-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
54 lines (45 loc) · 1.84 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from flask import Flask, render_template, request
import os
import numpy as np
from src.mlProject.pipeline.prediction import PredictionPipeline
app = Flask(__name__)
@app.route('/', methods=['GET']) # route to display the home page
def homePage():
return render_template("index.html")
@app.route('/train', methods=['GET']) # route to train the pipeline
def training():
try:
os.system("python main.py")
return "Training Successful!"
except Exception as e:
print(f'Training failed: {e}')
return f"Training failed: {e}"
@app.route('/predict', methods=['POST', 'GET']) # route to show the predictions in a web UI
def index():
if request.method == 'POST':
try:
# Reading the inputs given by the user
features = [
float(request.form['fixed_acidity']),
float(request.form['volatile_acidity']),
float(request.form['citric_acid']),
float(request.form['residual_sugar']),
float(request.form['chlorides']),
float(request.form['free_sulfur_dioxide']),
float(request.form['total_sulfur_dioxide']),
float(request.form['density']),
float(request.form['pH']),
float(request.form['sulphates']),
float(request.form['alcohol'])
]
data = np.array(features).reshape(1, -1)
# Prediction pipeline
obj = PredictionPipeline()
predict = obj.predict(data)
return render_template('results.html', prediction=str(predict))
except Exception as e:
print(f'The Exception message is: {e}')
return f'Something went wrong: {e}'
return render_template('index.html')
if __name__ == "__main__":
app.run(host="0.0.0.0", port=8080)