-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMbedCRC.h
executable file
·563 lines (513 loc) · 17.2 KB
/
MbedCRC.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
/* mbed Microcontroller Library
* Copyright (c) 2018 ARM Limited
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MBED_CRC_API_H
#define MBED_CRC_API_H
#include "drivers/TableCRC.h"
#include "hal/crc_api.h"
#include "platform/mbed_assert.h"
#include "platform/SingletonPtr.h"
#include "platform/PlatformMutex.h"
/* This is invalid warning from the compiler for below section of code
if ((width < 8) && (NULL == _crc_table)) {
p_crc = (uint32_t)(p_crc << (8 - width));
}
Compiler warns of the shift operation with width as it is width=(std::uint8_t),
but we check for ( width < 8) before performing shift, so it should not be an issue.
*/
#if defined ( __CC_ARM )
#pragma diag_suppress 62 // Shift count is negative
#elif defined ( __GNUC__ )
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wshift-count-negative"
#elif defined (__ICCARM__)
#pragma diag_suppress=Pe062 // Shift count is negative
#endif
namespace mbed {
/** \addtogroup drivers */
/** @{*/
/** CRC object provides CRC generation through hardware/software
*
* ROM polynomial tables for supported polynomials (:: crc_polynomial_t) will be used for
* software CRC computation, if ROM tables are not available then CRC is computed runtime
* bit by bit for all data input.
* @note Synchronization level: Thread safe
*
* @tparam polynomial CRC polynomial value in hex
* @tparam width CRC polynomial width
*
* Example: Compute CRC data
* @code
*
* #include "mbed.h"
*
* int main() {
* MbedCRC<POLY_32BIT_ANSI, 32> ct;
*
* char test[] = "123456789";
* uint32_t crc = 0;
*
* printf("\nPolynomial = 0x%lx Width = %d \n", ct.get_polynomial(), ct.get_width());
*
* ct.compute((void *)test, strlen((const char*)test), &crc);
*
* printf("The CRC of data \"123456789\" is : 0x%lx\n", crc);
* return 0;
* }
* @endcode
* Example: Compute CRC with data available in parts
* @code
*
* #include "mbed.h"
* int main() {
* MbedCRC<POLY_32BIT_ANSI, 32> ct;
*
* char test[] = "123456789";
* uint32_t crc = 0;
*
* printf("\nPolynomial = 0x%lx Width = %d \n", ct.get_polynomial(), ct.get_width());
* ct.compute_partial_start(&crc);
* ct.compute_partial((void *)&test, 4, &crc);
* ct.compute_partial((void *)&test[4], 5, &crc);
* ct.compute_partial_stop(&crc);
* printf("The CRC of data \"123456789\" is : 0x%lx\n", crc);
* return 0;
* }
* @endcode
* @ingroup drivers
*/
extern SingletonPtr<PlatformMutex> mbed_crc_mutex;
template <uint32_t polynomial = POLY_32BIT_ANSI, uint8_t width = 32>
class MbedCRC {
public:
enum CrcMode {
#if DEVICE_CRC
HARDWARE = 0,
#endif
TABLE = 1,
BITWISE
};
typedef uint64_t crc_data_size_t;
/** Lifetime of CRC object
*
* @param initial_xor Inital value/seed to Xor
* @param final_xor Final Xor value
* @param reflect_data
* @param reflect_remainder
* @note Default constructor without any arguments is valid only for supported CRC polynomials. :: crc_polynomial_t
* MbedCRC <POLY_7BIT_SD, 7> ct; --- Valid POLY_7BIT_SD
* MbedCRC <0x1021, 16> ct; --- Valid POLY_16BIT_CCITT
* MbedCRC <POLY_16BIT_CCITT, 32> ct; --- Invalid, compilation error
* MbedCRC <POLY_16BIT_CCITT, 32> ct (i,f,rd,rr) Constructor can be used for not supported polynomials
* MbedCRC<POLY_16BIT_CCITT, 16> sd(0, 0, false, false); Constructor can also be used for supported
* polynomials with different intial/final/reflect values
*
*/
MbedCRC(uint32_t initial_xor, uint32_t final_xor, bool reflect_data, bool reflect_remainder) :
_initial_value(initial_xor), _final_xor(final_xor), _reflect_data(reflect_data),
_reflect_remainder(reflect_remainder)
{
mbed_crc_ctor();
}
MbedCRC();
virtual ~MbedCRC()
{
// Do nothing
}
/** Compute CRC for the data input
* Compute CRC performs the initialization, computation and collection of
* final CRC.
*
* @param buffer Data bytes
* @param size Size of data
* @param crc CRC is the output value
* @return 0 on success, negative error code on failure
*/
int32_t compute(void *buffer, crc_data_size_t size, uint32_t *crc)
{
MBED_ASSERT(crc != NULL);
int32_t status = 0;
status = compute_partial_start(crc);
if (0 != status) {
unlock();
return status;
}
status = compute_partial(buffer, size, crc);
if (0 != status) {
unlock();
return status;
}
status = compute_partial_stop(crc);
if (0 != status) {
*crc = 0;
}
return status;
}
/** Compute partial CRC for the data input.
*
* CRC data if not available fully, CRC can be computed in parts with available data.
*
* In case of hardware, intermediate values and states are saved by hardware. Mutex
* locking is used to serialize access to hardware CRC.
*
* In case of software CRC, previous CRC output should be passed as argument to the
* current compute_partial call. Please note the intermediate CRC value is maintained by
* application and not the driver.
*
* @pre: Call `compute_partial_start` to start the partial CRC calculation.
* @post: Call `compute_partial_stop` to get the final CRC value.
*
* @param buffer Data bytes
* @param size Size of data
* @param crc CRC value is intermediate CRC value filled by API.
* @return 0 on success or a negative error code on failure
* @note: CRC as output in compute_partial is not final CRC value, call `compute_partial_stop`
* to get final correct CRC value.
*/
int32_t compute_partial(void *buffer, crc_data_size_t size, uint32_t *crc)
{
int32_t status = 0;
switch (_mode) {
#if DEVICE_CRC
case HARDWARE:
hal_crc_compute_partial((uint8_t *)buffer, size);
*crc = 0;
break;
#endif
case TABLE:
status = table_compute_partial(buffer, size, crc);
break;
case BITWISE:
status = bitwise_compute_partial(buffer, size, crc);
break;
default:
status = -1;
break;
}
return status;
}
/** Compute partial start, indicate start of partial computation.
*
* This API should be called before performing any partial computation
* with compute_partial API.
*
* @param crc Initial CRC value set by the API
* @return 0 on success or a negative in case of failure
* @note: CRC is an out parameter and must be reused with compute_partial
* and `compute_partial_stop` without any modifications in application.
*/
int32_t compute_partial_start(uint32_t *crc)
{
MBED_ASSERT(crc != NULL);
#if DEVICE_CRC
if (_mode == HARDWARE) {
lock();
crc_mbed_config_t config;
config.polynomial = polynomial;
config.width = width;
config.initial_xor = _initial_value;
config.final_xor = _final_xor;
config.reflect_in = _reflect_data;
config.reflect_out = _reflect_remainder;
hal_crc_compute_partial_start(&config);
}
#endif
*crc = _initial_value;
return 0;
}
/** Get the final CRC value of partial computation.
*
* CRC value available in partial computation is not correct CRC, as some
* algorithms require remainder to be reflected and final value to be XORed
* This API is used to perform final computation to get correct CRC value.
*
* @param crc CRC result
* @return 0 on success or a negative in case of failure.
*/
int32_t compute_partial_stop(uint32_t *crc)
{
MBED_ASSERT(crc != NULL);
#if DEVICE_CRC
if (_mode == HARDWARE) {
*crc = hal_crc_get_result();
unlock();
return 0;
}
#endif
uint32_t p_crc = *crc;
if ((width < 8) && (NULL == _crc_table)) {
p_crc = (uint32_t)(p_crc << (8 - width));
}
// Optimized algorithm for 32BitANSI does not need additional reflect_remainder
if ((TABLE == _mode) && (POLY_32BIT_REV_ANSI == polynomial)) {
*crc = (p_crc ^ _final_xor) & get_crc_mask();
} else {
*crc = (reflect_remainder(p_crc) ^ _final_xor) & get_crc_mask();
}
unlock();
return 0;
}
/** Get the current CRC polynomial.
*
* @return Polynomial value
*/
uint32_t get_polynomial(void) const
{
return polynomial;
}
/** Get the current CRC width
*
* @return CRC width
*/
uint8_t get_width(void) const
{
return width;
}
#if !defined(DOXYGEN_ONLY)
private:
uint32_t _initial_value;
uint32_t _final_xor;
bool _reflect_data;
bool _reflect_remainder;
uint32_t *_crc_table;
CrcMode _mode;
/** Acquire exclusive access to CRC hardware/software.
*/
void lock()
{
#if DEVICE_CRC
if (_mode == HARDWARE) {
mbed_crc_mutex->lock();
}
#endif
}
/** Release exclusive access to CRC hardware/software.
*/
virtual void unlock()
{
#if DEVICE_CRC
if (_mode == HARDWARE) {
mbed_crc_mutex->unlock();
}
#endif
}
/** Get the current CRC data size.
*
* @return CRC data size in bytes
*/
uint8_t get_data_size(void) const
{
return (width <= 8 ? 1 : (width <= 16 ? 2 : 4));
}
/** Get the top bit of current CRC.
*
* @return Top bit is set high for respective data width of current CRC
* Top bit for CRC width less then 8 bits will be set as 8th bit.
*/
uint32_t get_top_bit(void) const
{
return (width < 8 ? (1u << 7) : (uint32_t)(1ul << (width - 1)));
}
/** Get the CRC data mask.
*
* @return CRC data mask is generated based on current CRC width
*/
uint32_t get_crc_mask(void) const
{
return (width < 8 ? ((1u << 8) - 1) : (uint32_t)((uint64_t)(1ull << width) - 1));
}
/** Final value of CRC is reflected.
*
* @param data final crc value, which should be reflected
* @return Reflected CRC value
*/
uint32_t reflect_remainder(uint32_t data) const
{
if (_reflect_remainder) {
uint32_t reflection = 0x0;
uint8_t const nBits = (width < 8 ? 8 : width);
for (uint8_t bit = 0; bit < nBits; ++bit) {
if (data & 0x01) {
reflection |= (1 << ((nBits - 1) - bit));
}
data = (data >> 1);
}
return (reflection);
} else {
return data;
}
}
/** Data bytes are reflected.
*
* @param data value to be reflected
* @return Reflected data value
*/
uint32_t reflect_bytes(uint32_t data) const
{
if (_reflect_data) {
uint32_t reflection = 0x0;
for (uint8_t bit = 0; bit < 8; ++bit) {
if (data & 0x01) {
reflection |= (1 << (7 - bit));
}
data = (data >> 1);
}
return (reflection);
} else {
return data;
}
}
/** Bitwise CRC computation.
*
* @param buffer data buffer
* @param size size of the data
* @param crc CRC value is filled in, but the value is not the final
* @return 0 on success or a negative error code on failure
*/
int32_t bitwise_compute_partial(const void *buffer, crc_data_size_t size, uint32_t *crc) const
{
MBED_ASSERT(crc != NULL);
const uint8_t *data = static_cast<const uint8_t *>(buffer);
uint32_t p_crc = *crc;
if (width < 8) {
uint8_t data_byte;
for (crc_data_size_t byte = 0; byte < size; byte++) {
data_byte = reflect_bytes(data[byte]);
for (uint8_t bit = 8; bit > 0; --bit) {
p_crc <<= 1;
if ((data_byte ^ p_crc) & get_top_bit()) {
p_crc ^= polynomial;
}
data_byte <<= 1;
}
}
} else {
for (crc_data_size_t byte = 0; byte < size; byte++) {
p_crc ^= (reflect_bytes(data[byte]) << (width - 8));
// Perform modulo-2 division, a bit at a time
for (uint8_t bit = 8; bit > 0; --bit) {
if (p_crc & get_top_bit()) {
p_crc = (p_crc << 1) ^ polynomial;
} else {
p_crc = (p_crc << 1);
}
}
}
}
*crc = p_crc & get_crc_mask();
return 0;
}
/** CRC computation using ROM tables.
*
* @param buffer data buffer
* @param size size of the data
* @param crc CRC value is filled in, but the value is not the final
* @return 0 on success or a negative error code on failure
*/
int32_t table_compute_partial(const void *buffer, crc_data_size_t size, uint32_t *crc) const
{
MBED_ASSERT(crc != NULL);
const uint8_t *data = static_cast<const uint8_t *>(buffer);
uint32_t p_crc = *crc;
uint8_t data_byte = 0;
if (width <= 8) {
uint8_t *crc_table = (uint8_t *)_crc_table;
for (crc_data_size_t byte = 0; byte < size; byte++) {
data_byte = reflect_bytes(data[byte]) ^ p_crc;
p_crc = crc_table[data_byte];
}
} else if (width <= 16) {
uint16_t *crc_table = (uint16_t *)_crc_table;
for (crc_data_size_t byte = 0; byte < size; byte++) {
data_byte = reflect_bytes(data[byte]) ^ (p_crc >> (width - 8));
p_crc = crc_table[data_byte] ^ (p_crc << 8);
}
} else {
uint32_t *crc_table = (uint32_t *)_crc_table;
if (POLY_32BIT_REV_ANSI == polynomial) {
for (crc_data_size_t i = 0; i < size; i++) {
p_crc = (p_crc >> 4) ^ crc_table[(p_crc ^ (data[i] >> 0)) & 0xf];
p_crc = (p_crc >> 4) ^ crc_table[(p_crc ^ (data[i] >> 4)) & 0xf];
}
} else {
for (crc_data_size_t byte = 0; byte < size; byte++) {
data_byte = reflect_bytes(data[byte]) ^ (p_crc >> (width - 8));
p_crc = crc_table[data_byte] ^ (p_crc << 8);
}
}
}
*crc = p_crc & get_crc_mask();
return 0;
}
/** Constructor init called from all specialized cases of constructor.
* Note: All constructor common code should be in this function.
*/
void mbed_crc_ctor(void)
{
MBED_STATIC_ASSERT(width <= 32, "Max 32-bit CRC supported");
#if DEVICE_CRC
if (POLY_32BIT_REV_ANSI == polynomial) {
_crc_table = (uint32_t *)Table_CRC_32bit_Rev_ANSI;
_mode = TABLE;
return;
}
crc_mbed_config_t config;
config.polynomial = polynomial;
config.width = width;
config.initial_xor = _initial_value;
config.final_xor = _final_xor;
config.reflect_in = _reflect_data;
config.reflect_out = _reflect_remainder;
if (hal_crc_is_supported(&config)) {
_mode = HARDWARE;
return;
}
#endif
switch (polynomial) {
case POLY_32BIT_ANSI:
_crc_table = (uint32_t *)Table_CRC_32bit_ANSI;
break;
case POLY_32BIT_REV_ANSI:
_crc_table = (uint32_t *)Table_CRC_32bit_Rev_ANSI;
break;
case POLY_8BIT_CCITT:
_crc_table = (uint32_t *)Table_CRC_8bit_CCITT;
break;
case POLY_7BIT_SD:
_crc_table = (uint32_t *)Table_CRC_7Bit_SD;
break;
case POLY_16BIT_CCITT:
_crc_table = (uint32_t *)Table_CRC_16bit_CCITT;
break;
case POLY_16BIT_IBM:
_crc_table = (uint32_t *)Table_CRC_16bit_IBM;
break;
default:
_crc_table = NULL;
break;
}
_mode = (_crc_table != NULL) ? TABLE : BITWISE;
}
#endif
};
#if defined ( __CC_ARM )
#elif defined ( __GNUC__ )
#pragma GCC diagnostic pop
#elif defined (__ICCARM__)
#endif
/** @}*/
} // namespace mbed
#endif