Davila, K.M., Ludi, S., Zanibbi R.: Using off-line features and synthetic data for on-line handwritten math symbol recognition. In: Proceedings of the 14th ICFHR, pp. 323–328. Crete (2014)

  • Álvaro, F., Sánchez, J.A., Benedí, J.M.: Offline features for classifying handwritten math symbols with recurrent neural networks. In: Proceedings of the 22nd ICPR, pp. 2944–2949. Stockholm (2014)

  1. Parsing algorithm and full recognition system
  • Garain, U., Chaudhuri, B.B.: Recognition of online handwritten mathematical expressions. IEEE Trans. Syst. Man Cybern. B Cybern. 34, 2366–2376 (2004)
  • Okamoto, M., Miao, B.: Recognition of mathematical expressions by using the layout structure of symbols. In: Proceedings of the 1st ICDAR, pp. 242–250. Saint Malo (1991)
  • Eto, T., Suzuki, M.: Mathematical formula recognition using virtual link network. In: Proceedings of the 6th ICDAR, pp. 762–767. Seattle (2001)
  • Zanibbi, R., Blostein, D., Cordy, J.R.: Recognizing mathematical expressions using tree transformation. IEEE Trans. PAMI, 24, 1455–1467 (2002)
  • Rhee, T.H., Kim, J.H.: Efficient search strategy in structural analysis for handwritten mathematical expression recognition. Pattern Recogn. 42, 3192–3201 (2009)
  • Yamamoto, R., Sako, S., Nishimoto, T., Sagayama, S.: OnLine recognition of handwritten mathematical expressions based on stroke-based stochastic context-free grammar. In: 10th IWFHR, pp. 249–254. La Baule (2006)
  • Simistira, F., Katsouros, V., Carayannis, G.: Recognition of online handwritten mathematical formulas using probabilistic SVMs and stochastic context free grammars. Pattern Recogn. Lett. 53, 85–92 (2015)
  • MacLean, S., Labahn, G.: A New approach for recognizing handwritten mathematics using relational grammars and fuzzy sets. Int. J. Doc. Anal. Recogn. 16, 139–163 (2013)
  • MacLean, S., Labahn, G.: A Bayesian model for recognizing handwritten mathematical expressions. Pattern Recogn. 48, 2433–2445 (2015)
  • Álvaro, F., Sánchez, J.A., Benedí, J.M.: Recognition of on-line handwritten mathematical expressions using 2D stochastic context-free grammars and hidden Markov models. Pattern Recogn. Lett. 35, 58–67 (2014)
  • Awal, A.M., Mouchére, H., Viard-Gaudin, C.: A global learning approach for an online handwritten mathematical expression recognition system. Pattern Recogn. Lett. 35, 6877 (2014) -Le, A.D., Phan, T.V., Nakagawa, M.: A System for recognizing online handwritten mathematical expressions and improvement of structure analysis. In: Proceedings of the 11th IAPR Workshop on Document Analysis Systems, pp. 51–55. (2014)
  1. Databases
  • Mouchère, H., Viard-Gaudin, C., Zanibbi, R., Garain, U., Kim, D.H., Kim, J.H.: ICDAR 2013 CROHME: third international competition on recognition of online handwritten mathematical expressions. In: Proceedings of the 12th ICDAR, pp. 1428–1432. (2013)Google Scholar
  • Mouchère, H., Viard-Gaudin, C., Zanibbi, R., Garain, U.: ICFHR: competition on recognition of on-line handwritten mathematical expressions (CROHME 2014). In: Proceedings of the 14th ICHFR, pp. 791–796. Crete (2014)Google Scholar
  • Le, A.D., Nakagawa, M.: A tool for ground-truthing online handwritten mathematical expressions. In: Proceedings of the 16th International Graphonomics Society Conference, pp. 70–73. (2013)Google Scholar

About

This repository summaries publications on Recognition of Handwritten Mathematical Expressions

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published