forked from reczoo/FuxiCTR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
AFM.py
75 lines (71 loc) · 3.53 KB
/
AFM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
# =========================================================================
# Copyright (C) 2021. Huawei Technologies Co., Ltd. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =========================================================================
import torch
from torch import nn
from fuxictr.pytorch.models import BaseModel
from fuxictr.pytorch.layers import EmbeddingLayer, InnerProductLayer, LR_Layer
class AFM(BaseModel):
def __init__(self,
feature_map,
model_id="AFM",
gpu=-1,
task="binary_classification",
learning_rate=1e-3,
embedding_dim=10,
attention_dropout=[0, 0],
attention_dim=10,
use_attention=True,
embedding_regularizer=None,
net_regularizer=None,
**kwargs):
super(AFM, self).__init__(feature_map,
model_id=model_id,
gpu=gpu,
embedding_regularizer=embedding_regularizer,
net_regularizer=net_regularizer,
**kwargs)
self.use_attention = use_attention
self.embedding_layer = EmbeddingLayer(feature_map, embedding_dim)
self.product_layer = InnerProductLayer(feature_map.num_fields, output="elementwise_product")
self.lr_layer = LR_Layer(feature_map, output_activation=None, use_bias=True)
self.attention = nn.Sequential(nn.Linear(embedding_dim, attention_dim),
nn.ReLU(),
nn.Linear(attention_dim, 1, bias=False),
nn.Softmax(dim=1))
self.weight_p = nn.Linear(embedding_dim, 1, bias=False)
self.dropout1 = nn.Dropout(attention_dropout[0])
self.dropout2 = nn.Dropout(attention_dropout[1])
self.output_activation = self.get_output_activation(task)
self.compile(kwargs["optimizer"], loss=kwargs["loss"], lr=learning_rate)
self.reset_parameters()
self.model_to_device()
def forward(self, inputs):
X, y = self.inputs_to_device(inputs)
feature_emb = self.embedding_layer(X)
elementwise_product = self.product_layer(feature_emb) # bs x f(f-1)/2 x dim
if self.use_attention:
attention_weight = self.attention(elementwise_product)
attention_weight = self.dropout1(attention_weight)
attention_sum = torch.sum(attention_weight * elementwise_product, dim=1)
attention_sum = self.dropout2(attention_sum)
afm_out = self.weight_p(attention_sum)
else:
afm_out = torch.flatten(elementwise_product, start_dim=1).sum(dim=-1).unsqueeze(-1)
y_pred = self.lr_layer(X) + afm_out
if self.output_activation is not None:
y_pred = self.output_activation(y_pred)
return_dict = {"y_true": y, "y_pred": y_pred}
return return_dict