-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstatistics.cpp
146 lines (122 loc) · 4.12 KB
/
statistics.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
//
// Created by marandil on 07.11.16.
//
#include <iostream>
#include "statistics.hpp"
typedef std::numeric_limits< double > dbl;
template<typename function>
inline rational sum(int from, int to, const function& lambda)
{
rational result = 0_mpq;
for(int i = from; i <= to; ++i)
{
result += lambda(i);
}
return result;
}
template<>
inline rational sum(int from, int to, const std::vector<rational>& vector)
{
rational result = 0_mpq;
for(int i = from; i <= to; ++i)
result += vector[i];
return result;
}
template<typename function>
inline rational prod(int from, int to, const function& lambda)
{
rational result = 1_mpq;
for(int i = from; i <= to; ++i)
{
result *= lambda(i);
}
return result;
}
template<>
inline rational prod(int from, int to, const std::vector<rational>& vector)
{
rational result = 1_mpq;
for(int i = from; i <= to; ++i)
result *= vector[i];
return result;
}
std::vector<statistics>
compute_expected_for_all(ppf pq, int N, bool print)
{
const precomputed_prob_function &p = *pq.p;
const precomputed_prob_function &q = *pq.q;
std::vector<rational> kappa(N, 1_mpq);
std::vector<rational> pi(N, 1_mpq);
std::vector<rational> dee(N, 1_mpq);
std::vector<rational> zee(N, 1_mpq);
for (int r = 1; r < N; ++r)
kappa[r] = kappa[r - 1] * q(r, N);
for (int r = 1; r < N; ++r)
pi[r] = pi[r - 1] * p(r, N);
for (int r = 0; r < N; ++r)
dee[r] = kappa[r] / pi[r];
for (int r = 1; r < N; ++r)
zee[r] = pi[r - 1] / kappa[r];
// probabilities for all starting points:
std::vector<rational> sums(N + 1, 0_mpq);
for (int n = 1; n <= N; ++n)
sums[n] = sums[n - 1] + dee[n - 1];
std::vector<rational> prob(N, 0_mpq);
for (int i = 1; i < N; ++i)
prob[i] = sums[i] / sums[N];
// Running time (EX, EX^2)
// EX (tau)
std::vector<rational> taus(N, 0_mpq);
// taus[0] shall remain 0
taus[1] = sum(1, N - 1, [&](int k) -> rational
{
return dee[k] * sum(1, k, [&](int i) -> rational
{ return 1_mpq / (p(i, N) * dee[i]); });
}) / sum(0, N - 1, dee);
for (int m = 1; m < N - 1; ++m)
taus[m + 1] = taus[m] + q(m, N) / p(m, N) * (taus[m] - taus[m - 1] - (1_mpq / q(m, N)));
// EX^2 (v)
std::vector<rational> zs(N, 0_mpq);
zs[0] = 1_mpq;
for (int k = 1; k < N; ++k)
zs[k] = 2 * (taus[k] - 1) / q(k, N);
std::vector<rational> vs(N, 0_mpq);
// vs[0] shall remain 0 -- tau[0] is constantly equal to 0.
vs[1] = sum(1, N - 1,
[&](int k) -> rational
{
return
dee[k] * sum(1, k, [&](int i) -> rational
{ return 1_mpq / (p(i, N) * dee[i]); }) +
zs[k] / dee[k - 1] * sum(k, N - 1, dee);
}) /
sum(0, N - 1, dee);
for (int k = 1; k < N - 1; ++k)
vs[k + 1] = vs[k] + q(k, N) / p(k, N) * (vs[k] - vs[k - 1] - 1_mpq / q(k, N) - zs[k]);
std::vector<rational> vars(N, 0_mpq);
for (int k = 1; k < N; ++k)
vars[k] = vs[k] - taus[k] * taus[k];
// EX (conditioned on win, vee-s)
std::vector<rational> zee_sum(N, 0_mpq);
for (int k = 1; k < N; ++k)
zee_sum[k] = zee_sum[k - 1] + zee[k];
std::vector<rational> vee(N + 1, 0_mpq);
for (int k = N - 1; k > 0; --k)
vee[k] = vee[k + 1] + dee[k] * (zee_sum[k] - 1_mpq);
std::vector<statistics> result(N);
for (int i = 1; i < N; ++i)
result[i] = { prob[i], taus[i], vars[i] };
if (print)
{
auto saved = std::cerr.precision();
std::cerr.precision(dbl::max_digits10 + 2);
for (int i = 1; i < N; ++i)
{
std::cerr << pq.pd << ";" << pq.qd << ";" << i << ";" << N << ";" << prob[i].get_d() << ";"
<< taus[i].get_d()
<< ";" << vars[i].get_d() << ";" << vee[i].get_d() << "\n";
}
std::cerr.precision(saved);
}
return result;
}