Skip to content

LiXY-Civil/gns

 
 

Repository files navigation

Graph Network Simulator (GNS)

DOI CircleCI Docker License

Krishna Kumar, The University of Texas at Austin.

Joseph Vantassel, Texas Advanced Computing Center, UT Austin.

Run GNS

Training

python3 -m gns.train --data_path="<input-training-data-path>" --model_path="<path-to-load-save-model-file>" --output_path="<path-to-save-output>" -ntraining_steps=100

Resume training

To resume training specify model_file and train_state_file:

python3 -m gns.train --data_path="<input-training-data-path>" --model_path="<path-to-load-save-model-file>" --output_path="<path-to-save-output>"  --model_file="model.pt" --train_state_file="train_state.pt" -ntraining_steps=100

Rollout

python3 -m gns.train --mode="rollout" --data_path="<input-data-path>" --model_path="<path-to-load-save-model-file>" --output_path="<path-to-save-output>" --model_file="model.pt" --train_state_file="train_state.pt"

Render

 python3 -m gns.render_rollout --rollout_path="<path-containing-rollout-file>/rollout_0.pkl" 

The renderer also writes .vtu files to visualize in ParaView.

Sand rollout

GNS prediction of Sand rollout after training for 2 million steps.

Datasets

The data loader provided with this PyTorch implementation utilizes the more general .npz format. The .npz format includes a list of tuples of arbitrary length where each tuple is for a different training trajectory and is of the form (position, particle_type). position is a 3-D tensor of shape (n_time_steps, n_particles, n_dimensions) and particle_type is a 1-D tensor of shape (n_particles).

The dataset contains:

  • Metadata file with dataset information (sequence length, dimensionality, box bounds, default connectivity radius, statistics for normalization, ...):

  • npz containing data for all trajectories (particle types, positions, global context, ...):

We provide the following datasets:

  • WaterDropSample (smallest dataset)
  • Sand
  • SandRamps

Download the dataset from DesignSafe DataDepot. If you are using this dataset please cite Vantassel and Kumar., 2022

Building environment on TACC LS6 and Frontera

  • to setup a virtualenv
sh ./build_venv.sh
  • check tests run sucessfully.
  • start your environment
source start_venv.sh 

Inspiration

PyTorch version of Graph Network Simulator based on https://arxiv.org/abs/2002.09405 and https://github.com/deepmind/deepmind-research/tree/master/learning_to_simulate.

Acknowledgement

This code is based upon work supported by the National Science Foundation under Grant OAC-2103937.

Citation

Repo

Kumar, K., & Vantassel, J. (2022). Graph Network Simulator: v1.0.1 (Version v1.0.1) [Computer software]. https://doi.org/10.5281/zenodo.6658322

Dataset

Vantassel, Joseph; Kumar, Krishna (2022) “Graph Network Simulator Datasets.” DesignSafe-CI. https://doi.org/10.17603/ds2-0phb-dg64 v1

Releases

No releases published

Packages

No packages published

Languages

  • Python 77.2%
  • Shell 10.3%
  • Jupyter Notebook 6.4%
  • TeX 5.6%
  • Dockerfile 0.5%