forked from reczoo/FuxiCTR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
WideDeep.py
70 lines (66 loc) · 3.04 KB
/
WideDeep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# =========================================================================
# Copyright (C) 2021. Huawei Technologies Co., Ltd. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =========================================================================
import torch
from torch import nn
from fuxictr.pytorch.models import BaseModel
from fuxictr.pytorch.layers import EmbeddingLayer, MLP_Layer, LR_Layer
class WideDeep(BaseModel):
def __init__(self,
feature_map,
model_id="WideDeep",
gpu=-1,
task="binary_classification",
learning_rate=1e-3,
embedding_dim=10,
hidden_units=[64, 64, 64],
hidden_activations="ReLU",
net_dropout=0,
batch_norm=False,
embedding_regularizer=None,
net_regularizer=None,
**kwargs):
super(WideDeep, self).__init__(feature_map,
model_id=model_id,
gpu=gpu,
embedding_regularizer=embedding_regularizer,
net_regularizer=net_regularizer,
**kwargs)
self.embedding_layer = EmbeddingLayer(feature_map, embedding_dim)
self.lr_layer = LR_Layer(feature_map, output_activation=None, use_bias=False)
self.dnn = MLP_Layer(input_dim=embedding_dim * feature_map.num_fields,
output_dim=1,
hidden_units=hidden_units,
hidden_activations=hidden_activations,
output_activation=None,
dropout_rates=net_dropout,
batch_norm=batch_norm,
use_bias=True)
self.output_activation = self.get_output_activation(task)
self.compile(kwargs["optimizer"], loss=kwargs["loss"], lr=learning_rate)
self.reset_parameters()
self.model_to_device()
def forward(self, inputs):
"""
Inputs: [X,y]
"""
X, y = self.inputs_to_device(inputs)
feature_emb = self.embedding_layer(X)
y_pred = self.lr_layer(X)
y_pred += self.dnn(feature_emb.flatten(start_dim=1))
if self.output_activation is not None:
y_pred = self.output_activation(y_pred)
return_dict = {"y_true": y, "y_pred": y_pred}
return return_dict