forked from stacks/stacks-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcotangent.tex
4648 lines (4182 loc) · 168 KB
/
cotangent.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{The Cotangent Complex}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
The goal of this chapter is to construct the cotangent complex of a
ring map, of a morphism of schemes, and of a morphism of algebraic spaces.
Some references are the notes \cite{quillenhomology}, the paper
\cite{quillencohomology}, and the books
\cite{Andre} and \cite{cotangent}.
\section{Advice for the reader}
\label{section-advice-reader}
\noindent
In writing this chapter we have tried to minimize
the use of simplicial techniques. We view the choice of a {\it resolution}
$P_\bullet$ of a ring $B$ over a ring $A$ as a tool to calculating the
{\it homology} of abelian sheaves on the category $\mathcal{C}_{B/A}$, see
Remark \ref{remark-resolution}. This is similar to the role played
by a ``good cover'' to compute cohomology using the {\v C}ech complex.
To read a bit on homology on categories, please visit
Cohomology on Sites, Section \ref{sites-cohomology-section-homology}.
The derived lower shriek functor $L\pi_!$ is to homology what
$R\Gamma(\mathcal{C}_{B/A}, -)$ is to cohomology. The category
$\mathcal{C}_{B/A}$, studied in Section \ref{section-compute-L-pi-shriek},
is the opposite of the category of factorizations $A \to P \to B$ where $P$
is a polynomial algebra over $A$. This category comes with maps of sheaves
of rings
$$
\underline{A} \longrightarrow \mathcal{O} \longrightarrow \underline{B}
$$
where over the object $U = (P \to B)$ we have $\mathcal{O}(U) = P$.
It turns out that we obtain the cotangent complex of $B$ over $A$ as
$$
L_{B/A} =
L\pi_!(\Omega_{\mathcal{O}/\underline{A}} \otimes_\mathcal{O} \underline{B})
$$
see Lemma \ref{lemma-compute-cotangent-complex}. We have consistently tried
to use this point of view to prove the basic properties of cotangent
complexes of ring maps. In particular, all of the results can be proven
without relying on the existence of standard resolutions, although we have
not done so. The theory is quite satisfactory, except that
perhaps the proof of the fundamental triangle
(Proposition \ref{proposition-triangle}) uses just a little
bit more theory on derived lower shriek functors.
To provide the reader with an alternative,
we give a rather complete sketch of an approach to this result
based on simple properties of standard resolutions in
Remarks \ref{remark-triangle} and \ref{remark-explicit-map}.
\medskip\noindent
Our approach to the cotangent complex for morphisms of ringed topoi,
morphisms of schemes, morphisms of algebraic spaces, etc
is to deduce as much as possible from the case of ``plain ring maps''
discussed above.
\section{The cotangent complex of a ring map}
\label{section-cotangent-ring-map}
\noindent
Let $A$ be a ring. Let $\textit{Alg}_A$ be the category of $A$-algebras.
Consider the pair of adjoint functors $(U, V)$ where
$V : \textit{Alg}_A \to \textit{Sets}$ is the forgetful functor and
$U : \textit{Sets} \to \textit{Alg}_A$ assigns to a set $E$ the polynomial
algebra $A[E]$ on $E$ over $A$. Let $X_\bullet$ be the simplicial object of
$\text{Fun}(\textit{Alg}_A, \textit{Alg}_A)$ constructed in
Simplicial, Section \ref{simplicial-section-standard}.
\medskip\noindent
Consider an $A$-algebra $B$. Denote $P_\bullet = X_\bullet(B)$ the resulting
simplicial $A$-algebra. Recall that $P_0 = A[B]$, $P_1 = A[A[B]]$, and so on.
In particular each term $P_n$ is a polynomial $A$-algebra.
Recall also that there is an augmentation
$$
\epsilon : P_\bullet \longrightarrow B
$$
where we view $B$ as a constant simplicial $A$-algebra.
\begin{definition}
\label{definition-standard-resolution}
Let $A \to B$ be a ring map. The {\it standard resolution of $B$ over $A$}
is the augmentation $\epsilon : P_\bullet \to B$ with terms
$$
P_0 = A[B],\quad P_1 = A[A[B]],\quad \ldots
$$
and maps as constructed above.
\end{definition}
\noindent
It will turn out that we can use the standard resolution
to compute left derived functors in certain settings.
\begin{definition}
\label{definition-cotangent-complex-ring-map}
The {\it cotangent complex} $L_{B/A}$ of a ring map $A \to B$
is the complex of $B$-modules associated to the simplicial $B$-module
$$
\Omega_{P_\bullet/A} \otimes_{P_\bullet, \epsilon} B
$$
where $\epsilon : P_\bullet \to B$ is the standard resolution
of $B$ over $A$.
\end{definition}
\noindent
In Simplicial, Section \ref{simplicial-section-complexes} we associate a
chain complex to a simplicial module, but here we work with cochain complexes.
Thus the term $L_{B/A}^{-n}$ in degree $-n$ is the $B$-module
$\Omega_{P_n/A} \otimes_{P_n, \epsilon_n} B$ and $L_{B/A}^m = 0$
for $m > 0$.
\begin{remark}
\label{remark-variant-cotangent-complex}
Let $A \to B$ be a ring map. Let $\mathcal{A}$ be the category of
arrows $\psi : C \to B$ of $A$-algebras and let $\mathcal{S}$ be
the category of maps $E \to B$ where $E$ is a set. There are adjoint
functors $V : \mathcal{A} \to \mathcal{S}$ (the forgetful functor)
and $U : \mathcal{S} \to \mathcal{A}$ which sends $E \to B$ to
$A[E] \to B$. Let $X_\bullet$ be the simplicial object of
$\text{Fun}(\mathcal{A}, \mathcal{A})$ constructed in
Simplicial, Section \ref{simplicial-section-standard}.
The diagram
$$
\xymatrix{
\mathcal{A} \ar[d] \ar[r] & \mathcal{S} \ar@<1ex>[l] \ar[d] \\
\textit{Alg}_A \ar[r] & \textit{Sets} \ar@<1ex>[l]
}
$$
commutes. It follows that $X_\bullet(\text{id}_B : B \to B)$
is equal to the standard resolution of $B$ over $A$.
\end{remark}
\begin{lemma}
\label{lemma-colimit-cotangent-complex}
Let $A_i \to B_i$ be a system of ring maps over a directed index
set $I$. Then $\colim L_{B_i/A_i} = L_{\colim B_i/\colim A_i}$.
\end{lemma}
\begin{proof}
This is true because the forgetful functor
$V : A\textit{-Alg} \to \textit{Sets}$ and its adjoint
$U : \textit{Sets} \to A\textit{-Alg}$ commute with filtered colimits.
Moreover, the functor $B/A \mapsto \Omega_{B/A}$ does as well
(Algebra, Lemma \ref{algebra-lemma-colimit-differentials}).
\end{proof}
\section{Simplicial resolutions and derived lower shriek}
\label{section-compute-L-pi-shriek}
\noindent
Let $A \to B$ be a ring map. Consider the category whose objects are
$A$-algebra maps $\alpha : P \to B$ where $P$ is a polynomial algebra over $A$
(in some set\footnote{It suffices to consider sets of cardinality
at most the cardinality of $B$.} of variables) and whose
morphisms $s : (\alpha : P \to B) \to (\alpha' : P' \to B)$ are
$A$-algebra homomorphisms $s : P \to P'$ with $\alpha' \circ s = \alpha$.
Let $\mathcal{C} = \mathcal{C}_{B/A}$ denote the {\bf opposite}
of this category. The reason for
taking the opposite is that we want to think of objects
$(P, \alpha)$ as corresponding to the diagram of affine schemes
$$
\xymatrix{
\Spec(B) \ar[d] \ar[r] & \Spec(P) \ar[ld] \\
\Spec(A)
}
$$
We endow $\mathcal{C}$ with the chaotic topology
(Sites, Example \ref{sites-example-indiscrete}), i.e., we endow
$\mathcal{C}$ with the structure of a site where coverings are given by
identities so that all presheaves are sheaves.
Moreover, we endow $\mathcal{C}$ with two sheaves of rings. The first
is the sheaf $\mathcal{O}$ which sends to object $(P, \alpha)$ to $P$.
Then second is the constant sheaf $B$, which we will denote
$\underline{B}$. We obtain the following diagram of morphisms of
ringed topoi
\begin{equation}
\label{equation-pi}
\vcenter{
\xymatrix{
(\Sh(\mathcal{C}), \underline{B}) \ar[r]_i \ar[d]_\pi &
(\Sh(\mathcal{C}), \mathcal{O}) \\
(\Sh(*), B)
}
}
\end{equation}
The morphism $i$ is the identity on underlying topoi and
$i^\sharp : \mathcal{O} \to \underline{B}$ is the obvious map.
The map $\pi$ is as in Cohomology on Sites, Example
\ref{sites-cohomology-example-category-to-point}.
An important role will be played in the following
by the derived functors
$
Li^* : D(\mathcal{O}) \longrightarrow D(\underline{B})
$
left adjoint to $Ri_* = i_* : D(\underline{B}) \to D(\mathcal{O})$ and
$
L\pi_! : D(\underline{B}) \longrightarrow D(B)
$
left adjoint to $\pi^* = \pi^{-1} : D(B) \to D(\underline{B})$.
\begin{lemma}
\label{lemma-identify-pi-shriek}
With notation as above let $P_\bullet$ be a simplicial $A$-algebra
endowed with an augmentation $\epsilon : P_\bullet \to B$.
Assume each $P_n$ is a polynomial algebra over $A$ and $\epsilon$
is a trivial Kan fibration on underlying simplicial sets. Then
$$
L\pi_!(\mathcal{F}) = \mathcal{F}(P_\bullet, \epsilon)
$$
in $D(\textit{Ab})$, resp.\ $D(B)$ functorially in $\mathcal{F}$ in
$\textit{Ab}(\mathcal{C})$, resp.\ $\textit{Mod}(\underline{B})$.
\end{lemma}
\begin{proof}
We will use the criterion of Cohomology on Sites, Lemma
\ref{sites-cohomology-lemma-compute-by-cosimplicial-resolution} to prove this.
Given an object $U = (Q, \beta)$ of $\mathcal{C}$ we have to show that
$$
S_\bullet = \Mor_\mathcal{C}((Q, \beta), (P_\bullet, \epsilon))
$$
is homotopy equivalent to a singleton.
Write $Q = A[E]$ for some set $E$ (this is possible by our choice of
the category $\mathcal{C}$). We see that
$$
S_\bullet = \Mor_{\textit{Sets}}((E, \beta|_E), (P_\bullet, \epsilon))
$$
Let $*$ be the constant simplicial set on a singleton. For $b \in B$
let $F_{b, \bullet}$ be the simplicial set defined by the cartesian
diagram
$$
\xymatrix{
F_{b, \bullet} \ar[r] \ar[d] & P_\bullet \ar[d]_\epsilon \\
{*} \ar[r]^b & B
}
$$
With this notation $S_\bullet = \prod_{e \in E} F_{\beta(e), \bullet}$.
Since we assumed $\epsilon$ is a trivial Kan fibration we see that
$F_{b, \bullet} \to *$ is a trivial Kan fibration
(Simplicial, Lemma \ref{simplicial-lemma-trivial-kan-base-change}).
Thus $S_\bullet \to *$ is a trivial Kan fibration
(Simplicial, Lemma \ref{simplicial-lemma-product-trivial-kan}).
Therefore $S_\bullet$ is homotopy equivalent to $*$
(Simplicial, Lemma \ref{simplicial-lemma-trivial-kan-homotopy}).
\end{proof}
\noindent
In particular, we can use the standard resolution of $B$ over $A$
to compute derived lower shriek.
\begin{lemma}
\label{lemma-pi-shriek-standard}
Let $A \to B$ be a ring map. Let $\epsilon : P_\bullet \to B$
be the standard resolution of $B$ over $A$. Let $\pi$ be as in
(\ref{equation-pi}). Then
$$
L\pi_!(\mathcal{F}) = \mathcal{F}(P_\bullet, \epsilon)
$$
in $D(\textit{Ab})$, resp.\ $D(B)$ functorially in $\mathcal{F}$ in
$\textit{Ab}(\mathcal{C})$, resp.\ $\textit{Mod}(\underline{B})$.
\end{lemma}
\begin{proof}[First proof]
We will apply Lemma \ref{lemma-identify-pi-shriek}.
Since the terms $P_n$ are polynomial algebras we see the first
assumption of that lemma is satisfied. The second assumption is proved
as follows. By
Simplicial, Lemma \ref{simplicial-lemma-standard-simplicial-homotopy}
the map $\epsilon$ is a homotopy equivalence of underlying
simplicial sets. By
Simplicial, Lemma \ref{simplicial-lemma-homotopy-equivalence}
this implies $\epsilon$ induces a quasi-isomorphism of associated
complexes of abelian groups. By
Simplicial, Lemma \ref{simplicial-lemma-qis-simplicial-abelian-groups}
this implies that $\epsilon$ is a trivial Kan fibration of underlying
simplicial sets.
\end{proof}
\begin{proof}[Second proof]
We will use the criterion of Cohomology on Sites, Lemma
\ref{sites-cohomology-lemma-compute-by-cosimplicial-resolution}.
Let $U = (Q, \beta)$ be an object of $\mathcal{C}$.
We have to show that
$$
S_\bullet = \Mor_\mathcal{C}((Q, \beta), (P_\bullet, \epsilon))
$$
is homotopy equivalent to a singleton. Write $Q = A[E]$ for some set $E$
(this is possible by our choice of the category $\mathcal{C}$). Using the
notation of Remark \ref{remark-variant-cotangent-complex} we see that
$$
S_\bullet = \Mor_\mathcal{S}((E \to B), i(P_\bullet \to B))
$$
By Simplicial, Lemma \ref{simplicial-lemma-standard-simplicial-homotopy}
the map $i(P_\bullet \to B) \to i(B \to B)$ is a homotopy equivalence
in $\mathcal{S}$. Hence $S_\bullet$ is homotopy equivalent to
$$
\Mor_\mathcal{S}((E \to B), (B \to B)) = \{*\}
$$
as desired.
\end{proof}
\begin{lemma}
\label{lemma-compute-cotangent-complex}
Let $A \to B$ be a ring map. Let $\pi$ and $i$ be as in (\ref{equation-pi}).
There is a canonical isomorphism
$$
L_{B/A} = L\pi_!(Li^*\Omega_{\mathcal{O}/A}) =
L\pi_!(i^*\Omega_{\mathcal{O}/A}) =
L\pi_!(\Omega_{\mathcal{O}/A} \otimes_\mathcal{O} \underline{B})
$$
in $D(B)$.
\end{lemma}
\begin{proof}
For an object $\alpha : P \to B$ of the category $\mathcal{C}$
the module $\Omega_{P/A}$ is a free $P$-module. Thus
$\Omega_{\mathcal{O}/A}$ is a flat $\mathcal{O}$-module. Hence
$Li^*\Omega_{\mathcal{O}/A} = i^*\Omega_{\mathcal{O}/A}$ is the sheaf
of $\underline{B}$-modules which associates to $\alpha : P \to A$ the
$B$-module $\Omega_{P/A} \otimes_{P, \alpha} B$.
By Lemma \ref{lemma-pi-shriek-standard}
we see that the right hand side is computed by
the value of this sheaf on the standard resolution which is our
definition of the left hand side
(Definition \ref{definition-cotangent-complex-ring-map}).
\end{proof}
\begin{lemma}
\label{lemma-pi-lower-shriek-constant-sheaf}
If $A \to B$ is a ring map, then $L\pi_!(\pi^{-1}M) = M$
with $\pi$ as in (\ref{equation-pi}).
\end{lemma}
\begin{proof}
This follows from Lemma \ref{lemma-identify-pi-shriek} which tells us
$L\pi_!(\pi^{-1}M)$ is computed by $(\pi^{-1}M)(P_\bullet, \epsilon)$
which is the constant simplicial object on $M$.
\end{proof}
\begin{lemma}
\label{lemma-identify-H0}
If $A \to B$ is a ring map, then $H^0(L_{B/A}) = \Omega_{B/A}$.
\end{lemma}
\begin{proof}
We will prove this by a direct calculation.
We will use the identification of Lemma \ref{lemma-compute-cotangent-complex}.
There is clearly a map from $\Omega_{\mathcal{O}/A} \otimes \underline{B}$
to the constant sheaf with value $\Omega_{B/A}$. Thus this map induces
a map
$$
H^0(L_{B/A}) = H^0(L\pi_!(\Omega_{\mathcal{O}/A} \otimes \underline{B}))
= \pi_!(\Omega_{\mathcal{O}/A} \otimes \underline{B}) \to \Omega_{B/A}
$$
By choosing an object $P \to B$ of $\mathcal{C}_{B/A}$ with $P \to B$
surjective we see that this map is surjective (by
Algebra, Lemma \ref{algebra-lemma-differential-surjective}).
To show that it is injective, suppose that $P \to B$ is an object
of $\mathcal{C}_{B/A}$ and that $\xi \in \Omega_{P/A} \otimes_P B$
is an element which maps to zero in $\Omega_{B/A}$.
We first choose factorization $P \to P' \to B$ such that $P' \to B$
is surjective and $P'$ is a polynomial algebra over $A$.
We may replace $P$ by $P'$. If $B = P/I$, then the kernel
$\Omega_{P/A} \otimes_P B \to \Omega_{B/A}$ is the image of
$I/I^2$ (Algebra, Lemma \ref{algebra-lemma-differential-seq}).
Say $\xi$ is the image of $f \in I$.
Then we consider the two maps $a, b : P' = P[x] \to P$, the first of which
maps $x$ to $0$ and the second of which maps $x$ to $f$ (in both
cases $P[x] \to B$ maps $x$ to zero). We see that $\xi$ and $0$
are the image of $\text{d}x \otimes 1$ in $\Omega_{P'/A} \otimes_{P'} B$.
Thus $\xi$ and $0$ have the same image in the colimit (see
Cohomology on Sites, Example \ref{sites-cohomology-example-category-to-point})
$\pi_!(\Omega_{\mathcal{O}/A} \otimes \underline{B})$ as desired.
\end{proof}
\begin{lemma}
\label{lemma-pi-lower-shriek-polynomial-algebra}
If $B$ is a polynomial algebra over the ring $A$, then
with $\pi$ as in (\ref{equation-pi}) we have that
$\pi_!$ is exact and $\pi_!\mathcal{F} = \mathcal{F}(B \to B)$.
\end{lemma}
\begin{proof}
This follows from Lemma \ref{lemma-identify-pi-shriek} which tells us
the constant simplicial algebra on $B$ can be used to compute $L\pi_!$.
\end{proof}
\begin{lemma}
\label{lemma-cotangent-complex-polynomial-algebra}
If $B$ is a polynomial algebra over the ring $A$, then
$L_{B/A}$ is quasi-isomorphic to $\Omega_{B/A}[0]$.
\end{lemma}
\begin{proof}
Immediate from
Lemmas \ref{lemma-compute-cotangent-complex} and
\ref{lemma-pi-lower-shriek-polynomial-algebra}.
\end{proof}
\section{Constructing a resolution}
\label{section-polynomial}
\noindent
In the Noetherian finite type case we can construct a ``small'' simplicial
resolution for finite type ring maps.
\begin{lemma}
\label{lemma-polynomial}
Let $A$ be a Noetherian ring. Let $A \to B$ be a finite type ring map.
Let $\mathcal{A}$ be the category of $A$-algebra maps $C \to B$. Let
$n \geq 0$ and let $P_\bullet$ be a simplicial object of $\mathcal{A}$
such that
\begin{enumerate}
\item $P_\bullet \to B$ is a trivial Kan fibration of simplicial sets,
\item $P_k$ is finite type over $A$ for $k \leq n$,
\item $P_\bullet = \text{cosk}_n \text{sk}_n P_\bullet$ as simplicial
objects of $\mathcal{A}$.
\end{enumerate}
Then $P_{n + 1}$ is a finite type $A$-algebra.
\end{lemma}
\begin{proof}
Although the proof we give of this lemma is straightforward, it is a bit
messy. To clarify the idea we explain what happens for low $n$ before giving
the proof in general. For example, if $n = 0$, then (3) means that
$P_1 = P_0 \times_B P_0$. Since the ring map $P_0 \to B$ is surjective, this
is of finite type over $A$ by
More on Algebra, Lemma \ref{more-algebra-lemma-fibre-product-finite-type}.
\medskip\noindent
If $n = 1$, then (3) means that
$$
P_2 = \{(f_0, f_1, f_2) \in P_1^3 \mid
d_0f_0 = d_0f_1,\ d_1f_0 = d_0f_2,\ d_1f_1 = d_1f_2 \}
$$
where the equalities take place in $P_0$. Observe that the triple
$$
(d_0f_0, d_1f_0, d_1f_1) = (d_0f_1, d_0f_2, d_1f_2)
$$
is an element of the fibre product $P_0 \times_B P_0 \times_B P_0$ over $B$
because the maps $d_i : P_1 \to P_0$ are morphisms over $B$. Thus we get
a map
$$
\psi : P_2 \longrightarrow P_0 \times_B P_0 \times_B P_0
$$
The fibre of $\psi$ over an element
$(g_0, g_1, g_2) \in P_0 \times_B P_0 \times_B P_0$
is the set of triples $(f_0, f_1, f_2)$ of $1$-simplices
with $(d_0, d_1)(f_0) = (g_0, g_1)$, $(d_0, d_1)(f_1) = (g_0, g_2)$,
and $(d_0, d_1)(f_2) = (g_1, g_2)$. As $P_\bullet \to B$ is a trivial
Kan fibration the map $(d_0, d_1) : P_1 \to P_0 \times_B P_0$ is
surjective. Thus we see that $P_2$ fits into the cartesian diagram
$$
\xymatrix{
P_2 \ar[d] \ar[r] & P_1^3 \ar[d] \\
P_0 \times_B P_0 \times_B P_0 \ar[r] & (P_0 \times_B P_0)^3
}
$$
By More on Algebra, Lemma \ref{more-algebra-lemma-formal-consequence}
we conclude. The general case is similar, but requires a bit more notation.
\medskip\noindent
The case $n > 1$. By Simplicial, Lemma \ref{simplicial-lemma-cosk-above-object}
the condition $P_\bullet = \text{cosk}_n \text{sk}_n P_\bullet$
implies the same thing is true in the category of simplicial
$A$-algebras and hence in the category of sets (as the forgetful
functor from $A$-algebras to sets commutes with limits). Thus
$$
P_{n + 1} =
\Mor(\Delta[n + 1], P_\bullet) =
\Mor(\text{sk}_n \Delta[n + 1], \text{sk}_n P_\bullet)
$$
by Simplicial, Lemma \ref{simplicial-lemma-simplex-map} and
Equation (\ref{simplicial-equation-cosk}). We will prove by induction
on $1 \leq k < m \leq n + 1$ that the ring
$$
Q_{k, m} = \Mor(\text{sk}_k \Delta[m], \text{sk}_k P_\bullet)
$$
is of finite type over $A$. The case $k = 1$, $1 < m \leq n + 1$
is entirely similar to the discussion above in the case $n = 1$.
Namely, there is a cartesian diagram
$$
\xymatrix{
Q_{1, m} \ar[d] \ar[r] & P_1^N \ar[d] \\
P_0 \times_B \ldots \times_B P_0 \ar[r] & (P_0 \times_B P_0)^N
}
$$
where $N = {m + 1 \choose 2}$. We conclude as before.
\medskip\noindent
Let $1 \leq k_0 \leq n$ and assume $Q_{k, m}$ is of finite type
over $A$ for all $1 \leq k \leq k_0$ and $k < m \leq n + 1$.
For $k_0 + 1 < m \leq n + 1$ we claim there is a cartesian square
$$
\xymatrix{
Q_{k_0 + 1, m} \ar[d] \ar[r] & P_{k_0 + 1}^N \ar[d] \\
Q_{k_0, m} \ar[r] & Q_{k_0, k_0 + 1}^N
}
$$
where $N$ is the number of nondegenerate $(k_0 + 1)$-simplices
of $\Delta[m]$. Namely, to see this is true, think of an element of
$Q_{k_0 + 1, m}$ as a function $f$ from the $(k_0 + 1)$-skeleton
of $\Delta[m]$ to $P_\bullet$. We can restrict $f$ to the $k_0$-skeleton
which gives the left vertical map of the diagram. We can also restrict
to each nondegenerate $(k_0 + 1)$-simplex which gives the top horizontal
arrow. Moreover, to give such an $f$ is the same thing as giving its
restriction to $k_0$-skeleton and to each nondegenerate
$(k_0 + 1)$-face, provided these agree on the overlap, and this
is exactly the content of the diagram. Moreover, the fact that
$P_\bullet \to B$ is a trivial Kan fibration implies that
the map
$$
P_{k_0} \to Q_{k_0, k_0 + 1} = \Mor(\partial \Delta[k_0 + 1], P_\bullet)
$$
is surjective as every map $\partial \Delta[k_0 + 1] \to B$ can be extended
to $\Delta[k_0 + 1] \to B$ for $k_0 \geq 1$ (small argument about constant
simplicial sets omitted). Since by induction hypothesis the rings
$Q_{k_0, m}$, $Q_{k_0, k_0 + 1}$ are finite type $A$-algebras, so is
$Q_{k_0 + 1, m}$ by
More on Algebra, Lemma \ref{more-algebra-lemma-formal-consequence}
once more.
\end{proof}
\begin{proposition}
\label{proposition-polynomial}
Let $A$ be a Noetherian ring. Let $A \to B$ be a finite type ring map.
There exists a simplicial $A$-algebra $P_\bullet$ with an augmentation
$\epsilon : P_\bullet \to B$ such that each $P_n$ is a polynomial algebra
of finite type over $A$ and such that $\epsilon$ is a trivial
Kan fibration of simplicial sets.
\end{proposition}
\begin{proof}
Let $\mathcal{A}$ be the category of $A$-algebra maps $C \to B$.
In this proof our simplicial objects and skeleton and coskeleton
functors will be taken in this category.
\medskip\noindent
Choose a polynomial algebra $P_0$ of finite type over $A$ and a surjection
$P_0 \to B$. As a first approximation we take
$P_\bullet = \text{cosk}_0(P_0)$. In other words, $P_\bullet$ is the simplicial
$A$-algebra with terms $P_n = P_0 \times_A \ldots \times_A P_0$.
(In the final paragraph of the proof this simplicial object will
be denoted $P^0_\bullet$.) By
Simplicial, Lemma \ref{simplicial-lemma-cosk-minus-one-equivalence}
the map $P_\bullet \to B$ is a trivial Kan fibration of simplicial sets.
Also, observe that $P_\bullet = \text{cosk}_0 \text{sk}_0 P_\bullet$.
\medskip\noindent
Suppose for some $n \geq 0$ we have constructed $P_\bullet$
(in the final paragraph of the proof this will be $P^n_\bullet$)
such that
\begin{enumerate}
\item[(a)] $P_\bullet \to B$ is a trivial Kan fibration of simplicial sets,
\item[(b)] $P_k$ is a finitely generated polynomial algebra for
$0 \leq k \leq n$, and
\item[(c)] $P_\bullet = \text{cosk}_n \text{sk}_n P_\bullet$
\end{enumerate}
By Lemma \ref{lemma-polynomial}
we can find a finitely generated polynomial algebra $Q$ over $A$
and a surjection $Q \to P_{n + 1}$. Since $P_n$ is a polynomial algebra
the $A$-algebra maps $s_i : P_n \to P_{n + 1}$ lift to maps
$s'_i : P_n \to Q$. Set $d'_j : Q \to P_n$ equal to the composition of
$Q \to P_{n + 1}$ and $d_j : P_{n + 1} \to P_n$.
We obtain a truncated simplicial object $P'_\bullet$ of $\mathcal{A}$
by setting $P'_k = P_k$ for $k \leq n$ and $P'_{n + 1} = Q$ and morphisms
$d'_i = d_i$ and $s'_i = s_i$ in degrees $k \leq n - 1$ and using the
morphisms $d'_j$ and $s'_i$ in degree $n$. Extend this to a full simplicial
object $P'_\bullet$ of $\mathcal{A}$ using $\text{cosk}_{n + 1}$. By
functoriality of the coskeleton functors there is a morphism
$P'_\bullet \to P_\bullet$ of simplicial objects extending the
given morphism of $(n + 1)$-truncated simplicial objects.
(This morphism will be denoted $P^{n + 1}_\bullet \to P^n_\bullet$
in the final paragraph of the proof.)
\medskip\noindent
Note that conditions (b) and (c) are satisfied for $P'_\bullet$ with $n$
replaced by $n + 1$. We claim the map $P'_\bullet \to P_\bullet$ satisfies
assumptions (1), (2), (3), and (4) of
Simplicial, Lemmas \ref{simplicial-lemma-section}
with $n + 1$ instead of $n$. Conditions (1) and (2) hold by construction.
By Simplicial, Lemma \ref{simplicial-lemma-cosk-above-object}
we see that we have
$P_\bullet = \text{cosk}_{n + 1}\text{sk}_{n + 1}P_\bullet$
and
$P'_\bullet = \text{cosk}_{n + 1}\text{sk}_{n + 1}P'_\bullet$
not only in $\mathcal{A}$ but also in the category of $A$-algebras,
whence in the category of sets (as the forgetful functor from $A$-algebras
to sets commutes with all limits). This proves (3) and (4). Thus the lemma
applies and $P'_\bullet \to P_\bullet$ is a trivial Kan fibration. By
Simplicial, Lemma \ref{simplicial-lemma-trivial-kan-composition}
we conclude that $P'_\bullet \to B$ is a trivial Kan fibration and (a)
holds as well.
\medskip\noindent
To finish the proof we take the inverse limit $P_\bullet = \lim P^n_\bullet$
of the sequence of simplicial algebras
$$
\ldots \to P^2_\bullet \to P^1_\bullet \to P^0_\bullet
$$
constructed above. The map $P_\bullet \to B$ is a trivial Kan fibration by
Simplicial, Lemma \ref{simplicial-lemma-limit-trivial-kan}.
However, the construction above stabilizes in each degree
to a fixed finitely generated polynomial algebra as desired.
\end{proof}
\begin{lemma}
\label{lemma-pi-shriek-finite}
Let $A$ be a Noetherian ring. Let $A \to B$ be a finite type ring map.
Let $\pi$, $\underline{B}$ be as in (\ref{equation-pi}).
If $\mathcal{F}$ is an $\underline{B}$-module such that
$\mathcal{F}(P, \alpha)$ is a finite $B$-module for all
$\alpha : P = A[x_1, \ldots, x_n] \to B$, then the cohomology modules
of $L\pi_!(\mathcal{F})$ are finite $B$-modules.
\end{lemma}
\begin{proof}
By Lemma \ref{lemma-identify-pi-shriek} and
Proposition \ref{proposition-polynomial}
we can compute $L\pi_!(\mathcal{F})$ by a complex
constructed out of the values of $\mathcal{F}$ on finite type
polynomial algebras.
\end{proof}
\begin{lemma}
\label{lemma-cotangent-finite}
Let $A$ be a Noetherian ring. Let $A \to B$ be a finite type ring map.
Then $H^n(L_{B/A})$ is a finite $B$-module for all $n \in \mathbf{Z}$.
\end{lemma}
\begin{proof}
Apply Lemmas \ref{lemma-compute-cotangent-complex} and
\ref{lemma-pi-shriek-finite}.
\end{proof}
\begin{remark}[Resolutions]
\label{remark-resolution}
Let $A \to B$ be any ring map. Let us call an augmented simplicial $A$-algebra
$\epsilon : P_\bullet \to B$ a {\it resolution of $B$ over $A$} if
each $P_n$ is a polynomial algebra and $\epsilon$ is a trivial Kan fibration
of simplicial sets. If $P_\bullet \to B$ is an augmentation of a simplicial
$A$-algebra with each $P_n$ a polynomial algebra surjecting onto $B$, then
the following are equivalent
\begin{enumerate}
\item $\epsilon : P_\bullet \to B$ is a resolution of $B$ over $A$,
\item $\epsilon : P_\bullet \to B$ is a quasi-isomorphism on
associated complexes,
\item $\epsilon : P_\bullet \to B$ induces a homotopy equivalence
of simplicial sets.
\end{enumerate}
To see this use Simplicial, Lemmas
\ref{simplicial-lemma-trivial-kan-homotopy},
\ref{simplicial-lemma-homotopy-equivalence}, and
\ref{simplicial-lemma-qis-simplicial-abelian-groups}.
A resolution $P_\bullet$ of $B$ over $A$ gives a cosimplicial object
$U_\bullet$ of $\mathcal{C}_{B/A}$ as in Cohomology on Sites, Lemma
\ref{sites-cohomology-lemma-compute-by-cosimplicial-resolution}
and it follows that
$$
L\pi_!\mathcal{F} = \mathcal{F}(P_\bullet)
$$
functorially in $\mathcal{F}$, see Lemma \ref{lemma-identify-pi-shriek}.
The (formal part of the) proof of Proposition \ref{proposition-polynomial}
shows that resolutions exist. We also have seen in the first proof of
Lemma \ref{lemma-pi-shriek-standard} that the standard resolution of $B$
over $A$ is a resolution (so that this terminology doesn't lead to a conflict).
However, the argument in the proof of Proposition \ref{proposition-polynomial}
shows the existence of resolutions without appealing to the simplicial
computations in Simplicial, Section \ref{simplicial-section-standard}.
Moreover, for {\it any} choice of resolution we have a canonical isomorphism
$$
L_{B/A} = \Omega_{P_\bullet/A} \otimes_{P_\bullet, \epsilon} B
$$
in $D(B)$ by Lemma \ref{lemma-compute-cotangent-complex}. The freedom to
choose an arbitrary resolution can be quite useful.
\end{remark}
\begin{lemma}
\label{lemma-O-homology-B-homology}
Let $A \to B$ be a ring map. Let $\pi$, $\mathcal{O}$, $\underline{B}$
be as in (\ref{equation-pi}). For any $\mathcal{O}$-module $\mathcal{F}$
we have
$$
L\pi_!(\mathcal{F}) = L\pi_!(Li^*\mathcal{F}) =
L\pi_!(\mathcal{F} \otimes_\mathcal{O}^\mathbf{L} \underline{B})
$$
in $D(\textit{Ab})$.
\end{lemma}
\begin{proof}
It suffices to verify the assumptions of Cohomology on Sites, Lemma
\ref{sites-cohomology-lemma-O-homology-qis}
hold for $\mathcal{O} \to \underline{B}$ on $\mathcal{C}_{B/A}$.
We will use the results of Remark \ref{remark-resolution} without
further mention. Choose a resolution $P_\bullet$ of $B$ over $A$ to get a
suitable cosimplicial object $U_\bullet$ of $\mathcal{C}_{B/A}$.
Since $P_\bullet \to B$ induces a quasi-isomorphism on associated
complexes of abelian groups we see that $L\pi_!\mathcal{O} = B$.
On the other hand $L\pi_!\underline{B}$ is computed by
$\underline{B}(U_\bullet) = B$. This verifies the second assumption of
Cohomology on Sites, Lemma
\ref{sites-cohomology-lemma-O-homology-qis}
and we are done with the proof.
\end{proof}
\begin{lemma}
\label{lemma-apply-O-B-comparison}
Let $A \to B$ be a ring map. Let $\pi$, $\mathcal{O}$, $\underline{B}$
be as in (\ref{equation-pi}). We have
$$
L\pi_!(\mathcal{O}) = L\pi_!(\underline{B}) = B
\quad\text{and}\quad
L_{B/A} = L\pi_!(\Omega_{\mathcal{O}/A} \otimes_\mathcal{O} \underline{B}) =
L\pi_!(\Omega_{\mathcal{O}/A})
$$
in $D(\textit{Ab})$.
\end{lemma}
\begin{proof}
This is just an application of Lemma \ref{lemma-O-homology-B-homology}
(and the first equality on the right is
Lemma \ref{lemma-compute-cotangent-complex}).
\end{proof}
\noindent
Here is a special case of the fundamental triangle that is easy to prove.
\begin{lemma}
\label{lemma-special-case-triangle}
Let $A \to B \to C$ be ring maps. If $B$ is a polynomial algebra over
$A$, then there is a distinguished triangle
$L_{B/A} \otimes_B^\mathbf{L} C \to L_{C/A} \to L_{C/B} \to
L_{B/A} \otimes_B^\mathbf{L} C[1]$ in $D(C)$.
\end{lemma}
\begin{proof}
We will use the observations of Remark \ref{remark-resolution}
without further mention. Choose a resolution $\epsilon : P_\bullet \to C$
of $C$ over $B$ (for example the standard resolution). Since $B$ is a
polynomial algebra over $A$ we see that $P_\bullet$ is also a resolution of
$C$ over $A$. Hence $L_{C/A}$ is computed by
$\Omega_{P_\bullet/A} \otimes_{P_\bullet, \epsilon} C$
and $L_{C/B}$ is computed by
$\Omega_{P_\bullet/B} \otimes_{P_\bullet, \epsilon} C$.
Since for each $n$ we have the short exact sequence
$0 \to \Omega_{B/A} \otimes_B P_n \to \Omega_{P_n/A} \to \Omega_{P_n/B}$
(Algebra, Lemma \ref{algebra-lemma-ses-formally-smooth})
and since $L_{B/A} = \Omega_{B/A}[0]$
(Lemma \ref{lemma-cotangent-complex-polynomial-algebra})
we obtain the result.
\end{proof}
\begin{example}
\label{example-resolution-length-two}
Let $A \to B$ be a ring map. In this example we
will construct an ``explicit'' resolution $P_\bullet$ of $B$ over $A$ of
length $2$. To do this we follow the procedure of the proof of
Proposition \ref{proposition-polynomial}, see also the discussion in
Remark \ref{remark-resolution}.
\medskip\noindent
We choose a surjection $P_0 = A[u_i] \to B$ where $u_i$ is a set of
variables. Choose generators $f_t \in P_0$, $t \in T$ of the ideal
$\Ker(P_0 \to B)$. We choose $P_1 = A[u_i, x_t]$ with face maps
$d_0$ and $d_1$ the unique $A$-algebra maps with $d_j(u_i) = u_i$
and $d_0(x_t) = 0$ and $d_1(x_t) = f_t$. The map $s_0 : P_0 \to P_1$
is the unique $A$-algebra map with $s_0(u_i) = u_i$. It is clear that
$$
P_1 \xrightarrow{d_0 - d_1} P_0 \to B \to 0
$$
is exact, in particular the map $(d_0, d_1) : P_1 \to P_0 \times_B P_0$
is surjective. Thus, if $P_\bullet$ denotes the $1$-truncated
simplicial $A$-algebra given by $P_0$, $P_1$, $d_0$, $d_1$, and $s_0$, then
the augmentation $\text{cosk}_1(P_\bullet) \to B$ is a trivial Kan fibration.
The next step of the procedure in the proof of
Proposition \ref{proposition-polynomial}
is to choose a polynomial algebra $P_2$ and a surjection
$$
P_2 \longrightarrow \text{cosk}_1(P_\bullet)_2
$$
Recall that
$$
\text{cosk}_1(P_\bullet)_2 =
\{(g_0, g_1, g_2) \in P_1^3 \mid d_0(g_0) = d_0(g_1),
d_1(g_0) = d_0(g_2), d_1(g_1) = d_1(g_2)\}
$$
Thinking of $g_i \in P_1$ as a polynomial in $x_t$ the conditions
are
$$
g_0(0) = g_1(0),\quad
g_0(f_t) = g_2(0),\quad
g_1(f_t) = g_2(f_t)
$$
Thus $\text{cosk}_1(P_\bullet)_2$ contains the elements
$y_t = (x_t, x_t, f_t)$ and $z_t = (0, x_t, x_t)$.
Every element $G$ in $\text{cosk}_1(P_\bullet)_2$ is
of the form $G = H + (0, 0, g)$ where $H$ is in the image
of $A[u_i, y_t, z_t] \to \text{cosk}_1(P_\bullet)_2$. Here
$g \in P_1$ is a polynomial with vanishing
constant term such that $g(f_t) = 0$ in $P_0$. Observe that
\begin{enumerate}
\item $g = x_t x_{t'} - f_t x_{t'}$ and
\item $g = \sum r_t x_t$ with $r_t \in P_0$ if $\sum r_t f_t = 0$ in $P_0$
\end{enumerate}
are elements of $P_1$ of the desired form. Let
$$
Rel = \Ker(\bigoplus\nolimits_{t \in T} P_0 \longrightarrow P_0),\quad
(r_t) \longmapsto \sum r_tf_t
$$
We set $P_2 = A[u_i, y_t, z_t, v_r, w_{t, t'}]$ where
$r = (r_t) \in Rel$, with map
$$
P_2 \longrightarrow \text{cosk}_1(P_\bullet)_2
$$
given by $y_t \mapsto (x_t, x_t, f_t)$,
$z_t \mapsto (0, x_t, x_t)$,
$v_r \mapsto (0, 0, \sum r_t x_t)$, and
$w_{t, t'} \mapsto (0, 0, x_t x_{t'} - f_t x_{t'})$. A calculation
(omitted) shows that this map is surjective. Our choice of the
map displayed above determines the maps $d_0, d_1, d_2 : P_2 \to P_1$.
Finally, the procedure in the proof of
Proposition \ref{proposition-polynomial}
tells us to choose the maps $s_0, s_1 : P_1 \to P_2$ lifting the two
maps $P_1 \to \text{cosk}_1(P_\bullet)_2$. It is clear that we can take
$s_i$ to be the unique $A$-algebra maps determined by
$s_0(x_t) = y_t$ and $s_1(x_t) = z_t$.
\end{example}
\section{Functoriality}
\label{section-functoriality}
\noindent
In this section we consider a commutative square
\begin{equation}
\label{equation-commutative-square}
\vcenter{
\xymatrix{
B \ar[r] & B' \\
A \ar[u] \ar[r] & A' \ar[u]
}
}
\end{equation}
of ring maps. We claim there is a canonical $B$-linear map of complexes
$$
L_{B/A} \longrightarrow L_{B'/A'}
$$
associated to this diagram. Namely, if $P_\bullet \to B$ is the
standard resolution of $B$ over $A$ and $P'_\bullet \to B'$ is the
standard resolution of $B'$ over $A'$, then there is a canonical map
$P_\bullet \to P'_\bullet$
of simplicial $A$-algebras compatible with the augmentations
$P_\bullet \to B$ and $P'_\bullet \to B'$. This can be seen in terms
of the construction of standard resolutions in
Simplicial, Section \ref{simplicial-section-standard}
but in the special case at hand it probably suffices to say simply
that the maps
$$
P_0 = A[B] \longrightarrow A'[B'] = P'_0,\quad
P_1 = A[A[B]] \longrightarrow A'[A'[B']] = P'_1,
$$
and so on are given by the given maps $A \to A'$ and $B \to B'$.
The desired map $L_{B/A} \to L_{B'/A'}$ then comes from the associated
maps $\Omega_{P_n/A} \to \Omega_{P'_n/A'}$.
\medskip\noindent
Another description of the functoriality map can be given as follows.
Let $\mathcal{C} = \mathcal{C}_{B/A}$ and $\mathcal{C}' = \mathcal{C}_{B'/A}'$
be the categories considered in Section \ref{section-compute-L-pi-shriek}.
There is a functor
$$
u : \mathcal{C} \longrightarrow \mathcal{C}',\quad
(P, \alpha) \longmapsto (P \otimes_A A', c \circ (\alpha \otimes 1))
$$
where $c : B \otimes_A A' \to B'$ is the obvious map. As discussed in
Cohomology on Sites, Example
\ref{sites-cohomology-example-morphism-categories}
we obtain a morphism of topoi $g : \Sh(\mathcal{C}) \to \Sh(\mathcal{C}')$
and a commutative diagram of maps of ringed topoi
\begin{equation}
\label{equation-double-square}
\vcenter{
\xymatrix{
(\Sh(\mathcal{C}'), \underline{B}) \ar[d]_\pi &
(\Sh(\mathcal{C}'), \underline{B'}) \ar[d]_\pi \ar[l]^h &
(\Sh(\mathcal{C}), \underline{B'}) \ar[d]_{\pi'} \ar[l]^g \\
(\Sh(*), B) &
(\Sh(*), B') \ar[l]_f &
(\Sh(*), B') \ar[l]
}
}
\end{equation}
Here $h$ is the identity on underlying topoi and given by the ring map
$B \to B'$ on sheaves of rings.
By Cohomology on Sites, Remark
\ref{sites-cohomology-remark-morphism-fibred-categories}
given $\mathcal{F}$ on $\mathcal{C}$ and $\mathcal{F}'$ on $\mathcal{C}'$
and a transformation $t : \mathcal{F} \to g^{-1}\mathcal{F}'$
we obtain a canonical map $L\pi_!(\mathcal{F}) \to L\pi'_!(\mathcal{F}')$.
If we apply this to the sheaves
$$
\mathcal{F} : (P, \alpha) \mapsto \Omega_{P/A} \otimes_P B,\quad
\mathcal{F}' : (P', \alpha') \mapsto \Omega_{P'/A'} \otimes_{P'} B',
$$
and the transformation $t$ given by the canonical maps
$$
\Omega_{P/A} \otimes_P B \longrightarrow
\Omega_{P \otimes_A A'/A'} \otimes_{P \otimes_A A'} B'
$$
to get a canonical map
$$
L\pi_!(\Omega_{\mathcal{O}/A} \otimes_\mathcal{O} \underline{B})
\longrightarrow
L\pi'_!(\Omega_{\mathcal{O}'/A'} \otimes_{\mathcal{O}'} \underline{B'})
$$
By Lemma \ref{lemma-compute-cotangent-complex} this gives
$L_{B/A} \to L_{B'/A'}$. We omit the verification that this map
agrees with the map defined above in terms of simplicial
resolutions.
\begin{lemma}
\label{lemma-flat-base-change}
Assume (\ref{equation-commutative-square}) induces a quasi-isomorphism
$B \otimes_A^\mathbf{L} A' = B'$. Then, with notation as in
(\ref{equation-double-square}) and
$\mathcal{F}' \in \textit{Ab}(\mathcal{C}')$,
we have $L\pi_!(g^{-1}\mathcal{F}') = L\pi'_!(\mathcal{F}')$.
\end{lemma}
\begin{proof}
We use the results of Remark \ref{remark-resolution} without
further mention. We will apply Cohomology on Sites, Lemma
\ref{sites-cohomology-lemma-get-it-now}. Let $P_\bullet \to B$ be a resolution.
If we can show that $u(P_\bullet) = P_\bullet \otimes_A A' \to B'$
is a quasi-isomorphism, then we are done. The complex of $A$-modules
$s(P_\bullet)$ associated to $P_\bullet$ (viewed as a simplicial $A$-module)
is a free $A$-module resolution of $B$. Namely, $P_n$ is a free $A$-module and
$s(P_\bullet) \to B$ is a quasi-isomorphism. Thus $B \otimes_A^\mathbf{L} A'$
is computed by $s(P_\bullet) \otimes_A A' = s(P_\bullet \otimes_A A')$.
Therefore the assumption of the lemma signifies that
$\epsilon' : P_\bullet \otimes_A A' \to B'$ is a quasi-isomorphism.
\end{proof}
\noindent
The following lemma in particular applies when $A \to A'$ is flat
and $B' = B \otimes_A A'$ (flat base change).
\begin{lemma}
\label{lemma-flat-base-change-cotangent-complex}
If (\ref{equation-commutative-square}) induces a quasi-isomorphism
$B \otimes_A^\mathbf{L} A' = B'$, then the functoriality map
induces an isomorphism
$$
L_{B/A} \otimes_B^\mathbf{L} B' \longrightarrow L_{B'/A'}
$$
\end{lemma}
\begin{proof}
We will use the notation introduced in Equation (\ref{equation-double-square}).
We have
$$
L_{B/A} \otimes_B^\mathbf{L} B' =
L\pi_!(\Omega_{\mathcal{O}/A} \otimes_\mathcal{O} \underline{B})
\otimes_B^\mathbf{L} B' =
L\pi_!(Lh^*(\Omega_{\mathcal{O}/A} \otimes_\mathcal{O} \underline{B}))