forked from stacks/stacks-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
more-groupoids.tex
3205 lines (2929 loc) · 118 KB
/
more-groupoids.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{More on Groupoid Schemes}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
This chapter is devoted to advanced topics on groupoid schemes.
Even though the results are stated in terms of groupoid schemes, the
reader should keep in mind the $2$-cartesian diagram
\begin{equation}
\label{equation-quotient-stack}
\vcenter{
\xymatrix{
R \ar[r] \ar[d] & U \ar[d] \\
U \ar[r] & [U/R]
}
}
\end{equation}
where $[U/R]$ is the quotient stack, see
Groupoids in Spaces, Remark \ref{spaces-groupoids-remark-fundamental-square}.
Many of the results are motivated by thinking about this diagram.
See for example the beautiful paper \cite{K-M} by Keel and Mori.
\section{Notation}
\label{section-notation}
\noindent
We continue to abide by the conventions and notation introduced in
Groupoids, Section \ref{groupoids-section-notation}.
\section{Useful diagrams}
\label{section-diagrams}
\noindent
We briefly restate the results of
Groupoids, Lemmas \ref{groupoids-lemma-diagram} and
\ref{groupoids-lemma-diagram-pull}
for easy reference in this chapter.
Let $S$ be a scheme.
Let $(U, R, s, t, c)$ be a groupoid scheme over $S$.
In the commutative diagram
\begin{equation}
\label{equation-diagram}
\vcenter{
\xymatrix{
& U & \\
R \ar[d]_s \ar[ru]^t &
R \times_{s, U, t} R
\ar[l]^-{\text{pr}_0} \ar[d]^{\text{pr}_1} \ar[r]_-c &
R \ar[d]^s \ar[lu]_t \\
U & R \ar[l]_t \ar[r]^s & U
}
}
\end{equation}
the two lower squares are fibre product squares.
Moreover, the triangle on top (which is really a square)
is also cartesian.
\medskip\noindent
The diagram
\begin{equation}
\label{equation-pull}
\vcenter{
\xymatrix{
R \times_{t, U, t} R
\ar@<1ex>[r]^-{\text{pr}_1} \ar@<-1ex>[r]_-{\text{pr}_0}
\ar[d]_{\text{pr}_0 \times c \circ (i, 1)} &
R \ar[r]^t \ar[d]^{\text{id}_R} &
U \ar[d]^{\text{id}_U} \\
R \times_{s, U, t} R
\ar@<1ex>[r]^-c \ar@<-1ex>[r]_-{\text{pr}_0} \ar[d]_{\text{pr}_1} &
R \ar[r]^t \ar[d]^s &
U \\
R \ar@<1ex>[r]^s \ar@<-1ex>[r]_t &
U
}
}
\end{equation}
is commutative. The two top rows are isomorphic via the vertical maps given.
The two lower left squares are cartesian.
\section{Sheaf of differentials}
\label{section-differentials}
\noindent
The following lemma is the analogue of
Groupoids, Lemma \ref{groupoids-lemma-group-scheme-module-differentials}.
\begin{lemma}
\label{lemma-sheaf-differentials}
Let $S$ be a scheme.
Let $(U, R, s, t, c)$ be a groupoid scheme over $S$.
The sheaf of differentials of $R$ seen as a scheme over
$U$ via $t$ is a quotient of the pullback via $t$ of the conormal sheaf of
the immersion $e : U \to R$. In a formula: there is a canonical surjection
$t^*\mathcal{C}_{U/R} \to \Omega_{R/U}$. If $s$ is flat, then
this map is an isomorphism.
\end{lemma}
\begin{proof}
Note that $e : U \to R$ is an immersion as it is a section
of the morphism $s$, see
Schemes, Lemma \ref{schemes-lemma-section-immersion}.
Consider the following diagram
$$
\xymatrix{
R \ar[r]_-{(1, i)} \ar[d]_t &
R \times_{s, U, t} R \ar[d]^c \ar[rr]_{(\text{pr}_0, i \circ \text{pr}_1)} & &
R \times_{t, U, t} R \\
U \ar[r]^e &
R
}
$$
The square on the left is cartesian, because if $a \circ b = e$, then
$b = i(a)$. The composition of the horizontal maps is the diagonal
morphism of $t : R \to U$. The right top horizontal arrow is an
isomorphism. Hence since $\Omega_{R/U}$ is the conormal sheaf of the
composition it is isomorphic to the conormal sheaf of
$(1, i)$. By
Morphisms, Lemma \ref{morphisms-lemma-conormal-functorial-flat}
we get the surjection $t^*\mathcal{C}_{U/R} \to \Omega_{R/U}$
and if $c$ is flat, then this is an isomorphism. Since $c$ is a base change
of $s$ by the properties of Diagram (\ref{equation-pull})
we conclude that if $s$ is flat, then $c$ is flat, see
Morphisms, Lemma \ref{morphisms-lemma-base-change-flat}.
\end{proof}
\section{Local structure}
\label{section-local}
\noindent
Let $S$ be a scheme.
Let $(U, R, s, t, c, e, i)$ be a groupoid scheme over $S$.
Let $u \in U$ be a point. In this section we explain what
kind of structure we obtain on the local rings
$$
A = \mathcal{O}_{U, u}
\quad\text{and}\quad
B = \mathcal{O}_{R, e(u)}
$$
The convention we will use is to denote the local ring homomorphisms
induced by the morphisms $s, t, c, e, i$ by the corresponding letters.
In particular we have a commutative diagram
$$
\xymatrix{
A \ar[rd]_t \ar[rrd]^1 \\
& B \ar[r]^e & A \\
A \ar[ru]^s \ar[rru]_1
}
$$
of local rings. Thus if $I \subset B$ denotes the kernel of $e : B \to A$,
then $B = s(A) \oplus I = t(A) \oplus I$. Let us denote
$$
C = \mathcal{O}_{R \times_{s, U, t} R, (e(u), e(u))}
$$
Then we have
$$
C = (B \otimes_{s, A, t} B)_{\mathfrak m_B \otimes B + B \otimes \mathfrak m_B}
$$
Let $J \subset C$ be the ideal of $C$ generated by $I \otimes B + B \otimes I$.
Then $J$ is also the kernel of the local ring homomorphism
$$
(e, e) : C \longrightarrow A
$$
The composition law $c : R \times_{s, U, t} R \to R$ corresponds to a
ring map
$$
c : B \longrightarrow C
$$
sending $I$ into $J$.
\begin{lemma}
\label{lemma-first-order-structure-c}
The map $I/I^2 \to J/J^2$ induced by $c$ is the composition
$$
I/I^2 \xrightarrow{(1, 1)} I/I^2 \oplus I/I^2 \to J/J^2
$$
where the second arrow comes from the equality
$J = (I \otimes B + B \otimes I)C$.
The map $i : B \to B$ induces the map $-1 : I/I^2 \to I/I^2$.
\end{lemma}
\begin{proof}
To describe a local homomorphism from $C$ to another local ring
it is enough to say what happens to elements of the form
$b_1 \otimes b_2$. Keeping this in mind we have the two canonical maps
$$
e_2 : C \to B,\ b_1 \otimes b_2 \mapsto b_1s(e(b_2)),\quad
e_1 : C \to B,\ b_1 \otimes b_2 \mapsto t(e(b_1))b_2
$$
corresponding to the embeddings
$R \to R \times_{s, U, t} R$ given by
$r \mapsto (r, e(s(r)))$ and $r \mapsto (e(t(r)), r)$.
These maps define maps $J/J^2 \to I/I^2$ which jointly
give an inverse to the map $I/I^2 \oplus I/I^2 \to J/J^2$
of the lemma. Thus to prove statement we only have to show
that $e_1 \circ c : B \to B$ and $e_2 \circ c : B \to B$
are the identity maps. This follows from the fact that both
compositions $R \to R \times_{s, U, t} R \to R$ are identities.
\medskip\noindent
The statement on $i$ follows from the statement on $c$ and the
fact that $c \circ (1, i) = e \circ t$. Some details omitted.
\end{proof}
\section{Properties of groupoids}
\label{section-technical-lemma}
\noindent
Let $(U, R, s, t, c)$ be a groupoid scheme.
The idea behind the results in this section is that $s: R \to U$
is a base change of the morphism $U \to [U/R]$ (see
Diagram (\ref{equation-quotient-stack}).
Hence the local properties of $s : R \to U$ should reflect local
properties of the morphism $U \to [U/R]$.
This doesn't work, because $[U/R]$ is not always an algebraic stack, and
hence we cannot speak of geometric or algebraic properties of
$U \to [U/R]$.
But it turns out that we can make some of it work without even
referring to the quotient stack at all.
\medskip\noindent
Here is a first example of such a result. The open $W \subset U'$ found
in the lemma is roughly speaking the locus where the morphism
$U' \to [U/R]$ has property $\mathcal{P}$.
\begin{lemma}
\label{lemma-local-source}
Let $S$ be a scheme.
Let $(U, R, s, t, c, e, i)$ be a groupoid over $S$.
Let $g : U' \to U$ be a morphism of schemes.
Denote $h$ the composition
$$
\xymatrix{
h : U' \times_{g, U, t} R \ar[r]_-{\text{pr}_1} & R \ar[r]_s & U.
}
$$
Let $\mathcal{P}, \mathcal{Q}, \mathcal{R}$ be properties of morphisms
of schemes. Assume
\begin{enumerate}
\item $\mathcal{R} \Rightarrow \mathcal{Q}$,
\item $\mathcal{Q}$ is preserved under base change and composition,
\item for any morphism $f : X \to Y$ which has $\mathcal{Q}$ there exists a
largest open $W(\mathcal{P}, f) \subset X$ such that $f|_{W(\mathcal{P}, f)}$
has $\mathcal{P}$, and
\item for any morphism $f : X \to Y$ which has $\mathcal{Q}$,
and any morphism $Y' \to Y$ which has $\mathcal{R}$ we have
$Y' \times_Y W(\mathcal{P}, f) = W(\mathcal{P}, f')$, where
$f' : X_{Y'} \to Y'$ is the base change of $f$.
\end{enumerate}
If $s, t$ have $\mathcal{R}$ and $g$ has $\mathcal{Q}$, then
there exists an open subscheme $W \subset U'$ such that
$W \times_{g, U, t} R = W(\mathcal{P}, h)$.
\end{lemma}
\begin{proof}
Note that the following diagram is commutative
$$
\xymatrix{
U' \times_{g, U, t} R \times_{t, U, t} R
\ar[rr]_-{\text{pr}_{12}}
\ar@<1ex>[d]^-{\text{pr}_{02}} \ar@<-1ex>[d]_-{\text{pr}_{01}} & &
R \times_{t, U, t} R
\ar@<1ex>[d]^-{\text{pr}_1} \ar@<-1ex>[d]_-{\text{pr}_0}
\\
U' \times_{g, U, t} R \ar[rr]^{\text{pr}_1} & & R
}
$$
with both squares cartesian (this uses that the two maps
$t \circ \text{pr}_i : R \times_{t, U, t} R \to U$ are equal).
Combining this with the properties of diagram (\ref{equation-pull})
we get a commutative diagram
$$
\xymatrix{
U' \times_{g, U, t} R \times_{t, U, t} R
\ar[rr]_-{c \circ (i, 1)}
\ar@<1ex>[d]^-{\text{pr}_{02}} \ar@<-1ex>[d]_-{\text{pr}_{01}} & &
R
\ar@<1ex>[d]^-{s} \ar@<-1ex>[d]_-{t}
\\
U' \times_{g, U, t} R \ar[rr]^h & & U
}
$$
where both squares are cartesian.
\medskip\noindent
Assume $s, t$ have $\mathcal{R}$ and $g$ has $\mathcal{Q}$.
Then $h$ has $\mathcal{Q}$ as a composition of $s$ (which has
$\mathcal{R}$ hence $\mathcal{Q}$) and a base change of $g$ (which
has $\mathcal{Q}$). Thus $W(\mathcal{P}, h) \subset U' \times_{g, U, t} R$
exists. By our assumptions we have
$\text{pr}_{01}^{-1}(W(\mathcal{P}, h)) =
\text{pr}_{02}^{-1}(W(\mathcal{P}, h))$
since both are the largest open on which $c \circ (i, 1)$ has $\mathcal{P}$.
Note that the projection $U' \times_{g, U, t} R \to U'$ has a section, namely
$\sigma : U' \to U' \times_{g, U, t} R$, $u' \mapsto (u', e(g(u')))$.
Also via the isomorphism
$$
(U' \times_{g, U, t} R) \times_{U'} (U' \times_{g, U, t} R)
=
U' \times_{g, U, t} R \times_{t, U, t} R
$$
the two projections of the left hand side
to $U' \times_{g, U, t} R$ agree with the morphisms $\text{pr}_{01}$
and $\text{pr}_{02}$ on the right hand side. Since
$\text{pr}_{01}^{-1}(W(\mathcal{P}, h)) =
\text{pr}_{02}^{-1}(W(\mathcal{P}, h))$
we conclude that $W(\mathcal{P}, h)$ is the inverse image of a subset of $U$,
which is necessarily the open set
$W = \sigma^{-1}(W(\mathcal{P}, h))$.
\end{proof}
\begin{remark}
\label{remark-local-source-warning}
Warning:
Lemma \ref{lemma-local-source}
should be used with care.
For example, it applies to $\mathcal{P}=$``flat'', $\mathcal{Q}=$``empty'',
and $\mathcal{R}=$``flat and locally of finite presentation''. But given a
morphism of schemes $f : X \to Y$ the largest open $W \subset X$ such that
$f|_W$ is flat is {\it not} the set of points where $f$ is flat!
\end{remark}
\begin{remark}
\label{remark-local-source-apply}
Notwithstanding the warning in
Remark \ref{remark-local-source-warning}
there are some cases where
Lemma \ref{lemma-local-source}
can be used without causing too much ambiguity.
We give a list. In each case we omit the verification of
assumptions (1) and (2) and we give references which imply
(3) and (4). Here is the list:
\begin{enumerate}
\item $\mathcal{Q} = \mathcal{R} =$``locally of finite type'', and
$\mathcal{P} =$``relative dimension $\leq d$''.
See
Morphisms, Definition \ref{morphisms-definition-relative-dimension-d}
and
Morphisms, Lemmas \ref{morphisms-lemma-openness-bounded-dimension-fibres} and
\ref{morphisms-lemma-dimension-fibre-after-base-change}.
\item $\mathcal{Q} = \mathcal{R} =$``locally of finite type'', and
$\mathcal{P} =$``locally quasi-finite''.
This is the case $d = 0$ of the previous item, see
Morphisms, Lemma \ref{morphisms-lemma-locally-quasi-finite-rel-dimension-0}.
\item $\mathcal{Q} = \mathcal{R} =$``locally of finite type'', and
$\mathcal{P} =$``unramified''.
See
Morphisms, Lemmas \ref{morphisms-lemma-unramified-characterize} and
\ref{morphisms-lemma-set-points-where-fibres-unramified}.
\end{enumerate}
What is interesting about the cases listed above is that we do not
need to assume that $s, t$ are flat to get a conclusion about the locus
where the morphism $h$ has property $\mathcal{P}$. We continue the
list:
\begin{enumerate}
\item[(4)] $\mathcal{Q} =$``locally of finite presentation'',
$\mathcal{R} =$``flat and locally of finite presentation'', and
$\mathcal{P} =$``flat''. See
More on Morphisms, Theorem
\ref{more-morphisms-theorem-openness-flatness} and
Lemma \ref{more-morphisms-lemma-flat-locus-base-change}.
\item[(5)] $\mathcal{Q} =$``locally of finite presentation'',
$\mathcal{R} =$``flat and locally of finite presentation'', and
$\mathcal{P}=$``Cohen-Macaulay''. See
More on Morphisms, Definition \ref{more-morphisms-definition-CM}
and
More on Morphisms, Lemmas \ref{more-morphisms-lemma-base-change-CM} and
\ref{more-morphisms-lemma-flat-finite-presentation-CM-open}.
\item[(6)] $\mathcal{Q} =$``locally of finite presentation'',
$\mathcal{R} =$``flat and locally of finite presentation'', and
$\mathcal{P}=$``syntomic'' use
Morphisms, Lemma \ref{morphisms-lemma-set-points-where-fibres-lci}
(the locus is automatically open).
\item[(7)] $\mathcal{Q} =$``locally of finite presentation'',
$\mathcal{R} =$``flat and locally of finite presentation'', and
$\mathcal{P}=$``smooth''. See
Morphisms, Lemma \ref{morphisms-lemma-set-points-where-fibres-smooth}
(the locus is automatically open).
\item[(8)] $\mathcal{Q} =$``locally of finite presentation'',
$\mathcal{R} =$``flat and locally of finite presentation'', and
$\mathcal{P}=$``\'etale''. See
Morphisms, Lemma \ref{morphisms-lemma-set-points-where-fibres-etale}
(the locus is automatically open).
\end{enumerate}
\end{remark}
\noindent
Here is the second result. The $R$-invariant open $W \subset U$ should be
thought of as the inverse image of the largest open of $[U/R]$ over which
the morphism $U \to [U/R]$ has property $\mathcal{P}$.
\begin{lemma}
\label{lemma-property-invariant}
Let $S$ be a scheme.
Let $(U, R, s, t, c)$ be a groupoid over $S$.
Let $\tau \in \{Zariski, \linebreak[0] fppf,
\linebreak[0] \etale, \linebreak[0]
smooth, \linebreak[0] syntomic\}$\footnote{The fact that $fpqc$ is missing
is not a typo.}. Let $\mathcal{P}$ be a property of morphisms of schemes
which is $\tau$-local on the target
(Descent, Definition \ref{descent-definition-property-morphisms-local}).
Assume $\{s : R \to U\}$ and $\{t : R \to U\}$ are coverings for the
$\tau$-topology. Let $W \subset U$ be the maximal open subscheme such that
$s|_{s^{-1}(W)} : s^{-1}(W) \to W$ has property $\mathcal{P}$.
Then $W$ is $R$-invariant, see
Groupoids, Definition \ref{groupoids-definition-invariant-open}.
\end{lemma}
\begin{proof}
The existence and properties of the open $W \subset U$ are described in
Descent, Lemma \ref{descent-lemma-largest-open-of-the-base}.
In
Diagram (\ref{equation-diagram})
let $W_1 \subset R$ be the maximal open subscheme over which the morphism
$\text{pr}_1 : R \times_{s, U, t} R \to R$ has property $\mathcal{P}$.
It follows from the aforementioned
Descent, Lemma \ref{descent-lemma-largest-open-of-the-base}
and the assumption that $\{s : R \to U\}$ and $\{t : R \to U\}$ are coverings
for the $\tau$-topology that $t^{-1}(W) = W_1 = s^{-1}(W)$ as desired.
\end{proof}
\begin{lemma}
\label{lemma-property-G-invariant}
Let $S$ be a scheme.
Let $(U, R, s, t, c)$ be a groupoid over $S$.
Let $G \to U$ be its stabilizer group scheme.
Let $\tau \in \{fppf, \linebreak[0] \etale, \linebreak[0]
smooth, \linebreak[0] syntomic\}$.
Let $\mathcal{P}$ be a property of morphisms which is $\tau$-local
on the target. Assume $\{s : R \to U\}$ and $\{t : R \to U\}$ are coverings
for the $\tau$-topology. Let $W \subset U$ be the maximal open subscheme
such that $G_W \to W$ has property $\mathcal{P}$. Then $W$ is $R$-invariant
(see
Groupoids, Definition
\ref{groupoids-definition-invariant-open}).
\end{lemma}
\begin{proof}
The existence and properties of the open $W \subset U$ are described in
Descent, Lemma \ref{descent-lemma-largest-open-of-the-base}.
The morphism
$$
G \times_{U, t} R \longrightarrow R \times_{s, U} G, \quad
(g, r) \longmapsto (r, r^{-1} \circ g \circ r)
$$
is an isomorphism over $R$ (where $\circ$ denotes
composition in the groupoid). Hence $s^{-1}(W) = t^{-1}(W)$ by the
properties of $W$ proved in the aforementioned
Descent, Lemma \ref{descent-lemma-largest-open-of-the-base}.
\end{proof}
\section{Comparing fibres}
\label{section-fibres}
\noindent
Let $(U, R, s, t, c, e, i)$ be a groupoid scheme over $S$.
Diagram (\ref{equation-diagram})
gives us a way to compare the fibres of the map $s : R \to U$ in a groupoid.
For a point $u \in U$ we will denote $F_u = s^{-1}(u)$ the scheme
theoretic fibre of $s : R \to U$ over $u$. For example the diagram
implies that if $u, u' \in U$ are points such
that $s(r) = u$ and $t(r) = u'$, then
$(F_u)_{\kappa(r)} \cong (F_{u'})_{\kappa(r)}$.
This is a special case of the more general and more precise
Lemma \ref{lemma-two-fibres}
below. To see this take $r' = i(r)$.
\medskip\noindent
A pair $(X, x)$ consisting of a scheme $X$ and a point $x \in X$ is sometimes
called the {\it germ of $X$ at $x$}.
A {\it morphism of germs} $f : (X, x) \to (S, s)$
is a morphism $f : U \to S$ defined on an open neighbourhood
of $x$ with $f(x) = s$. Two such
$f$, $f'$ are said to give the same morphism of germs
if and only if $f$ and $f'$ agree in some open neighbourhood of $x$.
Let $\tau \in \{Zariski, \etale, smooth, syntomic, fppf\}$.
We temporarily introduce the following concept: We say that two morphisms
of germs $f : (X, x) \to (S, s)$ and $f' : (X', x') \to (S', s')$
are {\it isomorphic locally on the base in the $\tau$-topology},
if there exists a pointed scheme $(S'', s'')$ and morphisms of germs
$g : (S'', s'') \to (S, s)$, and $g' : (S'', s'') \to (S', s')$
such that
\begin{enumerate}
\item $g$ and $g'$ are an open immersion (resp.\ \'etale, smooth, syntomic,
flat and locally of finite presentation) at $s''$,
\item there exists an isomorphism
$$
(S'' \times_{g, S, f} X, \tilde x)
\cong
(S'' \times_{g', S', f'} X', \tilde x')
$$
of germs over the germ $(S'', s'')$ for some choice of points
$\tilde x$ and $\tilde x'$ lying over $(s'', x)$ and $(s'', x')$.
\end{enumerate}
Finally, we simply say that the maps of germs
$f : (X, x) \to (S, s)$ and $f' : (X', x') \to (S', s')$
are {\it flat locally on the base isomorphic} if there exist
$S'', s'', g, g'$ as above but with (1) replaced by
the condition that $g$ and $g'$ are flat at $s''$ (this is
much weaker than any of the $\tau$ conditions above
as a flat morphism need not be open).
\begin{lemma}
\label{lemma-two-fibres}
Let $S$ be a scheme.
Let $(U, R, s, t, c)$ be a groupoid over $S$.
Let $r, r' \in R$ with $t(r) = t(r')$ in $U$.
Set $u = s(r)$, $u' = s(r')$.
Denote $F_u = s^{-1}(u)$ and $F_{u'} = s^{-1}(u')$ the scheme
theoretic fibres.
\begin{enumerate}
\item There exists a common field extension
$\kappa(u) \subset k$, $\kappa(u') \subset k$ and
an isomorphism $(F_u)_k \cong (F_{u'})_k$.
\item We may choose the isomorphism of (1) such that a point
lying over $r$ maps to a point lying over $r'$.
\item If the morphisms $s$, $t$ are flat then the morphisms of germs
$s : (R, r) \to (U, u)$ and $s : (R, r') \to (U, u')$ are flat
locally on the base isomorphic.
\item If the morphisms $s$, $t$ are \'etale
(resp.\ smooth, syntomic, or flat and locally of finite presentation)
then the morphisms of germs $s : (R, r) \to (U, u)$ and
$s : (R, r') \to (U, u')$ are locally on the base isomorphic
in the \'etale (resp.\ smooth, syntomic, or fppf) topology.
\end{enumerate}
\end{lemma}
\begin{proof}
We repeatedly use the properties and the existence of
diagram (\ref{equation-diagram}).
By the properties of the diagram (and
Schemes, Lemma \ref{schemes-lemma-points-fibre-product})
there exists a point $\xi$ of $R \times_{s, U, t} R$
with $\text{pr}_0(\xi) = r$ and $c(\xi) = r'$.
Let $\tilde r = \text{pr}_1(\xi) \in R$.
\medskip\noindent
Proof of (1). Set $k = \kappa(\tilde r)$. Since $t(\tilde r) = u$
and $s(\tilde r) = u'$ we see that $k$ is a common extension
of both $\kappa(u)$ and $\kappa(u')$ and in fact that
both $(F_u)_k$ and $(F_{u'})_k$ are isomorphic to the fibre of
$\text{pr}_1 : R \times_{s, U, t} R \to R$ over $\tilde r$.
Hence (1) is proved.
\medskip\noindent
Part (2) follows since the point $\xi$ maps to $r$, resp.\ $r'$.
\medskip\noindent
Part (3) is clear from the above (using the point $\xi$ for
$\tilde u$ and $\tilde u'$) and the definitions.
\medskip\noindent
If $s$ and $t$ are flat and of finite presentation, then
they are open morphisms (Morphisms, Lemma \ref{morphisms-lemma-fppf-open}).
Hence the image of some affine open neighbourhood $V''$ of $\tilde r$ will
cover an open neighbourhood $V$ of $u$, resp.\ $V'$ of $u'$.
These can be used to show that properties (1) and (2) of the
definition of ``locally on the base isomorphic in the
$\tau$-topology''.
\end{proof}
\section{Cohen-Macaulay presentations}
\label{section-CM}
\noindent
Given any groupoid $(U, R, s, t, c)$ with $s, t$ flat and
locally of finite presentation there exists an ``equivalent''
groupoid $(U', R', s', t', c')$ such that $s'$ and $t'$ are
Cohen-Macaulay morphisms (and locally of finite presentation). See
More on Morphisms, Section \ref{more-morphisms-section-CM}
for more information on Cohen-Macaulay morphisms.
Here ``equivalent'' can be taken to mean that the quotient stacks
$[U/R]$ and $[U'/R']$ are equivalent stacks, see
Groupoids in Spaces, Section \ref{spaces-groupoids-section-stacks}
and Section \ref{spaces-groupoids-section-quotient-stack-restrict}.
\begin{lemma}
\label{lemma-make-CM}
Let $S$ be a scheme.
Let $(U, R, s, t, c)$ be a groupoid over $S$.
Assume $s$ and $t$ are flat and locally of finite presentation.
Then there exists an open $U' \subset U$ such that
\begin{enumerate}
\item $t^{-1}(U') \subset R$ is the largest open subscheme of
$R$ on which the morphism $s$ is Cohen-Macaulay,
\item $s^{-1}(U') \subset R$ is the largest open subscheme of
$R$ on which the morphism $t$ is Cohen-Macaulay,
\item the morphism $t|_{s^{-1}(U')} : s^{-1}(U') \to U$ is
surjective,
\item the morphism $s|_{t^{-1}(U')} : t^{-1}(U') \to U$ is
surjective, and
\item the restriction $R' = s^{-1}(U') \cap t^{-1}(U')$
of $R$ to $U'$ defines a groupoid $(U', R', s', t', c')$ which has the property
that the morphisms $s'$ and $t'$ are Cohen-Macaulay and locally of
finite presentation.
\end{enumerate}
\end{lemma}
\begin{proof}
Apply
Lemma \ref{lemma-local-source}
with
$g = \text{id}$ and
$\mathcal{Q} =$``locally of finite presentation'',
$\mathcal{R} =$``flat and locally of finite presentation'', and
$\mathcal{P}=$``Cohen-Macaulay'', see
Remark \ref{remark-local-source-apply}.
This gives us an open $U' \subset U$ such that
Let $t^{-1}(U') \subset R$ is the largest open subscheme of $R$
on which the morphism $s$ is Cohen-Macaulay.
This proves (1).
Let $i : R \to R$ be the inverse of the groupoid.
Since $i$ is an isomorphism, and $s \circ i = t$ and $t \circ i = s$
we see that $s^{-1}(U')$ is also the largest open of $R$ on which $t$ is
Cohen-Macaulay. This proves (2).
By
More on Morphisms,
Lemma \ref{more-morphisms-lemma-flat-finite-presentation-CM-open}
the open subset $t^{-1}(U')$ is dense in every fibre of $s : R \to U$.
This proves (3). Same argument for (4).
Part (5) is a formal consequence of (1) and (2) and the discussion
of restrictions in
Groupoids, Section \ref{groupoids-section-restrict-groupoid}.
\end{proof}
\section{Restricting groupoids}
\label{section-restricting-groupoids}
\noindent
In this section we collect a bunch of lemmas on
properties of groupoids which are inherited by restrictions.
Most of these lemmas can be proved by contemplating the
defining diagram
\begin{equation}
\label{equation-restriction}
\vcenter{
\xymatrix{
R' \ar[d] \ar[r] \ar@/_3pc/[dd]_{t'} \ar@/^1pc/[rr]^{s'}&
R \times_{s, U} U' \ar[r] \ar[d] &
U' \ar[d]^g \\
U' \times_{U, t} R \ar[d] \ar[r] &
R \ar[r]^s \ar[d]_t &
U \\
U' \ar[r]^g &
U
}
}
\end{equation}
of a restriction. See
Groupoids, Lemma \ref{groupoids-lemma-restrict-groupoid}.
\begin{lemma}
\label{lemma-restrict-preserves-type}
Let $S$ be a scheme.
Let $(U, R, s, t, c)$ be a groupoid scheme over $S$.
Let $g : U' \to U$ be a morphism of schemes.
Let $(U', R', s', t', c')$ be the restriction of
$(U, R, s, t, c)$ via $g$.
\begin{enumerate}
\item If $s, t$ are locally of finite type and $g$ is locally of finite
type, then $s', t'$ are locally of finite type.
\item If $s, t$ are locally of finite presentation and $g$ is locally of finite
presentation, then $s', t'$ are locally of finite presentation.
\item If $s, t$ are flat and $g$ is flat, then $s', t'$ are flat.
\item Add more here.
\end{enumerate}
\end{lemma}
\begin{proof}
The property of being locally of finite type is stable under composition
and arbitrary base change, see
Morphisms, Lemmas \ref{morphisms-lemma-composition-finite-type} and
\ref{morphisms-lemma-base-change-finite-type}.
Hence (1) is clear from Diagram (\ref{equation-restriction}).
For the other cases, see
Morphisms, Lemmas \ref{morphisms-lemma-composition-finite-presentation},
\ref{morphisms-lemma-base-change-finite-presentation},
\ref{morphisms-lemma-composition-flat}, and
\ref{morphisms-lemma-base-change-flat}.
\end{proof}
\noindent
The following lemma could have been used to prove the results of the preceding
lemma in a more uniform way.
\begin{lemma}
\label{lemma-restrict-property}
Let $S$ be a scheme.
Let $(U, R, s, t, c)$ be a groupoid scheme over $S$.
Let $g : U' \to U$ be a morphism of schemes.
Let $(U', R', s', t', c')$ be the restriction of
$(U, R, s, t, c)$ via $g$, and let
$h = s \circ \text{pr}_1 : U' \times_{g, U, t} R \to U$. If
$\mathcal{P}$ is a property of morphisms of schemes such that
\begin{enumerate}
\item $h$ has property $\mathcal{P}$, and
\item $\mathcal{P}$ is preserved under base change,
\end{enumerate}
then $s', t'$ have property $\mathcal{P}$.
\end{lemma}
\begin{proof}
This is clear as $s'$ is the base change of $h$ by
Diagram (\ref{equation-restriction})
and $t'$ is isomorphic to $s'$ as a morphism of schemes.
\end{proof}
\begin{lemma}
\label{lemma-double-restrict}
Let $S$ be a scheme.
Let $(U, R, s, t, c)$ be a groupoid scheme over $S$.
Let $g : U' \to U$ and $g' : U'' \to U'$ be morphisms of schemes.
Set $g'' = g \circ g'$.
Let $(U', R', s', t', c')$ be the restriction of $R$ to $U'$.
Let $h = s \circ \text{pr}_1 : U' \times_{g, U, t} R \to U$,
let $h' = s' \circ \text{pr}_1 : U'' \times_{g', U', t} R \to U'$, and
let $h'' = s \circ \text{pr}_1 : U'' \times_{g'', U, t} R \to U$.
The following diagram is commutative
$$
\xymatrix{
U'' \times_{g', U', t} R' \ar[d]^{h'} &
(U' \times_{g, U, t} R) \times_U (U'' \times_{g'', U, t} R)
\ar[l] \ar[r] \ar[d] &
U'' \times_{g'', U, t} R \ar[d]_{h''} \\
U' &
U' \times_{g, U, t} R \ar[l]_{\text{pr}_0} \ar[r]^h &
U
}
$$
with both squares cartesian where the left upper horizontal arrow
is given by the rule
$$
\begin{matrix}
(U' \times_{g, U, t} R) \times_U (U'' \times_{g'', U, t} R) &
\longrightarrow &
U'' \times_{g', U', t} R' \\
((u', r_0), (u'', r_1)) &
\longmapsto &
(u'', (c(r_1, i(r_0)), (g'(u''), u')))
\end{matrix}
$$
with notation as explained in the proof.
\end{lemma}
\begin{proof}
We work this out by exploiting the functorial point of view
and reducing the lemma to a statement on arrows in restrictions
of a groupoid category. In the last formula of the lemma the
notation $((u', r_0), (u'', r_1))$ indicates a $T$-valued point of
$(U' \times_{g, U, t} R) \times_U (U'' \times_{g'', U, t} R)$.
This means that $u', u'', r_0, r_1$ are $T$-valued points of $U', U'', R, R$
and that $g(u') = t(r_0)$, $g(g'(u'')) = g''(u'') = t(r_1)$, and
$s(r_0) = s(r_1)$. It would be more correct here to write
$g \circ u' = t \circ r_0$ and so on but this makes the notation
even more unreadable. If we think of $r_1$ and $r_0$ as arrows in
a groupoid category then we can represent this by the picture
$$
\xymatrix{
t(r_0) = g(u') &
s(r_0) = s(r_1) \ar[l]_{r_0} \ar[r]^-{r_1} &
t(r_1) = g(g'(u''))
}
$$
This diagram in particular demonstrates that the composition
$c(r_1, i(r_0))$ makes sense. Recall that
$$
R' = R \times_{(t, s), U \times_S U, g \times g} U' \times_S U'
$$
hence a $T$-valued point of $R'$ looks like $(r, (u'_0, u'_1))$
with $t(r) = g(u'_0)$ and $s(r) = g(u'_1)$. In particular given
$((u', r_0), (u'', r_1))$ as above we get the $T$-valued point
$(c(r_1, i(r_0)), (g'(u''), u'))$ of $R'$ because we have
$t(c(r_1, i(r_0))) = t(r_1) = g(g'(u''))$ and
$s(c(r_1, i(r_0))) = s(i(r_0)) = t(r_0) = g(u')$.
We leave it to the reader to show that the left square commutes
with this definition.
\medskip\noindent
To show that the left square is cartesian,
suppose we are given $(v'', p')$ and $(v', p)$ which are $T$-valued points of
$U'' \times_{g', U', t} R'$ and $U' \times_{g, U, t} R$ with
$v' = s'(p')$. This also means that $g'(v'') = t'(p')$ and
$g(v') = t(p)$. By the discussion above we know that we can write
$p' = (r, (u_0', u_1'))$ with $t(r) = g(u'_0)$ and
$s(r) = g(u'_1)$. Using this notation we see that
$v' = s'(p') = u_1'$ and
$g'(v'') = t'(p') = u_0'$. Here is a picture
$$
\xymatrix{
s(p) \ar[r]^-p &
g(v') = g(u'_1) \ar[r]^-r &
g(u'_0) = g(g'(v''))
}
$$
What we have to show is that there exists a unique $T$-valued point
$((u', r_0), (u'', r_1))$ as above such that
$v' = u'$, $p = r_0$, $v'' = u''$ and $p' = (c(r_1, i(r_0)), (g'(u''), u'))$.
Comparing the two diagrams above it is clear that we have no choice
but to take
$$
((u', r_0), (u'', r_1)) = ((v', p), (v'', c(r, p))
$$
Some details omitted.
\end{proof}
\begin{lemma}
\label{lemma-double-restrict-property}
Let $S$ be a scheme.
Let $(U, R, s, t, c)$ be a groupoid scheme over $S$.
Let $g : U' \to U$ and $g' : U'' \to U'$ be morphisms of schemes.
Set $g'' = g \circ g'$.
Let $(U', R', s', t', c')$ be the restriction of $R$ to $U'$.
Let $h = s \circ \text{pr}_1 : U' \times_{g, U, t} R \to U$,
let $h' = s' \circ \text{pr}_1 : U'' \times_{g', U', t} R \to U'$, and
let $h'' = s \circ \text{pr}_1 : U'' \times_{g'', U, t} R \to U$.
Let $\tau \in \{Zariski, \linebreak[0] \etale, \linebreak[0]
smooth, \linebreak[0] syntomic, \linebreak[0] fppf, \linebreak[0] fpqc\}$. Let
$\mathcal{P}$ be a property of morphisms of schemes
which is preserved under base change, and which
is local on the target for the $\tau$-topology. If
\begin{enumerate}
\item $h(U' \times_U R)$ is open in $U$,
\item $\{h : U' \times_U R \to h(U' \times_U R)\}$ is a $\tau$-covering,
\item $h'$ has property $\mathcal{P}$,
\end{enumerate}
then $h''$ has property $\mathcal{P}$. Conversely, if
\begin{enumerate}
\item[(a)] $\{t : R \to U\}$ is a $\tau$-covering,
\item[(d)] $h''$ has property $\mathcal{P}$,
\end{enumerate}
then $h'$ has property $\mathcal{P}$.
\end{lemma}
\begin{proof}
This follows formally from the properties of the diagram of
Lemma \ref{lemma-double-restrict}.
In the first case, note that the image of the morphism
$h''$ is contained in the image of $h$, as $g'' = g \circ g'$.
Hence we may replace the $U$ in the lower right corner of the
diagram by $h(U' \times_U R)$. This explains the significance of
conditions (1) and (2) in the lemma. In the second case, note that
$\{\text{pr}_0 : U' \times_{g, U, t} R \to U'\}$ is a $\tau$-covering
as a base change of $\tau$ and condition (a).
\end{proof}
\section{Properties of groupoids on fields}
\label{section-properties-groupoids-on-fields}
\noindent
A ``groupoid on a field'' indicates a groupoid scheme $(U, R, s, t, c)$
where $U$ is the spectrum of a field. It does {\bf not} mean that
$(U, R, s, t, c)$ is defined over a field, more precisely, it does
{\bf not} mean that the morphisms $s, t : R \to U$ are equal.
Given any field $k$, an abstract group $G$ and a group homomorphism
$\varphi : G \to \text{Aut}(k)$ we obtain a groupoid scheme
$(U, R, s, t, c)$ over $\mathbf{Z}$ by setting
\begin{align*}
U & = \Spec(k) \\
R & = \coprod\nolimits_{g \in G} \Spec(k) \\
s & = \coprod\nolimits_{g \in G} \Spec(\text{id}_k) \\
t & = \coprod\nolimits_{g \in G} \Spec(\varphi(g)) \\
c & = \text{composition in }G
\end{align*}
This example still is a groupoid scheme over $\Spec(k^G)$.
Hence, if $G$ is finite, then $U = \Spec(k)$ is finite over
$\Spec(k^G)$.
In some sense our goal in this section is to show that suitable
finiteness conditions on $s, t$ force any groupoid on a field
to be defined over a finite index subfield $k' \subset k$.
\medskip\noindent
If $k$ is a field and $(G, m)$ is a group scheme over $k$ with structure
morphism $p : G \to \Spec(k)$, then $(\Spec(k), G, p, p, m)$
is an example of a groupoid on a field (and in this case of course the whole
structure is defined over a field). Hence this section can be viewed as the
analogue of
Groupoids, Section \ref{groupoids-section-properties-group-schemes-field}.
\begin{lemma}
\label{lemma-groupoid-on-field-open-multiplication}
Let $S$ be a scheme. Let $(U, R, s, t, c)$ be a groupoid scheme
over $S$. If $U$ is the spectrum of a field, then the composition
morphism $c : R \times_{s, U, t} R \to R$ is open.
\end{lemma}
\begin{proof}
The composition is isomorphic to the projection map
$\text{pr}_1 : R \times_{t, U, t} R \to R$ by
Diagram (\ref{equation-pull}).
The projection is open by
Morphisms, Lemma \ref{morphisms-lemma-scheme-over-field-universally-open}.
\end{proof}
\begin{lemma}
\label{lemma-groupoid-on-field-separated}
Let $S$ be a scheme. Let $(U, R, s, t, c)$ be a groupoid scheme
over $S$. If $U$ is the spectrum of a field,
then $R$ is a separated scheme.
\end{lemma}
\begin{proof}
By
Groupoids, Lemma \ref{groupoids-lemma-group-scheme-over-field-separated}
the stabilizer group scheme $G \to U$ is separated. By
Groupoids, Lemma \ref{groupoids-lemma-diagonal}
the morphism $j = (t, s) : R \to U \times_S U$ is separated.
As $U$ is the spectrum of a field the scheme
$U \times_S U$ is affine (by the construction of fibre products in
Schemes, Section \ref{schemes-section-fibre-products}).
Hence $R$ is a separated scheme, see
Schemes, Lemma \ref{schemes-lemma-separated-permanence}.
\end{proof}
\begin{lemma}
\label{lemma-groupoid-on-field-homogeneous}
Let $S$ be a scheme. Let $(U, R, s, t, c)$ be a groupoid scheme
over $S$. Assume $U = \Spec(k)$ with $k$ a field.
For any points $r, r' \in R$ there exists a field extension
$k'/k$ and points
$r_1, r_2 \in R \times_{s, \Spec(k)} \Spec(k')$
and a diagram
$$
\xymatrix{
R &
R \times_{s, \Spec(k)} \Spec(k')
\ar[l]_-{\text{pr}_0} \ar[r]^\varphi &
R \times_{s, \Spec(k)} \Spec(k')
\ar[r]^-{\text{pr}_0} &
R
}
$$
such that $\varphi$ is an isomorphism of schemes over $\Spec(k')$,
we have $\varphi(r_1) = r_2$, $\text{pr}_0(r_1) = r$, and
$\text{pr}_0(r_2) = r'$.
\end{lemma}
\begin{proof}
This is a special case of
Lemma \ref{lemma-two-fibres}
parts (1) and (2).
\end{proof}