-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathconfig.py
106 lines (91 loc) · 3.39 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
# -*- coding: utf-8 -*-
"""
Created on 2017 10.17
@author: liupeng
wechat: lp9628
blog: http://blog.csdn.net/u014365862/article/details/78422372
"""
# inception_v4:299
# resnet_v2:224
# vgg:224
IMAGE_HEIGHT = 299
IMAGE_WIDTH = 299
num_classes = 4
EARLY_STOP_PATIENCE = 1000
# epoch
epoch = 1000
batch_size = 1
# 模型的学习率
learning_rate = 0.00001
keep_prob = 0.8
# 设置训练样本的占总样本的比例:
train_rate = 0.9
# 每个类别保存到一个文件中,放在此目录下,只要是二级目录就可以。
craterDir = "sample_train"
# 选择需要的模型
# arch_model="arch_inception_v4";
# arch_model="arch_resnet_v2_50"
# arch_model="vgg_16"
arch_model="arch_inception_v4_rnn"
# 设置要更新的参数和加载的参数,目前是非此即彼,可以自己修改哦
checkpoint_exclude_scopes = "Logits_out"
# 迁移学习模型参数, 下载训练好模型:https://github.com/MachineLP/models/tree/master/research/slim
# checkpoint_path="pretrain/inception_v4/inception_v4.ckpt";
# checkpoint_path="pretrain/resnet_v2_50/resnet_v2_50.ckpt"
checkpoint_path="pretrain/inception_v4/inception_v4.ckpt"
#训练好的模型参数在model文件夹下。
# 接下来可以添加的功能:
# 图像归一化:默认的是归一化到[-1,1]:(load_image/load_image.py:get_next_batch_from_path) (可以自行加一些设置参数,在此处设置)
# 需要加入模型 需修改 (train_net/train.py)
# 设置GPU使用, train_net/train.py (多GPU), main.py
# 设置学习率衰减:learningRate_1 = tf.train.exponential_decay(lr1_init, tf.subtract(global_step, 1), decay_steps, decay_rate, True)
# 加入tensorboard 可视化
# 需要修改参数更新的方法请参考:(train_net/train.py)
'''
def _configure_optimizer(learning_rate):
"""Configures the optimizer used for training.
Args:
learning_rate: A scalar or `Tensor` learning rate.
Returns:
An instance of an optimizer.
Raises:
ValueError: if FLAGS.optimizer is not recognized.
"""
if FLAGS.optimizer == 'adadelta':
optimizer = tf.train.AdadeltaOptimizer(
learning_rate,
rho=FLAGS.adadelta_rho,
epsilon=FLAGS.opt_epsilon)
elif FLAGS.optimizer == 'adagrad':
optimizer = tf.train.AdagradOptimizer(
learning_rate,
initial_accumulator_value=FLAGS.adagrad_initial_accumulator_value)
elif FLAGS.optimizer == 'adam':
optimizer = tf.train.AdamOptimizer(
learning_rate,
beta1=FLAGS.adam_beta1,
beta2=FLAGS.adam_beta2,
epsilon=FLAGS.opt_epsilon)
elif FLAGS.optimizer == 'ftrl':
optimizer = tf.train.FtrlOptimizer(
learning_rate,
learning_rate_power=FLAGS.ftrl_learning_rate_power,
initial_accumulator_value=FLAGS.ftrl_initial_accumulator_value,
l1_regularization_strength=FLAGS.ftrl_l1,
l2_regularization_strength=FLAGS.ftrl_l2)
elif FLAGS.optimizer == 'momentum':
optimizer = tf.train.MomentumOptimizer(
learning_rate,
momentum=FLAGS.momentum,
name='Momentum')
elif FLAGS.optimizer == 'rmsprop':
optimizer = tf.train.RMSPropOptimizer(
learning_rate,
decay=FLAGS.rmsprop_decay,
momentum=FLAGS.rmsprop_momentum,
epsilon=FLAGS.opt_epsilon)
elif FLAGS.optimizer == 'sgd':
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
else:
raise ValueError('Optimizer [%s] was not recognized', FLAGS.optimizer)
return optimizer'''