forked from stancecoke/BMSBattery_S_controllers_firmware
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmotor.c
executable file
·337 lines (274 loc) · 11.9 KB
/
motor.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
/*
* EGG OpenSource EBike firmware
*
* Copyright (C) Casainho,Björn Schmidt 2015, 2106, 2017, 2019
*
* Released under the GPL License, Version 3
*/
#include <stdint.h>
#include <stdio.h>
#include "stm8s_iwdg.h"
#include "stm8s_gpio.h"
#include "stm8s_tim1.h"
#include "motor.h"
#include "gpio.h"
#include "pwm.h"
#include "config.h"
#include "adc.h"
#include "ACAcontrollerState.h"
#include "ACAcommons.h"
uint8_t ui8_counter = 0;
uint8_t ui8_half_rotation_flag = 0;
uint8_t ui8_foc_enable_flag = 0;
uint16_t ui16_PWM_cycles_counter = 0;
uint16_t ui16_PWM_cycles_counter_6 = 0;
uint16_t ui16_PWM_cycles_counter_total = 0;
uint8_t ui8_assumed_motor_position = 0;
uint8_t ui8_sinetable_position = 0; // in 360/256 degrees
uint8_t ui8_motor_rotor_hall_position = 0; // in 360/256 degrees
uint8_t ui8_sinetable_precalc = 0;
uint8_t ui8_interpolation_start_position = 0;
uint8_t ui8_interpolation_angle = 0;
uint16_t ui16_adc_current_phase_B = 0;
uint16_t ui16_adc_current_phase_B_accumulated = 0;
uint16_t ui16_adc_current_phase_B_filtered = 0;
int8_t hall_sensors;
int8_t hall_sensors_last = 0;
uint16_t ui16_ADC_iq_current_accumulated = 4096;
uint16_t ui16_iq_current_ma = 0;
uint8_t ui8_temp = 0;
uint8_t ui8_allowMoreAdvance = 0;
void TIM1_UPD_OVF_TRG_BRK_IRQHandler(void) __interrupt(TIM1_UPD_OVF_TRG_BRK_IRQHANDLER) {
adc_trigger();
hall_sensors_read_and_action();
motor_fast_loop();
// clear the interrupt pending bit for TIM1
TIM1_ClearITPendingBit(TIM1_IT_UPDATE);
}
void hall_sensor_init(void) {
GPIO_Init(HALL_SENSORS__PORT,
(GPIO_Pin_TypeDef) (HALL_SENSOR_A__PIN | HALL_SENSOR_B__PIN | HALL_SENSOR_C__PIN),
GPIO_MODE_IN_FL_NO_IT);
}
void hall_sensors_read_and_action(void) {
// read hall sensors signal pins and mask other pins
hall_sensors = (GPIO_ReadInputData(HALL_SENSORS__PORT) & (HALL_SENSORS_MASK));
if ((hall_sensors != hall_sensors_last) || (ui8_possible_motor_state == MOTOR_STATE_COAST)) // let's run the code when motor is stopped/coast so it can pick right motor position for correct startup
{
if (hall_sensors_last >0 && hall_sensors_last < 7) {
uint8_t_60deg_pwm_cycles[hall_sensors_last-1] = ui16_PWM_cycles_counter_6;
}
updateHallOrder(hall_sensors);
//printf("hall change! %d, %d \n", hall_sensors, hall_sensors_last );
hall_sensors_last = hall_sensors;
if (ui8_possible_motor_state == MOTOR_STATE_COAST) {
ui8_possible_motor_state = MOTOR_STATE_RUNNING_NO_INTERPOLATION;
}
switch (hall_sensors) {
case 3://rotor position 180 degree
// full electric revolution recognized, update counters
uint8_t_hall_case[3] = ui8_adc_read_phase_B_current();
debug_pin_set();
if (ui8_half_rotation_flag) {
ui8_half_rotation_flag = 0;
if (ui16_PWM_cycles_counter > 20) ui16_PWM_cycles_counter_total = ui16_PWM_cycles_counter;
ui16_PWM_cycles_counter = 0;
ui16_motor_speed_erps = ((uint16_t) ui16_pwm_cycles_second) / ui16_PWM_cycles_counter_total; // this division takes ~4.2us
}
if (ui16_motor_speed_erps == -1) {
ui16_motor_speed_erps = 0;
}
// update motor state based on motor speed
if (ui16_motor_speed_erps > 75) {
ui8_possible_motor_state = MOTOR_STATE_RUNNING_INTERPOLATION_360;
}else if (ui16_motor_speed_erps > 3) {
ui8_possible_motor_state = MOTOR_STATE_RUNNING_INTERPOLATION_60;
} else {
ui8_possible_motor_state = MOTOR_STATE_RUNNING_NO_INTERPOLATION;
}
ui8_motor_rotor_hall_position = ui8_s_hall_angle3_180;
break;
case 1:
uint8_t_hall_case[4] = ui8_adc_read_phase_B_current();
ui8_motor_rotor_hall_position = ui8_s_hall_angle1_240;
break;
case 5: //rotor position 300 degree
uint8_t_hall_case[5] = ui8_adc_read_phase_B_current();
ui8_motor_rotor_hall_position = ui8_s_hall_angle5_300;
break;
case 4: //rotor position 0 degree
ui8_half_rotation_flag = 1;
ui8_foc_enable_flag = 1;
uint8_t_hall_case[0] = ui8_adc_read_phase_B_current();
debug_pin_reset();
ui8_motor_rotor_hall_position = ui8_s_hall_angle4_0;
break;
case 6://rotor position 60 degree
uint8_t_hall_case[1] = ui8_adc_read_phase_B_current();
ui8_motor_rotor_hall_position = ui8_s_hall_angle6_60;
break;
case 2://rotor position 120 degree
uint8_t_hall_case[2] = ui8_adc_read_phase_B_current();
ui8_motor_rotor_hall_position = ui8_s_hall_angle2_120;
break;
default:
return;
break;
}
ui16_PWM_cycles_counter_6 = 0;
}
}
void updateCorrection() {
if (ui8_duty_cycle_target > 5) {
ui16_ADC_iq_current_accumulated -= ui16_ADC_iq_current_accumulated >> 3;
ui16_ADC_iq_current_accumulated += ui16_adc_read_phase_B_current();
ui16_ADC_iq_current = ui16_ADC_iq_current_accumulated >> 3; // this value is regualted to be zero by FOC
}
if ((ui16_aca_flags & ANGLE_CORRECTION_ENABLED) != ANGLE_CORRECTION_ENABLED) {
ui8_position_correction_value = 127; //set advance angle to neutral value
return;
}
/* //Remove the /* when wanting to use field weakening
//Field weakening, q current is regulated to a minus value in field weakening mode instead of zero, resulting in higher speed
if (ui16_momentary_throttle > 191 && ui16_setpoint == 255 && ui16_motor_speed_erps > 110 && ui16_BatteryCurrent < (140+ui16_current_cal_b)) {
//if (ui8_assistlevel_global == 5 && ui16_momentary_throttle > 191 && ui16_setpoint == 255 && ui16_motor_speed_erps > 110 && ui16_BatteryCurrent < (140+ui16_current_cal_b)) {
ui8_temp = (ui16_momentary_throttle - 192); //or ui8_temp = (ui16_momentary_throttle - 192) >> 1;
//or ui8_temp = (ui16_momentary_throttle - 192) >> 2 //more options for the amount of field weakening you want
if (ui8_temp > ui8_allowMoreAdvance) {
ui8_allowMoreAdvance++;
}
else if (ui8_temp < ui8_allowMoreAdvance) {
ui8_allowMoreAdvance--;
}
}
else if(ui8_allowMoreAdvance > 0) {
ui8_allowMoreAdvance--;
}
//This if with iq current not divided by 4 gives more field weakening current options
if (ui16_motor_speed_erps > 3 && ui16_BatteryCurrent > ui16_current_cal_b + 3) { //normal riding
if (ui16_ADC_iq_current > (513 - ui8_allowMoreAdvance) && ui8_position_correction_value < 143) { //q current > 128 original
ui8_position_correction_value++;
}
else if (ui16_ADC_iq_current < (510 - ui8_allowMoreAdvance) && ui8_position_correction_value > 111) { //q current > 126 original
ui8_position_correction_value--;
}
}
//*/
//* Remove first slash when wanting to use field weakening
if (ui16_motor_speed_erps > 3 && ui16_BatteryCurrent > ui16_current_cal_b + 3) { //normal riding,
if (ui16_ADC_iq_current >> 2 > 128 && ui8_position_correction_value < 143) {
ui8_position_correction_value++;
} else if (ui16_ADC_iq_current >> 2 < 126 && ui8_position_correction_value > 111) {
ui8_position_correction_value--;
}
}//*/
else if (ui16_motor_speed_erps > 3 && ui16_BatteryCurrent < ui16_current_cal_b - 3) {//regen
ui8_position_correction_value = 127; //set advance angle to neutral value
} else if (ui16_motor_speed_erps < 3) {
ui8_position_correction_value = 127; //reset advance angle at very low speed)
}
}
// runs every 64us (PWM frequency)
void motor_fast_loop(void) {
if (ui16_time_ticks_for_uart_timeout < 65530) {
ui16_time_ticks_for_uart_timeout++;
}
if (ui16_time_ticks_for_speed_calculation < 65530) {
ui16_time_ticks_for_speed_calculation++;
} //increase SPEED Counter but avoid overflow
if (ui16_time_ticks_for_pas_calculation < 65530) {
ui16_time_ticks_for_pas_calculation++;
} //increase PAS Counter but avoid overflow
if (GPIO_ReadInputPin(PAS__PORT, PAS__PIN) && ui16_PAS_High_Counter < 65530) {
ui16_PAS_High_Counter++;
}
// count number of fast loops / PWM cycles
if (ui16_PWM_cycles_counter >= PWM_CYCLES_COUNTER_MAX) {
//ui16_PWM_cycles_counter = 0;
//ui16_PWM_cycles_counter_6 = 0;
ui16_PWM_cycles_counter_total = 0xffff; //(SVM_TABLE_LEN_x1024) / PWM_CYCLES_COUNTER_MAX;
ui8_position_correction_value = 127;
hall_sensors_last = 0;
ui16_motor_speed_erps = 0;
// next code is need for motor startup correctly
ui8_possible_motor_state = MOTOR_STATE_COAST;
hall_sensors_read_and_action();
}
// // calculate the interpolation angle
// // interpolation seems a problem when motor starts, so avoid to do it at very low speed
if (((ui8_possible_motor_state == MOTOR_STATE_RUNNING_INTERPOLATION_60)||(ui8_possible_motor_state == MOTOR_STATE_RUNNING_INTERPOLATION_360)) && ((ui16_aca_experimental_flags & DISABLE_INTERPOLATION) != DISABLE_INTERPOLATION)) {
if (
((ui16_aca_experimental_flags & DISABLE_60_DEG_INTERPOLATION) == DISABLE_60_DEG_INTERPOLATION)||
(((ui16_aca_experimental_flags & SWITCH_360_DEG_INTERPOLATION) == SWITCH_360_DEG_INTERPOLATION) && (ui8_possible_motor_state == MOTOR_STATE_RUNNING_INTERPOLATION_360))
){
if (ui16_PWM_cycles_counter>255){
ui8_interpolation_angle = (ui16_PWM_cycles_counter <<5) / (ui16_PWM_cycles_counter_total>>3);
}else{
ui8_interpolation_angle = (ui16_PWM_cycles_counter <<8) / (ui16_PWM_cycles_counter_total);
}
ui8_interpolation_start_position = ui8_s_hall_angle3_180; // that's where ui16_PWM_cycles_counter is being reset
ui8_dynamic_motor_state = MOTOR_STATE_RUNNING_INTERPOLATION_360;
}else{
if (ui16_PWM_cycles_counter_6>255){
ui8_interpolation_angle = (ui16_PWM_cycles_counter_6 <<5) / (ui16_PWM_cycles_counter_total>>3);
}else{
ui8_interpolation_angle = (ui16_PWM_cycles_counter_6 << 8) / ui16_PWM_cycles_counter_total;
}
ui8_interpolation_start_position = ui8_motor_rotor_hall_position;
ui8_dynamic_motor_state = MOTOR_STATE_RUNNING_INTERPOLATION_60;
}
ui16_PWM_cycles_counter_6++;
}else {// MOTOR_STATE_COAST || MOTOR_STATE_RUNNING_NO_INTERPOLATION
ui8_interpolation_angle = 0;
ui8_interpolation_start_position = ui8_motor_rotor_hall_position;
ui8_dynamic_motor_state = MOTOR_STATE_RUNNING_NO_INTERPOLATION;
}
ui16_PWM_cycles_counter++;
ui8_sinetable_precalc = ui8_interpolation_start_position + ui8_s_motor_angle + ui8_position_correction_value -127 + ui8_interpolation_angle;
if ((ui16_aca_experimental_flags & AVOID_MOTOR_CYCLES_JITTER) != AVOID_MOTOR_CYCLES_JITTER){
ui8_sinetable_position = ui8_sinetable_precalc;
}else{
// if we would go back slightly, stay at current position; if we would go back a lot, still apply (startup/coast/corner cases)
if (((uint8_t)(ui8_sinetable_precalc-ui8_sinetable_position))<248){
ui8_sinetable_position = ui8_sinetable_precalc;
}else{
// debug anti jitter occurrences and angles
ui8_variableDebugB += 1;
ui8_variableDebugC = ui8_interpolation_angle;
ui8_variableDebugA = ui8_motor_rotor_hall_position;
}
}
//ui8_assumed_motor_position = ui8_interpolation_start_position + ui8_interpolation_angle + ui8_s_motor_angle + ui8_position_correction_value - 127;
ui8_assumed_motor_position = ui8_interpolation_start_position + ui8_interpolation_angle + ui8_s_motor_angle;
// check if FOC control is needed
if ((ui8_foc_enable_flag) && ((ui8_assumed_motor_position) >= (ui8_correction_at_angle)) && ((ui8_assumed_motor_position) < (ui8_correction_at_angle + 4))) {
// make sure we just execute one time per ERPS, so reset the flag
ui8_foc_enable_flag = 0;
//ui8_variableDebugA = ui8_assumed_motor_position;
//ui8_variableDebugB = ui8_assumed_motor_position + ui8_position_correction_value - 127;
updateCorrection();
}
//reset watchdog
IWDG->KR = IWDG_KEY_REFRESH;
pwm_duty_cycle_controller();
}
void watchdog_init(void) {
IWDG_Enable();
IWDG_WriteAccessCmd(IWDG_WriteAccess_Enable);
IWDG_SetPrescaler(IWDG_Prescaler_4);
// Timeout period
// The timeout period can be configured through the IWDG_PR and IWDG_RLR registers. It
// is determined by the following equation:
// T = 2 * T LSI * P * R
// where:
// T = Timeout period
// T LSI = 1/f LSI
// P = 2 (PR[2:0] + 2)
// R = RLR[7:0]+1
//
// 0.0001 = 2 * (1 / 128000) * 4 * R
// R = 1.6 ; rounding to R = 2
// R = 2 means a value of reload register = 1
IWDG_SetReload(2); // 187.5us; for some reason, a value of 1 don't work, only 2
IWDG_ReloadCounter();
}