forked from reczoo/FuxiCTR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
HFM.py
83 lines (78 loc) · 3.64 KB
/
HFM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
# =========================================================================
# Copyright (C) 2021. Huawei Technologies Co., Ltd. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =========================================================================
import torch
from torch import nn
from fuxictr.pytorch.models import BaseModel
from fuxictr.pytorch.layers import MLP_Layer, EmbeddingLayer, LR_Layer, HolographicInteractionLayer
class HFM(BaseModel):
def __init__(self,
feature_map,
model_id="HFM",
gpu=-1,
task="binary_classification",
learning_rate=1e-3,
embedding_initializer="torch.nn.init.normal_(std=1e-4)",
embedding_dim=10,
interaction_type="circular_convolution",
use_dnn=True,
hidden_units=[64, 64],
hidden_activations=["relu", "relu"],
batch_norm=False,
net_dropout=0,
embedding_regularizer=None,
net_regularizer=None,
**kwargs):
super(HFM, self).__init__(feature_map,
model_id=model_id,
gpu=gpu,
embedding_regularizer=embedding_regularizer,
net_regularizer=net_regularizer,
**kwargs)
self.embedding_layer = EmbeddingLayer(feature_map, embedding_dim)
self.lr_layer = LR_Layer(feature_map, output_activation=None)
self.hfm_layer = HolographicInteractionLayer(feature_map.num_fields, interaction_type=interaction_type)
self.use_dnn = use_dnn
if self.use_dnn:
input_dim = int(feature_map.num_fields * (feature_map.num_fields - 1) / 2) * embedding_dim
self.dnn = MLP_Layer(input_dim=input_dim,
output_dim=1,
hidden_units=hidden_units,
hidden_activations=hidden_activations,
output_activation=None,
dropout_rates=net_dropout,
batch_norm=batch_norm)
else:
self.proj_h = nn.Linear(embedding_dim, 1, bias=False)
self.output_activation = self.get_output_activation(task)
self.compile(kwargs["optimizer"], loss=kwargs["loss"], lr=learning_rate)
self.reset_parameters()
self.model_to_device()
def forward(self, inputs):
"""
Inputs: [X, y]
"""
X, y = self.inputs_to_device(inputs)
feature_emb = self.embedding_layer(X)
interact_out = self.hfm_layer(feature_emb)
if self.use_dnn:
hfm_out = self.dnn(torch.flatten(interact_out, start_dim=1))
else:
hfm_out = self.proj_h(interact_out.sum(dim=1))
y_pred = hfm_out + self.lr_layer(X)
if self.output_activation is not None:
y_pred = self.output_activation(y_pred)
return_dict = {"y_true": y, "y_pred": y_pred}
return return_dict