-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmemory_retrieval_noise_max_loss.py
132 lines (102 loc) · 3.67 KB
/
memory_retrieval_noise_max_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import argparse
import pandas as pd
import wandb
import numpy as np
from utils import *
from functions import *
from data import *
parser = argparse.ArgumentParser()
parser.add_argument('--memory_size', type=int, default=100)
parser.add_argument('--data', type=str, default='mnist')
parser.add_argument('--beta', type=float, default=1.0)
parser.add_argument('--update_steps', type=int, default=1)
parser.add_argument('--kernel_epoch', type=int, default=100)
parser.add_argument('--activation', type=str, default='softmax')
parser.add_argument('--mode', type=str, default='MHN')
parser.add_argument('--kernel', type=str, default='lin')
parser.add_argument('--noise_level', type=float, default=1)
parser.add_argument('--seed', type=int, default=1)
parser.add_argument('--rerun', type=int, default=1)
args = parser.parse_args()
ACT_NAME = {
'softmax':F.softmax,
'sparsemax': sparsemax,
'top20':topk_20,
'top50':topk_50,
'top80':topk_80,
'random20':random_mask_02,
'random50':random_mask_05,
'random80':random_mask_08,
'entmax':entmax15,
'softmax1':softmax_1,
'poly-10':polynomial
}
def sqdiff(x, y):
x = torch.clamp(x, 0, 1)
y = torch.clamp(y, 0, 1)
sqdiff = torch.sum(torch.square(x - y), dim=-1)
return torch.abs(sqdiff)
def memory_retrieval(Xi, update_rule, activation=F.softmax, overlap=dot_product, steps=1, beta=1, noise_level=1):
dist = []
Xi = Xi.T
# (data_dim, memory_size)
for m in range(Xi.size(-1)):
x = Xi[:, m].clone()
perturb = noise_level*F.normalize(torch.normal(0,1,size=x.size()).cuda(), dim=0)
q = torch.clamp(torch.abs(x.clone() + perturb),0,1)
x_new = update_rule(Xi, q, beta, steps, overlap=overlap, activation=activation)
dist.append(sqdiff(x, x_new).cpu().item())
return np.mean(dist)
def main():
m_size = args.memory_size
if args.data == 'mnist':
trainset, _ = load_mnist(m_size)
elif args.data == 'cifar10':
trainset, _ = load_cifar10(m_size)
elif args.data == 'tiny_imagenet':
trainset, _ = load_tiny_imagenet(m_size)
elif args.data == 'synthetic':
trainset = load_synthetic(m_size)
torch.manual_seed(args.seed)
Xi, _ = trainset[0]
Xi = Xi.reshape(m_size, -1).cuda()
if args.activation == 'softmax':
activation = F.softmax
elif args.activation == 'sparsemax':
activation = sparsemax
elif args.activation == 'poly-10':
activation = polynomial
elif args.activation == 'entmax':
activation = entmax15
else:
activation = ACT_NAME[args.activation]
if args.mode == 'MHN':
overlap = dot_product
update_rule = MHN_update_rule
unif_loss = 100
elif args.mode == 'UMHN':
kernel, unif_loss = train_kernel_max(Xi, args.kernel_epoch, args.kernel)
overlap = kernel.kernel_fn
update_rule = UMHN_update_rule
elif args.mode == 'Man':
overlap = manhhatan_distance
update_rule = MHN_update_rule
unif_loss = 100
elif args.mode == 'L2':
overlap = l2_distance
update_rule = MHN_update_rule
unif_loss = 100
init_unif = uniform_loss(Xi.T)
config = vars(args)
wandb.init(
project="LMHN_noise",
config=config
)
error = memory_retrieval(Xi, update_rule, activation, overlap, steps=args.update_steps, beta=args.beta, noise_level=args.noise_level)
wandb.log({
'error':error,
'init_unif_loss':init_unif.item(),
'unif_loss':unif_loss
})
wandb.finish()
main()