-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathrun_amp.py
402 lines (357 loc) · 17.5 KB
/
run_amp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
import argparse
import gzip
import pickle
import itertools
import time
import numpy as np
import torch
import torch.nn as nn
from torch.distributions import Categorical
from tqdm import tqdm
from lib.acquisition_fn import get_acq_fn
from lib.dataset import get_dataset
from lib.generator import get_generator
from lib.logging import get_logger
from lib.oracle_wrapper import get_oracle
from lib.proxy import get_proxy_model
from lib.utils.distance import is_similar, edit_dist
from lib.utils.env import get_tokenizer
parser = argparse.ArgumentParser()
parser.add_argument("--save_path", default='results/test_mlp.pkl.gz')
parser.add_argument("--tb_log_dir", default='results/test_mlp')
parser.add_argument("--name", default='test_mlp')
parser.add_argument("--load_scores_path", default='.')
# Multi-round
parser.add_argument("--num_rounds", default=15, type=int)
parser.add_argument("--task", default="amp", type=str)
parser.add_argument("--num_sampled_per_round", default=256*4, type=int) # 10k
parser.add_argument("--num_folds", default=5)
parser.add_argument("--vocab_size", default=21)
parser.add_argument("--max_len", default=65)
parser.add_argument("--gen_max_len", default=50+1)
parser.add_argument("--proxy_uncertainty", default="dropout")
parser.add_argument("--save_scores_path", default=".")
parser.add_argument("--save_scores", action="store_true")
parser.add_argument("--seed", default=0, type=int)
parser.add_argument("--run", default=-1, type=int)
parser.add_argument("--noise_params", action="store_true")
parser.add_argument("--enable_tensorboard", action="store_true")
parser.add_argument("--save_proxy_weights", action="store_true")
parser.add_argument("--use_uncertainty", action="store_true")
parser.add_argument("--filter", action="store_true")
parser.add_argument("--kappa", default=0.1, type=float)
parser.add_argument("--acq_fn", default="none", type=str)
parser.add_argument("--load_proxy_weights", type=str)
parser.add_argument("--max_percentile", default=80, type=int)
parser.add_argument("--filter_threshold", default=0.1, type=float)
parser.add_argument("--filter_distance_type", default="edit", type=str)
parser.add_argument("--oracle_split", default="D2_target", type=str)
parser.add_argument("--proxy_data_split", default="D1", type=str)
parser.add_argument("--oracle_type", default="MLP", type=str)
parser.add_argument("--oracle_features", default="AlBert", type=str)
parser.add_argument("--medoid_oracle_dist", default="edit", type=str)
parser.add_argument("--medoid_oracle_norm", default=1, type=int)
parser.add_argument("--medoid_oracle_exp_constant", default=6, type=int)
# Generator
parser.add_argument("--gen_learning_rate", default=1e-4, type=float)
parser.add_argument("--gen_Z_learning_rate", default=5e-3, type=float)
parser.add_argument("--gen_clip", default=10, type=float)
parser.add_argument("--gen_num_iterations", default=20000, type=int) # Maybe this is too low?
parser.add_argument("--gen_episodes_per_step", default=16, type=int)
parser.add_argument("--gen_num_hidden", default=128, type=int)
parser.add_argument("--gen_reward_norm", default=1, type=float)
parser.add_argument("--gen_reward_exp", default=8, type=float)
parser.add_argument("--gen_reward_min", default=-8, type=float)
parser.add_argument("--gen_L2", default=0, type=float)
parser.add_argument("--gen_partition_init", default=50, type=float)
# Soft-QLearning/GFlownet gen
parser.add_argument("--gen_reward_exp_ramping", default=1, type=float)
parser.add_argument("--gen_balanced_loss", default=1, type=float)
parser.add_argument("--gen_output_coef", default=10, type=float)
parser.add_argument("--gen_loss_eps", default=1e-5, type=float)
parser.add_argument("--gen_random_action_prob", default=0.001, type=float)
parser.add_argument("--gen_sampling_temperature", default=1., type=float)
parser.add_argument("--gen_leaf_coef", default=25, type=float)
parser.add_argument("--gen_data_sample_per_step", default=16, type=int)
# PG gen
parser.add_argument("--gen_do_pg", default=0, type=int)
parser.add_argument("--gen_pg_entropy_coef", default=1e-2, type=float)
# learning partition Z explicitly
parser.add_argument("--gen_do_explicit_Z", default=0, type=int)
parser.add_argument("--gen_model_type", default="mlp")
# Proxy
parser.add_argument("--proxy_learning_rate", default=1e-4)
parser.add_argument("--proxy_type", default="regression")
parser.add_argument("--proxy_arch", default="mlp")
parser.add_argument("--proxy_num_layers", default=4)
parser.add_argument("--proxy_dropout", default=0.1)
parser.add_argument("--proxy_num_hid", default=64, type=int)
parser.add_argument("--proxy_L2", default=1e-4, type=float)
parser.add_argument("--proxy_num_per_minibatch", default=256, type=int)
parser.add_argument("--proxy_early_stop_tol", default=5, type=int)
parser.add_argument("--proxy_early_stop_to_best_params", default=0, type=int)
parser.add_argument("--proxy_num_iterations", default=30000, type=int)
parser.add_argument("--proxy_num_dropout_samples", default=25, type=int)
class MbStack:
def __init__(self, f):
self.stack = []
self.f = f
def push(self, x, i):
self.stack.append((x, i))
def pop_all(self):
if not len(self.stack):
return []
with torch.no_grad():
ys = self.f([i[0] for i in self.stack])
idxs = [i[1] for i in self.stack]
self.stack = []
return zip(ys, idxs)
def filter_len(x, y, max_len):
res = ([], [])
for i in range(len(x)):
if len(x[i]) < max_len:
res[0].append(x[i])
res[1].append(y[i])
return res
class RolloutWorker:
def __init__(self, args, oracle, tokenizer):
self.oracle = oracle
self.max_len = args.max_len
self.max_len = args.gen_max_len - 2
self.episodes_per_step = args.gen_episodes_per_step
self.random_action_prob = args.gen_random_action_prob
self.reward_exp = args.gen_reward_exp
self.sampling_temperature = args.gen_sampling_temperature
self.eos_tok = -1
self.out_coef = args.gen_output_coef
self.eos_char = tokenizer.eos_token
self.pad_tok = 22
self.balanced_loss = args.gen_balanced_loss == 1
self.reward_norm = args.gen_reward_norm
self.reward_min = torch.tensor(float(args.gen_reward_min))
self.loss_eps = torch.tensor(float(args.gen_loss_eps)).to(args.device)
self.leaf_coef = args.gen_leaf_coef
self.exp_ramping_factor = args.gen_reward_exp_ramping
self.tokenizer = tokenizer
if self.exp_ramping_factor > 0:
self.l2r = lambda x, t=0: (x) ** (1 + (self.reward_exp - 1) * (1 - 1/(1 + t / self.exp_ramping_factor)))
else:
self.l2r = lambda x, t=0: (x) ** self.reward_exp
self.device = args.device
self.args = args
self.workers = MbStack(oracle)
def rollout(self, model, episodes, use_rand_policy=True):
visited = []
lists = lambda n: [list() for i in range(n)]
states = [''] * episodes
traj_states = [[''] for i in range(episodes)]
traj_actions = lists(episodes)
traj_rewards = lists(episodes)
traj_dones = lists(episodes)
for t in (range(self.max_len) if episodes > 0 else []):
active_indices = np.int32([i for i in range(episodes)
if not states[i].endswith(self.eos_char)])
x = self.tokenizer.process([states[i] for i in active_indices]).to(self.device)
lens = torch.tensor([len(i) for i in states
if not i.endswith(self.eos_char)]).long().to(self.device)
with torch.no_grad():
logits = model(x, lens, coef=self.out_coef, pad=self.pad_tok)
if t == 0:
logits[:, 0] = -1000 # Prevent model from stopping
# without having output anything
try:
cat = Categorical(logits=logits / self.sampling_temperature)
except:
print(states)
print(x)
print(logits)
print(list(model.model.parameters()))
import pdb; pdb.set_trace()
actions = cat.sample()
if use_rand_policy and self.random_action_prob > 0:
for i in range(actions.shape[0]):
if np.random.uniform(0,1) < self.random_action_prob:
actions[i] = torch.tensor(np.random.randint(t == 0, logits.shape[1])).to(self.device)
chars = [self.tokenizer.vocab.itos[i.item()] for i in actions]
# Append predicted characters for active trajectories
for i, c, a in zip(active_indices, chars, actions):
if c == self.eos_char or t == self.max_len - 1:
self.workers.push(states[i] + (c if c != self.eos_char else ''), i)
r = 0
d = 1
else:
r = 0
d = 0
traj_states[i].append(states[i] + c)
traj_actions[i].append(a)
traj_rewards[i].append(r)
traj_dones[i].append(d)
states[i] += c
if all(i.endswith(self.eos_char) for i in states):
break
return visited, states, traj_states, traj_actions, traj_rewards, traj_dones
def execute_train_episode_batch(self, model, it=0, dataset=None, use_rand_policy=True):
# run an episode
lists = lambda n: [list() for i in range(n)]
visited, states, traj_states, \
traj_actions, traj_rewards, traj_dones = self.rollout(model, self.episodes_per_step, use_rand_policy=use_rand_policy)
lens = np.mean([len(i) for i in traj_rewards])
bulk_trajs = []
rq = []
for (r, mbidx) in self.workers.pop_all():
traj_rewards[mbidx][-1] = self.l2r(r, it)
rq.append(r.item())
s = states[mbidx]
s = s + (self.eos_char if not s.endswith(self.eos_char) else '')
visited.append((s, traj_rewards[mbidx][-1].item(), r.item()))
bulk_trajs.append((s, traj_rewards[mbidx][-1].item()))
if args.gen_data_sample_per_step > 0 and dataset is not None:
n = args.gen_data_sample_per_step
m = len(traj_states)
if self.args.proxy_type == "classification":
x, y = dataset.sample(n, 0.5)
elif self.args.proxy_type == "regression":
x, y = dataset.sample(n)
x, y = filter_len(x, y, self.max_len)
n = len(x)
traj_states += lists(n)
traj_actions += lists(n)
traj_rewards += lists(n)
traj_dones += lists(n)
bulk_trajs += list(zip([i+self.eos_char for i in x],
[self.l2r(torch.tensor(i), it) for i in y]))
for i in range(len(x)):
traj_states[i+m].append('')
for c, a in zip(x[i] + self.eos_char, self.tokenizer.process([x[i] + self.eos_char])[0]-2):
traj_states[i+m].append(traj_states[i+m][-1] + c)
traj_actions[i+m].append(a)
traj_rewards[i+m].append(0 if c != self.eos_char else self.l2r(y[i], it))
traj_dones[i+m].append(float(c == self.eos_char))
return {
"visited": visited,
"trajectories": {
"traj_states": traj_states,
"traj_actions": traj_actions,
"traj_rewards": traj_rewards,
"traj_dones": traj_dones,
"states": states,
"bulk_trajs": bulk_trajs
}
}
def train_generator(args, generator, oracle, tokenizer, dataset):
print("Training generator")
visited = []
rollout_worker = RolloutWorker(args, oracle, tokenizer)
for it in tqdm(range(args.gen_num_iterations + 1)):
rollout_artifacts = rollout_worker.execute_train_episode_batch(generator, it, dataset)
visited.extend(rollout_artifacts["visited"])
loss, loss_info = generator.train_step(rollout_artifacts["trajectories"])
args.logger.add_scalar("generator_total_loss", loss.item())
for key, val in loss_info.items():
args.logger.add_scalar(f"generator_{key}", val.item())
if it % 100 == 0:
rs = torch.tensor([i[-1] for i in rollout_artifacts["trajectories"]["traj_rewards"]]).mean()
args.logger.add_scalar("gen_reward", rs.item())
if it % 5000 == 0:
args.logger.save(args.save_path, args)
return rollout_worker, None
def filter_samples(args, samples, reference_set):
filtered_samples = []
for sample in samples:
similar = False
for example in reference_set:
if is_similar(sample, example, args.filter_distance_type, args.filter_threshold):
similar = True
break
if not similar:
filtered_samples.append(sample)
return filtered_samples
def sample_batch(args, rollout_worker, generator, current_dataset, oracle):
print("Generating samples")
samples = ([], [])
scores = []
while len(samples[0]) < args.num_sampled_per_round * 5:
rollout_artifacts = rollout_worker.execute_train_episode_batch(generator, it=0, use_rand_policy = False)
states = rollout_artifacts["trajectories"]["states"]
if args.filter:
if args.proxy_type == "classification":
states = filter_samples(args, states, current_dataset.pos_train)
states = filter_samples(args, states, current_dataset.pos_valid)
else:
states = filter_samples(args, states, current_dataset.train)
states = filter_samples(args, states, current_dataset.valid)
states = filter_samples(args, states, samples[0])
samples[0].extend(states)
scores.extend([rews[-1].cpu().item() for rews in rollout_artifacts["trajectories"]["traj_rewards"]])
idx_pick = np.argsort(scores)[::-1][:args.num_sampled_per_round]
picked_states = np.array(samples[0])[idx_pick].tolist()
return (picked_states, np.array(oracle(picked_states)).tolist())
def construct_proxy(args, tokenizer, dataset=None):
proxy = get_proxy_model(args, tokenizer)
sigmoid = nn.Sigmoid()
if args.proxy_type == "classification":
l2r = lambda x: sigmoid(x.clamp(min=args.gen_reward_min)) / args.gen_reward_norm
elif args.proxy_type == "regression":
l2r = lambda x: x.clamp(min=args.gen_reward_min) / args.gen_reward_norm
args.reward_exp_min = max(l2r(torch.tensor(args.gen_reward_min)), 1e-32)
acq_fn = get_acq_fn(args)
return acq_fn(args, proxy, l2r, dataset)
def mean_pairwise_distances(args, seqs):
dists = []
for pair in itertools.combinations(seqs, 2):
dists.append(edit_dist(*pair))
return np.mean(dists)
def log_overall_metrics(args, dataset, collected=False):
top100 = dataset.top_k(100)
top1000 = dataset.top_k(1000)
args.logger.add_scalar("top-100-scores", np.mean(top100[1]), use_context=False)
args.logger.add_scalar("top-1000-scores", np.mean(top1000[1]), use_context=False)
dist100 = mean_pairwise_distances(args, top100[0])
dist1000 = mean_pairwise_distances(args, top1000[0])
args.logger.add_scalar("top-100-dists", dist100, use_context=False)
args.logger.add_scalar("top-1000-dists", dist1000, use_context=False)
args.logger.add_object("top-100-seqs", top100[0])
args.logger.add_object("top-1000-seqs", top1000[0])
print("Scores, 100, 1000", np.mean(top100[1]), np.mean(top1000[1]))
print("Dist, 100, 1000", dist100, dist1000)
if collected:
top100 = dataset.top_k_collected(100)
top1000 = dataset.top_k_collected(1000)
args.logger.add_scalar("top-100-collected-scores", np.mean(top100[1]), use_context=False)
args.logger.add_scalar("top-1000-collected-scores", np.mean(top1000[1]), use_context=False)
dist100 = mean_pairwise_distances(args, top100[0])
dist1000 = mean_pairwise_distances(args, top1000[0])
args.logger.add_scalar("top-100-collected-dists", dist100, use_context=False)
args.logger.add_scalar("top-1000-collected-dists", dist1000, use_context=False)
args.logger.add_object("top-100-collected-seqs", top100[0])
args.logger.add_object("top-1000-collected-seqs", top1000[0])
print("Collected Scores, 100, 1000", np.mean(top100[1]), np.mean(top1000[1]))
print("Collected Dist, 100, 1000", dist100, dist1000)
def train(args, oracle, dataset):
tokenizer = get_tokenizer(args)
args.logger.set_context("iter_0")
proxy = construct_proxy(args, tokenizer, dataset=dataset)
log_overall_metrics(args, dataset)
proxy.update(dataset)
for round in range(args.num_rounds):
args.logger.set_context(f"iter_{round+1}")
generator = get_generator(args, tokenizer)
rollout_worker, losses = train_generator(args, generator, proxy, tokenizer, dataset)
batch = sample_batch(args, rollout_worker, generator, dataset, oracle)
args.logger.add_object("collected_seqs", batch[0])
args.logger.add_object("collected_seqs_scores", batch[1])
dataset.add(batch)
log_overall_metrics(args, dataset, collected=True)
proxy.update(dataset)
args.logger.save(args.save_path, args)
def main(args):
torch.manual_seed(args.seed)
np.random.seed(args.seed)
args.logger = get_logger(args)
args.device = torch.device('cuda')
oracle = get_oracle(args)
dataset = get_dataset(args, oracle)
train(args, oracle, dataset)
if __name__ == "__main__":
args = parser.parse_args()
main(args)