-
Notifications
You must be signed in to change notification settings - Fork 201
/
Copy pathtrain.py
284 lines (231 loc) · 10.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
# This code is based on tatsu-lab/stanford_alpaca. Below is the original copyright:
#
# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from llama_flash_attn_monkey_patch import replace_llama_attn_with_flash_attn
replace_llama_attn_with_flash_attn()
import os
import copy
from dataclasses import dataclass, field
import json
import pathlib
from typing import Dict, Optional, Sequence
import numpy as np
import torch
from torch.utils.data import Dataset
import datasets
import transformers
from transformers import Trainer
from transformers.trainer_pt_utils import LabelSmoother
IGNORE_TOKEN_ID = LabelSmoother.ignore_index
@dataclass
class ModelArguments:
model_name_or_path: Optional[str] = field(default="facebook/opt-125m")
@dataclass
class DataArguments:
data_path: str = field(
default=None, metadata={"help": "Path to the training data."}
)
data_cache_path: str = field(default=None,
metadata={"help": "Path to the cached jsonl data."})
lazy_preprocess: bool = False
@dataclass
class TrainingArguments(transformers.TrainingArguments):
cache_dir: Optional[str] = field(default=None)
optim: str = field(default="adamw_torch")
model_max_length: int = field(
default=512,
metadata={
"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."
},
)
local_rank = None
def rank0_print(*args):
if local_rank == 0:
print(*args)
def last_index(lst, value):
return next((len(lst) - i - 1 for i, x in enumerate(lst[::-1]) if x != value), -1)
def safe_ids(ids, max_value, pad_id):
return [i if i < max_value else pad_id for i in ids]
B_INST, E_INST = "[INST]", "[/INST]"
B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
dummy_message = {
"system": """\
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.""",
"id": "dummy_message",
"conversations": [
{"from": "human", "value": "Who are you?"},
{"from": "gpt", "value": "I am your virtual friend."},
{"from": "human", "value": "What can you do?"},
{"from": "gpt", "value": "I can chat with you."}
]
}
def tokenize(item, tokenizer):
roles = {"human": "user", "gpt": "assistant"}
input_ids = []
labels = []
if "instruction" in item and len(item["instruction"]) > 0:
system = item["instruction"]
else:
system = dummy_message["system"]
system = B_SYS + system + E_SYS
# add system before the first content in conversations
item["conversations"][0]['value'] = system + item["conversations"][0]['value']
for i, turn in enumerate(item["conversations"]):
role = turn['from']
content = turn['value']
content = content.strip()
if role == 'human':
content = f"{B_INST} {content} {E_INST} "
content_ids = tokenizer.encode(content)
labels += [IGNORE_TOKEN_ID] * (len(content_ids))
else:
# assert role == "gpt"
content = f"{content} "
content_ids = tokenizer.encode(content, add_special_tokens=False) + [tokenizer.eos_token_id] # add_special_tokens=False remove bos token, and add eos at the end
labels += content_ids
input_ids += content_ids
input_ids = input_ids[:tokenizer.model_max_length]
labels = labels[:tokenizer.model_max_length]
trunc_id = last_index(labels, IGNORE_TOKEN_ID) + 1
input_ids = input_ids[:trunc_id]
labels = labels[:trunc_id]
if len(labels) == 0:
return tokenize(dummy_message, tokenizer)
input_ids = safe_ids(input_ids, tokenizer.vocab_size, tokenizer.pad_token_id)
labels = safe_ids(labels, tokenizer.vocab_size, IGNORE_TOKEN_ID)
return input_ids, labels
class LazySupervisedDataset(Dataset):
"""Dataset for supervised fine-tuning."""
def __init__(self, raw_data, tokenizer: transformers.PreTrainedTokenizer):
super(LazySupervisedDataset, self).__init__()
self.tokenizer = tokenizer
rank0_print("Formatting inputs...Skip in lazy mode")
self.tokenizer = tokenizer
self.raw_data = raw_data
self.cached_data_dict = {}
def __len__(self):
return len(self.raw_data)
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
if i in self.cached_data_dict:
return self.cached_data_dict[i]
item = self.raw_data[i]
input_ids, labels = tokenize(
copy.deepcopy(item),
self.tokenizer)
input_ids = torch.tensor(input_ids)
labels = torch.tensor(labels)
ret = dict(
input_ids=input_ids,
labels=labels,
)
self.cached_data_dict[i] = ret
return ret
def load_json(data_path, data_cache_path):
if data_path.endswith(".json"):
return json.load(open(data_path, "r"))
elif data_path.endswith(".jsonl"):
dataset = datasets.load_dataset('json', data_files=data_path, cache_dir=data_cache_path)
return dataset['train']
elif os.path.exists(data_path):
dataset = datasets.load_from_disk(data_path)
return dataset['train']
else:
dataset = datasets.load_dataset(data_path, cache_dir=data_cache_path)
return dataset['train']
@dataclass
class DataCollatorForSupervisedDataset(object):
"""Collate examples for supervised fine-tuning."""
tokenizer: transformers.PreTrainedTokenizer
def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
input_ids, labels = tuple([instance[key] for instance in instances]
for key in ("input_ids", "labels"))
input_ids = torch.nn.utils.rnn.pad_sequence(
input_ids,
batch_first=True,
padding_value=self.tokenizer.pad_token_id)
labels = torch.nn.utils.rnn.pad_sequence(labels,
batch_first=True,
padding_value=IGNORE_TOKEN_ID)
return dict(
input_ids=input_ids,
labels=labels,
attention_mask=input_ids.ne(self.tokenizer.pad_token_id),
)
def make_supervised_data_module(tokenizer: transformers.PreTrainedTokenizer,
data_args) -> Dict:
"""Make dataset and collator for supervised fine-tuning."""
rank0_print("Loading data...")
train_json = load_json(data_args.data_path, data_args.data_cache_path)
train_dataset = LazySupervisedDataset(train_json, tokenizer=tokenizer)
data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer)
return dict(train_dataset=train_dataset,
eval_dataset=None,
data_collator=data_collator)
class CustomTrainer(Trainer):
def save_model(self, output_dir: Optional[str] = None, _internal_call: bool = False):
if self.fsdp is not None:
if output_dir is None:
output_dir = self.args.output_dir
from torch.distributed.fsdp import (
FullyShardedDataParallel as FSDP,
FullStateDictConfig,
StateDictType,
)
save_policy = FullStateDictConfig(offload_to_cpu=True, rank0_only=True)
with FSDP.state_dict_type(self.model, StateDictType.FULL_STATE_DICT, save_policy):
cpu_state_dict = self.model.state_dict()
if self.args.should_save:
self._save(output_dir, state_dict=cpu_state_dict) # noqa
# Push to the Hub when `save_model` is called by the user.
if self.args.push_to_hub and not _internal_call:
self.push_to_hub(commit_message="Model save")
else:
super().save_model(output_dir, _internal_call)
def train():
global local_rank
parser = transformers.HfArgumentParser(
(ModelArguments, DataArguments, TrainingArguments)
)
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
local_rank = training_args.local_rank
model = transformers.AutoModelForCausalLM.from_pretrained(
model_args.model_name_or_path,
cache_dir=training_args.cache_dir,
)
model.config.use_cache = False
tokenizer = transformers.AutoTokenizer.from_pretrained(
model_args.model_name_or_path,
cache_dir=training_args.cache_dir,
model_max_length=training_args.model_max_length,
padding_side="right",
use_fast=False,
)
tokenizer.pad_token = tokenizer.unk_token
data_module = make_supervised_data_module(tokenizer=tokenizer, data_args=data_args)
trainer = CustomTrainer(
model=model, tokenizer=tokenizer, args=training_args, **data_module
)
if training_args.deepspeed or training_args.gradient_checkpointing:
model.config.use_cache = False
if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")):
trainer.train(resume_from_checkpoint=True)
else:
trainer.train()
trainer.save_state()
print("Ready to save model")
trainer.save_model(training_args.output_dir)
if __name__ == "__main__":
train()