forked from stacks/stacks-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathetale-cohomology.tex
23689 lines (21457 loc) · 861 KB
/
etale-cohomology.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{\'Etale Cohomology}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
This chapter is the first in a series of chapter on the \'etale cohomology
of schemes. In this chapter we discuss the very basics of the \'etale
topology and cohomology of abelian sheaves in this topology. Many of the
topics discussed may be safely skipped on a first reading; please see
the advice in the next section as to how to decide what to skip.
\medskip\noindent
The initial version of this chapter was formed by the notes
of the first part of a course on \'etale cohomology taught by Johan de Jong
at Columbia University in the Fall of 2009. The original note takers were
Thibaut Pugin, Zachary Maddock and Min Lee. The second part of the
course can be found in the chapter on the trace formula, see
The Trace Formula, Section \ref{trace-section-introduction}.
\section{Which sections to skip on a first reading?}
\label{section-skip}
\noindent
We want to use the material in this chapter for the development of
theory related to algebraic spaces, Deligne-Mumford stacks, algebraic stacks,
etc. Thus we have added some pretty technical material to the original
exposition of \'etale cohomology for schemes. The reader can recognize this
material by the frequency of the word ``topos'', or by discussions related
to set theory, or by proofs dealing with very general properties of morphisms
of schemes. Some of these discussions can be skipped on a first reading.
\medskip\noindent
In particular, we suggest that the reader skip the following sections:
\begin{enumerate}
\item Comparing big and small topoi,
Section \ref{section-compare}.
\item Recovering morphisms,
Section \ref{section-morphisms}.
\item Push and pull,
Section \ref{section-monomorphisms}.
\item Property (A),
Section \ref{section-A}.
\item Property (B),
Section \ref{section-B}.
\item Property (C),
Section \ref{section-C}.
\item Topological invariance of the small \'etale site,
Section \ref{section-topological-invariance}.
\item Integral universally injective morphisms,
Section \ref{section-integral-universally-injective}.
\item Big sites and pushforward,
Section \ref{section-big}.
\item Exactness of big lower shriek,
Section \ref{section-exactness-lower-shriek}.
\end{enumerate}
Besides these sections there are some sporadic results that may be skipped
that the reader can recognize by the keywords given above.
%9.08.09
\section{Prologue}
\label{section-prologue}
\noindent
These lectures are about another cohomology theory. The first thing to remark
is that the Zariski topology is not entirely satisfactory. One of the main
reasons that it fails to give the results that we would want is that if $X$ is
a complex variety and $\mathcal{F}$ is a constant sheaf then
$$
H^i(X, \mathcal{F}) = 0, \quad \text{ for all } i > 0.
$$
The reason for that is the following. In an irreducible scheme (a variety in
particular), any two nonempty open subsets meet, and so the restriction
mappings of a constant sheaf are surjective. We say that the sheaf is
{\it flasque}. In this case, all higher {\v C}ech cohomology groups vanish, and
so do all higher Zariski cohomology groups. In other words, there are ``not
enough'' open sets in the Zariski topology to detect this higher cohomology.
\medskip\noindent
On the other hand, if $X$ is a smooth projective complex variety, then
$$
H_{Betti}^{2 \dim X}(X (\mathbf{C}), \Lambda) = \Lambda \quad \text{ for }
\Lambda = \mathbf{Z}, \ \mathbf{Z}/n\mathbf{Z},
$$
where $X(\mathbf{C})$ means the set of complex points of $X$. This is a feature
that would be nice to replicate in algebraic geometry. In positive
characteristic in particular.
\section{The \'etale topology}
\label{section-etale-topology}
\noindent
It is very hard to simply ``add'' extra open sets to refine the Zariski
topology. One efficient way to define a topology is to consider not only open
sets, but also some schemes that lie over them. To define the \'etale topology,
one considers all morphisms $\varphi : U \to X$ which are \'etale. If
$X$ is a smooth projective variety over $\mathbf{C}$, then this means
\begin{enumerate}
\item $U$ is a disjoint union of smooth varieties, and
\item $\varphi$ is (analytically) locally an isomorphism.
\end{enumerate}
The word ``analytically'' refers to the usual (transcendental) topology over
$\mathbf{C}$. So the second condition means that the derivative of $\varphi$
has full rank everywhere (and in particular all the components of $U$
have the same dimension as $X$).
\medskip\noindent
A double cover -- loosely defined as a finite degree $2$ map between varieties
-- for example
$$
\Spec(\mathbf{C}[t])
\longrightarrow
\Spec(\mathbf{C}[t]),
\quad t \longmapsto t^2
$$
will not be an \'etale morphism if it has a fibre consisting of a single point.
In the example this happens when $t = 0$. For a finite map between varieties
over $\mathbf{C}$ to be \'etale all the fibers should have the same number of
points. Removing the point $t = 0$ from the source of the map in the example
will make the morphism \'etale. But we can remove other points from the source
of the morphism also, and the morphism will still be \'etale. To consider the
\'etale topology, we have to look at all such morphisms. Unlike the Zariski
topology, these need not be merely open subsets of $X$, even though their
images always are.
\begin{definition}
\label{definition-etale-covering-initial}
A family of morphisms $\{ \varphi_i : U_i \to X\}_{i \in I}$ is
called an {\it \'etale covering} if each $\varphi_i$ is an \'etale morphism
and their images cover $X$, i.e.,
$X = \bigcup_{i \in I} \varphi_i(U_i)$.
\end{definition}
\noindent
This ``defines'' the \'etale topology. In other words, we can now say what the
sheaves are. An {\it \'etale sheaf} $\mathcal{F}$ of sets
(resp.\ abelian groups, vector spaces, etc) on $X$ is the data:
\begin{enumerate}
\item for each \'etale morphism $\varphi : U \to X$ a set
(resp.\ abelian group, vector space, etc) $\mathcal{F}(U)$,
\item for each pair $U, \ U'$ of \'etale schemes over $X$,
and each morphism $U \to U'$ over $X$ (which is
automatically \'etale) a restriction map
$\rho^{U'}_U : \mathcal{F}(U') \to \mathcal{F}(U)$
\end{enumerate}
These data have to satisfy the condition that $\rho^U_U = \text{id}$
in case of the identity morphism $U \to U$
and that $\rho^{U'}_U \circ \rho^{U''}_{U'} = \rho^{U''}_U$
when we have morphisms $U \to U' \to U''$ of schemes \'etale over $X$
as well as the following {\it sheaf axiom}:
\begin{itemize}
\item[(*)] for every \'etale covering $\{ \varphi_i : U_i \to U\}_{i \in
I}$, the diagram
$$
\xymatrix{
\emptyset \ar[r] &
\mathcal{F} (U) \ar[r] &
\Pi_{i \in I} \mathcal{F} (U_i) \ar@<1ex>[r] \ar@<-1ex>[r] &
\Pi_{i, j \in I} \mathcal{F} (U_i \times_U U_j)
}
$$
is exact in the category of sets (resp.\ abelian groups, vector spaces, etc).
\end{itemize}
\begin{remark}
\label{remark-i-is-j}
In the last statement, it is essential not to forget the case where $i = j$
which is in general a highly nontrivial condition (unlike in the Zariski
topology). In fact, frequently important coverings have only one element.
\end{remark}
\noindent
Since the identity is an \'etale morphism, we can compute the global sections
of an \'etale sheaf, and cohomology will simply be the corresponding
right-derived functors. In other words, once more theory has been developed and
statements have been made precise, there will be no obstacle to defining
cohomology.
\section{Feats of the \'etale topology}
\label{section-feats}
\noindent
For a natural number $n \in \mathbf{N} = \{1, 2, 3, 4, \ldots\}$ it is true that
$$
H_\etale^2 (\mathbf{P}^1_\mathbf{C}, \mathbf{Z}/n\mathbf{Z}) =
\mathbf{Z}/n\mathbf{Z}.
$$
More generally, if $X$ is a complex variety, then its \'etale Betti numbers
with coefficients in a finite field agree with the usual Betti numbers of
$X(\mathbf{C})$, i.e.,
$$
\dim_{\mathbf{F}_q} H_\etale^{2i} (X, \mathbf{F}_q) =
\dim_{\mathbf{F}_q} H_{Betti}^{2i} (X(\mathbf{C}), \mathbf{F}_q).
$$
This is extremely satisfactory. However, these equalities only hold for torsion
coefficients, not in general. For integer coefficients, one has
$$
H_\etale^2 (\mathbf{P}^1_\mathbf{C}, \mathbf{Z}) = 0.
$$
By contrast $H_{Betti}^2(\mathbf{P}^1(\mathbf{C}), \mathbf{Z}) = \mathbf{Z}$
as the topological space $\mathbf{P}^1(\mathbf{C})$ is homeomorphic to
a $2$-sphere.
There are ways to get back to nontorsion coefficients from torsion ones by a
limit procedure which we will come to shortly.
\section{A computation}
\label{section-computation}
\noindent
How do we compute the cohomology of $\mathbf{P}^1_\mathbf{C}$ with coefficients
$\Lambda = \mathbf{Z}/n\mathbf{Z}$?
We use {\v C}ech cohomology. A covering of $\mathbf{P}^1_\mathbf{C}$ is given
by the two standard opens $U_0, U_1$, which are both
isomorphic to $\mathbf{A}^1_\mathbf{C}$, and whose intersection is isomorphic
to $\mathbf{A}^1_\mathbf{C} \setminus \{0\} = \mathbf{G}_{m, \mathbf{C}}$.
It turns out that the Mayer-Vietoris sequence holds in \'etale cohomology.
This gives an exact sequence
$$
H_\etale^{i-1}(U_0\cap U_1, \Lambda) \to
H_\etale^i(\mathbf{P}^1_C, \Lambda) \to
H_\etale^i(U_0, \Lambda) \oplus
H_\etale^i(U_1, \Lambda) \to H_\etale^i(U_0\cap U_1,
\Lambda).
$$
To get the answer we expect, we would need to show that the direct sum in the
third term vanishes. In fact, it is true that, as for the usual topology,
$$
H_\etale^q (\mathbf{A}^1_\mathbf{C}, \Lambda) = 0
\quad \text{ for } q \geq 1,
$$
and
$$
H_\etale^q (\mathbf{A}^1_\mathbf{C} \setminus \{0\}, \Lambda) = \left\{
\begin{matrix}
\Lambda & \text{ if }q = 1\text{, and} \\
0 & \text{ for }q \geq 2.
\end{matrix}
\right.
$$
These results are already quite hard (what is an elementary proof?). Let us
explain how we would compute this once the machinery of \'etale cohomology is
at our disposal.
\medskip\noindent
{\bf Higher cohomology.} This is taken care of by the following general
fact: if $X$ is an affine curve over $\mathbf{C}$, then
$$
H_\etale^q (X, \mathbf{Z}/n\mathbf{Z}) = 0 \quad \text{ for } q \geq 2.
$$
This is proved by considering the generic point of the curve and doing some
Galois cohomology. So we only have to worry about the cohomology in degree 1.
\medskip\noindent
{\bf Cohomology in degree 1.} We use the following identifications:
\begin{eqnarray*}
H_\etale^1 (X, \mathbf{Z}/n\mathbf{Z}) = \left\{
\begin{matrix}
\text{sheaves of sets }\mathcal{F}\text{ on the \'etale site }X_\etale
\text{ endowed with an} \\
\text{action }\mathbf{Z}/n\mathbf{Z} \times \mathcal{F} \to \mathcal{F}
\text{ such that }\mathcal{F}\text{ is a }\mathbf{Z}/n\mathbf{Z}\text{-torsor.}
\end{matrix}
\right\}
\Big/ \cong
\\
= \left\{
\begin{matrix}
\text{morphisms }Y \to X\text{ which are finite \'etale together} \\
\text{ with a free }\mathbf{Z}/n\mathbf{Z}\text{ action such that }
X = Y/(\mathbf{Z}/n\mathbf{Z}).
\end{matrix}
\right\}
\Big/ \cong.
\end{eqnarray*}
The first identification is very general (it is true for any cohomology theory
on a site) and has nothing to do with the \'etale topology. The second
identification is a consequence of descent theory. The last set describes a
collection of geometric objects on which we can get our hands.
\medskip\noindent
The curve $\mathbf{A}^1_\mathbf{C}$ has no nontrivial finite \'etale covering
and hence
$H_\etale^1 (\mathbf{A}^1_\mathbf{C}, \mathbf{Z}/n\mathbf{Z}) = 0$.
This can be seen either topologically or by using the argument in the next
paragraph.
\medskip\noindent
Let us describe the finite \'etale coverings
$\varphi : Y \to \mathbf{A}^1_\mathbf{C} \setminus \{0\}$.
It suffices to consider the case where $Y$ is
connected, which we assume. We are going to find out what $Y$ can be
by applying the Riemann-Hurwitz formula (of course this is a bit silly, and
you can go ahead and skip the next section if you like).
Say that this morphism is $n$ to 1, and consider a
projective compactification
$$
\xymatrix{
{Y\ } \ar@{^{(}->}[r] \ar[d]^\varphi &
{\bar Y} \ar[d]^{\bar\varphi} \\
{\mathbf{A}^1_\mathbf{C} \setminus \{0\}} \ar@{^{(}->}[r] &
{\mathbf{P}^1_\mathbf{C}}
}
$$
Even though $\varphi$ is \'etale and does not ramify, $\bar{\varphi}$ may
ramify at 0 and $\infty$. Say that the preimages of 0 are the points $y_1,
\ldots, y_r$ with indices of ramification $e_1, \ldots e_r$, and that the
preimages of $\infty$ are the points $y_1', \ldots, y_s'$ with indices of
ramification $d_1, \ldots d_s$. In particular, $\sum e_i = n = \sum d_j$.
Applying the Riemann-Hurwitz formula, we get
$$
2 g_Y - 2 = -2n + \sum (e_i - 1) + \sum (d_j - 1)
$$
and therefore $g_Y = 0$, $r = s = 1$ and $e_1 = d_1 = n$.
Hence $Y \cong {\mathbf{A}^1_\mathbf{C} \setminus \{0\}}$, and it is easy to
see that $\varphi(z) = \lambda z^n$ for some $\lambda \in \mathbf{C}^*$.
After reparametrizing $Y$ we may assume $\lambda = 1$. Thus our
covering is given by taking the $n$th root of the coordinate on
$\mathbf{A}^1_{\mathbf{C}} \setminus \{0\}$.
\medskip\noindent
Remember that we need to classify the coverings of
${\mathbf{A}^1_\mathbf{C} \setminus \{0\}}$ together with free
$\mathbf{Z}/n\mathbf{Z}$-actions on them.
In our case any such action corresponds
to an automorphism of $Y$ sending $z$ to $\zeta_n z$, where $\zeta_n$ is a
primitive $n$th root of unity. There are $\phi(n)$ such actions
(here $\phi(n)$ means the Euler function). Thus there are exactly
$\phi(n)$ connected finite \'etale coverings with a given free
$\mathbf{Z}/n\mathbf{Z}$-action, each corresponding to a primitive
$n$th root of unity. We leave it to the reader to see that the
disconnected finite \'etale degree $n$ coverings of
$\mathbf{A}^1_{\mathbf{C}} \setminus \{0\}$ with a given free
$\mathbf{Z}/n\mathbf{Z}$-action correspond one-to-one with $n$th
roots of $1$ which are not primitive.
In other words, this computation shows that
$$
H_\etale^1 (\mathbf{A}^1_\mathbf{C} \setminus \{0\},
\mathbf{Z}/n\mathbf{Z}) =
\Hom(\mu_n(\mathbf{C}), \mathbf{Z}/n\mathbf{Z}) \cong \mathbf{Z}/n\mathbf{Z}.
$$
The first identification is canonical, the second isn't, see
Remark \ref{remark-normalize-H1-Gm}.
Since the proof of Riemann-Hurwitz does not use the computation of
cohomology, the above actually constitutes a proof (provided we
fill in the details on vanishing, etc).
\section{Nontorsion coefficients}
\label{section-nontorsion}
\noindent
To study nontorsion coefficients, one makes the following definition:
$$
H_\etale^i (X, \mathbf{Q}_\ell) :=
\left( \lim_n H_\etale^i(X, \mathbf{Z}/\ell^n\mathbf{Z}) \right)
\otimes_{\mathbf{Z}_\ell} \mathbf{Q}_\ell.
$$
The symbol $\lim_n$ denote the {\it limit} of the system of
cohomology groups $H_\etale^i(X, \mathbf{Z}/\ell^n\mathbf{Z})$ indexed
by $n$, see
Categories, Section \ref{categories-section-posets-limits}.
Thus we will need to study systems of sheaves satisfying some compatibility
conditions.
\section{Sheaf theory}
\label{section-sheaf-theory}
%9.10.09
\noindent
At this point we start talking about sites and sheaves in earnest.
There is an amazing amount of useful abstract material that could fit
in the next few sections. Some of this material is worked out in earlier
chapters, such as the chapter on sites, modules on sites, and cohomology
on sites. We try to refrain from adding too much material here, just
enough so the material later in this chapter makes sense.
\section{Presheaves}
\label{section-presheaves}
\noindent
A reference for this section is
Sites, Section \ref{sites-section-presheaves}.
\begin{definition}
\label{definition-presheaf}
Let $\mathcal{C}$ be a category. A {\it presheaf of sets} (respectively, an
{\it abelian presheaf}) on $\mathcal{C}$ is a functor $\mathcal{C}^{opp} \to
\textit{Sets}$ (resp.\ $\textit{Ab}$).
\end{definition}
\noindent
{\bf Terminology.} If $U \in \Ob(\mathcal{C})$, then elements of
$\mathcal{F}(U)$ are called {\it sections} of $\mathcal{F}$ over
$U$. For $\varphi : V \to U$ in $\mathcal{C}$, the
map $\mathcal{F}(\varphi) : \mathcal{F}(U) \to \mathcal{F}(V)$
is called the {\it restriction map} and is often denoted $s \mapsto s|_V$
or sometimes $s \mapsto \varphi^*s$. The notation $s|_V$ is ambiguous
since the restriction map depends on $\varphi$, but it is a standard
abuse of notation. We also use the notation
$\Gamma(U, \mathcal{F}) = \mathcal{F}(U)$.
\medskip\noindent
Saying that $\mathcal{F}$ is a functor means that if
$W \to V \to U$ are morphisms in $\mathcal{C}$ and
$s \in \Gamma(U, \mathcal{F})$ then
$(s|_V)|_W = s |_W$, with the abuse of
notation just seen. Moreover, the restriction mappings corresponding to
the identity morphisms $\text{id}_U : U \to U$ are the identity.
\medskip\noindent
The category of presheaves of sets (respectively of abelian presheaves) on
$\mathcal{C}$ is denoted $\textit{PSh} (\mathcal{C})$ (resp. $\textit{PAb}
(\mathcal{C})$). It is the category of functors from $\mathcal{C}^{opp}$ to
$\textit{Sets}$ (resp. $\textit{Ab}$), which is to say that the morphisms of
presheaves are natural transformations of functors. We only consider the
categories $\textit{PSh}(\mathcal{C})$ and $\textit{PAb}(\mathcal{C})$
when the category $\mathcal{C}$ is small. (Our convention is that a category
is small unless otherwise mentioned, and if it isn't small it should be
listed in Categories, Remark \ref{categories-remark-big-categories}.)
\begin{example}
\label{example-representable-presheaf}
Given an object $X \in \Ob(\mathcal{C})$, we consider the functor
$$
\begin{matrix}
h_X : & \mathcal{C}^{opp} & \longrightarrow & \textit{Sets} \\
& U & \longmapsto & h_X(U) = \Mor_\mathcal{C}(U, X) \\
& V \xrightarrow{\varphi} U & \longmapsto &
\varphi \circ - : h_X(U) \to h_X(V).
\end{matrix}
$$
It is a presheaf, called the {\it representable presheaf associated to $X$.}
It is not true that representable presheaves are sheaves in every topology on
every site.
\end{example}
\begin{lemma}[Yoneda]
\label{lemma-yoneda}
\begin{slogan}
Morphisms between objects are in bijection with natural transformations
between the functors they represent.
\end{slogan}
Let $\mathcal{C}$ be a category, and $X, Y \in
\Ob(\mathcal{C})$. There is a natural bijection
$$
\begin{matrix}
\Mor_\mathcal{C}(X, Y) &
\longrightarrow &
\Mor_{\textit{PSh}(\mathcal{C})} (h_X, h_Y) \\
\psi &
\longmapsto &
h_\psi = \psi \circ - : h_X \to h_Y.
\end{matrix}
$$
\end{lemma}
\begin{proof}
See
Categories, Lemma \ref{categories-lemma-yoneda}.
\end{proof}
\section{Sites}
\label{section-sites}
\begin{definition}
\label{definition-family-morphisms-fixed-target}
Let $\mathcal{C}$ be a category. A {\it family of morphisms with fixed target}
$\mathcal{U} = \{\varphi_i : U_i \to U\}_{i\in I}$ is the data of
\begin{enumerate}
\item an object $U \in \mathcal{C}$,
\item a set $I$ (possibly empty), and
\item for all $i\in I$, a morphism $\varphi_i : U_i \to U$ of $\mathcal{C}$
with target $U$.
\end{enumerate}
\end{definition}
\noindent
There is a notion of a {\it morphism of families of morphisms with fixed
target}. A special case of that is the notion of a {\it refinement}.
A reference for this material is
Sites, Section \ref{sites-section-refinements}.
\begin{definition}
\label{definition-site}
A {\it site}\footnote{What we call a site is a called a category endowed with
a pretopology in \cite[Expos\'e II, D\'efinition 1.3]{SGA4}.
In \cite{ArtinTopologies} it is called a category with a Grothendieck
topology.} consists of a category $\mathcal{C}$ and a set
$\text{Cov}(\mathcal{C})$ consisting of families of morphisms with fixed target
called {\it coverings}, such that
\begin{enumerate}
\item (isomorphism) if $\varphi : V \to U$ is an isomorphism in $\mathcal{C}$,
then $\{\varphi : V \to U\}$ is a covering,
\item (locality) if $\{\varphi_i : U_i \to U\}_{i\in I}$ is a covering and
for all $i \in I$ we are given a covering
$\{\psi_{ij} : U_{ij} \to U_i \}_{j\in I_i}$, then
$$
\{
\varphi_i \circ \psi_{ij} : U_{ij} \to U
\}_{(i, j)\in \prod_{i\in I} \{i\} \times I_i}
$$
is also a covering, and
\item (base change) if $\{U_i \to U\}_{i\in I}$
is a covering and $V \to U$ is a morphism in $\mathcal{C}$, then
\begin{enumerate}
\item for all $i \in I$ the fibre product
$U_i \times_U V$ exists in $\mathcal{C}$, and
\item $\{U_i \times_U V \to V\}_{i\in I}$ is a covering.
\end{enumerate}
\end{enumerate}
\end{definition}
\noindent
For us the category underlying a site is always ``small'', i.e., its
collection of objects form a set, and the collection of coverings of
a site is a set as well (as in the definition above). We will mostly,
in this chapter, leave out the arguments that cut down the collection
of objects and coverings to a set. For further discussion, see
Sites, Remark \ref{sites-remark-no-big-sites}.
\begin{example}
\label{example-site-topological-space}
If $X$ is a topological space, then it has an associated site $X_{Zar}$
defined as follows: the objects of $X_{Zar}$ are the open subsets of $X$,
the morphisms between these are the inclusion mappings, and the coverings are
the usual topological (surjective) coverings. Observe that if
$U, V \subset W \subset X$ are open subsets then $U \times_W V = U \cap V$
exists: this category has fiber products. All the verifications are trivial and
everything works as expected.
\end{example}
\section{Sheaves}
\label{section-sheaves}
\begin{definition}
\label{definition-sheaf}
A presheaf $\mathcal{F}$ of sets (resp. abelian presheaf) on a site
$\mathcal{C}$ is said to be a {\it separated presheaf} if for all coverings
$\{\varphi_i : U_i \to U\}_{i\in I} \in \text{Cov} (\mathcal{C})$
the map
$$
\mathcal{F}(U) \longrightarrow \prod\nolimits_{i\in I} \mathcal{F}(U_i)
$$
is injective. Here the map is $s \mapsto (s|_{U_i})_{i\in I}$.
The presheaf $\mathcal{F}$ is a {\it sheaf} if for all coverings
$\{\varphi_i : U_i \to U\}_{i\in I} \in \text{Cov} (\mathcal{C})$, the
diagram
\begin{equation}
\label{equation-sheaf-axiom}
\xymatrix{
\mathcal{F}(U) \ar[r] &
\prod_{i\in I} \mathcal{F}(U_i) \ar@<1ex>[r] \ar@<-1ex>[r] &
\prod_{i, j \in I} \mathcal{F}(U_i \times_U U_j),
}
\end{equation}
where the first map is $s \mapsto (s|_{U_i})_{i\in I}$ and the two
maps on the right are
$(s_i)_{i\in I} \mapsto (s_i |_{U_i \times_U U_j})$ and
$(s_i)_{i\in I} \mapsto (s_j |_{U_i \times_U U_j})$,
is an equalizer diagram in the category of sets (resp.\ abelian groups).
\end{definition}
\begin{remark}
\label{remark-empty-covering}
For the empty covering (where $I = \emptyset$), this implies that
$\mathcal{F}(\emptyset)$ is an empty product, which is a final object in the
corresponding category (a singleton, for both $\textit{Sets}$ and
$\textit{Ab}$).
\end{remark}
\begin{example}
\label{example-sheaf-site-space}
Working this out for the site $X_{Zar}$ associated to a topological
space, see Example \ref{example-site-topological-space}, gives the usual
notion of sheaves.
\end{example}
\begin{definition}
\label{definition-category-sheaves}
We denote $\Sh(\mathcal{C})$ (resp.\ $\textit{Ab}(\mathcal{C})$)
the full subcategory of $\textit{PSh}(\mathcal{C})$
(resp.\ $\textit{PAb}(\mathcal{C})$) whose objects are sheaves. This is the
{\it category of sheaves of sets} (resp.\ {\it abelian sheaves}) on
$\mathcal{C}$.
\end{definition}
\section{The example of G-sets}
\label{section-G-sets}
\noindent
Let $G$ be a group and define a site $\mathcal{T}_G$ as follows: the underlying
category is the category of $G$-sets, i.e., its objects are sets endowed
with a left $G$-action and the morphisms are equivariant maps; and the
coverings of $\mathcal{T}_G$ are the families
$\{\varphi_i : U_i \to U\}_{i\in I}$ satisfying
$U = \bigcup_{i\in I} \varphi_i(U_i)$.
\medskip\noindent
There is a special object in the site $\mathcal{T}_G$, namely the $G$-set $G$
endowed with its natural action by left translations. We denote it ${}_G G$.
Observe that there is a natural group isomorphism
$$
\begin{matrix}
\rho : & G^{opp} & \longrightarrow & \text{Aut}_{G\textit{-Sets}}({}_G G) \\
& g & \longmapsto & (h \mapsto hg).
\end{matrix}
$$
In particular, for any presheaf $\mathcal{F}$, the set $\mathcal{F}({}_G G)$
inherits a $G$-action via $\rho$. (Note that by contravariance of
$\mathcal{F}$, the set $\mathcal{F}({}_G G)$ is again a left $G$-set.) In fact,
the functor
$$
\begin{matrix}
\Sh(\mathcal{T}_G) & \longrightarrow & G\textit{-Sets} \\
\mathcal{F} & \longmapsto & \mathcal{F}({}_G G)
\end{matrix}
$$
is an equivalence of categories. Its quasi-inverse is the functor $X \mapsto
h_X$. Without giving the complete proof (which can be found in
Sites, Section \ref{sites-section-example-sheaf-G-sets})
let us try to explain why this is true.
\begin{enumerate}
\item
If $S$ is a $G$-set, we can decompose it into orbits $S = \coprod_{i\in I}
O_i$. The sheaf axiom for the covering $\{O_i \to S\}_{i\in I}$ says that
$$
\xymatrix{
\mathcal{F}(S) \ar[r] &
\prod_{i\in I} \mathcal{F}(O_i) \ar@<1ex>[r] \ar@<-1ex>[r] &
\prod_{i, j \in I} \mathcal{F}(O_i \times_S O_j)
}
$$
is an equalizer. Observing that fibered products in $G\textit{-Sets}$ are
induced from fibered products in $\textit{Sets}$, and using the fact that
$\mathcal{F}(\emptyset)$ is a $G$-singleton, we get that
$$
\prod_{i, j \in I} \mathcal{F}(O_i \times_S O_j) = \prod_{i \in I}
\mathcal{F}(O_i)
$$
and the two maps above are in fact the same. Therefore the sheaf axiom merely
says that $\mathcal{F}(S) = \prod_{i\in I} \mathcal{F}(O_i)$.
\item
If $S$ is the $G$-set $S= G/H$ and $\mathcal{F}$ is a sheaf on $\mathcal{T}_G$,
then we claim that
$$
\mathcal{F}(G/H) = \mathcal{F}({}_G G)^H
$$
and in particular $\mathcal{F}(\{*\}) = \mathcal{F}({}_G G)^G$. To see this,
let's use the sheaf axiom for the covering $\{ {}_G G \to G/H \}$ of $S$. We
have
\begin{eqnarray*}
{}_G G \times_{G/H} {}_G G & \cong & G \times H \\
(g_1, g_2) & \longmapsto & (g_1, g_1^{-1} g_2)
\end{eqnarray*}
is a disjoint union of copies of ${}_G G$ (as a $G$-set). Hence the sheaf axiom
reads
$$
\xymatrix{
\mathcal{F} (G/H) \ar[r] &
\mathcal{F}({}_G G) \ar@<1ex>[r] \ar@<-1ex>[r] &
\prod_{h\in H} \mathcal{F}({}_G G)
}
$$
where the two maps on the right are $s \mapsto (s)_{h \in H}$ and $s \mapsto
(hs)_{h \in H}$. Therefore $\mathcal{F}(G/H) = \mathcal{F}({}_G G)^H$ as
claimed.
\end{enumerate}
This doesn't quite prove the claimed equivalence of categories, but it shows at
least that a sheaf $\mathcal{F}$ is entirely determined by its sections over
${}_G G$. Details (and set theoretical remarks) can be found in
Sites, Section \ref{sites-section-example-sheaf-G-sets}.
\section{Sheafification}
\label{section-sheafification}
\begin{definition}
\label{definition-0-cech}
Let $\mathcal{F}$ be a presheaf on the site $\mathcal{C}$ and
$\mathcal{U} = \{U_i \to U\} \in \text{Cov} (\mathcal{C})$.
We define the {\it zeroth {\v C}ech cohomology group} of
$\mathcal{F}$ with respect to $\mathcal{U}$ by
$$
\check H^0 (\mathcal{U}, \mathcal{F}) =
\left\{
(s_i)_{i\in I} \in \prod\nolimits_{i\in I }\mathcal{F}(U_i)
\text{ such that }
s_i|_{U_i \times_U U_j} = s_j |_{U_i \times_U U_j}
\right\}.
$$
\end{definition}
\noindent
There is a canonical map
$\mathcal{F}(U) \to \check H^0 (\mathcal{U}, \mathcal{F})$,
$s \mapsto (s |_{U_i})_{i\in I}$.
We say that a {\it morphism of coverings} from a covering
$\mathcal{V} = \{V_j \to V\}_{j \in J}$ to $\mathcal{U}$ is a triple
$(\chi, \alpha, \chi_j)$, where
$\chi : V \to U$ is a morphism,
$\alpha : J \to I$ is a map of sets, and for all
$j \in J$ the morphism $\chi_j$ fits into a commutative diagram
$$
\xymatrix{
V_j \ar[rr]_{\chi_j} \ar[d] & & U_{\alpha(j)} \ar[d] \\
V \ar[rr]^\chi & & U.
}
$$
Given the data $\chi, \alpha, \{\chi_j\}_{j \in J}$ we define
\begin{eqnarray*}
\check H^0(\mathcal{U}, \mathcal{F}) & \longrightarrow &
\check H^0(\mathcal{V}, \mathcal{F}) \\
(s_i)_{i\in I} & \longmapsto &
\left(\chi_j^*\left(s_{\alpha(j)}\right)\right)_{j\in J}.
\end{eqnarray*}
We then claim that
\begin{enumerate}
\item the map is well-defined, and
\item depends only on $\chi$ and is independent of the choice of
$\alpha, \{\chi_j\}_{j \in J}$.
\end{enumerate}
We omit the proof of the first fact.
To see part (2), consider another triple $(\psi, \beta, \psi_j)$ with
$\chi = \psi$. Then we have the commutative diagram
$$
\xymatrix{
V_j \ar[rrr]_{(\chi_j, \psi_j)} \ar[dd] & & &
U_{\alpha(j)} \times_U U_{\beta(j)} \ar[dl] \ar[dr] \\
& & U_{\alpha(j)} \ar[dr] & &
U_{\beta(j)} \ar[dl] \\
V \ar[rrr]^{\chi = \psi} & & & U.
}
$$
Given a section $s \in \mathcal{F}(\mathcal{U})$, its image in
$\mathcal{F}(V_j)$ under the map given by
$(\chi, \alpha, \{\chi_j\}_{j \in J})$
is $\chi_j^*s_{\alpha(j)}$, and
its image under the map given by $(\psi, \beta, \{\psi_j\}_{j \in J})$
is $\psi_j^*s_{\beta(j)}$. These
two are equal since by assumption $s \in \check H^0(\mathcal{U}, \mathcal{F})$
and hence both are equal to the pullback of the common value
$$
s_{\alpha(j)}|_{U_{\alpha(j)} \times_U U_{\beta(j)}} =
s_{\beta(j)}|_{U_{\alpha(j)} \times_U U_{\beta(j)}}
$$
pulled back by the map $(\chi_j, \psi_j)$ in the diagram.
\begin{theorem}
\label{theorem-sheafification}
Let $\mathcal{C}$ be a site and $\mathcal{F}$ a presheaf on $\mathcal{C}$.
\begin{enumerate}
\item The rule
$$
U \mapsto \mathcal{F}^+(U) :=
\colim_{\mathcal{U} \text{ covering of }U}
\check H^0(\mathcal{U}, \mathcal{F})
$$
is a presheaf. And the colimit is a directed one.
\item There is a canonical map of presheaves $\mathcal{F} \to \mathcal{F}^+$.
\item If $\mathcal{F}$ is a separated presheaf then $\mathcal{F}^+$ is a sheaf
and the map in (2) is injective.
\item $\mathcal{F}^+$ is a separated presheaf.
\item $\mathcal{F}^\# = (\mathcal{F}^+)^+$ is a sheaf, and the canonical
map induces a functorial isomorphism
$$
\Hom_{\textit{PSh}(\mathcal{C})}(\mathcal{F}, \mathcal{G}) =
\Hom_{\Sh(\mathcal{C})}(\mathcal{F}^\#, \mathcal{G})
$$
for any $\mathcal{G} \in \Sh(\mathcal{C})$.
\end{enumerate}
\end{theorem}
\begin{proof}
See Sites, Theorem \ref{sites-theorem-plus}.
\end{proof}
\noindent
In other words, this means that the natural map
$\mathcal{F} \to \mathcal{F}^\#$ is a left adjoint to the forgetful functor
$\Sh(\mathcal{C}) \to \textit{PSh}(\mathcal{C})$.
\section{Cohomology}
\label{section-cohomology}
\noindent
The following is the basic result that makes it possible to define cohomology
for abelian sheaves on sites.
\begin{theorem}
\label{theorem-enough-injectives}
The category of abelian sheaves on a site is an abelian category
which has enough injectives.
\end{theorem}
\begin{proof}
See
Modules on Sites, Lemma \ref{sites-modules-lemma-abelian-abelian} and
Injectives, Theorem \ref{injectives-theorem-sheaves-injectives}.
\end{proof}
\noindent
So we can define cohomology as the right-derived functors of the
sections functor: if $U \in \Ob(\mathcal{C})$ and
$\mathcal{F} \in \textit{Ab}(\mathcal{C})$,
$$
H^p(U, \mathcal{F}) :=
R^p\Gamma(U, \mathcal{F}) =
H^p(\Gamma(U, \mathcal{I}^\bullet))
$$
where $\mathcal{F} \to \mathcal{I}^\bullet$ is an injective resolution. To do
this, we should check that the functor $\Gamma(U, -)$ is left exact. This is
true and is part of why the category $\textit{Ab}(\mathcal{C})$ is abelian,
see
Modules on Sites, Lemma \ref{sites-modules-lemma-abelian-abelian}.
For more general discussion of cohomology on sites (including the
global sections functor and its right derived functors), see
Cohomology on Sites, Section \ref{sites-cohomology-section-cohomology-sheaves}.
\section{The fpqc topology}
\label{section-fpqc}
%9.15.09
\noindent
Before doing \'etale cohomology we study a bit the fpqc topology, since
it works well for quasi-coherent sheaves.
\begin{definition}
\label{definition-fpqc-covering}
Let $T$ be a scheme. An {\it fpqc covering} of $T$ is a family
$\{ \varphi_i : T_i \to T\}_{i \in I}$ such that
\begin{enumerate}
\item each $\varphi_i$ is a flat morphism and
$\bigcup_{i\in I} \varphi_i(T_i) = T$, and
\item for each affine open $U \subset T$ there exists a finite
set $K$, a map $\mathbf{i} : K \to I$ and affine opens
$U_{\mathbf{i}(k)} \subset T_{\mathbf{i}(k)}$ such that
$U = \bigcup_{k \in K} \varphi_{\mathbf{i}(k)}(U_{\mathbf{i}(k)})$.
\end{enumerate}
\end{definition}
\begin{remark}
\label{remark-fpqc}
The first condition corresponds to fp, which stands for
{\it fid\`element plat}, faithfully flat in french, and
the second to qc, {\it quasi-compact}. The second part of
the first condition is unnecessary when the second condition holds.
\end{remark}
\begin{example}
\label{example-fpqc-coverings}
Examples of fpqc coverings.
\begin{enumerate}
\item Any Zariski open covering of $T$ is an fpqc covering.
\item A family $\{\Spec(B) \to \Spec(A)\}$ is an fpqc
covering if and only if $A \to B$ is a faithfully flat ring map.
\item If $f: X \to Y$ is flat, surjective and quasi-compact, then $\{ f: X\to
Y\}$ is an fpqc covering.
\item The morphism
$\varphi :
\coprod_{x \in \mathbf{A}^1_k} \Spec(\mathcal{O}_{\mathbf{A}^1_k, x})
\to \mathbf{A}^1_k$,
where $k$ is a field, is flat and surjective. It is not quasi-compact, and
in fact the family $\{\varphi\}$ is not an fpqc covering.
\item Write
$\mathbf{A}^2_k = \Spec(k[x, y])$. Denote $i_x : D(x) \to \mathbf{A}^2_k$
and $i_y : D(y) \to \mathbf{A}^2_k$ the standard opens.
Then the families
$\{i_x, i_y, \Spec(k[[x, y]]) \to \mathbf{A}^2_k\}$
and
$\{i_x, i_y, \Spec(\mathcal{O}_{\mathbf{A}^2_k, 0}) \to \mathbf{A}^2_k\}$
are fpqc coverings.
\end{enumerate}
\end{example}
\begin{lemma}
\label{lemma-site-fpqc}
The collection of fpqc coverings on the category of schemes
satisfies the axioms of site.
\end{lemma}
\begin{proof}
See Topologies, Lemma \ref{topologies-lemma-fpqc}.
\end{proof}
\noindent
It seems that this lemma allows us to define the fpqc site of the category
of schemes. However, there is a set theoretical problem that comes up when
considering the fpqc topology, see
Topologies, Section \ref{topologies-section-fpqc}.
It comes from our requirement that sites are ``small'', but that no small
category of schemes can contain a cofinal system of fpqc coverings of a
given nonempty scheme. Although this does not strictly speaking prevent
us from defining ``partial'' fpqc
sites, it does not seem prudent to do so. The work-around is to allow
the notion of a sheaf for the fpqc topology (see below) but to prohibit
considering the category of all fpqc sheaves.
\begin{definition}
\label{definition-sheaf-property-fpqc}
Let $S$ be a scheme. The category of schemes over $S$ is denoted
$\Sch/S$. Consider a functor
$\mathcal{F} : (\Sch/S)^{opp} \to \textit{Sets}$, in other words
a presheaf of sets. We say $\mathcal{F}$
{\it satisfies the sheaf property for the fpqc topology}
if for every fpqc covering $\{U_i \to U\}_{i \in I}$ of schemes over $S$
the diagram (\ref{equation-sheaf-axiom}) is an equalizer diagram.
\end{definition}
\noindent
We similarly say that $\mathcal{F}$
{\it satisfies the sheaf property for the Zariski topology} if for
every open covering $U = \bigcup_{i \in I} U_i$ the diagram
(\ref{equation-sheaf-axiom}) is an equalizer diagram. See
Schemes, Definition \ref{schemes-definition-representable-by-open-immersions}.
Clearly, this is equivalent to saying that for every scheme $T$ over $S$ the
restriction of $\mathcal{F}$ to the opens of $T$ is a (usual) sheaf.
\begin{lemma}
\label{lemma-fpqc-sheaves}
Let $\mathcal{F}$ be a presheaf on $\Sch/S$. Then
$\mathcal{F}$ satisfies the sheaf property for the fpqc topology
if and only if
\begin{enumerate}
\item $\mathcal{F}$ satisfies the sheaf property with respect to the
Zariski topology, and
\item for every faithfully flat morphism $\Spec(B) \to \Spec(A)$
of affine schemes over $S$, the sheaf axiom holds for the covering
$\{\Spec(B) \to \Spec(A)\}$. Namely, this means that
$$
\xymatrix{
\mathcal{F}(\Spec(A)) \ar[r] &
\mathcal{F}(\Spec(B)) \ar@<1ex>[r] \ar@<-1ex>[r] &
\mathcal{F}(\Spec(B \otimes_A B))
}
$$
is an equalizer diagram.
\end{enumerate}
\end{lemma}
\begin{proof}
See Topologies, Lemma \ref{topologies-lemma-sheaf-property-fpqc}.
\end{proof}
\noindent
An alternative way to think of a presheaf $\mathcal{F}$ on
$\Sch/S$ which satisfies the sheaf condition for the