forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
697 lines (523 loc) · 21.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================
"""KeypointNet!!
A reimplementation of 'Discovery of Latent 3D Keypoints via End-to-end
Geometric Reasoning' keypoint network. Given a single 2D image of a known class,
this network can predict a set of 3D keypoints that are consistent across
viewing angles of the same object and across object instances. These keypoints
and their detectors are discovered and learned automatically without
keypoint location supervision.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import matplotlib.pyplot as plt
import numpy as np
import os
from scipy import misc
import sys
import tensorflow as tf
import tensorflow.contrib.slim as slim
import utils
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_boolean("predict", False, "Running inference if true")
tf.app.flags.DEFINE_string(
"input",
"",
"Input folder containing images")
tf.app.flags.DEFINE_string("model_dir", None, "Estimator model_dir")
tf.app.flags.DEFINE_string(
"dset",
"",
"Path to the directory containing the dataset.")
tf.app.flags.DEFINE_integer("steps", 200000, "Training steps")
tf.app.flags.DEFINE_integer("batch_size", 8, "Size of mini-batch.")
tf.app.flags.DEFINE_string(
"hparams", "",
"A comma-separated list of `name=value` hyperparameter values. This flag "
"is used to override hyperparameter settings either when manually "
"selecting hyperparameters or when using Vizier.")
tf.app.flags.DEFINE_integer(
"sync_replicas", -1,
"If > 0, use SyncReplicasOptimizer and use this many replicas per sync.")
# Fixed input size 128 x 128.
vw = vh = 128
def create_input_fn(split, batch_size):
"""Returns input_fn for tf.estimator.Estimator.
Reads tfrecords and construts input_fn for either training or eval. All
tfrecords not in test.txt or dev.txt will be assigned to training set.
Args:
split: A string indicating the split. Can be either 'train' or 'validation'.
batch_size: The batch size!
Returns:
input_fn for tf.estimator.Estimator.
Raises:
IOError: If test.txt or dev.txt are not found.
"""
if (not os.path.exists(os.path.join(FLAGS.dset, "test.txt")) or
not os.path.exists(os.path.join(FLAGS.dset, "dev.txt"))):
raise IOError("test.txt or dev.txt not found")
with open(os.path.join(FLAGS.dset, "test.txt"), "r") as f:
testset = [x.strip() for x in f.readlines()]
with open(os.path.join(FLAGS.dset, "dev.txt"), "r") as f:
validset = [x.strip() for x in f.readlines()]
files = os.listdir(FLAGS.dset)
filenames = []
for f in files:
sp = os.path.splitext(f)
if sp[1] != ".tfrecord" or sp[0] in testset:
continue
if ((split == "validation" and sp[0] in validset) or
(split == "train" and sp[0] not in validset)):
filenames.append(os.path.join(FLAGS.dset, f))
def input_fn():
"""input_fn for tf.estimator.Estimator."""
def parser(serialized_example):
"""Parses a single tf.Example into image and label tensors."""
fs = tf.parse_single_example(
serialized_example,
features={
"img0": tf.FixedLenFeature([], tf.string),
"img1": tf.FixedLenFeature([], tf.string),
"mv0": tf.FixedLenFeature([16], tf.float32),
"mvi0": tf.FixedLenFeature([16], tf.float32),
"mv1": tf.FixedLenFeature([16], tf.float32),
"mvi1": tf.FixedLenFeature([16], tf.float32),
})
fs["img0"] = tf.div(tf.to_float(tf.image.decode_png(fs["img0"], 4)), 255)
fs["img1"] = tf.div(tf.to_float(tf.image.decode_png(fs["img1"], 4)), 255)
fs["img0"].set_shape([vh, vw, 4])
fs["img1"].set_shape([vh, vw, 4])
# fs["lr0"] = [fs["mv0"][0]]
# fs["lr1"] = [fs["mv1"][0]]
fs["lr0"] = tf.convert_to_tensor([fs["mv0"][0]])
fs["lr1"] = tf.convert_to_tensor([fs["mv1"][0]])
return fs
np.random.shuffle(filenames)
dataset = tf.data.TFRecordDataset(filenames)
dataset = dataset.map(parser, num_parallel_calls=4)
dataset = dataset.shuffle(400).repeat().batch(batch_size)
dataset = dataset.prefetch(buffer_size=256)
return dataset.make_one_shot_iterator().get_next(), None
return input_fn
class Transformer(object):
"""A utility for projecting 3D points to 2D coordinates and vice versa.
3D points are represented in 4D-homogeneous world coordinates. The pixel
coordinates are represented in normalized device coordinates [-1, 1].
See https://learnopengl.com/Getting-started/Coordinate-Systems.
"""
def __get_matrix(self, lines):
return np.array([[float(y) for y in x.strip().split(" ")] for x in lines])
def __read_projection_matrix(self, filename):
if not os.path.exists(filename):
filename = "/cns/vz-d/home/supasorn/datasets/cars/projection.txt"
with open(filename, "r") as f:
lines = f.readlines()
return self.__get_matrix(lines)
def __init__(self, w, h, dataset_dir):
self.w = w
self.h = h
p = self.__read_projection_matrix(dataset_dir + "projection.txt")
# transposed of inversed projection matrix.
self.pinv_t = tf.constant([[1.0 / p[0, 0], 0, 0,
0], [0, 1.0 / p[1, 1], 0, 0], [0, 0, 1, 0],
[0, 0, 0, 1]])
self.f = p[0, 0]
def project(self, xyzw):
"""Projects homogeneous 3D coordinates to normalized device coordinates."""
z = xyzw[:, :, 2:3] + 1e-8
return tf.concat([-self.f * xyzw[:, :, :2] / z, z], axis=2)
def unproject(self, xyz):
"""Unprojects normalized device coordinates with depth to 3D coordinates."""
z = xyz[:, :, 2:]
xy = -xyz * z
def batch_matmul(a, b):
return tf.reshape(
tf.matmul(tf.reshape(a, [-1, a.shape[2].value]), b),
[-1, a.shape[1].value, a.shape[2].value])
return batch_matmul(
tf.concat([xy[:, :, :2], z, tf.ones_like(z)], axis=2), self.pinv_t)
def meshgrid(h):
"""Returns a meshgrid ranging from [-1, 1] in x, y axes."""
r = np.arange(0.5, h, 1) / (h / 2) - 1
ranx, rany = tf.meshgrid(r, -r)
return tf.to_float(ranx), tf.to_float(rany)
def estimate_rotation(xyz0, xyz1, pconf, noise):
"""Estimates the rotation between two sets of keypoints.
The rotation is estimated by first subtracting mean from each set of keypoints
and computing SVD of the covariance matrix.
Args:
xyz0: [batch, num_kp, 3] The first set of keypoints.
xyz1: [batch, num_kp, 3] The second set of keypoints.
pconf: [batch, num_kp] The weights used to compute the rotation estimate.
noise: A number indicating the noise added to the keypoints.
Returns:
[batch, 3, 3] A batch of transposed 3 x 3 rotation matrices.
"""
xyz0 += tf.random_normal(tf.shape(xyz0), mean=0, stddev=noise)
xyz1 += tf.random_normal(tf.shape(xyz1), mean=0, stddev=noise)
pconf2 = tf.expand_dims(pconf, 2)
cen0 = tf.reduce_sum(xyz0 * pconf2, 1, keepdims=True)
cen1 = tf.reduce_sum(xyz1 * pconf2, 1, keepdims=True)
x = xyz0 - cen0
y = xyz1 - cen1
cov = tf.matmul(tf.matmul(x, tf.matrix_diag(pconf), transpose_a=True), y)
_, u, v = tf.svd(cov, full_matrices=True)
d = tf.matrix_determinant(tf.matmul(v, u, transpose_b=True))
ud = tf.concat(
[u[:, :, :-1], u[:, :, -1:] * tf.expand_dims(tf.expand_dims(d, 1), 1)],
axis=2)
return tf.matmul(ud, v, transpose_b=True)
def relative_pose_loss(xyz0, xyz1, rot, pconf, noise):
"""Computes the relative pose loss (chordal, angular).
Args:
xyz0: [batch, num_kp, 3] The first set of keypoints.
xyz1: [batch, num_kp, 3] The second set of keypoints.
rot: [batch, 4, 4] The ground-truth rotation matrices.
pconf: [batch, num_kp] The weights used to compute the rotation estimate.
noise: A number indicating the noise added to the keypoints.
Returns:
A tuple (chordal loss, angular loss).
"""
r_transposed = estimate_rotation(xyz0, xyz1, pconf, noise)
rotation = rot[:, :3, :3]
frob_sqr = tf.reduce_sum(tf.square(r_transposed - rotation), axis=[1, 2])
frob = tf.sqrt(frob_sqr)
return tf.reduce_mean(frob_sqr), \
2.0 * tf.reduce_mean(tf.asin(tf.minimum(1.0, frob / (2 * math.sqrt(2)))))
def separation_loss(xyz, delta):
"""Computes the separation loss.
Args:
xyz: [batch, num_kp, 3] Input keypoints.
delta: A separation threshold. Incur 0 cost if the distance >= delta.
Returns:
The seperation loss.
"""
num_kp = tf.shape(xyz)[1]
t1 = tf.tile(xyz, [1, num_kp, 1])
t2 = tf.reshape(tf.tile(xyz, [1, 1, num_kp]), tf.shape(t1))
diffsq = tf.square(t1 - t2)
# -> [batch, num_kp ^ 2]
lensqr = tf.reduce_sum(diffsq, axis=2)
return (tf.reduce_sum(tf.maximum(-lensqr + delta, 0.0)) / tf.to_float(
num_kp * FLAGS.batch_size * 2))
def consistency_loss(uv0, uv1, pconf):
"""Computes multi-view consistency loss between two sets of keypoints.
Args:
uv0: [batch, num_kp, 2] The first set of keypoint 2D coordinates.
uv1: [batch, num_kp, 2] The second set of keypoint 2D coordinates.
pconf: [batch, num_kp] The weights used to compute the rotation estimate.
Returns:
The consistency loss.
"""
# [batch, num_kp, 2]
wd = tf.square(uv0 - uv1) * tf.expand_dims(pconf, 2)
wd = tf.reduce_sum(wd, axis=[1, 2])
return tf.reduce_mean(wd)
def variance_loss(probmap, ranx, rany, uv):
"""Computes the variance loss as part of Sillhouette consistency.
Args:
probmap: [batch, num_kp, h, w] The distribution map of keypoint locations.
ranx: X-axis meshgrid.
rany: Y-axis meshgrid.
uv: [batch, num_kp, 2] Keypoint locations (in NDC).
Returns:
The variance loss.
"""
ran = tf.stack([ranx, rany], axis=2)
sh = tf.shape(ran)
# [batch, num_kp, vh, vw, 2]
ran = tf.reshape(ran, [1, 1, sh[0], sh[1], 2])
sh = tf.shape(uv)
uv = tf.reshape(uv, [sh[0], sh[1], 1, 1, 2])
diff = tf.reduce_sum(tf.square(uv - ran), axis=4)
diff *= probmap
return tf.reduce_mean(tf.reduce_sum(diff, axis=[2, 3]))
def dilated_cnn(images, num_filters, is_training):
"""Constructs a base dilated convolutional network.
Args:
images: [batch, h, w, 3] Input RGB images.
num_filters: The number of filters for all layers.
is_training: True if this function is called during training.
Returns:
Output of this dilated CNN.
"""
net = images
with slim.arg_scope(
[slim.conv2d, slim.fully_connected],
normalizer_fn=slim.batch_norm,
activation_fn=lambda x: tf.nn.leaky_relu(x, alpha=0.1),
normalizer_params={"is_training": is_training}):
for i, r in enumerate([1, 1, 2, 4, 8, 16, 1, 2, 4, 8, 16, 1]):
net = slim.conv2d(net, num_filters, [3, 3], rate=r, scope="dconv%d" % i)
return net
def orientation_network(images, num_filters, is_training):
"""Constructs a network that infers the orientation of an object.
Args:
images: [batch, h, w, 3] Input RGB images.
num_filters: The number of filters for all layers.
is_training: True if this function is called during training.
Returns:
Output of the orientation network.
"""
with tf.variable_scope("OrientationNetwork"):
net = dilated_cnn(images, num_filters, is_training)
modules = 2
prob = slim.conv2d(net, 2, [3, 3], rate=1, activation_fn=None)
prob = tf.transpose(prob, [0, 3, 1, 2])
prob = tf.reshape(prob, [-1, modules, vh * vw])
prob = tf.nn.softmax(prob)
ranx, rany = meshgrid(vh)
prob = tf.reshape(prob, [-1, 2, vh, vw])
sx = tf.reduce_sum(prob * ranx, axis=[2, 3])
sy = tf.reduce_sum(prob * rany, axis=[2, 3]) # -> batch x modules
out_xy = tf.reshape(tf.stack([sx, sy], -1), [-1, modules, 2])
return out_xy
def keypoint_network(rgba,
num_filters,
num_kp,
is_training,
lr_gt=None,
anneal=1):
"""Constructs our main keypoint network that predicts 3D keypoints.
Args:
rgba: [batch, h, w, 4] Input RGB images with alpha channel.
num_filters: The number of filters for all layers.
num_kp: The number of keypoints.
is_training: True if this function is called during training.
lr_gt: The groundtruth orientation flag used at the beginning of training.
Then we linearly anneal in the prediction.
anneal: A number between [0, 1] where 1 means using the ground-truth
orientation and 0 means using our estimate.
Returns:
uv: [batch, num_kp, 2] 2D locations of keypoints.
z: [batch, num_kp] The depth of keypoints.
orient: [batch, 2, 2] Two 2D coordinates that correspond to [1, 0, 0] and
[-1, 0, 0] in object space.
sill: The Sillhouette loss.
variance: The variance loss.
prob_viz: A visualization of all predicted keypoints.
prob_vizs: A list of visualizations of each keypoint.
"""
images = rgba[:, :, :, :3]
# [batch, 1]
orient = orientation_network(images, num_filters * 0.5, is_training)
# [batch, 1]
lr_estimated = tf.maximum(0.0, tf.sign(orient[:, 0, :1] - orient[:, 1, :1]))
if lr_gt is None:
lr = lr_estimated
else:
lr_gt = tf.maximum(0.0, tf.sign(lr_gt[:, :1]))
lr = tf.round(lr_gt * anneal + lr_estimated * (1 - anneal))
lrtiled = tf.tile(
tf.expand_dims(tf.expand_dims(lr, 1), 1),
[1, images.shape[1], images.shape[2], 1])
images = tf.concat([images, lrtiled], axis=3)
mask = rgba[:, :, :, 3]
mask = tf.cast(tf.greater(mask, tf.zeros_like(mask)), dtype=tf.float32)
net = dilated_cnn(images, num_filters, is_training)
# The probability distribution map.
prob = slim.conv2d(
net, num_kp, [3, 3], rate=1, scope="conv_xy", activation_fn=None)
# We added the fixed camera distance as a bias.
z = -30 + slim.conv2d(
net, num_kp, [3, 3], rate=1, scope="conv_z", activation_fn=None)
prob = tf.transpose(prob, [0, 3, 1, 2])
z = tf.transpose(z, [0, 3, 1, 2])
prob = tf.reshape(prob, [-1, num_kp, vh * vw])
prob = tf.nn.softmax(prob, name="softmax")
ranx, rany = meshgrid(vh)
prob = tf.reshape(prob, [-1, num_kp, vh, vw])
# These are for visualizing the distribution maps.
prob_viz = tf.expand_dims(tf.reduce_sum(prob, 1), 3)
prob_vizs = [tf.expand_dims(prob[:, i, :, :], 3) for i in range(num_kp)]
sx = tf.reduce_sum(prob * ranx, axis=[2, 3])
sy = tf.reduce_sum(prob * rany, axis=[2, 3]) # -> batch x num_kp
# [batch, num_kp]
sill = tf.reduce_sum(prob * tf.expand_dims(mask, 1), axis=[2, 3])
sill = tf.reduce_mean(-tf.log(sill + 1e-12))
z = tf.reduce_sum(prob * z, axis=[2, 3])
uv = tf.reshape(tf.stack([sx, sy], -1), [-1, num_kp, 2])
variance = variance_loss(prob, ranx, rany, uv)
return uv, z, orient, sill, variance, prob_viz, prob_vizs
def model_fn(features, labels, mode, hparams):
"""Returns model_fn for tf.estimator.Estimator."""
del labels
is_training = (mode == tf.estimator.ModeKeys.TRAIN)
t = Transformer(vw, vh, FLAGS.dset)
def func1(x):
return tf.transpose(tf.reshape(features[x], [-1, 4, 4]), [0, 2, 1])
mv = [func1("mv%d" % i) for i in range(2)]
mvi = [func1("mvi%d" % i) for i in range(2)]
uvz = [None] * 2
uvz_proj = [None] * 2 # uvz coordinates projected on to the other view.
viz = [None] * 2
vizs = [None] * 2
loss_sill = 0
loss_variance = 0
loss_con = 0
loss_sep = 0
loss_lr = 0
for i in range(2):
with tf.variable_scope("KeypointNetwork", reuse=i > 0):
# anneal: 1 = using ground-truth, 0 = using our estimate orientation.
anneal = tf.to_float(hparams.lr_anneal_end - tf.train.get_global_step())
anneal = tf.clip_by_value(
anneal / (hparams.lr_anneal_end - hparams.lr_anneal_start), 0.0, 1.0)
uv, z, orient, sill, variance, viz[i], vizs[i] = keypoint_network(
features["img%d" % i],
hparams.num_filters,
hparams.num_kp,
is_training,
lr_gt=features["lr%d" % i],
anneal=anneal)
# x-positive/negative axes (dominant direction).
xp_axis = tf.tile(
tf.constant([[[1.0, 0, 0, 1], [-1.0, 0, 0, 1]]]),
[tf.shape(orient)[0], 1, 1])
# [batch, 2, 4] = [batch, 2, 4] x [batch, 4, 4]
xp = tf.matmul(xp_axis, mv[i])
# [batch, 2, 3]
xp = t.project(xp)
loss_lr += tf.losses.mean_squared_error(orient[:, :, :2], xp[:, :, :2])
loss_variance += variance
loss_sill += sill
uv = tf.reshape(uv, [-1, hparams.num_kp, 2])
z = tf.reshape(z, [-1, hparams.num_kp, 1])
# [batch, num_kp, 3]
uvz[i] = tf.concat([uv, z], axis=2)
world_coords = tf.matmul(t.unproject(uvz[i]), mvi[i])
# [batch, num_kp, 3]
uvz_proj[i] = t.project(tf.matmul(world_coords, mv[1 - i]))
pconf = tf.ones(
[tf.shape(uv)[0], tf.shape(uv)[1]], dtype=tf.float32) / hparams.num_kp
for i in range(2):
loss_con += consistency_loss(uvz_proj[i][:, :, :2], uvz[1 - i][:, :, :2],
pconf)
loss_sep += separation_loss(
t.unproject(uvz[i])[:, :, :3], hparams.sep_delta)
chordal, angular = relative_pose_loss(
t.unproject(uvz[0])[:, :, :3],
t.unproject(uvz[1])[:, :, :3], tf.matmul(mvi[0], mv[1]), pconf,
hparams.noise)
loss = (
hparams.loss_pose * angular +
hparams.loss_con * loss_con +
hparams.loss_sep * loss_sep +
hparams.loss_sill * loss_sill +
hparams.loss_lr * loss_lr +
hparams.loss_variance * loss_variance
)
def touint8(img):
return tf.cast(img * 255.0, tf.uint8)
with tf.variable_scope("output"):
tf.summary.image("0_img0", touint8(features["img0"][:, :, :, :3]))
tf.summary.image("1_combined", viz[0])
for i in range(hparams.num_kp):
tf.summary.image("2_f%02d" % i, vizs[0][i])
with tf.variable_scope("stats"):
tf.summary.scalar("anneal", anneal)
tf.summary.scalar("closs", loss_con)
tf.summary.scalar("seploss", loss_sep)
tf.summary.scalar("angular", angular)
tf.summary.scalar("chordal", chordal)
tf.summary.scalar("lrloss", loss_lr)
tf.summary.scalar("sill", loss_sill)
tf.summary.scalar("vloss", loss_variance)
return {
"loss": loss,
"predictions": {
"img0": features["img0"],
"img1": features["img1"],
"uvz0": uvz[0],
"uvz1": uvz[1]
},
"eval_metric_ops": {
"closs": tf.metrics.mean(loss_con),
"angular_loss": tf.metrics.mean(angular),
"chordal_loss": tf.metrics.mean(chordal),
}
}
def predict(input_folder, hparams):
"""Predicts keypoints on all images in input_folder."""
cols = plt.cm.get_cmap("rainbow")(
np.linspace(0, 1.0, hparams.num_kp))[:, :4]
img = tf.placeholder(tf.float32, shape=(1, 128, 128, 4))
with tf.variable_scope("KeypointNetwork"):
ret = keypoint_network(
img, hparams.num_filters, hparams.num_kp, False)
uv = tf.reshape(ret[0], [-1, hparams.num_kp, 2])
z = tf.reshape(ret[1], [-1, hparams.num_kp, 1])
uvz = tf.concat([uv, z], axis=2)
sess = tf.Session()
saver = tf.train.Saver()
ckpt = tf.train.get_checkpoint_state(FLAGS.model_dir)
print("loading model: ", ckpt.model_checkpoint_path)
saver.restore(sess, ckpt.model_checkpoint_path)
files = [x for x in os.listdir(input_folder)
if x[-3:] in ["jpg", "png"]]
output_folder = os.path.join(input_folder, "output")
if not os.path.exists(output_folder):
os.mkdir(output_folder)
for f in files:
orig = misc.imread(os.path.join(input_folder, f)).astype(float) / 255
if orig.shape[2] == 3:
orig = np.concatenate((orig, np.ones_like(orig[:, :, :1])), axis=2)
uv_ret = sess.run(uvz, feed_dict={img: np.expand_dims(orig, 0)})
utils.draw_ndc_points(orig, uv_ret.reshape(hparams.num_kp, 3), cols)
misc.imsave(os.path.join(output_folder, f), orig)
def _default_hparams():
"""Returns default or overridden user-specified hyperparameters."""
hparams = tf.contrib.training.HParams(
num_filters=64, # Number of filters.
num_kp=10, # Numer of keypoints.
loss_pose=0.2, # Pose Loss.
loss_con=1.0, # Multiview consistency Loss.
loss_sep=1.0, # Seperation Loss.
loss_sill=1.0, # Sillhouette Loss.
loss_lr=1.0, # Orientation Loss.
loss_variance=0.5, # Variance Loss (part of Sillhouette loss).
sep_delta=0.05, # Seperation threshold.
noise=0.1, # Noise added during estimating rotation.
learning_rate=1.0e-3,
lr_anneal_start=30000, # When to anneal in the orientation prediction.
lr_anneal_end=60000, # When to use the prediction completely.
)
if FLAGS.hparams:
hparams = hparams.parse(FLAGS.hparams)
return hparams
def main(argv):
del argv
hparams = _default_hparams()
if FLAGS.predict:
predict(FLAGS.input, hparams)
else:
utils.train_and_eval(
model_dir=FLAGS.model_dir,
model_fn=model_fn,
input_fn=create_input_fn,
hparams=hparams,
steps=FLAGS.steps,
batch_size=FLAGS.batch_size,
save_checkpoints_secs=600,
eval_throttle_secs=1800,
eval_steps=5,
sync_replicas=FLAGS.sync_replicas,
)
if __name__ == "__main__":
sys.excepthook = utils.colored_hook(
os.path.dirname(os.path.realpath(__file__)))
tf.app.run()