diff --git a/ml4gw/waveforms/__init__.py b/ml4gw/waveforms/__init__.py index acfc75b2..bbb43cfd 100644 --- a/ml4gw/waveforms/__init__.py +++ b/ml4gw/waveforms/__init__.py @@ -1 +1,2 @@ from .sine_gaussian import SineGaussian +from .taylorf2 import TaylorF2 diff --git a/ml4gw/waveforms/taylorf2.py b/ml4gw/waveforms/taylorf2.py new file mode 100644 index 00000000..6f8ca7b5 --- /dev/null +++ b/ml4gw/waveforms/taylorf2.py @@ -0,0 +1,171 @@ +import torch +from torchtyping import TensorType + +GAMMA = 0.577215664901532860606512090082402431 +"""Euler-Mascheroni constant. Same as lal.GAMMA""" + +MSUN_SI = 1.988409870698050731911960804878414216e30 +"""Solar mass in kg. Same as lal.MSUN_SI""" + +MTSUN_SI = 4.925490947641266978197229498498379006e-6 +"""1 solar mass in seconds. Same value as lal.MTSUN_SI""" + +PI = 3.141592653589793238462643383279502884 +"""Archimedes constant. Same as lal.PI""" + +MPC_SEC = 1.02927125e14 +""" +1 Mpc in seconds. +""" + + +def taylorf2_phase( + f: TensorType, + mass1: TensorType, + mass2: TensorType, +) -> TensorType: + """ + Calculate the inspiral phase for the IMRPhenomD waveform. + """ + mass1_s = mass1 * MTSUN_SI + mass2_s = mass2 * MTSUN_SI + M_s = mass1_s + mass2_s + eta = mass1_s * mass2_s / M_s / M_s + + Mf = (f.T * M_s).T + + v0 = torch.ones_like(Mf) + v1 = (PI * Mf) ** (1.0 / 3.0) + v2 = v1 * v1 + v3 = v2 * v1 + v4 = v3 * v1 + v5 = v4 * v1 + v6 = v5 * v1 + v7 = v6 * v1 + logv = torch.log(v1) + v5_logv = v5 * logv + v6_logv = v6 * logv + + # Phase coeffeciencts from https://git.ligo.org/lscsoft/lalsuite/-/blob/master/lalsimulation/lib/LALSimInspiralPNCoefficients.c # noqa E501 + pfaN = 3.0 / (128.0 * eta) + pfa_v0 = 1.0 + pfa_v1 = 0.0 + pfa_v2 = 5.0 * (74.3 / 8.4 + 11.0 * eta) / 9.0 + pfa_v3 = -16.0 * PI + pfa_v4 = ( + 5.0 + * (3058.673 / 7.056 + 5429.0 / 7.0 * eta + 617.0 * eta * eta) + / 72.0 + ) + pfa_v5logv = 5.0 / 3.0 * (772.9 / 8.4 - 13.0 * eta) * PI + pfa_v5 = 5.0 / 9.0 * (772.9 / 8.4 - 13.0 * eta) * PI + pfa_v6logv = -684.8 / 2.1 + pfa_v6 = ( + 11583.231236531 / 4.694215680 + - 640.0 / 3.0 * PI * PI + - 684.8 / 2.1 * GAMMA + + eta * (-15737.765635 / 3.048192 + 225.5 / 1.2 * PI * PI) + + eta * eta * 76.055 / 1.728 + - eta * eta * eta * 127.825 / 1.296 + + pfa_v6logv * torch.log(torch.tensor(4.0)) + ) + pfa_v7 = PI * ( + 770.96675 / 2.54016 + 378.515 / 1.512 * eta - 740.45 / 7.56 * eta * eta + ) + # construct power series + phasing = (v7.T * pfa_v7).T + phasing += (v6.T * pfa_v6 + v6_logv.T * pfa_v6logv).T + phasing += (v5.T * pfa_v5 + v5_logv.T * pfa_v5logv).T + phasing += (v4.T * pfa_v4).T + phasing += (v3.T * pfa_v3).T + phasing += (v2.T * pfa_v2).T + phasing += (v1.T * pfa_v1).T + phasing += (v0.T * pfa_v0).T + # Divide by 0PN v-dependence + phasing /= v5 + # Multiply by 0PN coefficient + phasing = (phasing.T * pfaN).T + + return phasing + + +def taylorf2_amplitude(f: TensorType, mass1, mass2, distance) -> TensorType: + mass1_s = mass1 * MTSUN_SI + mass2_s = mass2 * MTSUN_SI + M_s = mass1_s + mass2_s + eta = mass1_s * mass2_s / M_s / M_s + Mf = (f.T * M_s).T + v = (PI * Mf) ** (1.0 / 3.0) + v10 = v**10 + + # Flux and energy coefficient at newtonian + FTaN = 32.0 * eta * eta / 5.0 + dETaN = 2 * (-eta / 2.0) + + amp0 = -4.0 * mass1_s * mass2_s * (PI / 12.0) ** 0.5 + + amp0 /= distance * MPC_SEC + flux = (v10.T * FTaN).T + dEnergy = (v.T * dETaN).T + amp = torch.sqrt(-dEnergy / flux) * v + amp = (amp.T * amp0).T + + return amp + + +def taylorf2_htilde( + f: TensorType, + mass1: TensorType, + mass2: TensorType, + distance: TensorType, + phic: TensorType, + f_ref: float, +): + # frequency array is repeated along batch + f = f.repeat([mass1.shape[0], 1]) + f_ref = torch.tensor(f_ref).repeat([mass1.shape[0], 1]) + + Psi = taylorf2_phase(f, mass1, mass2) + Psi_ref = taylorf2_phase(f_ref, mass1, mass2) + + Psi = (Psi.T - 2 * phic).T + Psi -= Psi_ref + + amp0 = taylorf2_amplitude(f, mass1, mass2, distance) + h0 = amp0 * torch.exp(-1j * (Psi - PI / 4)) + return h0 + + +def TaylorF2( + f: TensorType, + mass1: TensorType, + mass2: TensorType, + distance: TensorType, + phic: TensorType, + inclination: TensorType, + f_ref: float, +): + """ + TaylorF2 up to 3.5 PN in phase. Newtonian SPA amplitude. + + Returns: + -------- + hp, hc + """ + # shape assumed (n_batch, params) + if ( + mass1.shape[0] != mass2.shape[0] + or mass2.shape[0] != distance.shape[0] + or distance.shape[0] != phic.shape[0] + or phic.shape[0] != inclination.shape[0] + ): + raise RuntimeError("Tensors should have same batch size") + cfac = torch.cos(inclination) + pfac = 0.5 * (1.0 + cfac * cfac) + + htilde = taylorf2_htilde(f, mass1, mass2, distance, phic, f_ref) + + hp = (htilde.T * pfac).T + hc = -1j * (htilde.T * cfac).T + + return hp, hc diff --git a/tests/waveforms/test_taylorf2.py b/tests/waveforms/test_taylorf2.py new file mode 100644 index 00000000..f53a2f37 --- /dev/null +++ b/tests/waveforms/test_taylorf2.py @@ -0,0 +1,109 @@ +import lal +import lalsimulation +import numpy as np +import pytest +import torch +from astropy import units as u + +import ml4gw.waveforms as waveforms + + +@pytest.fixture(params=[2048, 4096]) +def sample_rate(request): + return request.param + + +@pytest.fixture(params=[20.0, 30.0, 40.0]) +def mass_1(request): + return request.param + + +@pytest.fixture(params=[15.0, 25.0, 35.0]) +def mass_2(request): + return request.param + + +@pytest.fixture(params=[100.0, 1000.0]) +def distance(request): + return request.param + + +@pytest.fixture(params=[100.0, 1000.0]) +def inclination(request): + return request.param + + +def test_taylor_f2(mass_1, mass_2, distance, inclination, sample_rate): + # Fix spins and coal. phase, ref, freq. + phic, f_ref = 0.0, 15 + params = dict( + m1=mass_1 * lal.MSUN_SI, + m2=mass_2 * lal.MSUN_SI, + S1x=0, + S1y=0, + S1z=0, + S2x=0, + S2y=0, + S2z=0, + distance=(distance * u.Mpc).to("m").value, + inclination=inclination, + phiRef=phic, + longAscNodes=0.0, + eccentricity=0.0, + meanPerAno=0.0, + deltaF=1.0 / sample_rate, + f_min=10.0, + f_ref=f_ref, + f_max=100, + approximant=lalsimulation.TaylorF2, + LALpars=lal.CreateDict(), + ) + hp_lal, hc_lal = lalsimulation.SimInspiralChooseFDWaveform(**params) + lal_freqs = np.array( + [hp_lal.f0 + ii * hp_lal.deltaF for ii in range(len(hp_lal.data.data))] + ) + + torch_freqs = torch.arange( + params["f_min"], params["f_max"], params["deltaF"] + ) + _params = torch.tensor( + [mass_1, mass_2, distance, phic, inclination] + ).repeat( + 10, 1 + ) # repeat along batch dim for testing + batched_mass1 = _params[:, 0] + batched_mass2 = _params[:, 1] + batched_distance = _params[:, 2] + batched_phic = _params[:, 3] + batched_inclination = _params[:, 4] + hp_torch, hc_torch = waveforms.TaylorF2( + torch_freqs, + batched_mass1, + batched_mass2, + batched_distance, + batched_phic, + batched_inclination, + f_ref, + ) + + assert hp_torch.shape[0] == 10 # entire batch is returned + + # select only first element of the batch for further testing since + # all are repeated + hp_torch = hp_torch[0] + hc_torch = hc_torch[0] + # restrict between fmin and fmax + lal_mask = (lal_freqs > params["f_min"]) & (lal_freqs < params["f_max"]) + torch_mask = (torch_freqs > params["f_min"]) & ( + torch_freqs < params["f_max"] + ) + + hp_lal_data = hp_lal.data.data[lal_mask] + hc_lal_data = hc_lal.data.data[lal_mask] + hp_torch = hp_torch[torch_mask] + hc_torch = hc_torch[torch_mask] + + assert np.allclose(hp_lal_data.real, hp_torch.real) + assert np.allclose(hp_lal_data.imag, hp_torch.imag) + assert np.allclose(hc_lal_data.real, hc_torch.real) + assert np.allclose(hc_lal_data.imag, hc_torch.imag)