-
Notifications
You must be signed in to change notification settings - Fork 67
/
Copy pathVBA_MCMC_predictiveDensity_fb.m
184 lines (162 loc) · 4.89 KB
/
VBA_MCMC_predictiveDensity_fb.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
function [pX,gX,pY,gY,X,Y,U] = VBA_MCMC_predictiveDensity_fb(f_fname,g_fname,u,n_t,options,dim,fb,N,np,lx,ly)
% prior predictive density under sDCM generative model (MCMC)
% function [pX,gX,pY,gY,X,Y] =
% VBA_MCMC_predictiveDensity(f_fname,g_fname,u,n_t,options,dim,N,np)
% IN:
% - f_fname: name/handle of the evolution function
% - g_fname: name/handle of the observation function
% - u: input to the system
% - n_t: number of time samples of the predictive density
% - options: the optional structure. The prior pdfs on
% evolution/observation parameters/hyperparameters are extracted from
% this structure.
% - dim: the dimension of the sDCM generative model
% - N: the number of MCMC samples used in the derivatio of the predictive
% density
% - np: the number of bins used to form the MCMC empirical histograms
% - lx: dim.nX2 matrix of min/max admissible range of states values
% - ly: dim.pX2 matrix of min/max admissible range of observables values
% OUT:
% - pX: the n_tXnpXdim.n 3D array of MCMC empirical histograms of hidden
% states
% - gX: the npXdim.n 2D array giving the grid used for forming the MCMC
% empirical histograms on each dimension of the hidden states
% - pX/gY: [id, but for observed data]
% - X: the dim.nXn_tXN set of MCMC samples used to form the histograms
% - Y: [id, but for observed data]
% Extension to take into account the possibility of the influence of
% feedback.
dim.u = max([fb.indy;fb.indfb]);
% Get time
et0 = clock;
% default sample size and histogram resolution
try, N ; catch, N = 1e3; end
try, np; catch, np = 50; end
try, lx; catch, lx = []; end
try, ly; catch, ly = []; end
% fix precision parameters & fill in missing optional fields
if dim.n>0
alpha = options.priors.a_alpha./options.priors.b_alpha;
try
if isinf(options.priors.a_alpha)
options.priors.a_alpha = 1;
options.priors.b_alpha = 1;
end
catch end
else
alpha = [];
end
try % if there are gaussian sources
sigma = options.priors.a_sigma./options.priors.b_sigma;
catch
sigma = [];
end
options.priors.AR = 0;
options.verbose = 0;
dim.n_t = n_t;
[options] = VBA_check([],u,f_fname,g_fname,dim,options);
fprintf(1,'MCMC sampling...')
fprintf(1,'%6.2f %%',0)
Y = zeros(dim.p,n_t,N);
X = zeros(dim.n,n_t,N);
U = zeros(dim.u,n_t,N);
out = [];
for i=1:N
[x0,theta,phi] = sampleFromPriors(options,dim);
[y,x,x0,eta,e,u] = VBA_simulate (n_t,f_fname,g_fname,theta,phi,u,alpha,sigma,options,x0,fb);
if ~ VBA_isWeird ({x, y}) && VBA_isInRange (x, lx) && VBA_isInRange (y, ly)
Y(:,:,i) = y;
X(:,:,i) = x;
U(:,:,i) = u;
fprintf(1,repmat('\b',1,8))
fprintf(1,'%6.2f %%',i*100/N)
else
out = [out;i];
end
end
Y(:,:,out) = [];
X(:,:,out) = [];
U(:,:,out) = [];
fprintf(1,repmat('\b',1,8))
fprintf(1,[' OK (took ',num2str(etime(clock,et0)),' seconds).'])
fprintf(1,'\n')
et0 = clock;
fprintf(1,'Forming histograms along X dimensions...')
fprintf(1,'%6.2f %%',0)
pX = zeros(n_t,np,dim.n);
gX = zeros(np,dim.n);
for i=1:dim.n
Xi = squeeze(X(i,:,:));
if isempty(lx)
m = mean(Xi(:));
sv = std(Xi(:));
nx = m-3*sv:6*sv/(np-1):m+3*sv;
else
dx = lx(i,2)-lx(i,1);
nx = lx(i,1):dx/(np-1):lx(i,2);
end
[ny,nx] = hist(Xi',nx);
pX(:,:,i) = ny';
gX(:,i) = nx;
fprintf(1,repmat('\b',1,8))
fprintf(1,'%6.2f %%',i*100/dim.n)
end
fprintf(1,repmat('\b',1,8))
fprintf(1,[' OK (took ',num2str(etime(clock,et0)),' seconds).'])
fprintf(1,'\n')
et0 = clock;
fprintf(1,'Forming histograms along Y dimensions...')
fprintf(1,'%6.2f %%',0)
pY = zeros(n_t,np,dim.p);
gY = zeros(np,dim.p);
for i=1:dim.p
Yi = squeeze(Y(i,:,:));
if isempty(ly)
m = mean(Yi(:));
sv = std(Yi(:));
nx = m-3*sv:6*sv/(np-1):m+3*sv;
else
dy = ly(i,2)-ly(i,1);
nx = ly(i,1):dy/(np-1):ly(i,2);
end
[ny,nx] = hist(Yi',nx);
pY(:,:,i) = ny';
gY(:,i) = nx;
fprintf(1,repmat('\b',1,8))
fprintf(1,'%6.2f %%',i*100/dim.p)
end
fprintf(1,repmat('\b',1,8))
fprintf(1,[' OK (took ',num2str(etime(clock,et0)),' seconds).'])
fprintf(1,'\n')
function [x0,theta,phi] = sampleFromPriors(options,dim)
priors = options.priors;
if dim.n > 0
if ~isequal(priors.SigmaX0,zeros(size(priors.SigmaX0)))
sV = VBA_sqrtm (priors.SigmaX0);
x0 = priors.muX0 + sV*randn(dim.n,1);
else
x0 = priors.muX0;
end
else
x0 = [];
end
if dim.n_theta > 0
if ~isequal(priors.SigmaTheta,zeros(size(priors.SigmaTheta)))
sV = VBA_sqrtm (priors.SigmaTheta);
theta = priors.muTheta + sV*randn(dim.n_theta,1);
else
theta = priors.muTheta;
end
else
theta = [];
end
if dim.n_phi > 0
if ~isequal(priors.SigmaPhi,zeros(size(priors.SigmaPhi)))
sV = VBA_sqrtm (priors.SigmaPhi);
phi = priors.muPhi + sV*randn(dim.n_phi,1);
else
phi = priors.muPhi;
end
else
phi = [];
end