-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
316 lines (271 loc) · 8.76 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import logging
import os
import random
import learn2learn as l2l
import numpy as np
import torch
import torch.nn as nn
from dotenv import load_dotenv
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm, trange
from models.PDMER import PDMERModel
from utils.args import parse_args
from utils.dataset import (
generate_personalized_task_from_dataset,
generate_task_from_dataset,
)
from utils.DEAM.dataset import DEAMDataset
from utils.logger import setup_logging
from utils.PMEmo.dataset import PMEmoDataset
from utils.train import (
fast_adapter,
get_average_score,
get_dataloader_with_split_dataset,
get_loss_with_batch,
get_optimizer,
print_params_info,
save_config,
save_model,
validate_model,
)
def train():
setup_logging()
args = parse_args()
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
torch.cuda.manual_seed(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
torch.backends.cudnn.deterministic = True
support_dataset_dict = {
"PMEmo": PMEmoDataset,
"DEAM": DEAMDataset,
}
if args.dataset_name not in support_dataset_dict.keys():
raise ValueError(
f"Dataset name {args.dataset_name} is not supported, only support {support_dataset_dict.keys()}"
)
train_dataset = support_dataset_dict[args.dataset_name](
root=args.dataset_root,
device=args.device,
audio_embedding_dir_name=args.audio_embedding_dir_name,
loading_cache_tensor_in_device=args.loading_cache_tensor_in_device,
is_train_data=True,
loading_data_before_use=args.loading_data_before_use,
using_cache_tensor=not args.not_using_cache_tensor,
using_personalized_data=args.using_personalized_data_train,
)
test_dataset = support_dataset_dict[args.dataset_name](
root=args.dataset_root,
device=args.device,
audio_embedding_dir_name=args.audio_embedding_dir_name,
loading_cache_tensor_in_device=args.loading_cache_tensor_in_device,
is_train_data=False,
using_cache_tensor=not args.not_using_cache_tensor,
loading_data_before_use=args.loading_data_before_use,
using_personalized_data=args.using_personalized_data_validate,
)
train_loader, test_loader = get_dataloader_with_split_dataset(
train_dataset, test_dataset, args.batch_size
)
model: nn.Module = PDMERModel(
device=args.device,
query_embed_dim=args.model_query_embed_dim,
num_attention_heads=args.model_num_attention_heads,
num_hidden_layers=args.model_num_hidden_layers,
segmentation_duration=args.model_segmentation_duration,
feature_num_per_audio=args.model_feature_num_per_audio,
train_audio_duration=args.model_train_audio_duration,
dropout_rate=args.dropout_rate,
intermediate_size=args.intermediate_size,
hidden_act=args.hidden_act,
max_position_embeddings=args.max_position_embeddings,
embed_dim=args.embed_dim,
audio_input_key=args.audio_input_key,
local_context_length=args.local_context_length,
global_context_length=args.global_context_length,
position_embedding_type=args.position_embedding_type,
).to(args.device)
maml = (
l2l.algorithms.MAML(model, lr=args.meta_lr, first_order=True)
if not args.not_using_maml
else None
)
logging.info(
f"We will train the model with {'MAML' if maml is not None and not args.not_using_maml else 'Regular'} train mode."
)
print_params_info(model)
criterion = nn.SmoothL1Loss()
# We use `args.optimizer` to specify the optimizer
optimizer: torch.optim.Optimizer = get_optimizer(
args.optimizer,
(maml if maml is not None else model).parameters(),
lr=args.lr,
weight_decay=args.weight_decay,
)
logging.info(
f"Using {args.optimizer}, lr: {args.lr}, weight_decay: {args.weight_decay}, dropout rate: {args.dropout_rate}"
)
# Create a SummaryWriter for logging
writer: SummaryWriter = SummaryWriter(
log_dir=os.path.join(args.log_dir, args.train_name)
)
save_config(args=args, writer=writer)
valid_every_epoch = 10 if maml is not None else 1
min_val_loss = float("inf")
max_average_score = 0.0
train_loss = 0.0
for epoch in trange(args.num_epochs):
# Train the model
model.train()
if maml is not None:
maml.train()
if hasattr(optimizer, "train"):
optimizer.train()
if maml is not None:
train_loss = maml_train(**locals())
else:
train_loss = regular_train(**locals())
if epoch % valid_every_epoch == 0:
min_val_loss, max_average_score = validate(**locals())
def validate(
*,
maml,
model,
test_dataset,
optimizer,
criterion,
writer,
train_loss,
epoch,
args,
min_val_loss,
max_average_score,
valid_every_epoch,
**kwargs,
):
# Validation the model
if hasattr(optimizer, "eval"):
optimizer.eval()
val_loss, val_score = validate_model(
model=maml if maml is not None else model,
dataset=test_dataset,
criterion=criterion,
writer=writer,
val_mode="Validation",
epoch=epoch // valid_every_epoch,
args=args,
min_loss=min_val_loss,
is_maml=not args.not_using_maml,
)
average_score = get_average_score(val_score)
logging.info(
f"Epoch {epoch // valid_every_epoch}/{args.num_epochs}, Train Loss: {round(train_loss, 3)}, Val Loss: {round(val_loss, 3)}, Average Score: {round(average_score, 3)} , Score: { {k: round(v, 3) for k, v in val_score.items()} }"
)
if min_val_loss >= val_loss:
min_val_loss = val_loss
if max_average_score <= average_score:
max_average_score = average_score
# Save the model
# epoch % args.save_every_epoch == 0 or
if max_average_score <= average_score:
logging.info("Saving model")
save_model(
model, epoch // valid_every_epoch, args.train_name, log_dir=args.log_dir
)
return min_val_loss, max_average_score
def optimize_model(*, train_loss, step, score, writer, optimizer):
optimizer.step()
# Log training loss to TensorBoard
writer.add_scalar("Loss/Training", train_loss, step)
# Log average score
average_score = get_average_score(score)
writer.add_scalar(f"AverageScore/Training", average_score, step)
# Log training score to TensorBoard
for key, value in score.items():
writer.add_scalar(f"{key}/Training", value, step)
# Log lr
writer.add_scalar("Learn Rate", optimizer.param_groups[0]["lr"], step)
optimizer.zero_grad()
def maml_train(
*,
train_dataset,
args,
maml,
criterion,
writer,
optimizer,
epoch,
**kwargs,
):
train_loss = 0.0
for task in (
generate_personalized_task_from_dataset
if args.using_personalized_data_train
else generate_task_from_dataset
)(
dataset=train_dataset,
num_task=args.meta_batch_count,
batch_size=args.batch_size,
num_shot=args.num_shot,
):
# for i in range(args.meta_batch_count): # meta_step
# learner = maml.clone()
support_set, query_set = task
loss, score = fast_adapter(
maml=maml,
criterion=criterion,
args=args,
support_set=support_set,
query_set=query_set,
writer=writer,
)
loss.backward()
train_loss += loss.item()
train_loss /= args.meta_batch_count
for p in maml.parameters():
p.grad.data.mul_(1.0 / args.meta_batch_count)
optimize_model(
train_loss=train_loss,
step=epoch,
score=score,
writer=writer,
optimizer=optimizer,
)
return train_loss
def regular_train(
*,
train_loader,
model,
args,
criterion,
writer,
optimizer,
epoch,
**kwargs,
):
train_loss = 0.0
for i, batch in enumerate(tqdm(train_loader, desc="Training", leave=False)):
optimizer.zero_grad()
loss, score = get_loss_with_batch(
model=model,
batch=batch,
criterion=criterion,
device=args.device,
audio_input_key=args.audio_input_key,
args=args,
)[:2]
train_loss += loss.item()
loss.backward()
optimize_model(
train_loss=loss.item(),
step=epoch * len(train_loader) + i,
score=score,
writer=writer,
optimizer=optimizer,
)
train_loss /= len(train_loader)
return train_loss
if __name__ == "__main__":
load_dotenv(override=True)
train()