-
Notifications
You must be signed in to change notification settings - Fork 12
/
train.py
156 lines (137 loc) · 5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import argparse
import datetime
import os
import ipdb
import numpy as np
import wandb
import yaml
from gcbfplus.algo import make_algo
from gcbfplus.env import make_env
from gcbfplus.trainer.trainer import Trainer
from gcbfplus.trainer.utils import is_connected
def train(args):
print(f"> Running train.py {args}")
# set up environment variables and seed
os.environ["XLA_PYTHON_CLIENT_PREALLOCATE"] = "false"
if not is_connected():
os.environ["WANDB_MODE"] = "offline"
np.random.seed(args.seed)
if args.debug:
os.environ["WANDB_MODE"] = "disabled"
os.environ["JAX_DISABLE_JIT"] = "True"
# create environments
env = make_env(
env_id=args.env,
num_agents=args.num_agents,
num_obs=args.obs,
n_rays=args.n_rays,
area_size=args.area_size
)
env_test = make_env(
env_id=args.env,
num_agents=args.num_agents,
num_obs=args.obs,
n_rays=args.n_rays,
area_size=args.area_size
)
# create low level controller
algo = make_algo(
algo=args.algo,
env=env,
node_dim=env.node_dim,
edge_dim=env.edge_dim,
state_dim=env.state_dim,
action_dim=env.action_dim,
n_agents=env.num_agents,
gnn_layers=args.gnn_layers,
batch_size=256,
buffer_size=args.buffer_size,
horizon=args.horizon,
lr_actor=args.lr_actor,
lr_cbf=args.lr_cbf,
alpha=args.alpha,
eps=0.02,
inner_epoch=8,
loss_action_coef=args.loss_action_coef,
loss_unsafe_coef=args.loss_unsafe_coef,
loss_safe_coef=args.loss_safe_coef,
loss_h_dot_coef=args.loss_h_dot_coef,
max_grad_norm=2.0,
seed=args.seed,
)
# set up logger
start_time = datetime.datetime.now()
start_time = start_time.strftime("%Y%m%d%H%M%S")
if not os.path.exists(args.log_dir):
os.makedirs(args.log_dir)
if not os.path.exists(f"{args.log_dir}/{args.env}"):
os.makedirs(f"{args.log_dir}/{args.env}")
if not os.path.exists(f"{args.log_dir}/{args.env}/{args.algo}"):
os.makedirs(f"{args.log_dir}/{args.env}/{args.algo}")
log_dir = f"{args.log_dir}/{args.env}/{args.algo}/seed{args.seed}_{start_time}"
run_name = f"{args.algo}_{args.env}_{start_time}" if args.name is None else args.name
# get training parameters
train_params = {
"run_name": run_name,
"training_steps": args.steps,
"eval_interval": args.eval_interval,
"eval_epi": args.eval_epi,
"save_interval": args.save_interval,
}
# create trainer
trainer = Trainer(
env=env,
env_test=env_test,
algo=algo,
log_dir=log_dir,
n_env_train=args.n_env_train,
n_env_test=args.n_env_test,
seed=args.seed,
params=train_params,
save_log=not args.debug,
)
# save config
wandb.config.update(args)
wandb.config.update(algo.config)
if not args.debug:
with open(f"{log_dir}/config.yaml", "w") as f:
yaml.dump(args, f)
yaml.dump(algo.config, f)
# start training
trainer.train()
def main():
parser = argparse.ArgumentParser()
# custom arguments
parser.add_argument("-n", "--num-agents", type=int, default=8)
parser.add_argument("--algo", type=str, default="gcbf+")
parser.add_argument("--env", type=str, default="SimpleCar")
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--steps", type=int, default=1000)
parser.add_argument("--name", type=str, default=None)
parser.add_argument("--debug", action="store_true", default=False)
parser.add_argument("--obs", type=int, default=None)
parser.add_argument("--n-rays", type=int, default=32)
parser.add_argument("--area-size", type=float, required=True)
# gcbf / gcbf+ arguments
parser.add_argument("--gnn-layers", type=int, default=1)
parser.add_argument("--alpha", type=float, default=1.0)
parser.add_argument("--horizon", type=int, default=32)
parser.add_argument("--lr-actor", type=float, default=3e-5)
parser.add_argument("--lr-cbf", type=float, default=3e-5)
parser.add_argument("--loss-action-coef", type=float, default=0.0001)
parser.add_argument("--loss-unsafe-coef", type=float, default=1.0)
parser.add_argument("--loss-safe-coef", type=float, default=1.0)
parser.add_argument("--loss-h-dot-coef", type=float, default=0.01)
parser.add_argument("--buffer-size", type=int, default=512)
# default arguments
parser.add_argument("--n-env-train", type=int, default=16)
parser.add_argument("--n-env-test", type=int, default=32)
parser.add_argument("--log-dir", type=str, default="./logs")
parser.add_argument("--eval-interval", type=int, default=1)
parser.add_argument("--eval-epi", type=int, default=1)
parser.add_argument("--save-interval", type=int, default=10)
args = parser.parse_args()
train(args)
if __name__ == "__main__":
with ipdb.launch_ipdb_on_exception():
main()