forked from shala2020/shala2020.github.io
-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.html
1546 lines (1415 loc) · 70.1 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html>
<head>
<title>SHALA-2020</title>
<meta property="og:image" content="https://shala2020.github.io/images/cp.jpg" />
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/4.7.0/css/font-awesome.min.css">
<!-- extra -->
<!-- bootstrap -->
<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.2.0/css/bootstrap.min.css">
<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.2.0/css/bootstrap-theme.min.css">
<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/4.4.1/css/bootstrap.min.css">
<link href='http://fonts.googleapis.com/css?family=Roboto:400,300' rel='stylesheet' type='text/css'>
<link rel="stylesheet" type="text/css" href="css/index.css" />
<!-- For social Handles -->
<link href="//maxcdn.bootstrapcdn.com/font-awesome/4.1.0/css/font-awesome.min.css" rel="stylesheet">
<link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/css/bootstrap.min.css" rel="stylesheet"
integrity="sha256-MfvZlkHCEqatNoGiOXveE8FIwMzZg4W85qfrfIFBfYc= sha512-dTfge/zgoMYpP7QbHy4gWMEGsbsdZeCXz7irItjcC3sPUFtf0kuFbDz/ixG7ArTxmDjLXDmezHubeNikyKGVyQ=="
crossorigin="anonymous">
</head>
<body>
<div id="header">
<!-- <a href="http://www.iitb.ac.in/" target="_blank">
<img src="images/IITB-logo.png" style="height:50px; float: left; margin-left: 20px;">
</a>
<a href="http://www.iitb.ac.in/">
<img src="images/IITB-logo.png" style="height:50px; float: right; margin-right: 20px;">
</a> -->
<h1><b>MastAI ki paathSHALA</b></h1>
<div class='text-center'>
<h2>Have fun Staying Home And Learning AI</h2>
</div>
<div class='text-center'>
<h3>A course on Data Science, Machine Learning, and Deep Learning</h3>
<h4>Summer 2020</h3>
</div>
<div style="clear:both;"></div>
</div>
<div
style="background-color: linen ; border: 3px solid darkred; margin: 4px; padding: 2px; font-weight: bold; text-align: center;">
There has been some heavy rain where the instructor is. We will reschedule today's (16 June) lecture (on LSTM),
most likely for Thursday evening.
</div>
<!-- <marquee behavior="scroll" direction="left"
style="background-color: linen; margin: 4px; padding: 2px; font-weight: bold;">
First lecture on April 15 at 9pm IST, pre-work and assignment released.
Please visit our <a
href="https://www.youtube.com/channel/UCobe_Yc7nV6kux94A5doIiA/" target="_blank">YouTube</a> channel for the
live streaming of this lecture.
Today's session (Jun 16) at 9pm IST will be a lecture on simple applications of LSTM. You may join live
via <a href="https://us02web.zoom.us/j/83189699220?pwd=TjV0K1dnTTlodUdBbFJkWVZYdWdWQT09"
target="_blank">Zoom</a>.
</marquee> -->
<div id="teaser">
<div>
<iframe width="560" height="370" src="https://www.youtube.com/embed/xHXzm0P0Jx0" frameborder="0"
allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture"
allowfullscreen></iframe>
<!--<img src="images/ML.jpeg" style="height:370px; width: 800px;">-->
</div>
</div>
<div class="container sec">
<div class="topnav" id="myTopnav">
<a href="#about" class="active">About</a>
<a href="#topics">Topics</a>
<a href="#pedagogy">Pedagogy</a>
<a href="#schedule">Schedule</a>
<a href="#prerequisites">Prerequisites</a>
<a href="#team">Team</a>
<a href="#signup">Signup</a>
<a href="#faq">FAQs</a>
<a href="#contact">Contact</a>
<a href="javascript:void(0);" class="icon" onclick="myFunction()">
<i class="fa fa-bars"></i>
</a>
</div>
</div>
<div class="container" style="margin-top: -20px; margin-bottom: 10px">
<!-- <hr> -->
<div class="text-center center-block">
<a href="https://www.facebook.com/mastAIkipaathSHALA/" target="_blank"><i id="social-fb"
class="fa fa-facebook-square fa-3x social"></i></a>
<a href="https://www.youtube.com/channel/UCobe_Yc7nV6kux94A5doIiA/" target="_blank"><i id="social-yb"
class="fa fa-youtube-square fa-3x social"></i></a>
<a href="https://www.instagram.com/shala.2020/" target="_blank"><i id="social-in"
class="fa fa-instagram fa-3x social"></i></a>
<!-- <a href="mailto:[email protected]" target="_blank"><i id="social-em" class="fa fa-envelope-square fa-3x social"></i></a> -->
</div>
<!-- <hr> -->
</div>
<div class="sechighlight">
<div class="container sec">
<h2 id="about">ABOUT</h2>
<div id="coursedesc">
<p> During these months of social distancing and lockdown, a lot of college students are not able to
attend classes or go for internships where they could be learning practical tech skills. We, a team
of volunteers comprising professors, industry professionals, and students working in data science,
machine learning, and deep learning have gotten together to offer a course to students of
engineering colleges on these topics. There is no fee for this course, and this is our way of
contributing to
the Indian and world community in these trying times.</p>
<p>We would like the course to be full of rewarding practical knowledge for the diligent students, which
we will achieve by giving rigorous programming exercises and mini-projects to apply the concepts
learned during the course. We will attempt to make sure that all diligent students who have the
requisite background knowledge are able to make progress on the course by getting their doubts
cleared in
interactive video calls. Please see more details in the section about <a href="#topics"> Topics
</a> and <a href="#pedagogy"> Pedagogy</a>. The course is going to be rigorous but fun and rewarding
to the diligent students who finish the entire course. However, between consecutive topics, we would
allow
any student to drop the course if one no longer wishes to continue given any circumstances.</p>
</div>
</div>
</div>
<div class="thirdhighlight">
<div class="container sec">
<h2 id="topics">TOPICS</h2>
<div id="coursedesc">
<p> <b>Data Science (DS)</b>: Getting started, Basic data understanding, Improving plots, Basic
statistics.</p>
<p> <b>Machine Learning (ML)</b>: Introduction to ML, Decision trees, Bayesian decision theory, Linear
models, Kernelization, Feature selection and engineering, Dense and shallow neural networks,
Advanced topics in neural networks, Clustering, Model Explainability.</p>
<p> <b>Deep Learning (DL) for Vision</b>: Introduction to CNNs, Advanced conv nets, Semantic
segmentation, Object detection, Instance segmentation, Few-shot learning, Metric learning,
Generative Adversarial Networks (GANs), Variational Autoencoder (VAE).
</p>
<p> <b>Deep Learning for Natural Language Processing (NLP)</b>: Word embeddings, Language modeling,
Simple applications of LSTMs, Advanced applications of LSTMs - 1, Relationship extraction, Advanced
applications of LSTMs - 2, Advanced applications of LSTMs - 3, Beyond simple word embeddings, Beyond
LSTMs, Chat-bot making.</p>
<p><b>Miscellaneous</b>: Graph conv nets for NLP, Knowledge graphs, Reinforcement Learning. </p>
<p> <b>Practical Implementation of ML Models</b>: Deployment - 1, Deployment - 2, Deployment - 3,
Front-end and logistics, Making APIs, Winning Kaggle, Compute and bandwith considerations, When to
use which framework.
</p>
</div>
<h2 id="pedagogy">PEDAGOGY</h2>
<div id="coursedesc">
<p>The course will be divided in small topics, which will require one or two days of intense work each.
There will be approximately three topics covered each week for approximately eight weeks. The
following will be the <u>components of each topic</u>:
<ul>
<li>Pre-work: Links to online text and videos will be shared.
</li>
<li>Pre-quiz: A quiz on basic concepts will be given to assess the student’s readiness for the
module.</li>
<li>Online interactive video lecture: The material in the pre-work will be covered, doubts will
be cleared, and more advanced insights will be provided.</li>
<li>Assignment release: Assignment for the module will be released on kaggle as an in-class
competition.</li>
<li>Assignment help session: A second online interactive video session will be conducted for
each session to clear any doubts about the assignment.</li>
<li>Assignment submission.</li>
<li>Release of instructor’s and the best of students’ solutions.</li>
</ul>
</p>
<p>After a group of modules, project statements will be released.</p>
<p>Please note that there will be no formal certificate given to the students for completing the course
assignments. The best projects and assignments will be mentioned on the course website for all to
see. Students are encouraged to make their <a href="https://github.com/" target="_blank">GitHub</a>
portfolios and point to the course webpage, which
will help them immensely for recruitment.</p>
</div>
<h2 id="schedule">SCHEDULE</h2>
<p> For detailed schedule, click <a
href="https://docs.google.com/spreadsheets/d/e/2PACX-1vR2UGMjeIZf0BEDGSoyZEo-6XuLX_Xy50Ozs3lSqnATcbi68kgPUhdH1VyIXpDAeI_ZYfW1pzsymTP4/pubhtml?gid=1476758074&single=true"
target="_blank"><strong>here</strong></a>
</p>
<p><b>Note</b>: Interactive sessions will start at 9pm Indian Standard Time (IST).
<!-- Look out for an invitation to
<a href="https://campuswire.com/" target="_blank">CampusWire</a> in your email, which will be our
platform for keeping in touch with the students. -->
</p>
<!-- <center><a class="btn btn-success btn-lg" href="notes.html" target="_blank">Click here for lecture notes</a></center> -->
<!-- ######################### Material upload ################################## -->
<div class="wrap">
<div class="module-header">Module 0: Introduction to the course</div>
<div class="materials-item">
<div>
Pre-work: <a href="https://mml-book.github.io/book/mml-book.pdf" style="display: inline"
target="_blank">Mathematics for Machine Learning by Deisenroth, Faisal, and Ong</a> Section:
2.1-2.3, 3.1-3.4, 5.1-5.2, 6.1-6.5, 7.1, <a href="https://www.learnpython.org/"
style="display: inline" target="_blank">Python Tutorials</a>
</div>
<div class="kw">
<a href="https://www.youtube.com/watch?v=u5kK52JZBNU" style="display: inline"
target="_blank">Watch the kickoff session</a>
</div>
</div>
<div class="module-header">Module 1: Data Science</div>
<div class="materials-item">
<!-- <a href="classification/">Image Classification: Data-driven Approach, k-Nearest Neighbor, train/val/test splits </a> -->
<div>
<b>Getting started:</b> Google Colab, GPU service, Useful Python libraries, GitHub <br>
Prerequisites: Python data structure, Loops, Classes, Linear Algebra <br>
Pre-work: <a href="https://www.youtube.com/watch?v=inN8seMm7UI" style="display: inline"
target="_blank">Google Colaboratory-1</a>, <a
href="https://colab.research.google.com/notebooks/intro.ipynb" style="display: inline"
target="_blank">Google Colaboratory-2</a>, <a
href="https://docs.scipy.org/doc/numpy/user/quickstart.html" style="display: inline"
target="_blank">NumPy</a>
</div>
<div class="kw">
<a href="https://docs.google.com/forms/d/e/1FAIpQLSf6PT_nt69TO2k7PKKiFMrvtIe9sUsxNk4TRxVJx9TvURxExA/viewform?usp=sf_link"
style="display: inline" target="_blank">Pre-Quiz</a> | <a
href="https://www.youtube.com/watch?v=zKSczEN4lks" style="display: inline"
target="_blank">Lecture</a> | <a
href="https://colab.research.google.com/drive/1qCGe_9ohuuPWGLwKY6sQGnliRGmGix6q"
style="display: inline" target="_blank">Assignment</a> | <a
href="https://www.youtube.com/watch?v=RXPDzGzbmAQ" style="display: inline"
target="_blank">Tutorial</a> | <a
href="https://docs.google.com/forms/d/e/1FAIpQLSdTuDWmV--LKdcquxK47sql7ZF35NDBB1rs7MFJ22emBW9tsQ/viewform?usp=sf_link"
style="display: inline" target="_blank">Quiz</a>
</div>
</div>
<div class="materials-item">
<div>
<b>Basic data understanding:</b> Data science, Central tendency, Plots, Cumulative distribution
<br>
Prerequisites: Identifying plots and basics of statistics, Importing packages, Defining
data frames <br>
Pre-work: <a
href="https://statistics.laerd.com/statistical-guides/measures-central-tendency-mean-mode-median.php"
style="display: inline" target="_blank">Measures of central tendency</a>, <a
href="https://www.youtube.com/watch?v=SzZ6GpcfoQY" style="display: inline"
target="_blank">Statistics fundamentals</a>, <a
href="https://www.youtube.com/watch?v=qBigTkBLU6g" style="display: inline"
target="_blank">Histograms</a>
</div>
<div class="kw">
<a href="https://forms.gle/7VDtBBPy4WWgNQe87" style="display: inline"
target="_blank">Pre-Quiz</a> | <a
href="https://github.com/shala2020/shala2020.github.io/tree/master/Lecture_Materials/Google_Colab_Notebooks/DataScience/L2"
style="display: inline" target="_blank">Notebook</a> | <a
href="https://github.com/shala2020/shala2020.github.io/tree/master/Lecture_Materials/Slides/DataScience/L2"
style="display: inline" target="_blank">Slides</a> | <a
href="https://www.youtube.com/watch?v=HLnFJEWYYz0" style="display: inline"
target="_blank">Lecture</a> | <a
href="https://github.com/shala2020/shala2020.github.io/tree/master/Lecture_Materials/Assignments/DataScience/L2"
style="display: inline" target="_blank">Assignment</a> | <a
href="https://github.com/shala2020/shala2020.github.io/tree/master/Lecture_Materials/Assignments/DataScience/L2/Solution"
style="display: inline" target="_blank">Solution</a> | <a
href="https://www.youtube.com/watch?v=aXpjh-KfiD0" style="display: inline"
target="_blank">Tutorial</a> | <a href="https://forms.gle/dswwWcfXkEtUgjt38"
style="display: inline" target="_blank">Quiz</a>
</div>
</div>
<div class="materials-item">
<div>
<b>Improving plots:</b> Data science, Central tendency, Plots, Cumulative distribution <br>
Prerequisites: Different types of plots, How to customize plots <br>
Pre-work: <a
href="https://chartio.com/learn/charts/essential-chart-types-for-data-visualization/"
style="display: inline" target="_blank">Chart Types for Data Visualization</a>, <a
href="https://visme.co/blog/types-of-graphs/" style="display: inline" target="_blank">Types
of Graphs</a>
</div>
<div class="kw">
<a href="https://forms.gle/JLfSfe3DnD5CfiQ5A" style="display: inline"
target="_blank">Pre-Quiz</a> | <a
href="https://github.com/shala2020/shala2020.github.io/tree/master/Lecture_Materials/Google_Colab_Notebooks/DataScience/L3"
style="display: inline" target="_blank">Notebook</a> | <a
href="https://github.com/shala2020/shala2020.github.io/tree/master/Lecture_Materials/Slides/DataScience/L3"
style="display: inline" target="_blank">Slides</a> | <a
href="https://www.youtube.com/watch?v=8NEQud1T2Ik" style="display: inline"
target="_blank">Lecture</a> | <a
href="https://github.com/shala2020/shala2020.github.io/tree/master/Lecture_Materials/Assignments/DataScience/L3"
style="display: inline" target="_blank">Assignment</a> | <a
href="https://github.com/shala2020/shala2020.github.io/tree/master/Lecture_Materials/Assignments/DataScience/L3/Solution"
style="display: inline" target="_blank">Solution</a> | <a
href="https://www.youtube.com/watch?v=2-I3hqnOJmI" style="display: inline"
target="_blank">Tutorial</a> | Quiz
</div>
</div>
<div class="materials-item">
<div>
<b>Basic statistics:</b> Maximum likelihood estimation, sufficient statistics, null hypothesis
testing, t-test, Wilcoxon rank test <br>
Prerequisites: Conditional probability, Probability distributions and moments <br>
Pre-work: <a href="https://www.khanacademy.org/math/ap-statistics/random-variables-ap"
style="display: inline" target="_blank">Random variables</a>, <a
href="https://www.youtube.com/watch?v=XepXtl9YKwc" style="display: inline"
target="_blank">Maximum likelihood estimation</a>, <a
href="https://statistics.laerd.com/statistical-guides/hypothesis-testing.php"
style="display: inline" target="_blank">Hypothesis testing</a>, <a
href="https://towardsdatascience.com/statistical-tests-when-to-use-which-704557554740"
style="display: inline" target="_blank">Statistical tests</a>
</div>
<div class="kw">
<a href="https://forms.gle/p9f7Qs3bjgFhzCrr8" style="display: inline"
target="_blank">Pre-Quiz</a> | Notebook | <a
href="https://github.com/shala2020/shala2020.github.io/tree/master/Lecture_Materials/Slides/DataScience/L4"
style="display: inline" target="_blank">Slides</a> | <a
href="https://www.youtube.com/watch?v=JMDlku2peAg" style="display: inline"
target="_blank">Lecture</a> | <a
href="https://github.com/shala2020/shala2020.github.io/tree/master/Lecture_Materials/Assignments/DataScience/L4"
style="display: inline" target="_blank">Assignment</a> | <a
href="https://github.com/shala2020/shala2020.github.io/tree/master/Lecture_Materials/Assignments/DataScience/L4/Solution"
style="display: inline" target="_blank">Solution</a> | <a
href="https://www.youtube.com/watch?v=hL5i1VQWEfg" style="display: inline"
target="_blank">Tutorial</a> | Quiz
</div>
</div>
<div class="module-header">Module 2: Machine Learning</div>
<div class="materials-item">
<div>
<b>Introduction to ML:</b> Machine learning problems, parameter vs. hyperparameter, overfitting,
training, validation, testing, cross-validation,
regularization
<br>
Prerequisites: Linear algebra, basic statistics, data visualization, encoding features <br>
Pre-work: <a
href="https://www.toptal.com/machine-learning/machine-learning-theory-an-introductory-primer"
style="display: inline" target="_blank">Theory of machine learning</a>, <a
href="https://github.com/shala2020/shala2020.github.io/tree/master/Lecture_Materials/Resources/ML"
style="display: inline" target="_blank">Basics of machine learning</a>
</div>
<div class="kw">
<a href="https://forms.gle/qRmdReSNyBkUwt9k9" style="display: inline"
target="_blank">Pre-Quiz</a> | <a
href="https://github.com/shala2020/shala2020.github.io/tree/master/Lecture_Materials/Google_Colab_Notebooks/MachineLearning/L1"
style="display: inline" target="_blank">Notebook</a> | <a
href="https://github.com/shala2020/shala2020.github.io/tree/master/Lecture_Materials/Slides/MachineLearning/L1"
style="display: inline" target="_blank">Slides</a> | <a
href="https://www.youtube.com/watch?v=EgGFSUiNkcA" style="display: inline"
target="_blank">Lecture</a> | <a
href="https://github.com/shala2020/shala2020.github.io/tree/master/Lecture_Materials/Assignments/MachineLearning/L1"
style="display: inline" target="_blank">Assignment</a> | <a
href="https://github.com/shala2020/shala2020.github.io/tree/master/Lecture_Materials/Assignments/MachineLearning/L1/Solution"
style="display: inline" target="_blank">Solution</a> | <a
href="https://www.youtube.com/watch?v=J2-rmft5_58" style="display: inline"
target="_blank">Tutorial</a> | Quiz
</div>
</div>
<div class="materials-item">
<div>
<b>Decision Trees:</b> Definition of a decision tree, metrics of impurity, greedy algorithm to
split a node, tree depth and pruning, ensemble of
trees (random forest)<br>
Prerequisites: Intro to ML, supervised learning, unsupervised learning, classification,
regression <br>
Pre-work: <a href="http://www.stats.ox.ac.uk/~flaxman/HT17_lecture13.pdf"
style="display: inline" target="_blank">Classification and Regression Trees</a>, <a
href="https://www.youtube.com/watch?v=J4Wdy0Wc_xQ" style="display: inline"
target="_blank">Random Forests</a>
</div>
<div class="kw">
<a href="https://forms.gle/xmn4axyLxTLRYQGB8" style="display: inline"
target="_blank">Pre-Quiz</a> | <a
href="https://github.com/shala2020/shala2020.github.io/tree/master/Lecture_Materials/Google_Colab_Notebooks/MachineLearning/L2"
style="display: inline" target="_blank">Notebook</a> | <a
href="https://github.com/shala2020/shala2020.github.io/tree/master/Lecture_Materials/Slides/MachineLearning/L2"
style="display: inline" target="_blank">Slides</a> | <a
href="https://www.youtube.com/watch?v=hE0TgoPRX6s" style="display: inline"
target="_blank">Lecture</a> | <a
href="https://github.com/shala2020/shala2020.github.io/tree/master/Lecture_Materials/Assignments/MachineLearning/L2"
style="display: inline" target="_blank">Assignment</a> | <a
href="https://github.com/shala2020/shala2020.github.io/tree/master/Lecture_Materials/Assignments/MachineLearning/L2/Solution"
style="display: inline" target="_blank">Solution</a> | <a
href="https://www.youtube.com/watch?v=-4aJ-ZmV0U8" style="display: inline"
target="_blank">Tutorial</a> | Quiz
</div>
</div>
<div class="materials-item">
<div>
<b>Bayesian decision theory:</b> Bayes rule: Prior, likelihood, posterior, evidence,
Gaussian density, sufficient statistics, maximum likelihood derivation for mean and
covariance<br>
Prerequisites: Maximum likelihood estimation, conditional probability, linear algebra
regression <br>
Pre-work: <a
href="https://www.khanacademy.org/partner-content/wi-phi/wiphi-critical-thinking/wiphi-fundamentals/v/bayes-theorem"
style="display: inline" target="_blank">Bayes' theorem</a>, <a
href="https://www.mathsisfun.com/data/bayes-theorem.html" style="display: inline"
target="_blank">Examples of Bayes' theorem</a>, <a
href="https://www.youtube.com/watch?v=iYiOVISWXS4" style="display: inline"
target="_blank">Gaussian distribution</a>
</div>
<div class="kw">
<a href="https://forms.gle/MfyXNxxSGGSgAkJw7" style="display: inline"
target="_blank">Pre-Quiz</a> | <a
href="https://github.com/shala2020/shala2020.github.io/tree/master/Lecture_Materials/Google_Colab_Notebooks/MachineLearning/L3"
style="display: inline" target="_blank">Notebook</a> | <a
href="https://github.com/shala2020/shala2020.github.io/tree/master/Lecture_Materials/Slides/MachineLearning/L3"
style="display: inline" target="_blank">Slides</a> | <a
href="https://www.youtube.com/watch?v=fz_EQYeKje4" style="display: inline"
target="_blank">Lecture</a> | <a
href="https://github.com/shala2020/shala2020.github.io/tree/master/Lecture_Materials/Assignments/MachineLearning/L3"
style="display: inline" target="_blank">Assignment</a> | <a
href="https://github.com/shala2020/shala2020.github.io/tree/master/Lecture_Materials/Assignments/MachineLearning/L3/Solution"
style="display: inline" target="_blank">Solution</a> | <a
href="https://www.youtube.com/watch?v=9tGT-eEay5g" style="display: inline"
target="_blank">Tutorial</a> | Quiz
</div>
</div>
<div class="materials-item">
<div>
<b>Linear models:</b> linear regression and its analytical solution, loss function,
gradient descent and learning rate, logistic regression and its cost,
SVM: hinge loss with L2 penalty<br>
Prerequisites: Derivatives, chain rule, partial derivative, convex functions
regression <br>
Pre-work: <a href="https://www.youtube.com/playlist?list=PLLssT5z_DsK-h9vYZkQkYNWcItqhlRJLN"
style="display: inline" target="_blank">Machine
learning - Andrews Ng</a> lectures 2.1-2.7, 3.1-3.6, 4.1-4.6, 6.1-6.7, 7.1-7.4, <a
href="https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf" style="display: inline"
target="_blank"> Matrix cookbook</a>
</div>
<div class="kw">
<a href="https://forms.gle/LJCUPRHxHNAJzi8z7" style="display: inline"
target="_blank">Pre-Quiz</a> | <a
href="https://github.com/shala2020/shala2020.github.io/tree/master/Lecture_Materials/Google_Colab_Notebooks/MachineLearning/L4"
style="display: inline" target="_blank">Notebook</a> | <a
href="https://github.com/shala2020/shala2020.github.io/tree/master/Lecture_Materials/Slides/MachineLearning/L4"
style="display: inline" target="_blank">Slides</a> | <a
href="https://www.youtube.com/watch?v=2YyVqnGbkmQ" style="display: inline"
target="_blank">Lecture</a> | <a
href="https://github.com/shala2020/shala2020.github.io/tree/master/Lecture_Materials/Assignments/MachineLearning/L4"
style="display: inline" target="_blank">Assignment</a> | <a
href="https://github.com/shala2020/shala2020.github.io/tree/master/Lecture_Materials/Assignments/MachineLearning/L4/Solution"
style="display: inline" target="_blank">Solution</a> | <a
href="https://www.youtube.com/watch?v=SWuW_HtqRFI" style="display: inline"
target="_blank">Tutorial</a> | <a href="https://forms.gle/ehgPBBYtoyWvVfHp7"
style="display: inline" target="_blank">Quiz</a>
</div>
</div>
<div class="materials-item">
<div>
<b>Kernelization:</b> Dual form of an SVM, kernels for a dual form, examples of kernels and
their typical uses, SVR in primal form, SVR in dual form<br>
Prerequisites: Linear models, conditional probability, linear algebra <br>
Pre-work: <a href="https://www.youtube.com/watch?v=05VABNfa1ds" style="display: inline"
target="_blank">Support vector machine</a>, <a
href="https://www.youtube.com/watch?v=wBVSbVktLIY" style="display: inline"
target="_blank">Kernel trick</a>
</div>
<div class="kw">
<a href="https://forms.gle/3esw98p1JKgALSSz8" style="display: inline"
target="_blank">Pre-Quiz</a> | <a
href="https://github.com/shala2020/shala2020.github.io/tree/master/Lecture_Materials/Google_Colab_Notebooks/MachineLearning/L5"
style="display: inline" target="_blank">Notebook</a> | <a
href="https://github.com/shala2020/shala2020.github.io/tree/master/Lecture_Materials/Slides/MachineLearning/L5"
style="display: inline" target="_blank">Slides</a> | <a
href="https://www.youtube.com/watch?v=tL7WHI-fwYs" style="display: inline"
target="_blank">Lecture</a> | <a
href="https://github.com/shala2020/shala2020.github.io/tree/master/Lecture_Materials/Assignments/MachineLearning/L5"
style="display: inline" target="_blank">Assignment</a> | <a
href="https://github.com/shala2020/shala2020.github.io/tree/master/Lecture_Materials/Assignments/MachineLearning/L5/Solution"
style="display: inline" target="_blank">Solution</a> | <a
href="https://www.youtube.com/watch?v=LjKiHOaEL8g" style="display: inline"
target="_blank">Tutorial</a> | Quiz
</div>
</div>
<div class="materials-item">
<div>
<b>Feature selection and engineering:</b> T-test, forward selection, features for images,
features for audio, features for images, features for NLP,
PCA, ZCA, K-PCA<br>
Prerequisites: Basics of ML, linear algebra, mathematics <br>
Pre-work: <a
href="https://www.researchgate.net/profile/Samuel_Huang9/publication/275228384_Supervised_feature_selection_A_tutorial/links/5a1d720f0f7e9b2a531726a3/Supervised-feature-selection-A-tutorial.pdf"
style="display: inline" target="_blank">Supervised feature selection</a>, <a
href="https://www.machinelearningplus.com/machine-learning/feature-selection/"
style="display: inline" target="_blank">Feature Selection</a>, <a
href="http://openimaj.org/tutorial/pt02.html" style="display: inline" target="_blank">Image
fundamentals</a>, <a href="http://openimaj.org/tutorial/pt04.html" style="display: inline"
target="_blank">Audio fundamentals</a>, <a
href="https://towardsdatascience.com/extract-features-of-music-75a3f9bc265d"
style="display: inline" target="_blank">Music feature extraction in Python</a>
</div>
<div class="kw">
Pre-Quiz | Notebook | <a
href="https://github.com/shala2020/shala2020.github.io/tree/master/Lecture_Materials/Slides/MachineLearning/L6"
style="display: inline" target="_blank">Slides</a> | <a
href="https://www.youtube.com/watch?v=L0svV8rZvKM" style="display: inline"
target="_blank">Lecture</a> | <a
href="https://github.com/shala2020/shala2020.github.io/tree/master/Lecture_Materials/Assignments/MachineLearning/L6"
style="display: inline" target="_blank">Assignment</a> | <a
href="https://github.com/shala2020/shala2020.github.io/tree/master/Lecture_Materials/Assignments/MachineLearning/L6/Solution"
style="display: inline" target="_blank">Solution</a> | <a
href="https://www.youtube.com/watch?v=IVbTlIRj2Tk" style="display: inline"
target="_blank">Tutorial</a> | Quiz
</div>
</div>
<div class="materials-item">
<div>
<b>Dense and shallow neural networks:</b> Logistic regression as a sigmoid, single hidden layer
using sigmoid and ReLU, approximation of any function using a single hidden layer, overfitting,
advantage of multiple hidden layers, neural networks for regression, multi-regression,
multi-classification using softmax, back propagation.<br>
Prerequisites: Basics of ML, linear algebra, mathematics <br>
Pre-work: <a href="https://d2l.ai/chapter_multilayer-perceptrons/mlp.html"
style="display: inline" target="_blank">Multilayer Perceptrons</a>, <a
href="http://neuralnetworksanddeeplearning.com/chap4.html" style="display: inline"
target="_blank">Universal Approximation Theorem</a>, <a
href="https://d2l.ai/chapter_multilayer-perceptrons/backprop.html" style="display: inline"
target="_blank">Forward Propagation, Backward Propagation, and Computational Graphs</a>
</div>
<div class="kw">
Pre-Quiz | Notebook | <a
href="https://github.com/shala2020/shala2020.github.io/tree/master/Lecture_Materials/Slides/MachineLearning/L7"
style="display: inline" target="_blank">Slides</a> | <a
href="https://www.youtube.com/watch?v=hdNqyHEOm4w" style="display: inline"
target="_blank">Lecture</a> | <a
href="https://github.com/shala2020/shala2020.github.io/tree/master/Lecture_Materials/Assignments/MachineLearning/L7"
style="display: inline" target="_blank">Assignment</a> | <a
href="https://github.com/shala2020/shala2020.github.io/tree/master/Lecture_Materials/Assignments/MachineLearning/L7/Solution"
style="display: inline" target="_blank">Solution</a> | Tutorial | Quiz
</div>
</div>
<div class="materials-item">
<div>
<b>Advanced topics in neural networks:</b> Weight initialization, momentum, weight decay, early
stopping, batch SGD, advanced optimizers such as RMSprop and ADAM<br>
Prerequisites: Basics of ML, neural networks, linear algebra, mathematics <br>
Pre-work: <a href="https://www.youtube.com/watch?v=wEoyxE0GP2M" style="display: inline"
target="_blank">Training neural networks I</a>, <a
href="https://www.youtube.com/watch?v=_JB0AO7QxSA" style="display: inline"
target="_blank">Training neural networks II</a>
</div>
<div class="kw">
<a href="https://forms.gle/sfiXdVPr71KYxfcB6" style="display: inline"
target="_blank">Pre-Quiz</a> | Notebook | <a
href="https://github.com/shala2020/shala2020.github.io/tree/master/Lecture_Materials/Slides/MachineLearning/L8"
style="display: inline" target="_blank">Slides</a> | <a
href="https://www.youtube.com/watch?v=oPgV4PMbI4A" style="display: inline"
target="_blank">Lecture</a> | Assignment | <a
href="https://www.youtube.com/watch?v=KdjBONblhHw" style="display: inline"
target="_blank">Tutorial</a> | Quiz
</div>
</div>
<div class="materials-item">
<div>
<b>Clustering:</b> K-means, DB-SCAN, agglomerative clustering, scaling of dimensions, goodness
of clustering<br>
Prerequisites: Euclidean distance, unsupervised learning, K-means <br>
Pre-work: <a href="https://www.youtube.com/watch?v=Ev8YbxPu_bQ" style="display: inline"
target="_blank">Introduction to clustering</a>, <a
href="https://www.youtube.com/watch?v=qg_M37WGKG8" style="display: inline"
target="_blank">K-means clustering</a>, <a
href="https://en.wikipedia.org/wiki/Cluster_analysis" style="display: inline"
target="_blank">Cluster analysis</a>
</div>
<div class="kw">
<a href="https://forms.gle/QtcsX6u3xnKDgyUN9" style="display: inline"
target="_blank">Pre-Quiz</a> | <a
href="https://github.com/shala2020/shala2020.github.io/tree/master/Lecture_Materials/Google_Colab_Notebooks/MachineLearning/L9"
style="display: inline" target="_blank">Notebook</a> | <a
href="https://github.com/shala2020/shala2020.github.io/tree/master/Lecture_Materials/Slides/MachineLearning/L9"
style="display: inline" target="_blank">Slides</a> | <a
href="https://www.youtube.com/watch?v=co9XJids5SM" style="display: inline"
target="_blank">Lecture</a> | <a
href="https://github.com/shala2020/shala2020.github.io/tree/master/Lecture_Materials/Assignments/MachineLearning/L9"
style="display: inline" target="_blank">Assignment</a> | <a
href="https://github.com/shala2020/shala2020.github.io/tree/master/Lecture_Materials/Assignments/MachineLearning/L9/Solution"
style="display: inline" target="_blank">Solution</a> | <a
href="https://www.youtube.com/watch?v=fdYCCP8F7X0" style="display: inline"
target="_blank">Tutorial</a> | Quiz
</div>
</div>
<div class="module-header" id="break">Interim break (May 18 - May 24)</div>
<p>Classes will resume from May 25 with a new schedule. This week, please catch up with the recorded
<a href="https://www.youtube.com/channel/UCobe_Yc7nV6kux94A5doIiA/" target="_blank">lectures</a>,
assignments, and the tutorials on <a href="https://www.tensorflow.org/"
target="_blank">TensorFlow</a> as given below:
</p>
<div class="kw">
<a href="https://www.tensorflow.org/tutorials" style="display: inline" target="_blank">TensorFlow
tutorials</a> |
<a href="https://cs224d.stanford.edu/lectures/CS224d-Lecture7.pdf" style="display: inline"
target="_blank">CS224d - TensorFlow Tutorial</a> |
<a href="https://github.com/aymericdamien/TensorFlow-Examples" style="display: inline"
target="_blank">TensorFlow Examples</a> |
<a href="https://machinelearningmastery.com/tensorflow-tutorial-deep-learning-with-tf-keras/"
style="display: inline" target="_blank">Deep Learning With tf.keras</a> <br>
<a href="https://www.youtube.com/watch?v=M5cGJV-cKmE" style="display: inline" target="_blank">SHALA
lecture
(May 23)</a> |
<a href="https://github.com/sumandeepb/DL-V1-IntroToCNNs" style="display: inline"
target="_blank">SHALA lecture
(May 23) resources</a>
</div><br>
<p>If you are all caught up with the material covered so far, then please try some ML problems such as
those given below:</p>
<div class="kw">
<a href="https://www.analyticsvidhya.com/blog/2018/05/24-ultimate-data-science-projects-to-boost-your-knowledge-and-skills/"
style="display: inline" target="_blank">Machine Learning projects</a> |
<a href="https://data-flair.training/blogs/data-science-project-ideas/" style="display: inline"
target="_blank">Data Science projects-1</a> |
<a href="https://www.edureka.co/blog/data-science-projects/" style="display: inline"
target="_blank">Data Science projects-2</a>
</div>
<div class="module-header">Module 3: Deep Learning</div>
<div class="materials-item">
<div>
<b>CNNs for Image classification:</b> Applications of computer vision, implementation of
convolution,
building a convolutional neural network, image Classification using CNNs.
<br>
Prerequisites: Digital image processing filters, Dense Neural Networks. <br>
Pre-work: <a href="https://www.youtube.com/playlist?list=PLkDaE6sCZn6Gl29AoE31iwdVwSG-KnDzF"
style="display: inline" target="_blank">Andrew NG, Deep Learning (lec 1-22)</a>, <a
href="https://www.youtube.com/playlist?list=PLC1qU-LWwrF64f4QKQT-Vg5Wr4qEE1Zxk"
style="display: inline" target="_blank">Stanford University, CS231 (lec 1-10)</a>
</div>
<div class="kw">
Pre-Quiz | <a href="https://github.com/sumandeepb/DL-V1-IntroToCNNs" style="display: inline"
target="_blank">Notebook</a> | <a
href="https://github.com/shala2020/shala2020.github.io/tree/master/Lecture_Materials/Slides/DeepLearning/L1"
style="display: inline" target="_blank">Slides</a> | <a
href="https://www.youtube.com/watch?v=n0egnMeW4Xk" style="display: inline"
target="_blank">Lecture</a> | <a
href="https://github.com/shala2020/shala2020.github.io/tree/master/Lecture_Materials/Assignments/DeepLearning/L1"
style="display: inline" target="_blank">Assignment</a> | Solution | <a
href="https://youtu.be/ucV1TbhoueM" style="display: inline" target="_blank">Tutorial</a> |
Quiz
</div>
</div>
<div class="materials-item">
<div>
<b>Semantic segmentation:</b> Using CNNs for semantic image segmentation, labelling specific
regions of an image.
<br>
Prerequisites: Basics of CNN, Digital image processing filters, Dense Neural Networks. <br>
Pre-work: <a href="https://www.jeremyjordan.me/semantic-segmentation/" style="display: inline"
target="_blank">An overview of semantic image segmentation</a>, <a
href="https://medium.com/@keremturgutlu/semantic-segmentation-u-net-part-1-d8d6f6005066"
style="display: inline" target="_blank">Semantic Segmentation — U-Net </a>, <a
href="https://www.youtube.com/watch?v=_N7HRnBgoCw" style="display: inline"
target="_blank">Semantic Segmentation</a>, <a
href="https://www.youtube.com/watch?v=nDPWywWRIRo" style="display: inline"
target="_blank">Detection and Segmentation</a>
</div>
<div class="kw">
<a href="https://forms.gle/SxdJxDunurVBdwVj7" style="display: inline"
target="_blank">Pre-Quiz</a> | Notebook | <a
href="https://github.com/shala2020/shala2020.github.io/tree/master/Lecture_Materials/Slides/DeepLearning/L2"
style="display: inline" target="_blank">Slides</a> | <a
href="https://www.youtube.com/watch?v=RVJJZtUS2ho" style="display: inline"
target="_blank">Lecture</a> | <a
href="https://github.com/shala2020/shala2020.github.io/tree/master/Lecture_Materials/Assignments/DeepLearning/L2"
style="display: inline" target="_blank">Assignment</a> | Solution |<a
href="https://www.youtube.com/watch?v=9DmTDwgbDwo" style="display: inline"
target="_blank">Tutorial</a> | Quiz
</div>
</div>
<div class="materials-item">
<div>
<b>Object detection + instance segmentation:</b> Detecting instances of semantic objects, tasks
of computer vision.
<br>
Prerequisites: Basics of CNN, Digital image processing filters, Dense Neural Networks. <br>
Pre-work: <a href="https://www.youtube.com/watch?v=nDPWywWRIRo" style="display: inline"
target="_blank">Detection and Segmentation</a>, <a
href="https://www.youtube.com/playlist?list=PLkDaE6sCZn6Gl29AoE31iwdVwSG-KnDzF"
style="display: inline" target="_blank">Concepts of object detection (lec 23-31)</a>
</div>
<div class="kw">
<a href="https://forms.gle/N7tpvghbS9ZkbjiS6" style="display: inline"
target="_blank">Pre-Quiz</a> | Notebook | Slides | <a
href="https://www.youtube.com/watch?v=Uq5H-Xdse50" style="display: inline"
target="_blank">Lecture</a> | <a
href="https://github.com/shala2020/shala2020.github.io/tree/master/Lecture_Materials/Assignments/DeepLearning/L3"
style="display: inline" target="_blank">Assignment</a> | Solution | <a
href="https://www.youtube.com/watch?v=IvWIB2INMVw" style="display: inline"
target="_blank">Tutorial</a> | Quiz
</div>
</div>
<div class="materials-item">
<div>
<b>Few-shot + metric learning:</b> Detecting instances of semantic objects, tasks
of computer vision.
<br>
Prerequisites: Basics of CNN, Digital image processing filters, Dense Neural Networks. <br>
Pre-work: <a href="https://youtu.be/6jfw8MuKwpI" style="display: inline" target="_blank">Siamese
Network</a>, <a href="https://youtu.be/d2XB5-tuCWU" style="display: inline"
target="_blank">Triplet loss</a>, <a href="https://youtu.be/96b_weTZb2w"
style="display: inline" target="_blank">One Shot Learning</a>
</div>
<div class="kw">
<a href="https://forms.gle/qB7hwVchYnffAFhB7" style="display: inline"
target="_blank">Pre-Quiz</a> | Notebook | <a
href="https://github.com/shala2020/shala2020.github.io/tree/master/Lecture_Materials/Slides/DeepLearning/L4"
style="display: inline" target="_blank">Slides</a> | <a
href="https://www.youtube.com/watch?v=RRi7hocd9xg" style="display: inline"
target="_blank">Lecture</a> | <a
href="https://github.com/shala2020/shala2020.github.io/tree/master/Lecture_Materials/Assignments/DeepLearning/L4"
style="display: inline" target="_blank">Assignment</a> | Solution |<a
href="https://www.youtube.com/watch?v=zrxngpuJEic" style="display: inline"
target="_blank">Tutorial</a> | Quiz
</div>
</div>
<div class="materials-item">
<div>
<b>GAN + VAE:</b> Unsupervised Learning, Representation Learning, Density Estimation, Generative
Model, Image-to-Image
Translation.
<br>
Prerequisites: Probability distributions, Basics of MLP and CNN, Basic Image Processing, Vector
Spaces. <br>
Pre-work: <a href="https://openai.com/blog/generative-models/" style="display: inline"
target="_blank">Generative Models
</a>, <a href="https://www.youtube.com/watch?v=rZufA635dq4" style="display: inline"
target="_blank">Deep Generative Modeling</a>
</div>
<div class="kw">
<a href="https://docs.google.com/forms/d/e/1FAIpQLScYqdepJIi_IlKAQptoxC8_ZSVinfvJ1Bt77eWieL2B4khD0g/viewform"
style="display: inline" target="_blank">Pre-Quiz</a> | <a
href="https://github.com/shala2020/shala2020.github.io/tree/master/Lecture_Materials/Google_Colab_Notebooks/DeepLearning/L5"
style="display: inline" target="_blank">Notebook</a> | <a
href="https://github.com/shala2020/shala2020.github.io/tree/master/Lecture_Materials/Slides/DeepLearning/L5"
style="display: inline" target="_blank">Slides</a> | <a
href="https://www.youtube.com/watch?v=YOnZbSymIYI" style="display: inline"
target="_blank">Lecture</a> | <a
href="https://github.com/shala2020/shala2020.github.io/tree/master/Lecture_Materials/Assignments/DeepLearning/L5"
style="display: inline" target="_blank">Assignment</a> | Solution | <a
href="https://www.youtube.com/watch?v=A7O3mycyu9c" style="display: inline"
target="_blank">Tutorial</a> | Quiz
</div>
</div>
<div class="materials-item">
<div>
<b>Word embedding + Language model:</b> Probabilistic language Modeling, N-gram models,
Recurrent Neural Networks.
<br>
Prerequisites: Probability, Statistics, Linear algebra, Basic neutral nets, Calculus and
Optimization. <br>
Pre-work: <a href="https://ruder.io/word-embeddings-softmax/index.html" style="display: inline"
target="_blank">Word Embeddings</a>, <a
href="https://www.analyticsvidhya.com/blog/2017/06/word-embeddings-count-word2veec/"
style="display: inline" target="_blank">Understanding of Word Embeddings</a>, <a
href="https://towardsdatascience.com/word-embeddings-for-nlp-5b72991e01d4"
style="display: inline" target="_blank">Word Embeddings for NLP</a>, <a
href="https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks"
style="display: inline" target="_blank">RNN cheatsheet</a>, <a
href="https://www.analyticsvidhya.com/blog/2019/01/sequence-models-deeplearning/"
style="display: inline" target="_blank">Sequence Modeling</a>, <a
href="http://www.wildml.com/2015/10/recurrent-neural-networks-tutorial-part-3-backpropagation-through-time-and-vanishing-gradients/"
style="display: inline" target="_blank">RNN - Backpropagation Through Time and Vanishing
Gradients</a>, <a
href="https://www.coursera.org/lecture/nlp-sequence-models/vanishing-gradients-with-rnns-PKMRR"
style="display: inline" target="_blank">Vanishing gradients with RNNs</a>
</div>
<div class="kw">
Pre-Quiz | Notebook | Slides | <a href="https://www.youtube.com/watch?v=IGq2WM-1UCk"
style="display: inline" target="_blank">Lecture on Word Embedding</a> | <a
href="https://www.youtube.com/watch?v=Jii4u2X7kJI" style="display: inline"
target="_blank">Lecture on Language Modeling</a> | Assignment | Solution | Tutorial |
Quiz
</div>
</div>
</div>
</div>
</div>
<div class="sechighlight">
<div class="container sec">
<h2 id="prerequisites">PRE-REQUISITES</h2>
<div id="coursedesc">
<p> <b>Computer and connectivity:</b> 8GB+ RAM, 20GB of free disk space, 100kbps+ connectivity
</p>
<p><b>Knowledge:</b> This course is directed at engineering students. Others who know the following
topics
are also
welcome: Linear algebra (vectors and matrix arithmetic, projection of vectors, singular value
decomposition), calculus (differentiation, partial derivatives, double derivatives, chain rule of
derivatives), programming (preferably python, loops, conditions, functions, classes, programming
best
practices such as modularity, commenting, and informative variable naming).</p>
<p><b>Status:</b> Student with a valid college ID card. Not restricted to India.
</p>
<p><b>Study Materials</b>: Please go through the following before April 15:
<ol>
<li>Basic mathematics for machine learning (linear algebra, calculus, probability and
statistics), such
as <a href="https://gwthomas.github.io/docs/math4ml.pdf" target="_blank">Mathematics for
Machine Learning</a>. It will be better if you actually do all the math by
hand on paper and pencil while following the material. Just reading it is not enough
for retention
of concepts.</li>
<li>Basics of Python programming such as <a href="https://www.learnpython.org/"
target="_blank">Learn Python</a>. There are many other good ones
too.</li>
</ol>
</p>
</div>
</div>
</div>
<!-- <div class="container sec"> -->
<!-- Introducing stfd template -->
<div class="container sec">
<h2 id="team">TEAM</h2>
<div class="row">
<div class="col-md-12">
<div style="margin-bottom: 10px">
<h2>Instructors</h2>
</div>
<div class="instructor">
<a href="https://in.linkedin.com/in/abhijeet-patil-90945557" target="_blank">
<div class="instructorphoto"><img src="images/ab.jpeg"></div>
<div>Abhijeet Patil</div>
</a>
<div>PhD*, IITB</div>
<br>
</div>
<div class="instructor">
<a href="https://www.ee.iitb.ac.in/~asethi/" target="_blank">
<div class="instructorphoto">
<img class="img-hover" src="images/as.jpg">
</div>
<div>Amit Sethi</div>
</a>
<div>Professor, IITB</div>
<br>
</div>
<div class="instructor">
<a href="https://www.linkedin.com/in/ankur-deka-120392135" target="_blank">
<div class="instructorphoto">
<img class="img-hover" src="images/ad.jfif">
</div>
<div>Ankur Deka</div>
</a>
<div>MS*, CMU</div>
<br>
</div>
<div class="instructor">
<a href="http://arjunjain.co.in/" target="_blank">
<div class="instructorphoto">
<img class="img-hover" src="images/aj.jfif">
</div>
<div>Arjun Jain</div>
</a>
<div>Professor, IISc</div>
<br>
</div>
<div class="instructor">
<a href=" https://www.linkedin.com/in/dipteshkanojia/" target="_blank">
<div class="instructorphoto">
<img class="img-hover" src="images/dk.jfif">
</div>
<div>Diptesh Kanojia</div>
</a>
<div>PhD*, IITB</div>
<br>
</div>
<div class="instructor">
<a href=" https://www.linkedin.com/in/hiteshkurapati/" target="_blank">
<div class="instructorphoto">
<img class="img-hover" src="images/hk.jpeg">
</div>
<div>Hitesh Kurapati</div>
</a>
<div>MTech*, IITB</div>
<br>
</div>
<div class="instructor">
<a href="https://www.linkedin.com/in/jyotikrishnadass" target="_blank">
<div class="instructorphoto">
<img class="img-hover" src="images/jd.jfif">
</div>
<div>Jyotikrishna</div>
</a>
<div>PhD*, TAMU</div>
<br>
</div>
<div class="instructor">
<a href="https://www.linkedin.com/in/kaveri-kale-37138242/" target="_blank">
<div class="instructorphoto">
<img class="img-hover" src="images/kaveri.jpg">
</div>
<div>Kaveri Kale</div>
</a>
<div>PhD*, IITB</div>
<br>
</div>
<div class="instructor">
<a href="https://www.linkedin.com/in/malaikannan" target="_blank">
<div class="instructorphoto">
<img class="img-hover" src="images/mk.jpeg">
</div>
<div>Malaikannan</div>
</a>
<div>VP, Saama Tech</div>
<br>
</div>
<div class="instructor">
<a href="https://www.linkedin.com/in/mankhandelwal/" target="_blank">
<div class="instructorphoto">
<img class="img-hover" src="images/manishK.jpeg">
</div>
<div>Manish Kumar</div>
</a>
<div>Sr.Eng, DENSO </div>
<br>
</div>
<div class="instructor">
<a href="https://www.linkedin.com/in/ipsit-mantri-b61945170" target="_blank">
<div class="instructorphoto">
<img class="img-hover" src="images/im.jfif">
</div>
<div>Mantri Ipsit</div>
</a>
<div>BTech*, IITB</div>
<br>
</div>
<div class="instructor">
<a href="https://www.linkedin.com/in/nikhil-cherian-kurian-7bba285b/" target="_blank">
<div class="instructorphoto">
<img class="img-hover" src="images/nc.jfif">
</div>
<div>Nikhil Kurian</div>
</a>
<div>PhD*, IITB</div>
<br>
</div>
<div class="instructor">
<a href="https://www.linkedin.com/in/parth-dodhia-b61a831a4" target="_blank">
<div class="instructorphoto">