-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
65 lines (54 loc) · 2.31 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
from src.mlProject import logger
from src.mlProject.pipeline.stage_01_data_ingestion import DataIngestionTrainingPipeline
from src.mlProject.pipeline.stage_02_data_validation import DataValidationTrainingPipeline
from src.mlProject.pipeline.stage_03_data_transformation import DataTransformationTrainingPipeline
from src.mlProject.pipeline.stage_04_model_trainer import ModelTrainerTrainingPipeline
from src.mlProject.pipeline.stage_05_model_evaluation import ModelEvaluationTrainingPipeline
# from /workspaces/rudder/src/mlProject/pipeline/stage_01_data_ingestion.py
STAGE_NAME = "Data Ingestion stage"
try:
logger.info(f">>>>>> stage {STAGE_NAME} started <<<<<<")
data_ingestion = DataIngestionTrainingPipeline()
data_ingestion.main()
logger.info(f">>>>>> stage {STAGE_NAME} completed <<<<<<\n\nx==========x")
except Exception as e:
logger.exception(e)
raise e
# from /workspaces/rudder/src/mlProject/pipeline/stage_02_data_validation.py
STAGE_NAME = "Data Validation stage"
try:
logger.info(f">>>>>> stage {STAGE_NAME} started <<<<<<")
data_ingestion = DataValidationTrainingPipeline()
data_ingestion.main()
logger.info(f">>>>>> stage {STAGE_NAME} completed <<<<<<\n\nx==========x")
except Exception as e:
logger.exception(e)
raise e
#from /workspaces/rudder/src/mlProject/pipeline/stage_03_data_transformation.py
STAGE_NAME = "Data Transformation stage"
try:
logger.info(f">>>>>> stage {STAGE_NAME} started <<<<<<")
data_ingestion = DataTransformationTrainingPipeline()
data_ingestion.main()
logger.info(f">>>>>> stage {STAGE_NAME} completed <<<<<<\n\nx==========x")
except Exception as e:
logger.exception(e)
raise e
STAGE_NAME = "Model Trainer stage"
try:
logger.info(f">>>>>> stage {STAGE_NAME} started <<<<<<")
data_ingestion = ModelTrainerTrainingPipeline()
data_ingestion.main()
logger.info(f">>>>>> stage {STAGE_NAME} completed <<<<<<\n\nx==========x")
except Exception as e:
logger.exception(e)
raise e
STAGE_NAME = "Model evaluation stage"
try:
logger.info(f">>>>>> stage {STAGE_NAME} started <<<<<<")
data_ingestion = ModelEvaluationTrainingPipeline()
data_ingestion.main()
logger.info(f">>>>>> stage {STAGE_NAME} completed <<<<<<\n\nx==========x")
except Exception as e:
logger.exception(e)
raise e