-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpractical_n.py
198 lines (186 loc) · 5.54 KB
/
practical_n.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import numpy as np
from joblib import Parallel, delayed
from tqdm.auto import tqdm
from histogramEstimator import HistogramEstimator
from truncatedGaussian import TruncatedGaussian
from truncatedLaplace import TruncatedLaplace
a, b = 0, 1
runs = 100
laplace_parameters = [
(
0.5,
{"D": 9.25, "C": 4.63, "epsilon": 2.00, "gamma": 0.5, "delta": 0.95},
),
(
0.8,
{"D": 4.38, "C": 2.19, "epsilon": 1.25, "gamma": 0.3, "delta": 0.95},
),
(
1.0,
{"D": 3.16, "C": 1.58, "epsilon": 1.00, "gamma": 0.2, "delta": 0.95},
),
(
2.0,
{"D": 1.27, "C": 0.64, "epsilon": 0.5, "gamma": 0.1, "delta": 0.95},
),
(
5.0,
{"D": 0.44, "C": 0.22, "epsilon": 0.2, "gamma": 0.05, "delta": 0.95},
),
]
gaussian_parameters = [
(
0.3,
{"D": 7.06, "C": 5.40, "epsilon": 5.56, "gamma": 1.4, "delta": 0.95},
),
(
0.5,
{"D": 2.42, "C": 2.03, "epsilon": 2.00, "gamma": 0.5, "delta": 0.95},
),
(
0.6,
{"D": 1.62, "C": 1.49, "epsilon": 1.39, "gamma": 0.3, "delta": 0.95},
),
(
1.0,
{"D": 0.54, "C": 0.70, "epsilon": 0.50, "gamma": 0.1, "delta": 0.95},
),
(
2.0,
{"D": 0.13, "C": 0.23, "epsilon": 0.13, "gamma": 0.05, "delta": 0.95},
),
]
rdp_laplace_parameters = [
(
1.5,
{"D": 1.83, "C": 0.913, "epsilon": 0.143, "gamma": 0.04, "delta": 0.95},
),
(
2.0,
{"D": 1.27, "C": 0.64, "epsilon": 0.082, "gamma": 0.02, "delta": 0.95},
),
(
3.0,
{"D": 0.78, "C": 0.4, "epsilon": 0.037, "gamma": 0.01, "delta": 0.95},
),
(
5.0,
{"D": 0.44, "C": 0.22, "epsilon": 0.013, "gamma": 0.004, "delta": 0.95},
),
]
rdp_gaussian_parameters = [
(
1.5,
{"D": 0.23, "C": 0.38, "epsilon": 0.016, "gamma": 0.004, "delta": 0.95},
),
(
2.0,
{
"D": 0.13,
"C": 0.23,
"epsilon": 0.0052,
"gamma": 0.002,
"delta": 0.95,
},
),
(
3.0,
{
"D": 0.056,
"C": 0.11,
"epsilon": 0.001,
"gamma": 0.0003,
"delta": 0.95,
},
),
(
5.0,
{
"D": 0.02,
"C": 0.04,
"epsilon": 0.00013,
"gamma": 0.00005,
"delta": 0.95,
},
),
]
all_experiments = [
(TruncatedLaplace, False, laplace_parameters),
(TruncatedGaussian, False, gaussian_parameters),
(TruncatedLaplace, True, rdp_laplace_parameters),
(TruncatedGaussian, True, rdp_gaussian_parameters),
]
file = "results/results.csv"
with open(file, "w") as f:
f.write(
"mechanism,a,b,delta,gamma,runs,scale,epsilon,D,C,k,m,n_th,n_pr,renyi\n"
)
n_exp = sum(len(params_list) for _, _, params_list in all_experiments)
with tqdm(total=n_exp) as pbar:
for mechanism_class, is_rdp, params_list in all_experiments:
for scale, params in params_list:
print(
f"\n{mechanism_class.__name__}, {'RDP, ' if is_rdp else ''}scale={scale}, D={params['D']}, C={params['C']}, epsilon={params['epsilon']}, gamma={params['gamma']}"
)
mechanism = mechanism_class(a=a, b=b, scale=scale)
estimator = HistogramEstimator(
mechanism=mechanism,
a=a,
b=b,
C=params["C"],
D=params["D"],
epsilon=params["epsilon"],
delta=params["delta"],
gamma=params["gamma"],
renyi=is_rdp,
alpha=2.0,
verbose=False,
)
n_th = estimator.n
m = estimator.m
if not m:
estimator.m = int(np.ceil(100 / estimator.gamma))
n_pr = 1
while True:
estimator.n = n_pr
valid = 0
n_res = 0
if n_pr > 1e7:
n_jobs = 10
prefer = "processes"
else:
n_jobs = -1
prefer = "threads"
for estimate in Parallel(
n_jobs=n_jobs, return_as="generator", prefer=prefer
)(delayed(estimator.estimate)(0, 1) for _ in range(runs)):
error = abs(estimate - estimator.epsilon)
n_res += 1
if error <= estimator.gamma:
valid += 1
pbar.set_description(
f"n = {n_pr:.2g}, run = {n_res}/{runs}, valid_ratio = {valid / n_res:.2g} (need > {estimator.delta}), error = {error:.2g} (need < {estimator.gamma})"
)
if valid / runs >= estimator.delta:
break
n_pr *= 2
result = [
mechanism.__class__.__name__.replace("Truncated", ""),
a,
b,
estimator.delta,
estimator.gamma,
runs,
scale,
params["epsilon"],
params["D"],
params["C"],
estimator.k if estimator.k is not None else "Und.",
m if m is not None else "Und.",
f"{n_th:.1g}" if n_th is not None else "Und.",
f"{n_pr:.1g}",
is_rdp,
]
with open(file, "a") as f:
f.write(",".join(str(i) for i in result) + "\n")
pbar.update(1)