forked from stacks/stacks-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
relative-cycles.tex
2976 lines (2623 loc) · 115 KB
/
relative-cycles.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Relative Cycles}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
A foundational reference is \cite{SV}.
\medskip\noindent
In this chapter we only define what are called the universally integral
relative cycles in \cite{SV}. This choice makes the theory somewhat
simpler to develop than in the original, but of course we also lose something.
\medskip\noindent
Fix a morphism $X \to S$ of finite type
between Noetherian schemes. A family $\alpha$ of $r$-cycles on fibres
of $X/S$ is simply a collection $\alpha = (\alpha_s)_{s \in S}$
where $\alpha_s \in Z_r(X_s)$. It is immediately clear how to
base change $g^*\alpha$ of $\alpha$ along any morphism $g : S' \to S$.
Then we say $\alpha$ is a {\it relative $r$-cycle on $X/S$}
if $\alpha$ is compatible with specializations, i.e., for any
morphism $g : S' \to S$ where $S'$ is the spectrum of a discrete
valuation ring, we require the generic fibre of $g^*\alpha$
to specialize to the closed fibre of $g^*\alpha$.
See Section \ref{section-families-specialization}.
\section{Conventions and notation}
\label{section-conventions}
\noindent
Please consult the chapter on Chow Homology and Chern Classes
for our conventions and notation regarding cycles on schemes
locally of finite type over a fixed Noetherian base, see
Chow Homology, Section \ref{chow-section-setup} ff.
\medskip\noindent
In particular, if $X$ is locally of finite type over a field $k$,
then $Z_r(X)$ denotes the group of cycles of dimension $r$, see
Chow Homology, Example \ref{chow-example-field} and
Section \ref{chow-section-cycles}. Given an integral closed
subscheme $Z \subset X$ with $\dim(Z) = r$ we have $[Z] \in Z_r(X)$
and if $X$ is quasi-compact, then $Z_r(X)$ is free abelian on these classes.
\section{Cycles relative to fields}
\label{section-relative-fields}
\noindent
Let $k$ be a field. Let $X$ be a locally algebraic scheme over $k$.
Let $r \geq 0$ be an integer. In this setting we have the group
$Z_r(X)$ of $r$-cycles on $X$, see Section \ref{section-conventions}.
\medskip\noindent
{\bf Base change.} For any field extension $k'/k$ there is a base change
map $Z_r(X) \to Z_r(X_{k'})$, see
Chow Homology, Section \ref{chow-section-change-base}.
Namely, given an integral closed subscheme $Z \subset X$
of dimension $r$ we send $[Z] \in Z_r(X)$ to the $r$-cycle
$[Z_{k'}]_r \in Z_r(X_{k'})$ associated to the closed subscheme
$Z_{k'} \subset X_{k'}$ (of course in general $Z_{k'}$
is neither irreducible nor reduced). The base change map
$Z_r(X) \to Z_r(X_{k'})$ is always injective.
\begin{lemma}
\label{lemma-multiplicities-field-extension}
Let $K/k$ be a field extension. Let $Z$ be an integral locally algebraic
scheme over $k$. The multiplicity $m_{Z', Z_K}$ of an irreducible
component $Z' \subset Z_K$ is $1$ or a power of the characteristic of $k$.
\end{lemma}
\begin{proof}
If the characteristic of $k$ is zero, then $k$ is perfect and
the multiplicity is always $1$ since $X_K$ is reduced by
Varieties, Lemma \ref{varieties-lemma-geometrically-reduced}.
Assume the characteristic of $k$ is $p > 0$.
Let $L$ be the function field of $Z$. Since $Z$ is locally algebraic
over $k$, the field extension $L/k$ is finitely generated.
The ring $K \otimes_k L$ is Noetherian
(Algebra, Lemma \ref{algebra-lemma-Noetherian-field-extension}).
Translated into algebra, we have to show that the length of the
artinian local ring $(K \otimes_k L)_\mathfrak q$
is a power of $p$ for every minimal prime ideal $\mathfrak q$.
\medskip\noindent
Let $L'/L$ be a finite purely inseparable extension, say of degree
$p^n$. Then $K \otimes_k L \subset K \otimes_k L'$ is a finite
free ring map of degree $p^n$ which induces a homeomorphism on
spectra and purely inseparable residue field extensions.
Hence for every minimal prime $\mathfrak q$ as above
there is a unique minimal prime
$\mathfrak q' \subset K \otimes_k L'$ lying over it and
$$
p^n \text{length}((K \otimes_k L)_\mathfrak q) =
[\kappa(\mathfrak q') : \kappa(\mathfrak q)]
\text{length}((K \otimes_k L')_{\mathfrak q'})
$$
by Algebra, Lemma \ref{algebra-lemma-pushdown-module} applied
to $M = (K \otimes_k L')_{\mathfrak q'} \cong
(K \otimes_k L)_{\mathfrak q}^{\oplus p^n}$.
Since $[\kappa(\mathfrak q') : \kappa(\mathfrak q)]$ is a power
of $p$ we conclude that it suffices to prove the
statement for $L'$ and $\mathfrak q'$.
\medskip\noindent
By the previous paragraph and Algebra, Lemma \ref{algebra-lemma-make-separable}
we may assume that we have a subfield $L/k'/k$ such that $L/k'$ is separable
and $k'/k$ is finite purely inseparable. Then $K \otimes_k k'$ is an
Artinian local ring. The argument of the preceding paragraph
(applied to $L = k$ and $L' = k'$) shows that $\text{length}(K \otimes_k k')$
is a power of $p$. Since $L/k'$ is the localization of a
smooth $k'$-algebra
(Algebra, Lemma \ref{algebra-lemma-localization-smooth-separable}).
Hence $S = (K \otimes_k L)_\mathfrak q$ is the localization of a smooth
$R = K \otimes_k k'$-algebra at a minimal prime.
Thus $R \to S$ is a flat local homomorphism of Artinian
local rings and $\mathfrak m_R S = \mathfrak m_S$. It
follows from Algebra, Lemma \ref{algebra-lemma-pullback-module} that
$\text{length}(K \otimes_k k') = \text{length}(R) =
\text{length}(S) = \text{length}((K \otimes_k L)_\mathfrak q)$
and the proof is finished.
\end{proof}
\begin{lemma}
\label{lemma-how-different}
Let $k$ be a field of characteristic $p > 0$ with perfect closure $k^{perf}$.
Let $X$ be an algebraic scheme over $k$. Let $r \geq 0$ be an integer.
The cokernel of the injective map $Z_r(X) \to Z_r(X_{k^{perf}})$ is a
$p$-power torsion module (More on Algebra, Definition
\ref{more-algebra-definition-f-power-torsion}).
\end{lemma}
\begin{proof}
Since $X$ is quasi-compact, the abelian group $Z_r(X)$ is free with basis
given by the integral closed subschemes of dimension $r$. Similarly for
$Z_r(X_{k^{perf}})$.
Since $X_{k^{perf}} \to X$ is a homeomorphism, it follows
that $Z_r(X) \to Z_r(X_{k^{perf}})$ is injective with torsion cokernel.
Every element in the cokernel is $p$-power torsion by
Lemma \ref{lemma-multiplicities-field-extension}.
\end{proof}
\section{Specialization of cycles}
\label{section-specialization}
\noindent
Let $R$ be a discrete valuation ring with fraction field $K$
and residue field $\kappa$. Let $X$ be a scheme locally of finite type
over $R$. Let $r \geq 0$. There is a specialization map
$$
sp_{X/R} : Z_r(X_K) \longrightarrow Z_r(X_\kappa)
$$
defined as follows. For an integral closed subscheme $Z \subset X_K$
of dimension $r$ we denote $\overline{Z}$ the scheme theoretic image
of $Z \to X$. Then we let $sp_{X/R}$ be the unique $\mathbf{Z}$-linear
map such that
$$
sp_{X/R}([Z]) = [\overline{Z}_\kappa]_r
$$
We briefly discuss why this is well defined. First, observe that the
morphism $X_K \to X$ is quasi-compact and hence the morphism $Z \to X$
is quasi-compact. Thus taking the scheme theoretic image of $Z \to X$
commutes with flat base change by
Morphisms, Lemma \ref{morphisms-lemma-flat-base-change-scheme-theoretic-image}.
In particular, base changing back to $X_K$ we see that $Z = \overline{Z}_K$.
Since $Z$ is integral, of course $\overline{Z}$ is integral too and
in fact is equal to the unique integral closed subscheme whose generic
point is the (image of the) generic point of $Z$. It follows from
Varieties, Lemma \ref{varieties-lemma-dominate-valuation-ring-dimension-fibres}
that $Z_\kappa$ is equidimensional of dimension $r$.
\begin{lemma}
\label{lemma-specialization-module}
Let $R$ be a discrete valuation ring with fraction field $K$ and residue field
$\kappa$. Let $X$ be a scheme locally of finite type over $R$. Let $r \geq 0$.
Let $\mathcal{F}$ be a coherent $\mathcal{O}_X$-module flat over $R$. Assume
$\dim(\text{Supp}(\mathcal{F}_K)) \leq r$. Then
$\dim(\text{Supp}(\mathcal{F}_\kappa)) \leq r$ and
$$
sp_{X/R}([\mathcal{F}_K]_r) = [\mathcal{F}_\kappa]_r
$$
\end{lemma}
\begin{proof}
The statement on dimension follows from More on Morphisms, Lemma
\ref{more-morphisms-lemma-relative-dimension-support-flat}.
Let $x$ be a generic point of an integral closed subscheme
$Z \subset X_\kappa$ of dimension $r$. To finish the proof
we wil show that the coefficient of $[Z]$
in the left (L) and right hand side (R) of equality are the same.
\medskip\noindent
Let $A = \mathcal{O}_{X, x}$ and $M = \mathcal{F}_x$.
Observe that $M$ is a finite $A$-module flat over $R$.
Let $\pi \in R$ be a uniformizer so that
$A/\pi A = \mathcal{O}_{X_\kappa, x}$.
By Chow Homology, Lemma \ref{chow-lemma-additivity-divisors-restricted}
we have
$$
\sum\nolimits_i \text{length}_A(A/(\pi, \mathfrak q_i))
\text{length}_{A_{\mathfrak q_i}}(M_{\mathfrak q_i}) =
\text{length}_A(M/\pi M)
$$
where the sum is over the minimal primes
$\mathfrak q_i$ in the support of $M$.
Since $\pi$ is a nonzerodivisor on $M$ we see
that $\pi \not \in \mathfrak q_i$ and hence
these primes correspond to those generic points $y_i \in X_K$ of the
support of $\mathcal{F}_K$ which specialize to our chosen $x \in X_\kappa$.
Thus the left hand side is the coefficient of $[Z]$
in (L). Of course $\text{length}_A(M/\pi M)$ is the coefficient
of $[Z]$ in (R). This finishes the proof.
\end{proof}
\begin{lemma}
\label{lemma-specialization-closed}
Let $R$ be a discrete valuation ring with fraction field $K$ and residue field
$\kappa$. Let $X$ be a scheme locally of finite type over $R$. Let $r \geq 0$.
Let $W \subset X$ be a closed subscheme flat over $R$. Assume
$\dim(W_K) \leq r$. Then $\dim(W_\kappa) \leq r$ and
$$
sp_{X/R}([W_K]_r) = [W_\kappa]_r
$$
\end{lemma}
\begin{proof}
Taking $\mathcal{F} = \mathcal{O}_W$ this is a special case of
Lemma \ref{lemma-specialization-module}. See
Chow Homology, Lemma \ref{chow-lemma-cycle-closed-coherent}.
\end{proof}
\begin{lemma}
\label{lemma-specialization-extension}
Let $R'/R$ be an extension of discrete valuation rings inducing fraction field
extension $K'/K$ and residue field extension $\kappa'/\kappa$
(More on Algebra, Definition
\ref{more-algebra-definition-extension-discrete-valuation-rings}).
Let $X$ be locally of finite type over $R$. Denote $X' = X_{R'}$.
Then the diagram
$$
\xymatrix{
Z_r(X'_{K'}) \ar[rr]_{sp_{X'/R'}} & & Z_r(X'_{\kappa'}) \\
Z_r(X_K) \ar[rr]^{sp_{X/R}} \ar[u] & & Z_r(X_\kappa) \ar[u]
}
$$
commutes where $r \geq 0$ and the vertical arrows are base change maps.
\end{lemma}
\begin{proof}
Observe that $X'_{K'} = X_{K'} = X_K \times_{\Spec(K)} \Spec(K')$
and similarly for closed fibres, so that the vertical arrows indeed
make sense (see Section \ref{section-relative-fields}).
Now if $Z \subset X_K$ is an integral closed subscheme with
scheme theoretic image $\overline{Z} \subset X$, then we see that
$Z_{K'} \subset X_{K'}$ is a closed subscheme with scheme theoretic
image $\overline{Z}_{R'} \subset X_{R'}$. The base change of
$[Z]$ is $[Z_{K'}]_r = [\overline{Z}_{K'}]_r$ by definition. We have
$$
sp_{X/R}([Z]) = [\overline{Z}_\kappa]_r
\quad\text{and}\quad
sp_{X'/R'}([\overline{Z}_{K'}]_r) = [(\overline{Z}_{R'})_{\kappa'}]_r
$$
by Lemma \ref{lemma-specialization-module}. Since
$(\overline{Z}_{R'})_{\kappa'} = (\overline{Z}_\kappa)_{\kappa'}$
we conclude.
\end{proof}
\begin{lemma}
\label{lemma-specialization-flat-pullback}
Let $R$ be a discrete valuation ring with fraction field $K$ and residue field
$\kappa$. Let $X$ be a scheme locally of finite type over $R$.
Let $f : X' \to X$ be a morphism which is locally of finite type, flat,
and of relative dimension $e$. Then the diagram
$$
\xymatrix{
Z_{r + e}(X'_K) \ar[rr]_{sp_{X'/R}} & & Z_{r + e}(X'_\kappa) \\
Z_r(X_K) \ar[rr]^{sp_{X/R}} \ar[u] & & Z_r(X_\kappa) \ar[u]
}
$$
commutes where $r \geq 0$ and the vertical arrows are given
by flat pullback.
\end{lemma}
\begin{proof}
Let $Z \subset X$ be an integral closed subscheme dominating $R$.
By the construction of $sp_{X/R}$ we have $sp_{X/R}([Z_K]) = [Z_\kappa]_r$
and this characterizes the specialization map.
Set $Z' = f^{-1}(Z) = X' \times_X Z$.
Since $R$ is a valuation ring, $Z$ is flat over $R$.
Hence $Z'$ is flat over $R$ and
$sp_{X'/R}([Z'_K]_{r + e}) = [Z'_\kappa]_{r + e}$
by Lemma \ref{lemma-specialization-closed}.
Since by Chow Homology, Lemma \ref{chow-lemma-pullback-coherent}
we have $f_K^*[Z_K] = [Z'_K]_{r + e}$ and
$f_\kappa^*[Z_\kappa]_r = [Z'_\kappa]_{r + e}$ we win.
\end{proof}
\begin{lemma}
\label{lemma-specialization-proper-pushforward}
Let $R$ be a discrete valuation ring with fraction field $K$ and residue field
$\kappa$. Let $f : X \to Y$ be a proper morphism of schemes locally of
finite type over $R$. Then the diagram
$$
\xymatrix{
Z_r(X_K) \ar[rr]_{sp_{X/R}} \ar[d] & & Z_r(X_\kappa) \ar[d] \\
Z_r(Y_K) \ar[rr]^{sp_{Y/R}} & & Z_r(Y_\kappa)
}
$$
commutes where $r \geq 0$ and the vertical arrows are given
by proper pushforward.
\end{lemma}
\begin{proof}
Let $Z \subset X$ be an integral closed subscheme dominating $R$.
By the construction of $sp_{X/R}$ we have $sp_{X/R}([Z_K]) = [Z_\kappa]_r$
and this characterizes the specialization map.
Set $Z' = f(Z) \subset Y$. Then $Z'$ is an integral closed subscheme
of $Y$ dominating $R$. Thus $sp_{Y/R}([Z'_K]) = [Z'_\kappa]_r$.
\medskip\noindent
We can think of $[Z]$ as an element of $Z_{r + 1}(X)$. By definition
we have $f_*[Z] = 0$ if $\dim(Z') < r + 1$ and $f_*[Z] = d[Z']$
if $Z \to Z'$ is generically finite of degree $d$.
Since proper pushforward commutes with flat pullback by $Y_K \to Y$
(Chow Homology, Lemma \ref{chow-lemma-flat-pullback-proper-pushforward})
we see that correspondingly $f_{K, *}[Z_K] = 0$ or $f_{K, *}[Z_K] = d[Z'_K]$.
Let us apply Chow Homology, Lemma \ref{chow-lemma-closed-in-X-gysin} to
the commutative diagram
$$
\xymatrix{
X_\kappa \ar[d] \ar[r]_i & X \ar[d] \\
Y_\kappa \ar[r]^j & Y
}
$$
We obtain that $f_{\kappa, *}[Z_\kappa]_r = 0$ or
$f_{\kappa, *}[Z_\kappa] = d[Z'_\kappa]_r$ because
clearly $i^*[Z] = [Z_k]_r$ and $j^*[Z'] = [Z'_\kappa]_r$.
Putting everything together we conclude.
\end{proof}
\section{Families of cycles on fibres}
\label{section-cycles-fibres}
\noindent
Let $f : X \to S$ be a morphism of schemes which is locally of finite type.
Let $r \geq 0$ be an integer. A
{\it family $\alpha$ of $r$-cycles on fibres of $X/S$} is a family
$$
\alpha = (\alpha_s)_{s \in S}
$$
indexed by the points $s$ of the scheme $S$ where $\alpha_s \in Z_r(X_s)$
is an $r$ cycle on the scheme theoretic fibre $X_s$ of $f$ at $s$.
There are various constructions we can perform on families of
$r$-cycles on fibres.
\medskip\noindent
{\bf Base change.} Let
$$
\xymatrix{
X' \ar[r] \ar[d] & X \ar[d]^f \\
S' \ar[r]^g & S
}
$$
be a catesian square of morphisms of schemes with $f$ locally of finite type.
Let $r \geq 0$ be an integer. Given a family $\alpha$ of $r$-cycles on
fibres of $X/S$ we define the {\it base change} $g^*\alpha$ of $\alpha$
to be the family
$$
g^*\alpha = (\alpha'_{s'})_{s' \in S'}
$$
where $\alpha'_{s'} \in Z_r(X'_{s'})$ is the base change
of the cycle $\alpha_s$ with $s' = g(s)$ as in
Section \ref{section-relative-fields} via the identitification
$X'_{s'} = X_s \times_{\Spec(\kappa(s))} \Spec(\kappa(s'))$
of scheme theoretic fibres.
\medskip\noindent
{\bf Restriction.} Let $f : X \to S$ be a morphism of schemes which is locally
of finite type. Let $r \geq 0$ be an integer. Let $U \subset X$ and
$V \subset S$ be open subschemes with $f(U) \subset V$. Given a family
$\alpha$ of $r$-cycles on fibres of $X/S$ we can define the
{\it restriction} $\alpha|_U$ of $\alpha$ to be the
family of $r$-cycles on fibres of $U/V$
$$
\alpha|_U = (\alpha_s|_{U_s})_{s \in V}
$$
of restrictions to scheme theoretic fibres.
\medskip\noindent
{\bf Flat pullback.} Let $X \to S$ be a morphism of schemes which is locally
of finite type. Let $r, e \geq 0$ be integers. Let $f : X' \to X$ be a
flat morphism, locally of finite type, and of relative dimension $e$.
Given a family $\alpha$ of $r$-cycles
on fibres of $X/S$ we define the {\it flat pullback} $f^*\alpha$ of $\alpha$
to be the family of $(r + e)$-cycles on fibres
$$
f^*\alpha = (f_s^*\alpha_s)_{s \in S}
$$
where $f_s^*\alpha_s \in Z_{r + e}(X'_s)$ is the flat pullback
of the cycle $\alpha_s$ in $Z_r(X_s)$ by the flat morphism
$f_s : X'_s \to X_s$ of relative dimension $e$
of scheme theoretic fibres.
\medskip\noindent
{\bf Proper pushforward.} Let
$$
\xymatrix{
X \ar[rr]_f \ar[rd] & & Y \ar[ld] \\
& S
}
$$
be a commutative diagram of morphisms of schemes with $X$ and $Y$
locally of finite type over $S$ and $f$ proper. Let $r \geq 0$ be an integer.
Given a family $\alpha$ of $r$-cycles on fibres of $X/S$ we define the
{\it proper pushforward} $f_*\alpha$ of $\alpha$ to be the family of
$r$-cycles on fibres of $Y/S$ by
$$
f_*\alpha = (f_{s, *}\alpha_s)_{s \in S}
$$
where $f_{s, *}\alpha_s \in Z_r(Y_s)$ is the proper pushforward
of the cycle $\alpha_s$ in $Z_r(X_s)$ by the proper morphism
$f_s : X_s \to Y_s$ of scheme theoretic fibres.
\begin{lemma}
\label{lemma-compatibilities}
We have the following compatibilities between the operations above:
(1) base change is functorial,
(2) restriction is a combination of base change and (a special case of)
flat pullback,
(3) flat pullback commutes with base change,
(4) flat pullback is functorial,
(5) proper pushforward commutes with base change,
(6) proper pushforward is functorial, and
(7) proper pushforward commutes with flat pullback.
\end{lemma}
\begin{proof}
Each of these compatibilities follows directly from the corresponding
results proved in the chapter on Chow homology applied to the fibres
over $S$ of the schemes in question. We omit the precise statements and
the detailed proofs. Here are some references.
Part (1): Chow Homology, Lemma
\ref{chow-lemma-compose-base-change}.
Part (2): Obvious.
Part (3): Chow Homology, Lemma
\ref{chow-lemma-pullback-base-change-pullback}.
Part (4): Chow Homology, Lemma
\ref{chow-lemma-compose-flat-pullback}.
Part (5): Chow Homology, Lemma
\ref{chow-lemma-pullback-base-change-pushforward}.
Part (6): Chow Homology, Lemma
\ref{chow-lemma-compose-pushforward}.
Part (7): Chow Homology, Lemma
\ref{chow-lemma-flat-pullback-proper-pushforward}.
\end{proof}
\begin{example}
\label{example-family-associated-module}
Let $f : X \to S$ be a morphism of schemes which is locally of finite type.
Let $r \geq 0$ be an integer. Let $\mathcal{F}$ be a quasi-coherent
$\mathcal{O}_X$-module of finite type. For $s \in S$ denote $\mathcal{F}_s$
the pullback of $\mathcal{F}$ to $X_s$.
Assume $\dim(\text{Supp}(\mathcal{F}_s)) \leq r$ for all $s \in S$.
Then we can associate to $\mathcal{F}$ the family $[\mathcal{F}/X/S]_r$ of
$r$-cycles on fibres of $X/S$ defined by the formula
$$
[\mathcal{F}/X/S]_r = ([\mathcal{F}_s]_r)_{s \in S}
$$
where $[\mathcal{F}_s]_r$ is given by Chow Homology, Definition
\ref{chow-definition-cycle-associated-to-coherent-sheaf}.
\end{example}
\begin{lemma}
\label{lemma-family-associated-module}
The construction in Example \ref{example-family-associated-module}
is compatible with base change, restriction, and flat pullback.
\end{lemma}
\begin{proof}
See Chow Homology, Lemmas
\ref{chow-lemma-pullback-coherent-base-change} and
\ref{chow-lemma-pullback-coherent}.
\end{proof}
\begin{example}
\label{example-family-associated-closed}
Let $f : X \to S$ be a morphism of schemes which is locally of finite type.
Let $r \geq 0$ be an integer. Let $Z \subset X$ be a closed subscheme.
For $s \in S$ denote $Z_s$ the inverse image of $Z$ in $X_s$
or equivalently the scheme theoretic fibre of $Z$ at $s$ viewed
as a closed subscheme of $X_s$.
Assume $\dim(Z_s) \leq r$ for all $s \in S$.
Then we can associate to $Z$ the family $[Z/X/S]_r$
of $r$-cycles on fibres of $X/S$ defined by the formula
$$
[Z/X/S]_r = ([Z_s]_r)_{s \in S}
$$
where $[Z_s]_r$ is given by
Chow Homology, Definition
\ref{chow-definition-cycle-associated-to-closed-subscheme}.
\end{example}
\begin{lemma}
\label{lemma-family-associated-closed}
The construction in Example \ref{example-family-associated-closed}
is compatible with base change, restriction, and flat pullback.
\end{lemma}
\begin{proof}
Taking $\mathcal{F} = (Z \to X)_*\mathcal{O}_Z$ this is a special case of
Lemma \ref{lemma-family-associated-module}. See
Chow Homology, Lemma \ref{chow-lemma-cycle-closed-coherent}.
\end{proof}
\begin{remark}[Support]
\label{remark-supports-family}
Let $f : X \to S$ be a morphism of schemes which is locally of finite type.
Let $r \geq 0$ be an integer. Let $\alpha$ be a family of $r$-cycles
on fibres of $X/S$. We define the {\it support} of $\alpha$ to be
$$
\text{Supp}(\alpha) =
\bigcup\nolimits_{s \in S} \text{Supp}(\alpha_s) \subset X
$$
Here $\text{Supp}(\alpha_s) \subset X_s$ is the
support of the cycle $\alpha_s$, see
Chow Homology, Definition \ref{chow-definition-support-cycle}.
The support $\text{Supp}(\alpha)$ is rarely a closed subset of $X$.
\end{remark}
\begin{lemma}
\label{lemma-support-family}
Taking the support as in Remark \ref{remark-supports-family}
is compatible with base change, restriction, and flat pullback.
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\begin{lemma}
\label{lemma-coequalizer-dim-r}
Let $f : X \to S$ be a morphism of schemes which is locally of finite type.
Let $r \geq 0$ be an integer. Let $g : S' \to S$ be a surjective morphism of
schemes. Set $S'' = S' \times_S S'$ and let $f' : X' \to S'$
and $f'' : X'' \to S''$ be the base changes of $f$.
Let $x \in X$ with $\text{trdeg}_{\kappa(f(x))}(\kappa(x)) = r$.
\begin{enumerate}
\item There exists an $x' \in X'$ mapping to $x$
with $\text{trdeg}_{\kappa(f'(x'))}(\kappa(x')) = r$.
\item If $x'_1, x'_2 \in X'$ are both as in (1), then there
exists an $x'' \in X''$ with
$\text{trdeg}_{\kappa(f''(x''))}(\kappa(x'')) = r$ and
$\text{pr}_i(x'') = x'_i$.
\end{enumerate}
\end{lemma}
\begin{proof}
Part (1) is
Morphisms, Lemma \ref{morphisms-lemma-dimension-fibre-after-base-change}.
Let $x'_1, x'_2$ be as in (2). Then since $X'' = X' \times_X X'$
we see that there
exists a $x'' \in X''$ mapping to both $x'_1$ and $x'_2$ (see for
example Descent, Lemma \ref{descent-lemma-equiv-fibre-product}).
Denote $s'' \in S''$, $s'_i \in S'$, and $s \in S$ the images
of $x''$, $x'_i$, and $x$.
Denote $k = \kappa(s)$ and let $Z \subset X_k$ be the integral
closed subscheme whose generic point is $x$. Then $x'_i$
is a generic point of an irreducible component of $Z_{\kappa(s'_i)}$.
Let $Z'' \subset Z_{\kappa(s'')}$ be an irreducible component
containing $x''$. Denote $\xi'' \in Z''$ the generic point.
Since $\xi'' \leadsto x''$ we see that $\xi''$ must also
map to $x'_i$ under the two projections. On the other hand,
we see that $\text{trdeg}_{\kappa(s'')}(\kappa(\xi'')) = r$
because it is a generic
point of an irreducible component of the base change of $Z$.
\end{proof}
\begin{lemma}
\label{lemma-descend-family}
Let $f : X \to S$ be a morphism of schemes which is locally of finite type.
Let $r \geq 0$ be an integer. Let $g : S' \to S$ be a morphism of
schemes and $X' = S' \times_S X$. Assume that for every $s \in S$ there
exists a point $s' \in S'$ with $g(s') = s$ and such that
$\kappa(s')/\kappa(s)$ is a separable extension of fields. Then
\begin{enumerate}
\item For families $\alpha_1$ and $\alpha_2$ of $r$-cycles on fibres of $X/S$
if $g^*\alpha_1 = g^*\alpha_2$, then $\alpha_1 = \alpha_2$.
\item Given a family $\alpha'$ of $r$-cycles on fibres of $X'/S'$ if
$\text{pr}_1^*\alpha' = \text{pr}_2^*\alpha'$ as families of
$r$-cycles on fibres of $(S' \times_S S') \times_S X / (S' \times_S S')$,
then there is a unique family $\alpha$ of $r$-cycles on fibres of $X/S$
such that $g^*\alpha = \alpha'$.
\end{enumerate}
\end{lemma}
\begin{proof}
Part (1) follows from the injectivity of the base change map discussed
in Section \ref{section-relative-fields}. (This argument works as
long as $S' \to S$ is surjective.)
\medskip\noindent
Let $\alpha'$ be as in (2). Denote
$\alpha'' = \text{pr}_1^*\alpha' = \text{pr}_2^*\alpha'$
the common value.
\medskip\noindent
Let $(X/S)^{(r)}$ be the set of $x \in X$ with
$\text{trdeg}_{\kappa(f(x))}(\kappa(x)) = r$
and similarly define $(X'/S')^{(r)}$ and $(X''/S'')^{(r)}$
Taking coefficients, we may think of $\alpha'$ and $\alpha''$ as functions
$\alpha' : (X'/S')^{(r)} \to \mathbf{Z}$ and
$\alpha'' : (X''/S'')^{(r)} \to \mathbf{Z}$.
Given a function
$$
\varphi : (X/S)^{(r)} \to \mathbf{Z}
$$
we define $g^*\varphi : (X'/S')^{(r)} \to \mathbf{Z}$ by analogy
with our base change operation. Namely, say $x' \in (X'/S')^{(r)}$
maps to $x \in X$, $s' \in S'$, and $s \in Z$.
Denote $Z' \subset X'_{s'}$ and $Z \subset X_s$ the integral
closed subschemes with generic points $x'$ and $x$. Note
that $\dim(Z') = r$. If $\dim(Z) < r$, then we set $(g^*\varphi)(x') = 0$.
If $\dim(Z) = r$, then $Z'$ is an irreducible component of $Z_{s'}$ and
hence has a multiplicity $m_{Z', Z_{s'}}$. Call this $m(x', g)$.
Then we define
$$
(g^*\varphi)(x') = m(x', g) \varphi(x)
$$
Note that the coefficients $m(x', g)$ are always positive integers
(see for example Lemma \ref{lemma-multiplicities-field-extension}).
We similarly have base change maps
$$
\text{pr}_1^*, \text{pr}_2^* :
\text{Map}((X'/S')^{(r)}, \mathbf{Z})
\longrightarrow
\text{Map}((X''/S'')^{(r)}, \mathbf{Z})
$$
It follows from the associativity of base change that we have
$\text{pr}_1^* \circ g^* = \text{pr}_2^* \circ g^*$ (small detail
omitted). To be explicity, in terms of the maps of sets this
equality just means that for $x'' \in (X''/S'')^{(r)}$ we have
$$
m(x'', \text{pr}_1) m(\text{pr}_1(x''), g) =
m(x'', \text{pr}_2) m(\text{pr}_2(x''), g)
$$
provided that $\text{pr}_1(x'')$ and $\text{pr}_2(x'')$ are
in $(X''/S'')^{(r)}$.
By Lemma \ref{lemma-coequalizer-dim-r} and an elementary
argument\footnote{Given $x \in (X/S)^{(r)}$ pick $x' \in (X'/S')^{(r)}$
mapping to $x$ and set $\alpha(x) = \alpha'(x')/m(x', g)$. This
is well defined by the formula and the lemma.}
using the previous displayed equation,
it follows that there exists a unique map
$$
\alpha : (X/S)^{(r)} \to \mathbf{Q}
$$
such that $g^*\alpha = \alpha'$. To finish the proof it suffices
to show that $\alpha$ has integer values (small detail omitted: one
needs to see that $\alpha$ determines a locally finite sum on
each fibre which follows from the corresponding fact for $\alpha'$).
Given any $x \in (X/S)^{(r)}$ with image $s \in S$
we can pick a point $s' \in S'$ such that $\kappa(s')/\kappa(s)$
is separable. Then we may choose $x' \in (X'/S')^{(r)}$ mapping
to $s$ and $x$ and we see that $m(x', g) = 1$ because
$Z_{s'}$ is reduced in this case. Whence $\alpha(x) = \alpha'(x')$
is an integer.
\end{proof}
\begin{lemma}
\label{lemma-pullback-universally-bijective}
Let $g : S' \to S$ be a bijective morphism of schemes
which induces isomorphisms of residue fields.
Let $f : X \to S$ be locally of finite type. Set $X' = S' \times_S X$.
Let $r \geq 0$. Then base change by $g$ determines a bijection
between the group of families of $r$-cycles on fibres of $X/S$ and
the group of families of $r$-cycles on fibres of $X'/S'$.
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\section{Relative cycles}
\label{section-families-specialization}
\noindent
Here is the definition we will work with; see Section \ref{section-compare}
for a comparison with the definitions in \cite{SV}.
\begin{definition}
\label{definition-relative-cycles}
Let $S$ be a locally Noetherian scheme. Let $f : X \to S$ be a morphism of
schemes which is locally of finite type. Let $r \geq 0$ be an integer.
A {\it relative $r$-cycle on $X/S$} is a family $\alpha$ of $r$-cycles
on fibres of $X/S$ such that for every morphism $g : S' \to S$
where $S'$ is the spectrum of a discrete valuation ring we have
$$
sp_{X'/S'}(\alpha_\eta) = \alpha_0
$$
where $sp_{X'/S'}$ is as in Section \ref{section-specialization}
and $\alpha_\eta$ (resp.\ $\alpha_0$) is the value of the base change
$g^*\alpha$ of $\alpha$ at the generic (resp.\ closed) point of $S'$.
The group of all relative $r$-cycles on $X/S$ is denoted $z(X/S, r)$.
\end{definition}
\begin{lemma}
\label{lemma-relative-cycle-functoriality}
Let $\alpha$ be a relative $r$-cycle on $X/S$ as in
Definition \ref{definition-relative-cycles}.
Then any restriction, base change, flat pullback, or proper pushforward
of $\alpha$ is a relative $r$-cycle.
\end{lemma}
\begin{proof}
For flat pullback use Lemma \ref{lemma-specialization-flat-pullback}.
Restriction is a special case of flat pullback. To see it holds for
base change use that base change is transitive.
For proper pushforward use Lemma \ref{lemma-specialization-proper-pushforward}.
\end{proof}
\begin{lemma}
\label{lemma-relative-cycles-h-descent}
Let $f : X \to S$ be a morphism of schemes. Assume $S$ locally Noetherian
and $f$ locally of finite type. Let $r \geq 0$ be an integer. Let $\alpha$
be a family of $r$-cycles on fibres of $X/S$. Let $\{g_i : S_i \to S\}$
be a h covering (More on Flatness, Definition
\ref{flat-definition-h-covering}). Then $\alpha$ is a relative $r$-cycle
if and only if each base change $g_i^*\alpha$ is a relative $r$-cycle.
\end{lemma}
\begin{proof}
If $\alpha$ is a relative $r$-cycle, then each base change $g_i^*\alpha$ is a
relative $r$-cycle by Lemma \ref{lemma-relative-cycle-functoriality}.
Assume each $g_i^*\alpha$ is a relative $r$-cycle.
Let $g : S' \to S$ be a morphism where $S'$ is the spectrum of a discrete
valuation ring. After replacing $S$ by $S'$, $X$ by $X' = X \times_S S'$, and
$\alpha$ by $\alpha' = g^*\alpha$ and using that the base change of a
h covering is a h covering (More on Flatness, Lemma \ref{flat-lemma-h})
we reduce to the problem studied in the next paragraph.
\medskip\noindent
Assume $S$ is the spectrum of a discrete valuation ring with closed
point $0$ and generic point $\eta$. We have to show that
$sp_{X/S}(\alpha_\eta) = \alpha_0$. Since a h covering is a V covering
(by definition), there is an $i$ and a specialization $s' \leadsto s$
of points of $S_i$ with $g_i(s') = \eta$ and $g_i(s) = 0$, see
Topologies, Lemma \ref{topologies-lemma-refine-qcqs-V}. By
Properties, Lemma \ref{properties-lemma-locally-Noetherian-specialization-dvr}
we can find a morphism $h : S' \to S_i$ from the
spectrum $S'$ of a discrete valuation ring which maps
the generic point $\eta'$ to $s'$ and maps
the closed point $0'$ to $s$. Denote $\alpha' = h^*g_i^*\alpha$.
By assumption we have $sp_{X'/S'}(\alpha'_{\eta'}) = \alpha'_{0'}$.
Since $g = g_i \circ h : S' \to S$ is the morphism of schemes
induced by an extension of discrete valuation rings we conclude that
$sp_{X/S}$ and $sp_{X'/S'}$ are compatible with base change maps
on the fibres, see Lemma \ref{lemma-specialization-extension}.
We conclude that $sp_{X/S}(\alpha_\eta) = \alpha_0$ because
the base change map $Z_r(X_0) \to Z_r(X'_{0'})$ is injective
as discussed in Section \ref{section-relative-fields}.
\end{proof}
\begin{lemma}
\label{lemma-families-specialization-fppf-descent}
Let $f : X \to S$ be a morphism of schemes. Assume $S$ locally Noetherian
and $f$ locally of finite type. Let $r, e \geq 0$ be integers.
Let $\alpha$ be a family of $r$-cycles on fibres of $X/S$.
Let $\{f_i : X_i \to X\}$ be a jointly surjective family
of flat morphisms, locally of finite type, and of relative dimension $e$.
Then $\alpha$ is a relative $r$-cycle if and only if each flat
pullback $f_i^*\alpha$ is a relative $r$-cycle.
\end{lemma}
\begin{proof}
If $\alpha$ is a relative $r$-cycle, then each pull back $f_i^*\alpha$ is a
relative $r$-cycle by Lemma \ref{lemma-relative-cycle-functoriality}.
Assume each $f_i^*\alpha$ is a relative $r$-cycle.
Let $g : S' \to S$ be a morphism where $S'$ is the spectrum of a discrete
valuation ring. After replacing $S$ by $S'$, $X$ by $X' = X \times_S S'$, and
$\alpha$ by $\alpha' = g^*\alpha$
we reduce to the problem studied in the next paragraph.
\medskip\noindent
Assume $S$ is the spectrum of a discrete valuation ring with closed
point $0$ and generic point $\eta$. We have to show that
$sp_{X/S}(\alpha_\eta) = \alpha_0$. Denote $f_{i, 0} : X_{i, 0} \to X_0$
the base change of $f_i$ to the closed point of $S$. Similarly
for $f_{i, \eta}$.
Observe that
$$
f_{i, 0}^*sp_{X/S}(\alpha_\eta) =
sp_{X_i/S}(f_{i, \eta}^*\alpha_\eta) = f_{i, 0}^*\alpha_0
$$
Namely, the first equality holds by
Lemma \ref{lemma-specialization-flat-pullback}
and the second by assumption. Since the family of maps
$f_{i, 0}^* : Z_r(X_0) \to Z_r(X_{i, 0})$ is jointly
injective (due to the fact that $f_{i, 0}$ is jointly
surjective), we conclude what we want.
\end{proof}
\begin{lemma}
\label{lemma-check-after-closed}
Let $S$ be a locally Noetherian scheme. Let $i : X \to Y$ be a closed immersion
of schemes locally of finite type over $S$. Let $r \geq 0$.
Let $\alpha$ be a family of $r$-cycles on fibres of $X/S$.
Then $\alpha$ is a relative $r$-cycle on $X/S$ if and only if
$i_*\alpha$ is a relative $r$-cycle on $Y/S$.
\end{lemma}
\begin{proof}
Since base change commutes with $i_*$ (Lemma \ref{lemma-compatibilities})
it suffices to prove the following: if $S$ is the spectrum of a discrete
valuation ring with generic point $\eta$ and closed point $0$,
then $sp_{X/S}(\alpha_\eta) = \alpha_0$ if and only if
$sp_{Y/S}(i_{\eta, *}\alpha_\eta) = i_{0, *}\alpha_0$.
This is true because $i_{0, *} : Z_r(X_0) \to Z_r(Y_0)$
is injective and because $i_{0, *}sp_{X/S}(\alpha_\eta) =
sp_{Y/S}(i_{\eta, *}\alpha_\eta)$ by
Lemma \ref{lemma-specialization-proper-pushforward}.
\end{proof}
\noindent
The following lemma will be strengthened in
Lemma \ref{lemma-relative-cycles-equal}.
\begin{lemma}
\label{lemma-uniqueness-extension}
Let $f : X \to S$ be a morphism of schemes. Assume $S$ is locally Noetherian
and $f$ locally of finite type. Let $r \geq 0$. Let $\alpha$ and $\beta$
be relative $r$-cycles on $X/S$. The following are equivalent
\begin{enumerate}
\item $\alpha = \beta$, and
\item $\alpha_\eta = \beta_\eta$ for any generic point $\eta \in S$
of an irreducible component of $S$.
\end{enumerate}
\end{lemma}
\begin{proof}
The implication (1) $\Rightarrow$ (2) is immediate.
Assume (2). For every $s \in S$ we can find an $\eta$ as in (2)
which specializes to $s$. By
Properties, Lemma \ref{properties-lemma-locally-Noetherian-specialization-dvr}
we can find a morphism $g : S' \to S$ from the
spectrum $S'$ of a discrete valuation ring which maps
the generic point $\eta'$ to $\eta$ and maps
the closed point $0$ to $s$. Then $\alpha_s$ and $\beta_s$
are elements of $Z_r(X_s)$ which base change to the same
element of $Z_r(X_{0'})$, namely $sp_{X_{S'}/S'}(\alpha_{\eta'})$
where $\alpha_{\eta'}$ is the base change of $\alpha_\eta$.
Since the base change map $Z_r(X_s) \to Z_r(X_{0'})$ is injective
as discussed in Section \ref{section-relative-fields}
we conclude $\alpha_s = \beta_s$.
\end{proof}
\begin{lemma}
\label{lemma-family-associated-module-specialization}
In the situation of Example \ref{example-family-associated-module}
assume $S$ is locally Noetherian and
$\mathcal{F}$ is flat over $S$ in dimensions $\geq r$
(More on Flatness, Definition \ref{flat-definition-flat-dimension-n}).
Then $[\mathcal{F}/X/S]_r$ is a relative $r$-cycle on $X/S$.
\end{lemma}
\begin{proof}
By More on Flatness, Lemma \ref{flat-lemma-pre-flat-dimension-n}
the hypothesis on $\mathcal{F}$ is preserved by any base change.
Also, formation of $[\mathcal{F}/X/S]_r$ is compatible with any
base change by Lemma \ref{lemma-family-associated-module}.
Since the condition of being compatible with specializations
is checked after base change to the spectrum of a discrete valuation ring,
this reduces us to the case where $S$ is the spectrum of a valuation ring.
In this case the set
$U = \{x \in X \mid \mathcal{F}\text{ flat at }x\text{ over }S\}$
is open in $X$ by
More on Flatness, Lemma \ref{flat-lemma-finite-type-flat}.
Since the complement of $U$ in $X$ has fibres of dimension $< r$ over
$S$ by assumption, we see that restriction along the inclusion
$U \subset X$ induces an isomorphism on the groups of $r$-cycles
on fibres after any base change, compatible with specialization maps
and with formation of the relative cycle associated to $\mathcal{F}$.
Thus it suffices to show compability with
specializations for $[\mathcal{F}|_U / U /S]_r$.
Since $\mathcal{F}|_U$ is flat over $S$, this follows from
Lemma \ref{lemma-specialization-module} and the definitions.
\end{proof}
\begin{lemma}
\label{lemma-family-associated-closed-specialization}
In the situation of Example \ref{example-family-associated-closed}
assume $S$ is locally Noetherian and $Z$ is flat over $S$ in dimensions
$\geq r$. Then $[Z/X/S]_r$ is a relative $r$-cycle on $X/S$.
\end{lemma}
\begin{proof}
The assumption means that $\mathcal{O}_Z$ is flat over $S$ in
dimensions $\geq r$. Thus applying
Lemma \ref{lemma-family-associated-module-specialization}
with $\mathcal{F} = (Z \to X)_*\mathcal{O}_Z$ we conclude.
\end{proof}
\noindent
Let $S$ be a locally Noetherian scheme. Let $f : X \to S$ be a morphism
which is of finite type. Let $r \geq 0$. Denote $Hilb(X/S, r)$
the set of closed subschemes $Z \subset X$ such that $Z \to S$ is flat
and of relative dimension $\leq r$. By
Lemma \ref{lemma-family-associated-closed-specialization} for each
$Z \in Hilb(X/S, r)$ we have an element $[Z/X/S]_r \in z(X/S, r)$.
Thus we obtain a group homomorphism
\begin{equation}
\label{equation-cycle-classes}
\text{free abelian group on }Hilb(X/S, r) \longrightarrow z(X/S, r)
\end{equation}
sending $\sum n_i[Z_i]$ to $\sum n_i[Z_i/X/S]_r$.
A key feature of relative $r$-cycles is that they are locally
(on $X$ and $S$ in suitable topologies) in the image of this map.
\begin{lemma}
\label{lemma-get-cycles}
Let $f : X \to S$ be a finite type morphism of schemes with $S$ Noetherian.
Let $r \geq 0$. Let $\alpha$ be a relative $r$-cycle on $X/S$. Then there is
a proper, completely decomposed
(More on Morphisms, Definition \ref{more-morphisms-definition-cd-morphism})
morphism $g : S' \to S$ such that $g^*\alpha$ is in the image of
(\ref{equation-cycle-classes}).
\end{lemma}
\begin{proof}
By Noetherian induction, we may assume the result holds for the pullback of
$\alpha$ by any closed immersion $g : S' \to S$ which is not an isomorphism.
\medskip\noindent
Let $S_1 \subset S$ be an irreducible component (viewed as an integral closed
subscheme). Let $S_2 \subset S$ be the closure of the complement of $S'$
(viewed as a reduced closed subscheme). If $S_2 \not = \emptyset$, then
the result holds for the pullback of $\alpha$ by $S_1 \to S$ and $S_2 \to S$.
If $g_1 : S'_1 \to S_1$ and $g_2 : S'_2 \to S_2$
are the corresponding completely decomposed proper morphisms,
then $S' = S'_1 \amalg S'_2 \to S$
is a completely decomposed proper morphism and
we see the result holds for $S$\footnote{Namely, any closed
subscheme of $S'_1 \times_S X$ flat and of relative dimension
$\leq r$ over $S'_1$ may be viewed as a closed subscheme of $S' \times_S X$
flat and of relative dimension $\leq r$ over $S'$.}
. Thus we may assume $S' \to S$ is bijective
and we reduce to the case described in the next paragraph.
\medskip\noindent
Assume $S$ is integral. Let $\eta \in S$ be the generic point
and let $K = \kappa(\eta)$ be the function field of $S$.
Then $\alpha_\eta$ is an $r$-cycle on $X_K$.
Write $\alpha_\eta = \sum n_i[Y_i]$.
Taking the closure of $Y_i$ we obtain integral closed subschemes
$Z_i \subset X$ whose base change to $\eta$ is $Y_i$.
By generic flatness (for example Morphisms,
Proposition \ref{morphisms-proposition-generic-flatness}),
we see that $Z_i$ is flat over a nonempty open $U$ of $S$ for each $i$.
Applying More on Flatness, Lemma \ref{flat-lemma-flat-after-blowing-up}
we can find a $U$-admissible blowing up $g : S' \to S$