-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathmodel.py
435 lines (362 loc) · 14.4 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
import torch
import torch.nn as nn
import torch.nn.functional as F
import utils
import common
class BottleneckBlock(nn.Module):
def __init__(self, in_planes, out_planes):
super(BottleneckBlock, self).__init__()
self.in_planes = in_planes
self.out_planes = out_planes
mid_planes = (out_planes // 2 ) if out_planes >= in_planes else in_planes // 2
self.conv1 = nn.Conv2d(in_planes, mid_planes, kernel_size=1, bias=True)
self.bn1 = nn.BatchNorm2d(mid_planes)
self.conv2 = nn.Conv2d(mid_planes, mid_planes, kernel_size=3, stride=1, padding=1, bias=True)
self.bn2 = nn.BatchNorm2d(mid_planes)
self.conv3 = nn.Conv2d(mid_planes, out_planes, kernel_size=1, bias=True)
self.bn3 = nn.BatchNorm2d(out_planes)
self.relu = nn.ReLU(inplace=True)
if in_planes != out_planes:
self.conv4 = nn.Conv2d(in_planes, out_planes, bias=True, kernel_size=1)
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
if self.in_planes != self.out_planes:
residual = self.conv4(x)
out += residual
out = self.bn3(out)
out = self.relu(out)
return out
class Hourglass(nn.Module):
def __init__(self, block=BottleneckBlock, nblocks=1, in_planes=64, depth=4):
super(Hourglass, self).__init__()
self.depth = depth
self.hg = self._make_hourglass(block, nblocks, in_planes, depth)
def _make_hourglass(self, block, nblocks, in_planes, depth):
hg = []
for i in range(depth):
res = []
for j in range(3):
res.append(self._make_residual(block, nblocks, in_planes))
if i == 0:
res.append(self._make_residual(block, nblocks, in_planes))
hg.append(nn.ModuleList(res))
return nn.ModuleList(hg)
def _make_residual(self, block, nblocks, in_planes):
layers = []
for i in range(0, nblocks):
layers.append(block(in_planes, in_planes))
return nn.Sequential(*layers)
def _hourglass_foward(self, n, x):
up1 = self.hg[n-1][0](x)
low1 = F.max_pool2d(x, 2, stride=2)
low1 = self.hg[n-1][1](low1)
if n > 1:
low2 = self._hourglass_foward(n-1, low1)
else:
low2 = self.hg[n-1][3](low1)
low3 = self.hg[n-1][2](low2)
up2 = F.interpolate(low3, scale_factor=2)
out = up1 + up2
return out
def forward(self, x):
return self._hourglass_foward(self.depth, x)
class ResNet18(nn.Module):
def __init__(self, block=BottleneckBlock, out_plane=256):
super(ResNet18, self).__init__()
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_residual(block, 2, 256, 512)
self.layer2 = self._make_residual(block, 2, 512, 512)
self.layer3 = self._make_residual(block, 2, 512, 512)
self.layer4 = self._make_residual(block, 2, 512, 512)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def _make_residual(self, block, nblocks, in_planes, out_planes):
layers = []
layers.append(block(in_planes, out_planes))
self.in_planes = out_planes
for i in range(1, nblocks):
layers.append(block(self.in_planes, out_planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.maxpool(x)#32
x = self.layer1(x)
x = self.maxpool(x)#16
x = self.layer2(x)
x = self.maxpool(x)#8
x = self.layer3(x)
x = self.maxpool(x)#4
x = self.layer4(x)
x = self.avgpool(x)#1
x = torch.flatten(x,1)
return x
class Hand2D(nn.Module):
def __init__(
self,
nstacks=2,
nblocks=1,
njoints=21,
block=BottleneckBlock,
):
super(Hand2D, self).__init__()
self.njoints = njoints
self.nstacks = nstacks
self.in_planes = 64
self.conv1 = nn.Conv2d(3, self.in_planes, kernel_size=7, stride=2, padding=3, bias=True)
self.bn1 = nn.BatchNorm2d(self.in_planes)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(2, stride=2)
self.sigmoid = nn.Sigmoid()
self.layer1 = self._make_residual(block, nblocks, self.in_planes, 2*self.in_planes)
self.layer2 = self._make_residual(block, nblocks, self.in_planes, 2*self.in_planes)
self.layer3 = self._make_residual(block, nblocks, self.in_planes, self.in_planes)
ch = self.in_planes
hg2b, res, fc, hm = [],[],[],[]
for i in range(nstacks):
hg2b.append(Hourglass(block, nblocks, ch, depth=4))
res.append(self._make_residual(block, nblocks, ch, ch))
hm.append(nn.Conv2d(ch, njoints, kernel_size=1, bias=True))
fc.append(self._make_fc(ch + njoints, ch))
self.hg2b = nn.ModuleList(hg2b)
self.res = nn.ModuleList(res)
self.fc = nn.ModuleList(fc)
self.hm = nn.ModuleList(hm)
def _make_fc(self, in_planes, out_planes):
conv = nn.Conv2d(in_planes, out_planes, kernel_size=1, bias=False)
bn = nn.BatchNorm2d(out_planes)
return nn.Sequential(conv, bn, self.relu)
def _make_residual(self, block, nblocks, in_planes, out_planes):
layers = []
layers.append(block(in_planes, out_planes) )
self.in_planes = out_planes
for i in range(1, nblocks):
layers.append(block(self.in_planes, out_planes))
return nn.Sequential(*layers)
def forward(self, x):
l_est_hm, l_enc = [], []
net = self.conv1(x)
net = self.bn1(net)
net = self.relu(net)
net = self.layer1(net)
net = self.maxpool(net)
net = self.layer2(net)
net = self.layer3(net)
for i in range(self.nstacks):
net = self.hg2b[i](net)
net = self.res[i](net)
est_hm = self.sigmoid(self.hm[i](net))
net = torch.cat((net,est_hm),1)
net = self.fc[i](net)
l_est_hm.append(est_hm)
l_enc.append(net)
assert len(l_est_hm) == self.nstacks
return l_est_hm, l_enc
class IKNet(nn.Module):
def __init__(
self,
njoints=21,
hidden_size_pose=[256, 512, 1024, 1024, 512, 256],
):
super(IKNet, self).__init__()
self.njoints = njoints
in_neurons = 3 * njoints
out_neurons = 16 * 4 # 16 quats
neurons = [in_neurons] + hidden_size_pose
invk_layers = []
for layer_idx, (inps, outs) in enumerate(zip(neurons[:-1], neurons[1:])):
invk_layers.append(nn.Linear(inps, outs))
invk_layers.append(nn.BatchNorm1d(outs))
invk_layers.append(nn.ReLU())
invk_layers.append(nn.Linear(neurons[-1], out_neurons))
self.invk_layers = nn.Sequential(*invk_layers)
def forward(self, joint):
joint = joint.contiguous().view(-1, self.njoints*3)
quat = self.invk_layers(joint)
quat = quat.view(-1, 16, 4)
quat = utils.normalize_quaternion(quat)
so3 = utils.quaternion_to_angle_axis(quat).contiguous()
so3 = so3.view(-1, 16 * 3)
return so3, quat
class Hand2Dto3D(nn.Module):
def __init__(
self,
nstacks=2,
nblocks=1,
njoints=21,
block=BottleneckBlock,
):
super(Hand2Dto3D, self).__init__()
self.njoints = njoints
self.nstacks = nstacks
self.in_planes = 256
self.relu = nn.ReLU(inplace=True)
self.sigmoid = nn.Sigmoid()
ch = self.in_planes
hg3d2b, res, fc, _fc = [],[],[],[]
hm3d, _hm3d = [],[]
for i in range(nstacks):
hg3d2b.append(Hourglass(block, nblocks, ch, depth=4))
res.append(self._make_residual(block, nblocks, ch, ch))
fc.append(self._make_fc(ch + 2*njoints, ch))
hm3d.append(nn.Conv2d(ch, 2*njoints, kernel_size=1, bias=True))
self.hg3d2b = nn.ModuleList(hg3d2b)
self.res = nn.ModuleList(res)
self.fc = nn.ModuleList(fc)
self.hm3d = nn.ModuleList(hm3d)
def _make_fc(self, in_planes, out_planes):
conv = nn.Conv2d(in_planes, out_planes, kernel_size=1, bias=False)
bn = nn.BatchNorm2d(out_planes)
return nn.Sequential(conv, bn, self.relu)
def _make_residual(self, block, nblocks, in_planes, out_planes):
layers = []
layers.append( block( in_planes, out_planes) )
self.in_planes = out_planes
for i in range(1, nblocks):
layers.append(block( self.in_planes, out_planes))
return nn.Sequential(*layers)
def forward(self, enc):
l_est_hm3d, l_enc3d = [],[]
net = enc
for i in range(self.nstacks):
net = self.hg3d2b[i](net)
net = self.res[i](net)
hm3d = self.sigmoid(self.hm3d[i](net))
net = torch.cat((net,hm3d),1)
net = self.fc[i](net)
l_est_hm3d.append(hm3d)
l_enc3d.append(net)
return l_est_hm3d, l_enc3d
class Hand3D(nn.Module):
def __init__(
self,
nstacks=2,
nblocks=1,
njoints=21,
block=BottleneckBlock
):
super(Hand3D, self).__init__()
self.hand2d = Hand2D(nstacks=nstacks, nblocks=nblocks, njoints=njoints, block=BottleneckBlock)
self.hand2dto3d = Hand2Dto3D(nstacks=nstacks, nblocks=nblocks, njoints=njoints, block=BottleneckBlock)
def forward(self, x):
hm, enc = self.hand2d(x)
hm3d, enc3d = self.hand2dto3d(enc[-1])
uvd = []
uvd.append(utils.hm_to_uvd(hm3d[-1]))
hm.append(hm3d[-1][:,:21,...])
return hm, uvd, enc, enc3d
class HandNet(nn.Module):
def __init__(
self,
njoints=21,
):
super(HandNet, self).__init__()
self.njoints = njoints
self.hand3d = Hand3D()
self.decoder = ResNet18()
hidden_size=[512, 512, 1024, 1024, 512, 256]
in_neurons = 512
out_neurons = 12
neurons = [in_neurons] + hidden_size
shapereg_layers = []
for layer_idx, (inps, outs) in enumerate(zip(neurons[:-1], neurons[1:])):
shapereg_layers.append(nn.Linear(inps, outs))
shapereg_layers.append(nn.BatchNorm1d(outs))
shapereg_layers.append(nn.ReLU())
shapereg_layers.append(nn.Linear(neurons[-1], out_neurons))
self.shapereg_layers = nn.Sequential(*shapereg_layers)
self.sigmoid = nn.Sigmoid()
self.iknet = IKNet()
self.ref_bone_link = (0, 9)
self.joint_root_idx = 9
def forward(self, x, infos=None):
intr = infos
batch_size = x.shape[0]
hm, uvd, _, enc3d = self.hand3d(x)
feat = self.decoder(enc3d[-1])
shape_vector = self.shapereg_layers(feat)
bone = self.sigmoid(shape_vector[:,0:1])
root = self.sigmoid(shape_vector[:,1:2])
beta = shape_vector[:,2:]
joint = utils.uvd2xyz(uvd[-1], root, bone, intr=intr, mode='persp')
joint_root = joint[:,self.joint_root_idx,:].unsqueeze(1)
joint_ = joint - joint_root
bone_pred = torch.zeros((batch_size, 1)).to(x.device)
for jid, nextjid in zip(self.ref_bone_link[:-1], self.ref_bone_link[1:]):
bone_pred += torch.norm(
joint_[:, jid, :] - joint_[:, nextjid, :],
dim=1, keepdim=True
)
bone_pred = bone_pred.unsqueeze(1) # (B,1,1)
bone_vis = bone_pred
_joint_ = joint_ / bone_pred
so3, quat = self.forward_ik(_joint_)
return hm[-1], so3, beta, joint_root, bone_vis
def forward_ik(self, joint):
so3, quat = self.iknet(joint)
return so3, quat
class HandNetInTheWild(nn.Module):
def __init__(
self,
njoints=21,
):
super(HandNetInTheWild, self).__init__()
self.njoints = njoints
self.hand3d = Hand3D()
self.decoder = ResNet18()
hidden_size=[512, 512, 1024, 1024, 512, 256]
in_neurons = 512
out_neurons = 12
neurons = [in_neurons] + hidden_size
shapereg_layers = []
for layer_idx, (inps, outs) in enumerate(zip(neurons[:-1], neurons[1:])):
shapereg_layers.append(nn.Linear(inps, outs))
shapereg_layers.append(nn.BatchNorm1d(outs))
shapereg_layers.append(nn.ReLU())
shapereg_layers.append(nn.Linear(neurons[-1], out_neurons))
self.shapereg_layers = nn.Sequential(*shapereg_layers)
self.sigmoid = nn.Sigmoid()
self.iknet = IKNet()
self.ref_bone_link = (0, 9)
self.joint_root_idx = 9
def forward(self, x, infos=None):
batch_size = x.shape[0]
hm, uvd, _, enc3d = self.hand3d(x)
feat = self.decoder(enc3d[-1])
shape_vector = self.shapereg_layers(feat)
bone = self.sigmoid(shape_vector[:,0:1])
root = self.sigmoid(shape_vector[:,1:2])
beta = shape_vector[:,2:]
joint = uvd[-1]
joint[:,:,2] = joint[:,:,2] * common.DEPTH_RANGE
j1 = joint[:,0,:]
j2 = joint[:,9,:]
deltaj = j1 - j2
s = torch.sqrt((deltaj[0,0]**2 + deltaj[0,1]**2)/(1 - deltaj[0,2]**2))
joint[:,:,:2] = joint[:,:,:2]/s
joint_root = joint[:,self.joint_root_idx,:].unsqueeze(1)
joint_ = joint - joint_root
bone_pred = torch.zeros((batch_size, 1)).to(x.device)
for jid, nextjid in zip(self.ref_bone_link[:-1], self.ref_bone_link[1:]):
bone_pred += torch.norm(
joint_[:, jid, :] - joint_[:, nextjid, :],
dim=1, keepdim=True
)
bone_pred = bone_pred.unsqueeze(1) # (B,1,1)
bone_vis = bone_pred
_joint_ = joint_ / bone_pred
so3, quat = self.forward_ik(_joint_)
return hm[-1], so3, beta, joint_root, bone_vis/2
def forward_ik(self, joint):
so3, quat = self.iknet(joint)
return so3, quat