diff --git a/src/notebook/misc/import-static.md b/src/notebook/misc/import-static.md index 7dd956f4..8b330904 100644 --- a/src/notebook/misc/import-static.md +++ b/src/notebook/misc/import-static.md @@ -151,7 +151,7 @@ localisation = add_timestamped_table_fields(localisation) # Convert to a GeoDataFrame localisation = gp.GeoDataFrame(localisation, crs="EPSG:4326", geometry="coordonneesXY") -localisation +localisation[localisation["code_insee_commune"] == "77018"] ``` ```python @@ -377,3 +377,95 @@ save(pdc, engine, "pointdecharge", truncate=True, dtype=dtype) saved = pd.read_sql("SELECT * FROM PointDeCharge", engine) saved ``` + +## Alternate version using raw SQLAlchemy + +```python +amenageur_fields = ["nom_amenageur", "siren_amenageur", "contact_amenageur"] +amenageur = static[amenageur_fields] + +# Remove duplicates +amenageur = amenageur.drop_duplicates() + +# Add missing columns (to fit with the ORM) +amenageur = add_timestamped_table_fields(amenageur) +amenageur +``` + +```python +%%time +from sqlalchemy import Table +from sqlalchemy.dialects.postgresql import insert +from sqlalchemy.schema import MetaData + +def save_amenageur(df): + metadata_obj = MetaData() + t_amenageur = Table("amenageur", metadata_obj, autoload_with=engine) + + amenageur.drop("amenageur_id", axis=1, inplace=True, errors="ignore") + + stmt = insert(t_amenageur).values(amenageur.to_dict("records")) + stmt = stmt.on_conflict_do_update( + constraint="amenageur_nom_amenageur_siren_amenageur_contact_amenageur_key", + set_=dict( + nom_amenageur=stmt.excluded.nom_amenageur, + siren_amenageur=stmt.excluded.siren_amenageur, + contact_amenageur=stmt.excluded.contact_amenageur, + updated_at=stmt.excluded.updated_at + ) + ) + stmt = stmt.returning(t_amenageur.c.id) + + with engine.connect() as conn: + result = conn.execute(stmt) + + ids = pd.Series(data=(row.id for row in result.all()), index=amenageur.index) + + amenageur.insert(0, "amenageur_id", ids) + return amenageur + +amenageur = save_amenageur(amenageur) +amenageur +``` + +```python +%%time + +def save_amenageur_by_chunks(df, n=10000): + metadata_obj = MetaData() + t_amenageur = Table("amenageur", metadata_obj, autoload_with=engine) + + df.drop("amenageur_id", axis=1, inplace=True, errors="ignore") + + chunks = [df[i:i+n] for i in range(0,len(df),n)] + for chunk in chunks: + stmt = insert(t_amenageur).values(chunk.to_dict("records")) + stmt = stmt.on_conflict_do_update( + constraint="amenageur_nom_amenageur_siren_amenageur_contact_amenageur_key", + set_=dict( + nom_amenageur=stmt.excluded.nom_amenageur, + siren_amenageur=stmt.excluded.siren_amenageur, + contact_amenageur=stmt.excluded.contact_amenageur, + updated_at=stmt.excluded.updated_at + ) + ) + stmt = stmt.returning(t_amenageur.c.id) + + with engine.connect() as conn: + result = conn.execute(stmt) + + ids = pd.Series(data=(row.id for row in result.all()), index=chunk.index) + + chunk.insert(0, "amenageur_id", ids) + return amenageur + +amenageur = save_amenageur_by_chunks(amenageur, n=2000) +``` + +```python + +``` + +```python + +```