forked from trixi-framework/Trixi.jl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathelixir_advection_basic.jl
58 lines (42 loc) · 2.54 KB
/
elixir_advection_basic.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
using OrdinaryDiffEq
using Trixi
###############################################################################
# semidiscretization of the linear advection equation
advection_velocity = (0.2, -0.7)
equations = LinearScalarAdvectionEquation2D(advection_velocity)
# Create DG solver with polynomial degree = 3 and (local) Lax-Friedrichs/Rusanov flux as surface flux
solver = DGSEM(polydeg = 3, surface_flux = flux_lax_friedrichs)
coordinates_min = (-1.0, -1.0) # minimum coordinates (min(x), min(y))
coordinates_max = (1.0, 1.0) # maximum coordinates (max(x), max(y))
# Create a uniformly refined mesh with periodic boundaries
mesh = TreeMesh(coordinates_min, coordinates_max,
initial_refinement_level = 4,
n_cells_max = 30_000) # set maximum capacity of tree data structure
# A semidiscretization collects data structures and functions for the spatial discretization
semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition_convergence_test,
solver)
###############################################################################
# ODE solvers, callbacks etc.
# Create ODE problem with time span from 0.0 to 1.0
ode = semidiscretize(semi, (0.0, 1.0))
# At the beginning of the main loop, the SummaryCallback prints a summary of the simulation setup
# and resets the timers
summary_callback = SummaryCallback()
# The AnalysisCallback allows to analyse the solution in regular intervals and prints the results
analysis_callback = AnalysisCallback(semi, interval = 100)
# The SaveSolutionCallback allows to save the solution to a file in regular intervals
save_solution = SaveSolutionCallback(interval = 100,
solution_variables = cons2prim)
# The StepsizeCallback handles the re-calculation of the maximum Δt after each time step
stepsize_callback = StepsizeCallback(cfl = 1.6)
# Create a CallbackSet to collect all callbacks such that they can be passed to the ODE solver
callbacks = CallbackSet(summary_callback, analysis_callback, save_solution,
stepsize_callback)
###############################################################################
# run the simulation
# OrdinaryDiffEq's `solve` method evolves the solution in time and executes the passed callbacks
sol = solve(ode, CarpenterKennedy2N54(williamson_condition = false),
dt = 1.0, # solve needs some value here but it will be overwritten by the stepsize_callback
save_everystep = false, callback = callbacks);
# Print the timer summary
summary_callback()