forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
finetune.py
262 lines (223 loc) Β· 10.3 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from dataclasses import dataclass, field
from functools import partial
from typing import List, Optional
import paddle
from utils import convert_example, reader
from paddlenlp.data import DataCollatorWithPadding
from paddlenlp.datasets import load_dataset
from paddlenlp.metrics import SpanEvaluator
from paddlenlp.trainer import (
CompressionArguments,
PdArgumentParser,
Trainer,
get_last_checkpoint,
)
from paddlenlp.transformers import UIE, UIEM, AutoTokenizer, export_model
from paddlenlp.utils.log import logger
@dataclass
class DataArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
Using `PdArgumentParser` we can turn this class into argparse arguments to be able to
specify them on the command line.
"""
train_path: str = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dev_path: str = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
max_seq_length: Optional[int] = field(
default=512,
metadata={
"help": "The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
},
)
dynamic_max_length: Optional[List[int]] = field(
default=None,
metadata={"help": "dynamic max length from batch, it can be array of length, eg: 16 32 64 128"},
)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: Optional[str] = field(
default="uie-base",
metadata={
"help": "Path to pretrained model, such as 'uie-base', 'uie-tiny', "
"'uie-medium', 'uie-mini', 'uie-micro', 'uie-nano', 'uie-base-en', "
"'uie-m-base', 'uie-m-large', or finetuned model path."
},
)
export_model_dir: Optional[str] = field(
default=None,
metadata={"help": "Path to directory to store the exported inference model."},
)
multilingual: bool = field(default=False, metadata={"help": "Whether the model is a multilingual model."})
def main():
parser = PdArgumentParser((ModelArguments, DataArguments, CompressionArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if model_args.model_name_or_path in ["uie-m-base", "uie-m-large"]:
model_args.multilingual = True
# Log model and data config
training_args.print_config(model_args, "Model")
training_args.print_config(data_args, "Data")
paddle.set_device(training_args.device)
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, world_size: {training_args.world_size}, "
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path)
if model_args.multilingual:
model = UIEM.from_pretrained(model_args.model_name_or_path)
else:
model = UIE.from_pretrained(model_args.model_name_or_path)
train_ds = load_dataset(reader, data_path=data_args.train_path, max_seq_len=data_args.max_seq_length, lazy=False)
dev_ds = load_dataset(reader, data_path=data_args.dev_path, max_seq_len=data_args.max_seq_length, lazy=False)
trans_fn = partial(
convert_example,
tokenizer=tokenizer,
max_seq_len=data_args.max_seq_length,
multilingual=model_args.multilingual,
dynamic_max_length=data_args.dynamic_max_length,
)
train_ds = train_ds.map(trans_fn)
dev_ds = dev_ds.map(trans_fn)
if training_args.device == "npu":
data_collator = DataCollatorWithPadding(tokenizer, padding="longest")
else:
data_collator = DataCollatorWithPadding(tokenizer)
criterion = paddle.nn.BCELoss()
def uie_loss_func(outputs, labels):
start_ids, end_ids = labels
start_prob, end_prob = outputs
start_ids = paddle.cast(start_ids, "float32")
end_ids = paddle.cast(end_ids, "float32")
loss_start = criterion(start_prob, start_ids)
loss_end = criterion(end_prob, end_ids)
loss = (loss_start + loss_end) / 2.0
return loss
def compute_metrics(p):
metric = SpanEvaluator()
start_prob, end_prob = p.predictions
start_ids, end_ids = p.label_ids
metric.reset()
num_correct, num_infer, num_label = metric.compute(start_prob, end_prob, start_ids, end_ids)
metric.update(num_correct, num_infer, num_label)
precision, recall, f1 = metric.accumulate()
metric.reset()
return {"precision": precision, "recall": recall, "f1": f1}
trainer = Trainer(
model=model,
criterion=uie_loss_func,
args=training_args,
data_collator=data_collator,
train_dataset=train_ds if training_args.do_train or training_args.do_compress else None,
eval_dataset=dev_ds if training_args.do_eval or training_args.do_compress else None,
tokenizer=tokenizer,
compute_metrics=compute_metrics,
)
trainer.optimizer = paddle.optimizer.AdamW(
learning_rate=training_args.learning_rate, parameters=model.parameters()
)
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
# Training
if training_args.do_train:
train_result = trainer.train(resume_from_checkpoint=checkpoint)
metrics = train_result.metrics
trainer.save_model()
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# Evaluate and tests model
if training_args.do_eval:
eval_metrics = trainer.evaluate()
trainer.log_metrics("eval", eval_metrics)
# export inference model
if training_args.do_export:
# You can also load from certain checkpoint
# trainer.load_state_dict_from_checkpoint("/path/to/checkpoint/")
if training_args.device == "npu":
# npu will transform int64 to int32 for internal calculation.
# To reduce useless transformation, we feed int32 inputs.
input_spec_dtype = "int32"
else:
input_spec_dtype = "int64"
if model_args.multilingual:
input_spec = [
paddle.static.InputSpec(shape=[None, None], dtype=input_spec_dtype, name="input_ids"),
paddle.static.InputSpec(shape=[None, None], dtype=input_spec_dtype, name="position_ids"),
]
else:
input_spec = [
paddle.static.InputSpec(shape=[None, None], dtype=input_spec_dtype, name="input_ids"),
paddle.static.InputSpec(shape=[None, None], dtype=input_spec_dtype, name="token_type_ids"),
paddle.static.InputSpec(shape=[None, None], dtype=input_spec_dtype, name="position_ids"),
paddle.static.InputSpec(shape=[None, None], dtype=input_spec_dtype, name="attention_mask"),
]
if model_args.export_model_dir is None:
model_args.export_model_dir = os.path.join(training_args.output_dir, "export")
export_model(model=trainer.model, input_spec=input_spec, path=model_args.export_model_dir)
trainer.tokenizer.save_pretrained(model_args.export_model_dir)
if training_args.do_compress:
@paddle.no_grad()
def custom_evaluate(self, model, data_loader):
metric = SpanEvaluator()
model.eval()
metric.reset()
for batch in data_loader:
if model_args.multilingual:
logits = model(input_ids=batch["input_ids"], position_ids=batch["position_ids"])
else:
logits = model(
input_ids=batch["input_ids"],
token_type_ids=batch["token_type_ids"],
position_ids=batch["position_ids"],
attention_mask=batch["attention_mask"],
)
start_prob, end_prob = logits
start_ids, end_ids = batch["start_positions"], batch["end_positions"]
num_correct, num_infer, num_label = metric.compute(start_prob, end_prob, start_ids, end_ids)
metric.update(num_correct, num_infer, num_label)
precision, recall, f1 = metric.accumulate()
logger.info("f1: %s, precision: %s, recall: %s" % (f1, precision, f1))
model.train()
return f1
trainer.compress(custom_evaluate=custom_evaluate)
if __name__ == "__main__":
main()