-
Notifications
You must be signed in to change notification settings - Fork 1
/
utils.py
70 lines (55 loc) · 2.07 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import torch
import os
import logging
from omegaconf import OmegaConf, open_dict
def load_hydra_config_from_run(load_dir):
cfg_path = os.path.join(load_dir, ".hydra/config.yaml")
cfg = OmegaConf.load(cfg_path)
return cfg
def makedirs(dirname):
os.makedirs(dirname, exist_ok=True)
def get_logger(logpath, package_files=[], displaying=True, saving=True, debug=False):
logger = logging.getLogger()
if debug:
level = logging.DEBUG
else:
level = logging.INFO
if (logger.hasHandlers()):
logger.handlers.clear()
logger.setLevel(level)
formatter = logging.Formatter('%(asctime)s - %(message)s')
if saving:
info_file_handler = logging.FileHandler(logpath, mode="a")
info_file_handler.setLevel(level)
info_file_handler.setFormatter(formatter)
logger.addHandler(info_file_handler)
if displaying:
console_handler = logging.StreamHandler()
console_handler.setLevel(level)
console_handler.setFormatter(formatter)
logger.addHandler(console_handler)
for f in package_files:
logger.info(f)
with open(f, "r") as package_f:
logger.info(package_f.read())
return logger
def restore_checkpoint(ckpt_dir, state, device):
if not os.path.exists(ckpt_dir):
makedirs(os.path.dirname(ckpt_dir))
logging.warning(f"No checkpoint found at {ckpt_dir}. Returned the same state as input")
return state
else:
loaded_state = torch.load(ckpt_dir, map_location=device)
state['optimizer'].load_state_dict(loaded_state['optimizer'])
state['model'].module.load_state_dict(loaded_state['model'], strict=False)
state['ema'].load_state_dict(loaded_state['ema'])
state['step'] = loaded_state['step']
return state
def save_checkpoint(ckpt_dir, state):
saved_state = {
'optimizer': state['optimizer'].state_dict(),
'model': state['model'].module.state_dict(),
'ema': state['ema'].state_dict(),
'step': state['step']
}
torch.save(saved_state, ckpt_dir)