-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpendulum.py
241 lines (179 loc) · 8.55 KB
/
pendulum.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
__credits__ = ["Carlos Luis"]
from typing import Optional
from os import path
import numpy as np
import pygame
from pygame import gfxdraw
import gym
from gym import spaces
from gym.utils import seeding
import math
class PendulumEnv(gym.Env):
"""
### Description
The inverted pendulum swingup problem is based on the classic problem in control theory. The system consists of a pendulum attached at one end to a fixed point, and the other end being free. The pendulum starts in a random position and the goal is to apply torque on the free end to swing it into an upright position, with its center of gravity right above the fixed point.
The diagram below specifies the coordinate system used for the implementation of the pendulum's
dynamic equations.
![Pendulum Coordinate System](./diagrams/pendulum.png)
- `x-y`: cartesian coordinates of the pendulum's end in meters.
- `theta` : angle in radians.
- `tau`: torque in `N m`. Defined as positive _counter-clockwise_.
### Action Space
The action is a `ndarray` with shape `(1,)` representing the torque applied to free end of the pendulum.
| Num | Action | Min | Max |
|-----|--------|------|-----|
| 0 | Torque | -2.0 | 2.0 |
### Observation Space
The observation is a `ndarray` with shape `(3,)` representing the x-y coordinates of the pendulum's free end and its angular velocity.
| Num | Observation | Min | Max |
|-----|------------------|------|-----|
| 0 | x = cos(theta) | -1.0 | 1.0 |
| 1 | y = sin(angle) | -1.0 | 1.0 |
| 2 | Angular Velocity | -8.0 | 8.0 |
### Rewards
The reward function is defined as:
*r = -(theta<sup>2</sup> + 0.1 * theta_dt<sup>2</sup> + 0.001 * torque<sup>2</sup>)*
where `$\theta$` is the pendulum's angle normalized between *[-pi, pi]* (with 0 being in the upright position).
Based on the above equation, the minimum reward that can be obtained is *-(pi<sup>2</sup> + 0.1 * 8<sup>2</sup> + 0.001 * 2<sup>2</sup>) = -16.2736044*, while the maximum reward is zero (pendulum is
upright with zero velocity and no torque applied).
### Starting State
The starting state is a random angle in *[-pi, pi]* and a random angular velocity in *[-1,1]*.
### Episode Termination
The episode terminates at 200 time steps.
### Arguments
- `g`: acceleration of gravity measured in *(m s<sup>-2</sup>)* used to calculate the pendulum dynamics. The default value is g = 10.0 .
```
gym.make('Pendulum-v1', g=9.81)
```
### Version History
* v1: Simplify the math equations, no difference in behavior.
* v0: Initial versions release (1.0.0)
"""
metadata = {"render_modes": ["human", "rgb_array"], "render_fps": 30}
def __init__(self, g=10.0):
self.max_speed = 8
self.max_torque = 2.0
self.dt = 0.05
self.precision = np.float32
self.explicit = False
self.g = g
self.m = 1.0
self.l = 1.0
self.screen = None
self.clock = None
self.isopen = True
self.screen_dim = 500
high = np.array([1.0, 1.0, self.max_speed], dtype=self.precision)
# This will throw a warning in tests/envs/test_envs in utils/env_checker.py as the space is not symmetric
# or normalised as max_torque == 2 by default. Ignoring the issue here as the default settings are too old
# to update to follow the openai gym api
self.action_space = spaces.Box(low=-self.max_torque, high=self.max_torque, shape=(1,), dtype=self.precision)
self.observation_space = spaces.Box(low=-high, high=high, dtype=self.precision)
def step(self, u):
th, thdot = self.state # th := theta
g = self.g
m = self.m
l = self.l
dt = self.dt
u = np.clip(u, -self.max_torque, self.max_torque)[0]
self.last_u = u # for rendering
costs = angle_normalize(th) ** 2 + 0.1 * thdot**2 + 0.001 * (u**2)
newthdot = thdot + (3 * g / (2 * l) * np.sin(th) + 3.0 / (m * l**2) * u) * dt
newthdot = np.clip(newthdot, -self.max_speed, self.max_speed)
if self.explicit:
newth = th + thdot * dt
else:
newth = th + newthdot * dt
self.state = np.array([newth, newthdot])
return self._get_obs(), -costs, False, {}
def reset(self, *, seed: Optional[int] = None, return_info: bool = False, options: Optional[dict] = None):
super().reset(seed=seed)
high = np.array([np.pi, 1])
self.state = self.np_random.uniform(low=-high, high=high).astype(self.precision)
self.last_u = None
if not return_info:
return self._get_obs()
else:
return self._get_obs(), {}
def _get_obs(self):
theta, thetadot = self.state
return np.array([np.cos(theta), np.sin(theta), thetadot], dtype=self.precision)
def get_obs(self):
return self._get_obs()
def render(self, mode="human"):
if self.screen is None:
pygame.init()
pygame.display.init()
self.screen = pygame.display.set_mode((self.screen_dim, self.screen_dim))
if self.clock is None:
self.clock = pygame.time.Clock()
self.surf = pygame.Surface((self.screen_dim, self.screen_dim))
self.surf.fill((255, 255, 255))
bound = 2.2
scale = self.screen_dim / (bound * 2)
offset = self.screen_dim // 2
rod_length = 1 * scale
rod_width = 0.2 * scale
l, r, t, b = 0, rod_length, rod_width / 2, -rod_width / 2
coords = [(l, b), (l, t), (r, t), (r, b)]
transformed_coords = []
for c in coords:
c = pygame.math.Vector2(c).rotate_rad(self.state[0] + np.pi / 2)
c = (c[0] + offset, c[1] + offset)
transformed_coords.append(c)
gfxdraw.aapolygon(self.surf, transformed_coords, (204, 77, 77))
gfxdraw.filled_polygon(self.surf, transformed_coords, (204, 77, 77))
gfxdraw.aacircle(self.surf, offset, offset, int(rod_width / 2), (204, 77, 77))
gfxdraw.filled_circle(self.surf, offset, offset, int(rod_width / 2), (204, 77, 77))
rod_end = (rod_length, 0)
rod_end = pygame.math.Vector2(rod_end).rotate_rad(self.state[0] + np.pi / 2)
rod_end = (int(rod_end[0] + offset), int(rod_end[1] + offset))
gfxdraw.aacircle(self.surf, rod_end[0], rod_end[1], int(rod_width / 2), (204, 77, 77))
gfxdraw.filled_circle(self.surf, rod_end[0], rod_end[1], int(rod_width / 2), (204, 77, 77))
fname = path.join(path.dirname(__file__), "assets/clockwise.png")
img = pygame.image.load(fname)
if self.last_u is not None:
scale_img = pygame.transform.smoothscale(
img, (scale * np.abs(self.last_u) / 2, scale * np.abs(self.last_u) / 2)
)
is_flip = bool(self.last_u > 0)
scale_img = pygame.transform.flip(scale_img, is_flip, True)
self.surf.blit(
scale_img,
(
offset - scale_img.get_rect().centerx,
offset - scale_img.get_rect().centery,
),
)
# drawing axle
gfxdraw.aacircle(self.surf, offset, offset, int(0.05 * scale), (0, 0, 0))
gfxdraw.filled_circle(self.surf, offset, offset, int(0.05 * scale), (0, 0, 0))
self.surf = pygame.transform.flip(self.surf, False, True)
self.screen.blit(self.surf, (0, 0))
if mode == "human":
pygame.event.pump()
self.clock.tick(self.metadata["render_fps"])
pygame.display.flip()
if mode == "rgb_array":
return np.transpose(np.array(pygame.surfarray.pixels3d(self.screen)), axes=(1, 0, 2))
else:
return self.isopen
def close(self):
if self.screen is not None:
pygame.display.quit()
pygame.quit()
self.isopen = False
def set_state(self, state):
self.state = state.astype(self.precision)
def set_dt(self, dt):
self.dt = dt
def set_explicit(self, explicit):
print(f"setting explicit={explicit}")
self.explicit = explicit
def set_precision(self, precision):
self.precision = precision
high = np.array([1.0, 1.0, self.max_speed], dtype=self.precision)
self.action_space = spaces.Box(low=-self.max_torque, high=self.max_torque, shape=(1,), dtype=self.precision)
self.observation_space = spaces.Box(low=-high, high=high, dtype=self.precision)
def angle_normalize(x):
return ((x + np.pi) % (2 * np.pi)) - np.pi