forked from stacks/stacks-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
artin.tex
6371 lines (5828 loc) · 248 KB
/
artin.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Artin's Axioms}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
In this chapter we discuss Artin's axioms for the representability of
functors by algebraic spaces. As references we suggest the papers
\cite{ArtinI}, \cite{ArtinII}, \cite{ArtinVersal}.
\medskip\noindent
Some of the notation, conventions, and terminology in this chapter is awkward
and may seem backwards to the more experienced reader. This is intentional.
Please see Quot, Section \ref{quot-section-conventions} for an
explanation.
\medskip\noindent
Let $S$ be a locally Noetherian base scheme. Let
$$
p : \mathcal{X} \longrightarrow (\Sch/S)_{fppf}
$$
be a category fibred in groupoids. Let $x_0$ be an object of $\mathcal{X}$
over a field $k$ of finite type over $S$. Throughout this chapter an important
role is played by the predeformation category
(see Formal Deformation Theory,
Definition \ref{formal-defos-definition-predeformation-category})
$$
\mathcal{F}_{\mathcal{X}, k, x_0}
\longrightarrow
\{\text{Artinian local }S\text{-algebras with residue field }k\}
$$
associated to $x_0$ over $k$. We introduce the Rim-Schlessinger condition (RS)
for $\mathcal{X}$ and show it guarantees that
$\mathcal{F}_{\mathcal{X}, k, x_0}$ is a deformation category, i.e.,
$\mathcal{F}_{\mathcal{X}, k, x_0}$ satisies (RS) itself.
We discuss how $\mathcal{F}_{\mathcal{X}, k, x_0}$
changes if one replaces $k$ by a finite extension
and we discuss tangent spaces.
\medskip\noindent
Next, we discuss formal objects $\xi = (\xi_n)$ of $\mathcal{X}$ which are
inverse systems of objects lying over the quotients $R/\mathfrak m^n$
where $R$ is a Noetherian complete local $S$-algebra whose residue field
is of finite type over $S$. This is the same thing as having a formal
object in $\mathcal{F}_{\mathcal{X}, k, x_0}$ for some $x_0$ and $k$.
A formal object is called effective when there is an object of
$\mathcal{X}$ over $R$ which gives rise to the inverse system.
A formal object of $\mathcal{X}$ is called versal if it gives rise to a
versal formal object of $\mathcal{F}_{\mathcal{X}, k, x_0}$.
Finally, given a finite type $S$-scheme $U$, an object $x$
of $\mathcal{X}$ over $U$, and a closed point $u_0 \in U$ we say
$x$ is versal at $u_0$ if the induced formal object over the complete
local ring $\mathcal{O}_{U, u_0}^\wedge$ is versal.
\medskip\noindent
Having worked through this material we can state Artin's celebrated
theorem: our $\mathcal{X}$ is an algebraic stack if the following are true
\begin{enumerate}
\item $\mathcal{O}_{S, s}$ is a G-ring for all $s \in S$,
\item $\Delta : \mathcal{X} \to \mathcal{X} \times \mathcal{X}$
is representable by algebraic spaces,
\item $\mathcal{X}$ is a stack for the \'etale topology,
\item $\mathcal{X}$ is limit preserving,
\item $\mathcal{X}$ satisfies (RS),
\item tangent spaces and spaces of infinitesimal automorphisms
of the deformation categories $\mathcal{F}_{\mathcal{X}, k, x_0}$
are finite dimensional,
\item formal objects are effective,
\item $\mathcal{X}$ satisfies openness of versality.
\end{enumerate}
This is Lemma \ref{lemma-diagonal-representable}; see also
Proposition \ref{proposition-second-diagonal-representable}
for a slight improvement. There is an analogous proposition
characterizing which functors $F : (\Sch/S)_{fppf}^{opp} \to \textit{Sets}$
are algebraic spaces, see Section \ref{section-algebraic-spaces}.
\medskip\noindent
Here is a rough outline of the proof of Artin's theorem.
First we show that there are plenty of versal formal objects
using (RS) and the finite dimensionality of tangent and aut spaces, see
for example Formal Deformation Theory, Lemma
\ref{formal-defos-lemma-minimal-groupoid-in-functors-construction}.
These formal objects are effective by assumption.
Effective formal objects can be ``approximated'' by objects $x$ over
finite type $S$-schemes $U$, see Lemma \ref{lemma-approximate}.
This approximation uses the local rings of $S$ are G-rings and
that $\mathcal{X}$ is limit preserving; it is perhaps the most difficult
part of the proof relying as it does on general N\'eron desingularization to
approximate formal solutions of algebraic equations over a Noetherian local
G-ring by solutions in the henselization.
Next openness of versality implies we may (after shrinking $U$)
assume $x$ is versal at every closed point of $U$.
Having done all of this we show that $U \to \mathcal{X}$
is a smooth morphism. Taking sufficiently many $U \to \mathcal{X}$
we show that we obtain a ``smooth atlas'' for $\mathcal{X}$ which shows
that $\mathcal{X}$ is an algebraic stack.
\medskip\noindent
In checking Artin's axioms for a given category $\mathcal{X}$ fibred
in groupoids, the most difficult step is often to verify openness
of versality. For the discussion that follows, assume that $\mathcal{X}/S$
already satisfies the other conditions listed above.
In this chapter we offer two methods that will allow the reader
to prove $\mathcal{X}$ satisfies openness of versality:
\begin{enumerate}
\item The first is to assume a stronger Rim-Schlessinger
condition, called (RS*) and to assume a stronger version of
formal effectiveness, essentially requiring objects over
inverse systems of thickenings to be effective. It turns out
that under these assumptions, openness of versality comes for
free, see Lemma \ref{lemma-SGE-implies-openness-versality}.
Please observe that here we are using in an essential manner
that $\mathcal{X}$ is defined on that category of all schemes
over $S$, not just the category of Noetherian schemes!
\item The second, following Artin, is to require $\mathcal{X}$
to come equipped with an obstruction theory. If said obstruction
theory ``commutes with products'' in a suitable sense, then
$\mathcal{X}$ satisfies openness of versality, see
Lemma \ref{lemma-get-openness-obstruction-theory}.
\end{enumerate}
Obstruction theories can be axiomatized in many different ways
and indeed many variants (often adapted to specific moduli stacks)
can be found in the literature. We explain a variant using the derived category
(which often arises naturally from deformation theory computations
done in the literature) in Lemma \ref{lemma-dual-openness}.
\medskip\noindent
In Section \ref{section-algebraic-spaces-noetherian}
we discuss what needs to be modified to make
things work for functors defined on the category
$(\textit{Noetherian}/S)_\etale$ of locally Noetherian
schemes over $S$.
\medskip\noindent
In the final section of this chapter as an application of Artin's axioms
we prove Artin's theorem on the existence of contractions, see
Section \ref{section-contractions}. The theorem says roughly that given an
algebraic space $X'$ separated of finite type over $S$,
a closed subset $T' \subset |X'|$, and a formal modification
$$
\mathfrak{f} : X'_{/T'} \longrightarrow \mathfrak{X}
$$
where $\mathfrak{X}$ is a Noetherian formal algebraic space over $S$,
there exists a proper morphism $f : X' \to X$ which
``realizes the contraction''. By this we mean that there exists an
identification $\mathfrak{X} = X_{/T}$ such that
$\mathfrak{f} = f_{/T'} : X'_{/T'} \to X_{/T}$ where $T = f(T')$
and moreover $f$ is an isomorphism over $X \setminus T$. The proof proceeds
by defining a functor $F$ on the category of locally Noetherian schemes
over $S$ and proving Artin's axioms for $F$. Amusingly, in this
application of Artin's axioms, openness of versality is not the hardest
thing to prove, instead the proof that $F$ is limit preserving requires
a lot of work and preliminary results.
\section{Conventions}
\label{section-conventions}
\noindent
The conventions we use in this chapter are the same as those in the
chapter on algebraic stacks, see
Algebraic Stacks, Section \ref{algebraic-section-conventions}.
In this chapter the base scheme $S$ will often be locally Noetherian
(although we will always reiterate this condition when stating
results).
\section{Predeformation categories}
\label{section-predeformation-categories}
\noindent
Let $S$ be a locally Noetherian base scheme. Let
$$
p : \mathcal{X} \longrightarrow (\Sch/S)_{fppf}
$$
be a category fibred in groupoids. Let $k$ be a field
and let $\Spec(k) \to S$ be a morphism of finite type (see
Morphisms, Lemma \ref{morphisms-lemma-point-finite-type}). We will sometimes
simply say that {\it $k$ is a field of finite type over $S$}. Let
$x_0$ be an object of $\mathcal{X}$ lying over $\Spec(k)$.
Given $S$, $\mathcal{X}$, $k$, and $x_0$ we will construct a
predeformation category, as defined in
Formal Deformation Theory,
Definition \ref{formal-defos-definition-predeformation-category}.
The construction will resemble the construction of
Formal Deformation Theory,
Remark \ref{formal-defos-remark-localize-cofibered-groupoid}.
\medskip\noindent
First, by Morphisms, Lemma \ref{morphisms-lemma-point-finite-type}
we may pick an affine open $\Spec(\Lambda) \subset S$ such that
$\Spec(k) \to S$ factors through $\Spec(\Lambda)$ and the associated
ring map $\Lambda \to k$ is finite. This provides us with the category
$\mathcal{C}_\Lambda$, see
Formal Deformation Theory, Definition \ref{formal-defos-definition-CLambda}.
The category $\mathcal{C}_\Lambda$, up to canonical equivalence,
does not depend on the choice of the affine open $\Spec(\Lambda)$ of $S$.
Namely, $\mathcal{C}_\Lambda$ is equivalent to the opposite
of the category of factorizations
\begin{equation}
\label{equation-factor}
\Spec(k) \to \Spec(A) \to S
\end{equation}
of the structure morphism such that $A$ is an Artinian local ring and
such that $\Spec(k) \to \Spec(A)$ corresponds to a ring map $A \to k$ which
identifies $k$ with the residue field of $A$.
\medskip\noindent
We let $\mathcal{F} = \mathcal{F}_{\mathcal{X}, k, x_0}$ be the
category whose
\begin{enumerate}
\item objects are morphisms $x_0 \to x$ of $\mathcal{X}$ where
$p(x) = \Spec(A)$ with $A$ an Artinian local ring and
$p(x_0) \to p(x) \to S$ a factorization as in (\ref{equation-factor}), and
\item morphisms $(x_0 \to x) \to (x_0 \to x')$ are commutative
diagrams
$$
\xymatrix{
x & & x' \ar[ll] \\
& x_0 \ar[lu] \ar[ru]
}
$$
in $\mathcal{X}$. (Note the reversal of arrows.)
\end{enumerate}
If $x_0 \to x$ is an object of $\mathcal{F}$ then writing $p(x) = \Spec(A)$
we obtain an object $A$ of $\mathcal{C}_\Lambda$. We often say that
$x_0 \to x$ or $x$ lies over $A$. A morphism of $\mathcal{F}$ between objects
$x_0 \to x$ lying over $A$ and $x_0 \to x'$ lying over $A'$
corresponds to a morphism $x' \to x$ of $\mathcal{X}$, hence a morphism
$p(x' \to x) : \Spec(A') \to \Spec(A)$ which in turn corresponds to a
ring map $A \to A'$. As $\mathcal{X}$ is a category
over the category of schemes over $S$ we see that $A \to A'$ is
$\Lambda$-algebra homomorphism. Thus we obtain a functor
\begin{equation}
\label{equation-predeformation-category}
p : \mathcal{F} = \mathcal{F}_{\mathcal{X}, k, x_0}
\longrightarrow
\mathcal{C}_\Lambda.
\end{equation}
We will use the notation $\mathcal{F}(A)$ to denote the fibre category
over an object $A$ of $\mathcal{C}_\Lambda$. An object of $\mathcal{F}(A)$
is simply a morphism $x_0 \to x$ of $\mathcal{X}$ such that
$x$ lies over $\Spec(A)$ and $x_0 \to x$ lies over $\Spec(k) \to \Spec(A)$.
\begin{lemma}
\label{lemma-predeformation-category}
The functor $p : \mathcal{F} \to \mathcal{C}_\Lambda$ defined above
is a predeformation category.
\end{lemma}
\begin{proof}
We have to show that $\mathcal{F}$ is (a) cofibred in groupoids over
$\mathcal{C}_\Lambda$ and (b) that $\mathcal{F}(k)$ is a category equivalent
to a category with a single object and a single morphism.
\medskip\noindent
Proof of (a). The fibre categories of $\mathcal{F}$
over $\mathcal{C}_\Lambda$ are groupoids as the fibre categories
of $\mathcal{X}$ are groupoids. Let $A \to A'$ be a morphism of
$\mathcal{C}_\Lambda$ and let $x_0 \to x$ be an object of $\mathcal{F}(A)$.
Because $\mathcal{X}$ is fibred in groupoids, we can find a morphism
$x' \to x$ lying over $\Spec(A') \to \Spec(A)$. Since the composition
$A \to A' \to k$ is equal the given map $A \to k$ we see (by uniqueness
of pullbacks up to isomorphism) that the pullback via $\Spec(k) \to \Spec(A')$
of $x'$ is $x_0$, i.e., that there exists a morphism $x_0 \to x'$
lying over $\Spec(k) \to \Spec(A')$ compatible with
$x_0 \to x$ and $x' \to x$. This proves that $\mathcal{F}$ has
pushforwards. We conclude by (the dual of)
Categories, Lemma \ref{categories-lemma-fibred-groupoids}.
\medskip\noindent
Proof of (b). If $A = k$, then $\Spec(k) = \Spec(A)$ and since $\mathcal{X}$
is fibred in groupoids over $(\Sch/S)_{fppf}$ we see that given any object
$x_0 \to x$ in $\mathcal{F}(k)$ the morphism $x_0 \to x$ is an isomorphism.
Hence every object of $\mathcal{F}(k)$ is isomorphic to $x_0 \to x_0$.
Clearly the only self morphism of $x_0 \to x_0$ in $\mathcal{F}$ is
the identity.
\end{proof}
\noindent
Let $S$ be a locally Noetherian base scheme. Let
$F : \mathcal{X} \to \mathcal{Y}$ be a $1$-morphism between categories
fibred in groupoids over $(\Sch/S)_{fppf}$. Let $k$ is a field
of finite type over $S$. Let $x_0$ be an object of $\mathcal{X}$ lying
over $\Spec(k)$. Set $y_0 = F(x_0)$ which is an object of $\mathcal{Y}$
lying over $\Spec(k)$. Then $F$ induces a functor
\begin{equation}
\label{equation-functoriality}
F :
\mathcal{F}_{\mathcal{X}, k, x_0}
\longrightarrow
\mathcal{F}_{\mathcal{Y}, k, y_0}
\end{equation}
of categories cofibred over $\mathcal{C}_\Lambda$. Namely, to the object
$x_0 \to x$ of $\mathcal{F}_{\mathcal{X}, k, x_0}(A)$ we associate
the object $F(x_0) \to F(x)$ of $\mathcal{F}_{\mathcal{Y}, k, y_0}(A)$.
\begin{lemma}
\label{lemma-formally-smooth-on-deformation-categories}
Let $S$ be a locally Noetherian scheme. Let $F : \mathcal{X} \to \mathcal{Y}$
be a $1$-morphism of categories fibred in groupoids over $(\Sch/S)_{fppf}$.
Assume either
\begin{enumerate}
\item $F$ is formally smooth on objects (Criteria for Representability,
Section \ref{criteria-section-formally-smooth}),
\item $F$ is representable by algebraic spaces and formally smooth, or
\item $F$ is representable by algebraic spaces and smooth.
\end{enumerate}
Then for every finite type field $k$ over $S$ and object
$x_0$ of $\mathcal{X}$ over $k$ the functor (\ref{equation-functoriality})
is smooth in the sense of
Formal Deformation Theory, Definition
\ref{formal-defos-definition-smooth-morphism}.
\end{lemma}
\begin{proof}
Case (1) is a matter of unwinding the definitions.
Assumption (2) implies (1) by
Criteria for Representability, Lemma
\ref{criteria-lemma-representable-by-spaces-formally-smooth}.
Assumption (3) implies (2) by
More on Morphisms of Spaces, Lemma
\ref{spaces-more-morphisms-lemma-smooth-formally-smooth}
and the principle of
Algebraic Stacks, Lemma
\ref{algebraic-lemma-representable-transformations-property-implication}.
\end{proof}
\begin{lemma}
\label{lemma-fibre-product-deformation-categories}
Let $S$ be a locally Noetherian scheme. Let
$$
\xymatrix{
\mathcal{W} \ar[d] \ar[r] & \mathcal{Z} \ar[d] \\
\mathcal{X} \ar[r] & \mathcal{Y}
}
$$
be a $2$-fibre product of categories fibred in groupoids over
$(\Sch/S)_{fppf}$. Let $k$ be a finite type field over $S$ and
$w_0$ an object of $\mathcal{W}$ over $k$. Let $x_0, z_0, y_0$ be
the images of $w_0$ under the morphisms in the diagram. Then
$$
\xymatrix{
\mathcal{F}_{\mathcal{W}, k, w_0} \ar[d] \ar[r] &
\mathcal{F}_{\mathcal{Z}, k, z_0} \ar[d] \\
\mathcal{F}_{\mathcal{X}, k, x_0} \ar[r] & \mathcal{F}_{\mathcal{Y}, k, y_0}
}
$$
is a fibre product of predeformation categories.
\end{lemma}
\begin{proof}
This is a matter of unwinding the definitions. Details omitted.
\end{proof}
\section{Pushouts and stacks}
\label{section-pushouts}
\noindent
In this section we show that algebraic stacks behave well with
respect to certain pushouts. The results in this section hold over
any base scheme.
\medskip\noindent
The following lemma is also correct when $Y$, $X'$, $X$, $Y'$ are
algebraic spaces, see (insert future reference here).
\begin{lemma}
\label{lemma-pushout}
\begin{slogan}
Algebraic stacks satisfy the (strong) Rim-Schlessinger condition
\end{slogan}
Let $S$ be a scheme. Let
$$
\xymatrix{
X \ar[r] \ar[d] & X' \ar[d] \\
Y \ar[r] & Y'
}
$$
be a pushout in the category of schemes over $S$ where $X \to X'$
is a thickening and $X \to Y$ is affine, see
More on Morphisms, Lemma \ref{more-morphisms-lemma-pushout-along-thickening}.
Let $\mathcal{Z}$ be an algebraic stack over $S$.
Then the functor of fibre categories
$$
\mathcal{Z}_{Y'}
\longrightarrow
\mathcal{Z}_Y \times_{\mathcal{Z}_X} \mathcal{Z}_{X'}
$$
is an equivalence of categories.
\end{lemma}
\begin{proof}
Let $y'$ be an object of left hand side. The sheaf
$\mathit{Isom}(y', y')$ on the category of schemes over $Y'$
is representable by an algebraic space $I$ over $Y'$, see
Algebraic Stacks, Lemma \ref{algebraic-lemma-representable-diagonal}.
We conclude that the functor of the lemma is fully faithful as
$Y'$ is the pushout in the category of algebraic spaces as
well as the category of schemes, see
Pushouts of Spaces, Lemma
\ref{spaces-pushouts-lemma-pushout-along-thickening-schemes}.
\medskip\noindent
Let $(y, x', f)$ be an object of the right hand side. Here $f : y|_X \to x'|_X$
is an isomorphism. To finish the proof we have to construct an object $y'$ of
$\mathcal{Z}_{Y'}$ whose restrictions to $Y$ and $X'$ agree with $y$ and $x'$
in a manner compatible with $f$. In fact, it suffices to construct $y'$
fppf locally on $Y'$, see
Stacks, Lemma \ref{stacks-lemma-characterize-essentially-surjective-when-ff}.
Choose a representable algebraic stack
$\mathcal{W}$ and a surjective smooth morphism $\mathcal{W} \to \mathcal{Z}$.
Then
$$
(\Sch/Y)_{fppf} \times_{y, \mathcal{Z}} \mathcal{W}
\quad\text{and}\quad
(\Sch/X')_{fppf} \times_{x', \mathcal{Z}} \mathcal{W}
$$
are algebraic stacks representable by algebraic spaces $V$ and $U'$
smooth over $Y$ and $X'$. The isomorphism $f$ induces an isomorphism
$\varphi : V \times_Y X \to U' \times_{X'} X$ over $X$. By
Pushouts of Spaces, Lemmas
\ref{spaces-pushouts-lemma-pushout-along-thickening} and
\ref{spaces-pushouts-lemma-equivalence-categories-spaces-pushout-flat}
we see that the pushout $V' = V \amalg_{V \times_Y X} U'$ is
an algebraic space smooth over $Y'$ whose base change to
$Y$ and $X'$ recovers $V$ and $U'$ in a manner compatible with $\varphi$.
\medskip\noindent
Let $W$ be the algebraic space representing $\mathcal{W}$.
The projections $V \to W$ and $U' \to W$ agree as morphisms
over $V \times_Y X \cong U' \times_{X'} X$ hence the universal
property of the pushout determines a morphism of algebraic spaces
$V' \to W$. Choose a scheme $Y_1'$ and a surjective \'etale morphism
$Y_1' \to V'$. Set $Y_1 = Y \times_{Y'} Y_1'$,
$X_1' = X' \times_{Y'} Y_1'$, $X_1 = X \times_{Y'} Y_1'$.
The composition
$$
(\Sch/Y_1') \to (\Sch/V') \to (\Sch/W) = \mathcal{W} \to \mathcal{Z}
$$
corresponds by the $2$-Yoneda lemma to an object $y_1'$ of $\mathcal{Z}$
over $Y_1'$ whose restriction to $Y_1$ and $X_1'$ agrees with $y|_{Y_1}$
and $x'|_{X_1'}$ in a manner compatible with $f|_{X_1}$. Thus we have
constructed our desired object smooth locally over $Y'$ and we win.
\end{proof}
\section{The Rim-Schlessinger condition}
\label{section-RS}
\noindent
The motivation for the following definition comes from
Lemma \ref{lemma-pushout}
and
Formal Deformation Theory, Definition \ref{formal-defos-definition-RS} and
Lemma \ref{formal-defos-lemma-RS-2-categorical}.
\begin{definition}
\label{definition-RS}
Let $S$ be a locally Noetherian scheme. Let $\mathcal{Z}$ be a category
fibred in groupoids over $(\Sch/S)_{fppf}$. We say $\mathcal{Z}$
satisfies {\it condition (RS)} if for every pushout
$$
\xymatrix{
X \ar[r] \ar[d] & X' \ar[d] \\
Y \ar[r] & Y' = Y \amalg_X X'
}
$$
in the category of schemes over $S$ where
\begin{enumerate}
\item $X$, $X'$, $Y$, $Y'$ are spectra of local Artinian rings,
\item $X$, $X'$, $Y$, $Y'$ are of finite type over $S$, and
\item $X \to X'$ (and hence $Y \to Y'$) is a closed immersion
\end{enumerate}
the functor of fibre categories
$$
\mathcal{Z}_{Y'}
\longrightarrow
\mathcal{Z}_Y \times_{\mathcal{Z}_X} \mathcal{Z}_{X'}
$$
is an equivalence of categories.
\end{definition}
\noindent
If $A$ is an Artinian local ring with residue field $k$, then
any morphism $\Spec(A) \to S$ is affine and of finite type if and
only if the induced morphism $\Spec(k) \to S$ is of finite type, see
Morphisms, Lemmas \ref{morphisms-lemma-Artinian-affine} and
\ref{morphisms-lemma-artinian-finite-type}.
\begin{lemma}
\label{lemma-algebraic-stack-RS}
Let $\mathcal{X}$ be an algebraic stack over a locally Noetherian base
$S$. Then $\mathcal{X}$ satisfies (RS).
\end{lemma}
\begin{proof}
Immediate from the definitions and Lemma \ref{lemma-pushout}.
\end{proof}
\begin{lemma}
\label{lemma-fibre-product-RS}
Let $S$ be a scheme. Let $p : \mathcal{X} \to \mathcal{Y}$ and
$q : \mathcal{Z} \to \mathcal{Y}$ be $1$-morphisms of categories
fibred in groupoids over $(\Sch/S)_{fppf}$. If $\mathcal{X}$, $\mathcal{Y}$,
and $\mathcal{Z}$ satisfy (RS), then so
does $\mathcal{X} \times_\mathcal{Y} \mathcal{Z}$.
\end{lemma}
\begin{proof}
This is formal. Let
$$
\xymatrix{
X \ar[r] \ar[d] & X' \ar[d] \\
Y \ar[r] & Y' = Y \amalg_X X'
}
$$
be a diagram as in Definition \ref{definition-RS}. We have to show that
$$
(\mathcal{X} \times_{\mathcal{Y}} \mathcal{Z})_{Y'}
\longrightarrow
(\mathcal{X} \times_{\mathcal{Y}} \mathcal{Z})_Y
\times_{(\mathcal{X} \times_{\mathcal{Y}} \mathcal{Z})_X}
(\mathcal{X} \times_{\mathcal{Y}} \mathcal{Z})_{X'}
$$
is an equivalence. Using the definition of the $2$-fibre product
this becomes
\begin{equation}
\label{equation-RS-fibre-product}
\mathcal{X}_{Y'} \times_{\mathcal{Y}_{Y'}} \mathcal{Z}_{Y'}
\longrightarrow
(\mathcal{X}_Y \times_{\mathcal{Y}_Y} \mathcal{Z}_Y)
\times_{(\mathcal{X}_X \times_{\mathcal{Y}_X} \mathcal{Z}_X)}
(\mathcal{X}_{X'} \times_{\mathcal{Y}_{X'}} \mathcal{Z}_{X'}).
\end{equation}
We are given that each of the functors
$$
\mathcal{X}_{Y'} \to \mathcal{X}_Y \times_{\mathcal{Y}_Y} \mathcal{Z}_Y,
\quad
\mathcal{Y}_{Y'} \to \mathcal{X}_X \times_{\mathcal{Y}_X} \mathcal{Z}_X,
\quad
\mathcal{Z}_{Y'} \to
\mathcal{X}_{X'} \times_{\mathcal{Y}_{X'}} \mathcal{Z}_{X'}
$$
are equivalences. An object of the right hand side of
(\ref{equation-RS-fibre-product}) is a system
$$
((x_Y, z_Y, \phi_Y), (x_{X'}, z_{X'}, \phi_{X'}), (\alpha, \beta)).
$$
Then $(x_Y, x_{Y'}, \alpha)$ is isomorphic to the image of an object
$x_{Y'}$ in $\mathcal{X}_{Y'}$ and $(z_Y, z_{Y'}, \beta)$ is isomorphic
to the image of an object $z_{Y'}$ of $\mathcal{Z}_{Y'}$. The pair of
morphisms $(\phi_Y, \phi_{X'})$ corresponds to a morphism $\psi$
between the images of $x_{Y'}$ and $z_{Y'}$ in $\mathcal{Y}_{Y'}$.
Then $(x_{Y'}, z_{Y'}, \psi)$ is an object of the left hand side of
(\ref{equation-RS-fibre-product}) mapping to the given object of the
right hand side. This proves that (\ref{equation-RS-fibre-product}) is
essentially surjective. We omit the proof that it is fully faithful.
\end{proof}
\section{Deformation categories}
\label{section-deformation-categories}
\noindent
We match the notation introduced above with the notation from the
chapter ``Formal Deformation Theory''.
\begin{lemma}
\label{lemma-deformation-category}
Let $S$ be a locally Noetherian scheme. Let $\mathcal{X}$ be a category
fibred in groupoids over $(\Sch/S)_{fppf}$ satisfying (RS). For any field
$k$ of finite type over $S$ and any object $x_0$ of $\mathcal{X}$ lying
over $k$ the predeformation category
$p : \mathcal{F}_{\mathcal{X}, k, x_0} \to \mathcal{C}_\Lambda$
(\ref{equation-predeformation-category}) is a deformation category, see
Formal Deformation Theory, Definition
\ref{formal-defos-definition-deformation-category}.
\end{lemma}
\begin{proof}
Set $\mathcal{F} = \mathcal{F}_{\mathcal{X}, k, x_0}$.
Let $f_1 : A_1 \to A$ and $f_2 : A_2 \to A$ be ring maps in
$\mathcal{C}_\Lambda$ with $f_2$ surjective. We have to show that
the functor
$$
\mathcal{F}(A_1 \times_A A_2)
\longrightarrow
\mathcal{F}(A_1) \times_{\mathcal{F}(A)} \mathcal{F}(A_2)
$$
is an equivalence, see
Formal Deformation Theory, Lemma \ref{formal-defos-lemma-RS-2-categorical}.
Set $X = \Spec(A)$, $X' = \Spec(A_2)$, $Y = \Spec(A_1)$ and
$Y' = \Spec(A_1 \times_A A_2)$. Note that $Y' = Y \amalg_X X'$ in the
category of schemes, see
More on Morphisms, Lemma \ref{more-morphisms-lemma-pushout-along-thickening}.
We know that in the diagram of functors of fibre categories
$$
\xymatrix{
\mathcal{X}_{Y'} \ar[r] \ar[d] &
\mathcal{X}_Y \times_{\mathcal{X}_X} \mathcal{X}_{X'} \ar[d] \\
\mathcal{X}_{\Spec(k)} \ar@{=}[r] & \mathcal{X}_{\Spec(k)}
}
$$
the top horizontal arrow is an equivalence by
Definition \ref{definition-RS}.
Since $\mathcal{F}(B)$ is the category of objects of $\mathcal{X}_{\Spec(B)}$
with an identification with $x_0$ over $k$ we win.
\end{proof}
\begin{remark}
\label{remark-deformation-category-implies}
Let $S$ be a locally Noetherian scheme. Let $\mathcal{X}$ be fibred
in groupoids over $(\Sch/S)_{fppf}$. Let $k$ be a field of finite type over
$S$ and $x_0$ an object
of $\mathcal{X}$ over $k$. Let $p : \mathcal{F} \to \mathcal{C}_\Lambda$
be as in (\ref{equation-predeformation-category}). If $\mathcal{F}$
is a deformation category, i.e., if $\mathcal{F}$ satisfies the
Rim-Schlessinger condition (RS), then we see that $\mathcal{F}$ satisfies
Schlessinger's conditions (S1) and (S2) by
Formal Deformation Theory, Lemma \ref{formal-defos-lemma-RS-implies-S1-S2}.
Let $\overline{\mathcal{F}}$ be the functor of isomorphism classes, see
Formal Deformation Theory, Remarks
\ref{formal-defos-remarks-cofibered-groupoids}
(\ref{formal-defos-item-associated-functor-isomorphism-classes}).
Then $\overline{\mathcal{F}}$ satisfies (S1) and (S2) as well, see
Formal Deformation Theory, Lemma
\ref{formal-defos-lemma-S1-S2-associated-functor}.
This holds in particular in the situation of
Lemma \ref{lemma-deformation-category}.
\end{remark}
\section{Change of field}
\label{section-change-of-field}
\noindent
This section is the analogue of
Formal Deformation Theory, Section \ref{formal-defos-section-change-of-field}.
As pointed out there, to discuss what happens under change of field
we need to write $\mathcal{C}_{\Lambda, k}$ instead of $\mathcal{C}_\Lambda$.
In the following lemma we use the notation $\mathcal{F}_{l/k}$
introduced in Formal Deformation Theory, Situation
\ref{formal-defos-situation-change-of-fields}.
\begin{lemma}
\label{lemma-change-of-field}
Let $S$ be a locally Noetherian scheme. Let $\mathcal{X}$ be a category
fibred in groupoids over $(\Sch/S)_{fppf}$. Let $k$ be a
field of finite type over $S$ and let $l/k$ be a finite extension.
Let $x_0$ be an object of $\mathcal{F}$ lying over $\Spec(k)$.
Denote $x_{l, 0}$ the restriction of $x_0$ to $\Spec(l)$.
Then there is a canonical functor
$$
(\mathcal{F}_{\mathcal{X}, k , x_0})_{l/k}
\longrightarrow
\mathcal{F}_{\mathcal{X}, l, x_{l, 0}}
$$
of categories cofibred in groupoids over $\mathcal{C}_{\Lambda, l}$.
If $\mathcal{X}$ satisfies (RS), then this functor is an equivalence.
\end{lemma}
\begin{proof}
Consider a factorization
$$
\Spec(l) \to \Spec(B) \to S
$$
as in (\ref{equation-factor}). By definition we have
$$
(\mathcal{F}_{\mathcal{X}, k , x_0})_{l/k}(B) =
\mathcal{F}_{\mathcal{X}, k, x_0}(B \times_l k)
$$
see Formal Deformation Theory, Situation
\ref{formal-defos-situation-change-of-fields}. Thus an object of this
is a morphism $x_0 \to x$ of $\mathcal{X}$ lying over the morphism
$\Spec(k) \to \Spec(B \times_l k)$. Choosing pullback functor for $\mathcal{X}$
we can associate to $x_0 \to x$ the morphism $x_{l, 0} \to x_B$
where $x_B$ is the restriction of $x$ to $\Spec(B)$ (via the morphism
$\Spec(B) \to \Spec(B \times_l k)$ coming from $B \times_l k \subset B$).
This construction is functorial in $B$ and compatible with morphisms.
\medskip\noindent
Next, assume $\mathcal{X}$ satisfies (RS). Consider the diagrams
$$
\vcenter{
\xymatrix{
l & B \ar[l] \\
k \ar[u] & B \times_l k \ar[l] \ar[u]
}
}
\quad\text{and}\quad
\vcenter{
\xymatrix{
\Spec(l) \ar[d] \ar[r] & \Spec(B) \ar[d] \\
\Spec(k) \ar[r] & \Spec(B \times_l k)
}
}
$$
The diagram on the left is a fibre product of rings. The diagram on the
right is a pushout in the category of schemes, see
More on Morphisms, Lemma \ref{more-morphisms-lemma-pushout-along-thickening}.
These schemes are all of finite type over $S$ (see remarks following
Definition \ref{definition-RS}). Hence (RS) kicks in to give an equivalence
of fibre categories
$$
\mathcal{X}_{\Spec(B \times_l k)}
\longrightarrow
\mathcal{X}_{\Spec(k)}
\times_{\mathcal{X}_{\Spec(l)}}
\mathcal{X}_{\Spec(B)}
$$
This implies that the functor defined above gives an equivalence of
fibre categories. Hence the functor is an equivalence on categories
cofibred in groupoids by (the dual of)
Categories, Lemma \ref{categories-lemma-equivalence-fibred-categories}.
\end{proof}
\section{Tangent spaces}
\label{section-tangent-spaces}
\noindent
Let $S$ be a locally Noetherian scheme. Let $\mathcal{X}$ be a category
fibred in groupoids over $(\Sch/S)_{fppf}$. Let $k$ be a field of finite
type over $S$ and let $x_0$ be an object of $\mathcal{X}$ over $k$.
In Formal Deformation Theory, Section \ref{formal-defos-section-tangent-spaces}
we have defined the {\it tangent space}
\begin{equation}
\label{equation-tangent-space}
T\mathcal{F}_{\mathcal{X}, k, x_0} =
\left\{
\begin{matrix}
\text{isomorphism classes of morphisms}\\
x_0 \to x\text{ over }\Spec(k) \to \Spec(k[\epsilon])
\end{matrix}
\right\}
\end{equation}
of the predeformation category $\mathcal{F}_{\mathcal{X}, k, x_0}$.
In Formal Deformation Theory, Section
\ref{formal-defos-section-infinitesimal-automorphisms}
we have defined
\begin{equation}
\label{equation-infinitesimal-automorphisms}
\text{Inf}(\mathcal{F}_{\mathcal{X}, k, x_0}) =
\Ker\left(
\text{Aut}_{\Spec(k[\epsilon])}(x'_0) \to \text{Aut}_{\Spec(k)}(x_0)
\right)
\end{equation}
where $x_0'$ is the pullback of $x_0$ to $\Spec(k[\epsilon])$.
If $\mathcal{X}$ satisfies the Rim-Schlessinger condition (RS), then
$T\mathcal{F}_{\mathcal{X}, k, x_0}$ comes equipped with a natural
$k$-vector space structure by Formal Deformation Theory, Lemma
\ref{formal-defos-lemma-tangent-space-vector-space}
(assumptions hold by Lemma \ref{lemma-deformation-category} and
Remark \ref{remark-deformation-category-implies}). Moreover,
Formal Deformation Theory, Lemma \ref{formal-defos-lemma-infaut-vector-space}
shows that $\text{Inf}(\mathcal{F}_{\mathcal{X}, k, x_0})$ has a
natural $k$-vector space structure such that addition agrees with
composition of automorphisms. A natural condition
is to ask these vector spaces to have finite dimension.
\medskip\noindent
The following lemma tells us this is true if
$\mathcal{X}$ is locally of finite type over $S$ (see
Morphisms of Stacks, Section \ref{stacks-morphisms-section-finite-type}).
\begin{lemma}
\label{lemma-finite-dimension}
Let $S$ be a locally Noetherian scheme. Assume
\begin{enumerate}
\item $\mathcal{X}$ is an algebraic stack,
\item $U$ is a scheme locally of finite type over $S$, and
\item $(\Sch/U)_{fppf} \to \mathcal{X}$ is a smooth surjective
morphism.
\end{enumerate}
Then, for any $\mathcal{F} = \mathcal{F}_{\mathcal{X}, k, x_0}$ as in
Section \ref{section-predeformation-categories}
the tangent space $T\mathcal{F}$ and infinitesimal automorphism space
$\text{Inf}(\mathcal{F})$ have finite dimension over $k$.
\end{lemma}
\begin{proof}
Let us write $\mathcal{U} = (\Sch/U)_{fppf}$. By our definition
of algebraic stacks the $1$-morphism $\mathcal{U} \to \mathcal{X}$
is representable by algebraic spaces. Hence in particular the
2-fibre product
$$
\mathcal{U}_{x_0} = (\Sch/\Spec(k))_{fppf} \times_\mathcal{X} \mathcal{U}
$$
is representable by an algebraic space $U_{x_0}$ over $\Spec(k)$. Then
$U_{x_0} \to \Spec(k)$ is smooth and surjective (in particular $U_{x_0}$
is nonempty). By Spaces over Fields, Lemma
\ref{spaces-over-fields-lemma-smooth-separable-closed-points-dense}
we can find a finite extension $l/k$ and a point
$\Spec(l) \to U_{x_0}$ over $k$. We have
$$
(\mathcal{F}_{\mathcal{X}, k , x_0})_{l/k} =
\mathcal{F}_{\mathcal{X}, l, x_{l, 0}}
$$
by Lemma \ref{lemma-change-of-field} and the fact that $\mathcal{X}$
satisfies (RS). Thus we see that
$$
T\mathcal{F} \otimes_k l \cong T\mathcal{F}_{\mathcal{X}, l, x_{l, 0}}
\quad\text{and}\quad
\text{Inf}(\mathcal{F}) \otimes_k l \cong
\text{Inf}(\mathcal{F}_{\mathcal{X}, l, x_{l, 0}})
$$
by
Formal Deformation Theory, Lemmas
\ref{formal-defos-lemma-tangent-space-change-of-field} and
\ref{formal-defos-lemma-inf-aut-change-of-field}
(these are applicable by
Lemmas \ref{lemma-algebraic-stack-RS} and
\ref{lemma-deformation-category} and
Remark \ref{remark-deformation-category-implies}).
Hence it suffices to prove that $T\mathcal{F}_{\mathcal{X}, l, x_{l, 0}}$
and $\text{Inf}(\mathcal{F}_{\mathcal{X}, l, x_{l, 0}})$
have finite dimension over $l$. Note that $x_{l, 0}$ comes from a point
$u_0$ of $\mathcal{U}$ over $l$.
\medskip\noindent
We interrupt the flow of the argument to show that the lemma for
infinitesimal automorphisms follows from the lemma for tangent spaces.
Namely, let
$\mathcal{R} = \mathcal{U} \times_\mathcal{X} \mathcal{U}$.
Let $r_0$ be the $l$-valued point $(u_0, u_0, \text{id}_{x_0})$ of
$\mathcal{R}$. Combining
Lemma \ref{lemma-fibre-product-deformation-categories} and
Formal Deformation Theory, Lemma
\ref{formal-defos-lemma-deformation-functor-diagonal}
we see that
$$
\text{Inf}(\mathcal{F}_{\mathcal{X}, l, x_{l, 0}})
\subset
T\mathcal{F}_{\mathcal{R}, l, r_0}
$$
Note that $\mathcal{R}$ is an algebraic stack, see
Algebraic Stacks, Lemma \ref{algebraic-lemma-2-fibre-product-general}.
Also, $\mathcal{R}$ is representable by an algebraic space $R$
smooth over $U$ (via either projection, see
Algebraic Stacks, Lemma \ref{algebraic-lemma-stack-presentation}).
Hence, choose an scheme $U'$ and a surjective \'etale morphism
$U' \to R$ we see that $U'$ is smooth over $U$, hence locally of
finite type over $S$. As $(\Sch/U')_{fppf} \to \mathcal{R}$ is
surjective and smooth, we have reduced the question to the case
of tangent spaces.
\medskip\noindent
The functor (\ref{equation-functoriality})
$$
\mathcal{F}_{\mathcal{U}, l, u_0}
\longrightarrow
\mathcal{F}_{\mathcal{X}, l, x_{l, 0}}
$$
is smooth by Lemma \ref{lemma-formally-smooth-on-deformation-categories}.
The induced map on tangent spaces
$$
T\mathcal{F}_{\mathcal{U}, l, u_0}
\longrightarrow
T\mathcal{F}_{\mathcal{X}, l, x_{l, 0}}
$$
is $l$-linear (by
Formal Deformation Theory, Lemma
\ref{formal-defos-lemma-k-linear-differential})
and surjective (as smooth maps of predeformation categories induce
surjective maps on tangent spaces by
Formal Deformation Theory, Lemma
\ref{formal-defos-lemma-smooth-morphism-essentially-surjective}).
Hence it suffices to prove that the tangent space of the deformation
space associated to the representable algebraic stack $\mathcal{U}$
at the point $u_0$ is finite dimensional. Let $\Spec(R) \subset U$ be
an affine open such that $u_0 : \Spec(l) \to U$ factors through $\Spec(R)$
and such that $\Spec(R) \to S$ factors through $\Spec(\Lambda) \subset S$.
Let $\mathfrak m_R \subset R$ be the kernel of the $\Lambda$-algebra map
$\varphi_0 : R \to l$ corresponding to $u_0$. Note that $R$, being of finite
type over the Noetherian ring $\Lambda$, is a Noetherian ring. Hence
$\mathfrak m_R = (f_1, \ldots, f_n)$ is a finitely generated ideal.
We have
$$
T\mathcal{F}_{\mathcal{U}, l, u_0}
=
\{\varphi : R \to l[\epsilon] \mid
\varphi \text{ is a } \Lambda\text{-algebra map and }
\varphi \bmod \epsilon = \varphi_0\}
$$
An element of the right hand side is determined by its values on
$f_1, \ldots, f_n$ hence the dimension is at most $n$ and we win.
Some details omitted.
\end{proof}
\begin{lemma}
\label{lemma-fibre-product-tangent-spaces}
Let $S$ be a locally Noetherian scheme. Let $p : \mathcal{X} \to \mathcal{Y}$
and $q : \mathcal{Z} \to \mathcal{Y}$ be $1$-morphisms of categories
fibred in groupoids over $(\Sch/S)_{fppf}$. Assume $\mathcal{X}$,
$\mathcal{Y}$, $\mathcal{Z}$ satisfy (RS).
Let $k$ be a field of finite type over $S$ and let $w_0$ be an object of
$\mathcal{W} = \mathcal{X} \times_\mathcal{Y} \mathcal{Z}$ over $k$.
Denote $x_0, y_0, z_0$ the objects of $\mathcal{X}, \mathcal{Y}, \mathcal{Z}$
you get from $w_0$. Then there is a $6$-term exact sequence
$$
\xymatrix{
0 \ar[r] &
\text{Inf}(\mathcal{F}_{\mathcal{W}, k, w_0}) \ar[r] &
\text{Inf}(\mathcal{F}_{\mathcal{X}, k, x_0}) \oplus
\text{Inf}(\mathcal{F}_{\mathcal{Z}, k, z_0}) \ar[r] &
\text{Inf}(\mathcal{F}_{\mathcal{Y}, k, y_0}) \ar[lld] \\
&
T\mathcal{F}_{\mathcal{W}, k, w_0} \ar[r] &
T\mathcal{F}_{\mathcal{X}, k, x_0} \oplus
T\mathcal{F}_{\mathcal{Z}, k, z_0} \ar[r] &
T\mathcal{F}_{\mathcal{Y}, k, y_0}
}
$$
of $k$-vector spaces.
\end{lemma}
\begin{proof}
By Lemma \ref{lemma-fibre-product-RS} we see that $\mathcal{W}$
satisfies (RS) and hence the lemma makes sense. To see the lemma
is true, apply Lemmas \ref{lemma-fibre-product-deformation-categories} and
\ref{lemma-deformation-category}
and Formal Deformation Theory, Lemma
\ref{formal-defos-lemma-deformation-categories-fiber-product-morphisms}.
\end{proof}
\section{Formal objects}
\label{section-formal-objects}
\noindent
In this section we transfer some of the notions already defined
in the chapter ``Formal Deformation Theory'' to the current setting.
In the following we will say ``$R$ is an $S$-algebra'' to indicate
that $R$ is a ring endowed with a morphism of schemes $\Spec(R) \to S$.
\begin{definition}
\label{definition-formal-objects}
Let $S$ be a locally Noetherian scheme. Let
$p : \mathcal{X} \to (\Sch/S)_{fppf}$ be a category fibred in groupoids.
\begin{enumerate}
\item A {\it formal object} $\xi = (R, \xi_n, f_n)$ of $\mathcal{X}$ consists
of a Noetherian complete local $S$-algebra $R$, objects $\xi_n$ of
$\mathcal{X}$ lying over $\Spec(R/\mathfrak m_R^n)$, and morphisms
$f_n : \xi_n \to \xi_{n + 1}$ of $\mathcal{X}$ lying over
$\Spec(R/\mathfrak m^n) \to \Spec(R/\mathfrak m^{n + 1})$
such that $R/\mathfrak m$ is a field of finite type over $S$.
\item A {\it morphism of formal objects}
$a : \xi = (R, \xi_n, f_n) \to \eta = (T, \eta_n, g_n)$
is given by morphisms $a_n : \xi_n \to \eta_n$ such that for every $n$
the diagram
$$
\xymatrix{